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Abstract— A control strategy inspired by the hunting tactics
of ladybugs is presented to simultaneously achieve sensor
coverage and exploration of an area with a group of networked
robots. The controller is distributed in that it requires on ly
information local to each robot, and adaptive in that it modifies
its behavior based on information in the environment. The
ladybug controller is developed as a modification to a basic
coverage control law, first for the non-adaptive case, then
for the adaptive case. Stability is proven for both cases with
a Lyapunov-type proof. Results of numerical simulations are
presented.

I. I NTRODUCTION

We present a decentralized adaptive control law that causes
networked robots to explore an area while simultaneously
searching for an optimal coverage configuration for sensing
over the area. The exploration strategy is modeled on one
used by ladybugs in their hunt for aphids (Fig. 1). Further-
more, the exploration strategy is provably stable and can
be arbitrarily aggressive. The ladybug control law improves
upon previous coverage controllers by avoiding locally opti-
mal configurations and providing richer trajectories for better
learning of the distribution of sensory information in the
environment. Our controller would be useful in controlling
teams of robots to carry out a number of tasks including
search and rescue missions, environmental monitoring (e.g.
for forest fires), automatic surveillance of rooms, buildings,
or towns, or simulating collaborative predatory behavior.
Virtually any application in which a group of automated
mobile agents is required to both monitor and explore an
area could benefit from the proposed controller.

The two notions we investigate in this paper, coverage
and exploration, are often interchanged, and therefore it is
important to clearly delineate what we mean by each. By
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coverage, we refer specifically to the locational cost function
introduced in [1]. A high value of this function corresponds
to poor coverage and a low value to good coverage. Further-
more, the function has well-defined minima corresponding to
static optimal coverage configurations. This is quite different
from the other common notion of coverage defined as the
total area swept out by a sensing disk surrounding an agent.
In fact, the swept sensing disk notion is closely related to
what we call exploration. Specifically, we define the degree
to which a robot trajectory is exploratory by the minimum
eigenvalue of a certain matrix, as defined in Section IV-
A, and we show that this value is linked to the notion
of a sweeping disk. In this work, our main objective is

Fig. 1. The exploration strategy that ladybugs use to hunt for aphids was
used to inspire a decentralized controller for networked robots to perform
exploration and coverage tasks.

coverage (minimizing the locational cost function), while
exploration (maximizing the swept disk area) is considered
as an additional desirable property. We show that a certain
class of exploration, “ladybug exploration,” can proceed
without disrupting the coverage objective. Other kinds of
exploration, e.g. a random walk, may prevent convergence



to an optimal coverage configuration, and therefore subvert
the main objective.

The controller that we present superimposes a ladybug
exploration force on a basic coverage controller causing
both exploration and coverage to proceed orthogonal to one
another. Robots explore the whole area, at first aggressively,
while they have little information about the sensing envi-
ronment, and increasingly less aggressively as they collect
information about the sensing environment and settle into
an optimal configuration for coverage. The exploration force
causes the robots to spiral around regions of high sensory
interest, which is analogous to the way ladybugs turn more
tightly around areas in which they encounter aphids [2], [3].
The robots asymptotically spiral in to fixed positions such
that their density in different regions of the environment is
directly related to the sensory importance of those regions.
Thus regions of greater importance receive more concen-
trated sensor coverage than regions that are less important.

The control law is presented first in a non-adaptive form,
then in an adaptive form. The main difference between the
two forms is that for the non-adaptive controller, the robots
are assumed to knowa priori the distribution of sensory
information in the environment, whereas in the adaptive
form, they learn the distribution using an adaptation law.
The non-adaptive controller is simpler, providing an intuitive
platform from which to describe the ladybug exploration
force. For the non-adaptive controller, the main effect of the
ladybug exploration is to prevent the robots from getting
trapped in locally optimal configurations. In this way it has
an effect similar to simulated annealing strategies [4], [5],
though without any stochasticity.

On the other hand, the main benefit of ladybug exploration
for the adaptive controller is to improve parameter learning.
The adaptive controller uses an adaptation law to learn the
distribution of sensory information in the environment from
collected sensor measurements. The fidelity of the learned
distribution to the actual distribution is intimately related to
the extent to which the robot has explored the environment.
This fact is formalized in the persistent excitation condi-
tions, which are discussed in Section IV-A. The ladybug
controller, by driving each robot to explore the environment,
provides markedly improved learning performance over the
basic adaptive coverage controller. This leads to markedly
improved final configurations and faster convergence.

A. Relation to Previous Work

The basic coverage controller relevant to this work was
first introduced in [1] in a non-adaptive form, and in [6]
in an adaptive form. The ladybug exploration term can be
included in either controller in essentially the same way.
It was shown in [1] that coverage control can be phrased
as a locational optimization problem [7]. Many controllers
using this paradigm have been proposed, for example [8]–
[10]. Notably, in [8] a deterministic annealing approach
was adapted to the locational optimization problem to find
globally optimal solutions. The adaptive coverage controller
presented in [6] combines techniques from adaptive control

[11]–[13] with the controller in [1] to learn the distribution
of sensory information in the environment.

In this paper we use a deterministic framework, which
is common in the coverage control and adaptive control
literature. In Section II we set up the problem and introduce
the necessary tools from locational optimization. In Section
III we formulate the non-adaptive ladybug controller, and
show that it can provide improved performance over the
basic controller by avoiding local minima. In Section IV, we
introduce the adaptive ladybug controller, formalize persis-
tent excitation conditions, and show that it provides superior
performance to the basic adaptive controller in both learning
and final coverage configuration. Conclusions are given in
Section V.

II. PROBLEM SET-UP

A group of n robots with positionspi ∈ R
2, wherei ∈

{1, . . . , n}, move in a bounded, convex regionQ ⊂ R2. The
function φ : Q 7→ R+ (henceforthR+ refers to the strictly
positive orthant), determines a weighting of importance of
points q ∈ Q. Let {V1, ..., Vn} be the Voronoi partition of
Q, for which the robot positions are the generator points.
Specifically,

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖, ∀j 6= i}.

We can formulate a function denoting the cost incurred by
the group of robots sensing over the regionQ as

H(P ) =
n

∑

i=1

∫

Vi

1

2
‖q − pi‖2φ(q) dq. (1)

The weighting1

2
‖q−pi‖2 is included to capture the intuition

that a robot located atpi will sense information at a point
q with less reliability the fartherq is from pi, thus points
q that are farther away are more expensive. Notice also
that high values ofφ(q) are expensive. An optimal network
configuration corresponds to a set of robot positions that min-
imizes (1). The subject dealing with optimization problems
of this kind is called Locational Optimization. More thorough
discussions can be found in [1], [7].

To solve this optimization problem, we define three prop-
erties analogous to mass-moments of rigid bodies. The mass,
first moment, and centroid ofVi are defined respectively as

MVi
=

∫

Vi

φ(q) dq, LVi
=

∫

Vi

qφ(q) dq (2)

and CVi
= LVi

/MVi
, (3)

Note thatφ(q) strictly positive imply bothMVi
> 0 ∀ Vi 6=

∅ and CVi
∈ Vi\∂Vi (CVi

is in the interior ofVi). Thus
MVi

and CVi
have properties intrinsic to physical masses

and centroids. Finally, it is useful to define the position error

ei = (CVi
− pi). (4)

A standard result in locational optimization is that

∂H
∂pi

= −MVi
ei. (5)



Fig. 2. A geometric representation of the non-adaptive ladybug controller is
shown. The robot is atpi, its Voronoi region is labelledVi, with a centroid
at CVi

. The two components of the control law are shown as perpendicular
vectors,ei, the coverage force, and,fie

⊥

i
, the exploration force.

Equation (5) implies that local minima ofH correspond
to the configurations such thatpi = CVi

∀i, that is, each
agent is located at the centroid of its Voronoi region. Such
configurations are called centroidal Voronoi configurations,
and it is known that several such configurations may exist.
The optimization problem is to find a centroidal Voronoi
configuration corresponding to the minimal value ofH.

III. N ON-ADAPTIVE LADYBUG CONTROLLER

Let the robots have dynamics

ṗi = ui, (6)

whereui is the control input. This may simply mean there
is a low level controller in place to enforce integrator
dynamics. Results can be extended to second order and
nonholonomic dynamics. Such extension for the basic, non-
adaptive controller are given in [1], and would likely apply
straightforwardly to the ladybug controllers we discuss here.

We assume that the robots are able to compute their own
Voronoi cell, Vi = {q | ‖q − pi‖ ≤ ‖q − pj‖} by commu-
nicating their location among their Voronoi neighbors. Also,
we require the follow assumption.

Assumption 1 (Sensory Function Knowledge): The
sensory functionφ(q) is available to all of the robots.

We can formulate the non-adaptive ladybug control law as

ui = Kei, where K =

[

k −fi

fi k

]

, (7)

and wherefi ∈ R is the exploration gain, andk ∈ R+, is
a control gain. A geometric schematic of the control law is
shown in Fig. 2. The key attributes of the gain matrixK
is that it is positive definiteand it has a skew-symmetric
component. The controller from [1] can be recovered simply
by settingfi = 0 ∀i.

Theorem 1 (Non-Adaptive Ladybug Convergence):
Under Assumption 1, for the system of agents with
dynamics (6) and the control law (7),

limt→∞ ei = 0 ∀i ∈ {1, . . . , n} (8)

Proof: Let H be a Lyapunov-like function. Taking the
time derivative ofH along the trajectories of the system
yields

Ḣ = −
n

∑

i=1

[

MVi
keT

i ei + MVi
fie

T
i e⊥i

]

, (9)

wheree⊥i is the vector perpendicular toei of the same length.
But eT

i e⊥i = 0, resulting inḢ ≤ 0. Also, the facts thatui is
continuous∀i, H has continuous first partial derivatives,H
is radially unbounded, anḋH ≤ 0 imply thatḢ is uniformly
continuous. Therefore, by Barbalat’s lemmalimt→∞ Ḣ = 0,
which implies (8).

A. Ladybug Exploration

The exploration gainfi can be chosen in a number of
ways. In fact, it can be time varying and even stochastic (as
long as it remains bounded). In any case, it is invisible to the
convergence proof. Actual ladybugs use what appears to be
a stochastic algorithm in which their turning frequency and
amplitude increase with increased evidence of aphids. This
causes them to stochastically spiral in and linger upon groups
of aphids [2]. Furthermore, it has been found that individual
ladybugs tend to show a significant bias toward turning either
right or left [3]. These attributes might be captured infi in a
variety of ways. We have chosen to use the most simplistic
way as it tends to give good empirical performance despite
its simplicity. In particular, we letfi = ±f be a constant,
the same magnitude for alli. We capture the right or left
handedness of the ladybugs by assigning the sign offi

randomly at initialization.
There is one subtle technicality that must be addressed.

We desire that the robot trajectories remain insideQ for
their entire trajectories. Indeed, this is not guaranteed by the
convergence proof, but can be easily accomplished with a
stable collision detection rule. Specifically, let

fi(pi) =

{

0 if pi ∈ ∂Q
±f otherwise.

(10)

This choice forfi is bounded, therefore it does not affect
the convergence result, and it is guaranteed to keeppi ∈ Q.
To see this, ifpi is on the boundary∂Q, its velocity will
be ṗi = k(CVi

− pi). The centroidCVi
, as was previously

pointed out, is always in the interior ofQ, thuspi will be
driven toward the interior preventing any escape fromQ.

Unfortunately, for CVi
to be on the interior ofQ, Q

must be convex (as was previously stated). This precludes
environments with obstacles or “room and hallway” type
structures. In practice the controller works well in some such
environments and not well in others. Extending the controller
to nonconvex environments is a topic of ongoing research
[14].

B. Simulation Results

Simulations were carried out in a Matlab environment to
compare the performance of the ladybug and basic con-
trollers. The dynamics in (6) with the control law in (7)



with k = 1, for a group ofn = 10 robots were integrated
using a fixed time step solver. For the basic controller, the
exploration gainfi = 0, ∀i. For the ladybug controller,
f = 10 was used with the sign determined randomly at
initialization, and with the collision detection law described
in (10). The regionQ was taken to be the unit square.
The sensory functionφ(q) was constructed as a sum of two
Gaussians,

φ(q) =
2

∑

j=1

100

σj

√
2π

exp

{

− (q − µj)
2

2σ2
j

}

, (11)

where σj = .18. One of the Gaussian was centered at
µ1 = [1/6 1/6]T and the other was centered atµ2 =
[5/6 5/6]T . The robots in the network were started from
the same initial positions for the two controllers, confined
to the lower-left 1/10 square ofQ. The spatial integrals
in (2) required for the control law were approximated by
discretizing each Voronoi regionVi into a 7 × 7 grid
and summing contributions of the integrand over the grid.
Voronoi polygons were computed for each robot using a
distributed algorithm similar to the one described in [1]. We
point out that each robot must compute its Voronoi region at
each execution of the control loop, therefore controllers of
this kind can be computationally expensive, though still well
within the abilities of modern micro-controllers, as detailed
in the robot experiments carried out in [10].

Figure 3 shows the results of numerical simulations for
the ladybug controller (left column) and the basic controller
(right column), with the Gaussian centers marked by red
×s. The figures show the explorative, spiralling behavior of
the ladybug controller in comparison with the rather direct
trajectories of the basic algorithm. The final configuration
for the ladybug controller has an equal number of robots
concentrated around the two Gaussians, whereas the basic
controller has caused more robots to collect around the
Gaussian close to where they started.

Figure 4 shows that both controllers cause the network to
converge to a centroidal Voronoi configuration, as guaranteed
by Theorem 1. However, Fig. 5 shows that the ladybug
controller obtained a significantly lower cost configuration
than the basic controller at a significantly faster convergence
rate. This supports the assertion that exploration helps the
ladybug controller to avoid local minima.

IV. A DAPTIVE LADYBUG CONTROLLER

The adaptive controller is significantly more complicated
than its non-adaptive counterpart because it has to maintain
a stable learning algorithm within the controller. Consider
robots with the same dynamics as in (6).

We relax Assumption 1 with the following two less
restrictive assumptions.

Assumption 2 (Sensory Function Measurement): The
robots are able to measureφ(pi). That is, they are equipped
with sensors from which they can determine the value ofφ
at their own positionpi at any point in time.

(a) Ladybug Initial Config. (b) Basic Initial Config.

(c) Ladybug Trajectories (d) Basic Trajectories

(e) Ladybug Final Config. (f) Basic Final Config.

Fig. 3. The initial configuration, robot trajectories, and final configuration
are shown for a network of robots with the non-adaptive ladybug controller
on the left (3(a), 3(c), and 3(e)) and with the basic non-adaptive controller
on the right (3(b), 3(d), and 3(f)). The Gaussian centers ofφ(q) are marked
by the red×s.

Assumption 3 (Matching Conditions): ∃a ∈ R
m
+ andK :

Q 7→ R
m
+ , such that

φ(q) = K(q)T a, (12)

where the vector of basis functionsK is known by each
agent, but the parameter vectora is unknown. Furthermore,

a(j) ≥ amin ∀j ∈ {1, . . . , m} (13)

where a(j) denotes thejth element of the vectora, and
amin > 0 is a known real bound.

Requirements such as Assumption 3 are common for
adaptive controllers. In theory, the assumption is not limiting
since any function (with some smoothness requirements)
over a bounded domain can be approximated arbitrarily well
by a network of basis functions [15]. In practice, however,
designing a suitable function approximation network requires
application-specific expertise. We use Gaussian basis func-
tions in our simulations, but there is a variety of other
basis function families to chose from including, wavelets,
sigmoids, and splines.



Fig. 4. The position errorei averaged over the robots is shown for the
ladybug and the basic non-adaptive controllers.

Fig. 5. The decreasing Lyapunov function is shown for both the ladybug
and the basic non-adaptive controllers. The ladybug controller achieves a
lower value.

Let âi(t) be robot i’s approximation of the parameter
vector. Naturally,φ̂i = K(q)T âi is robot i’s approximation
of φ(q). Define the mass moment approximations

M̂Vi
=

∫

Vi

φ̂i dq, L̂Vi
=

∫

Vi

qφ̂i dq, (14)

and ĈVi
= L̂Vi

/M̂Vi
.

Next, define the parameter error

ãi = âi − a, (15)

and the sensory function error

φ̃i = φ̂i − φ = K(q)T ãi. (16)

Also define theestimated position error vector

êi = (ĈVi
− pi), (17)

which is not to be confused with the actual position error
defined previously,ei = (CVi

− pi). Most importantly, the
robots do not knowei, but they do knoŵei. Notice also that
âi = a implies êi = ei.

Finally, in order to compress the notation, we introduce the
shorthandKi = K(pi(t)) for the value of the basis function
vector at the position of roboti, andφi = φ(pi(t)) for the
value ofφ at the position of roboti. As previously stated in
Assumption 2, roboti can measureφi with its sensors.

Consider a control law of a similar form to (7),

ui = Kêi, (18)

with K defined as before. The parametersâi used to calculate
êi are adjusted according to a set of adaptation laws which
are introduced below.

Define two quantities,

Λi =

∫ t

0

w(τ)Ki(τ)Ki(τ)T dτ, (19)

and

λi =

∫ t

0

w(τ)Ki(τ)φi(τ) dτ. (20)

The functionw(t) ∈ L1, where w(t) ≥ 0, determines a
data collection weighting. These quantities can be calculated
differentially by roboti using Λ̇i = w(t)KiKT

i , and λ̇i =
w(t)Kiφi, with zero initial conditions.

Define another quantity

Fi =

∫

Vi

K(q)(q − pi)
T dqK

∫

Vi

(q − pi)K(q)T dq
∫

Vi

φ̂i dq
, (21)

The matrixFi can also be computed by roboti as it does
not require any knowledge ofa.

The adaptation law for̂ai is defined as

˙̂apre
i
= −Fiâi − γ(Λiâi − λi), (22)

˙̂ai = Γ( ˙̂apre
i
− Iproj

i

˙̂apre
i
) (23)

whereΓ ∈ R
m×m is a diagonal, positive definite adaptation

gain matrix, andγ ∈ R+ is an adaptation gain scalar. The
diagonal matrixIproj

i
is defined element-wise as

Iproj
i
(j) =







0 for âi(j) > amin

0 for âi(j) = amin andapre
i
(j) ≥ 0

1 otherwise
,

(24)
where (j) denotes thejth element for a vector and the
jth diagonal element for a matrix. Equations (23) and (24)
implement a projection operation that prevents any element
of âi from dropping below the lower boundamin. The
controller and adaptation law from [6] can be recovered by
settingfi = 0 ∀i.

The terms in the adaptation law 22 have a natural inter-
pretation. The term−Fiâi compensates for uncertainty in
the centroid position, and the term−(Λiâi − λi) carries out
a gradient descent to minimize the sensory function error
φ̃i(pi) integrated over time. The projection is then required
because the controller has a singularity atM̂Vi

= 0. We
could also add a consensus term to the adaptation law to
speed convergence, as described in [16]. The controller and
adaptation law cause the network of robots to converge to
an advantageous configuration as formalized in the follow
theorem.

Theorem 2 (Adaptive Ladybug Convergence): Under As-
sumptions 2 and 3, for the system of agents with dynamics
(6) and the control law (18),

i) limt→∞ êi = 0 ∀i ∈ {1, . . . , n} (25)

ii) limt→∞ Ki(τ)T ãi(t) = 0 ∀τ | w(τ) > 0 (26)

and∀i ∈ {1, . . . , n}.



Proof: Let

V =

n
∑

i=1

(
∫

Vi

1

2
‖q − pi‖2φ(q) dq +

1

2
ãT

i Γ−1ãi

)

. (27)

Taking the time derivative ofV along the trajectories of the
system yields

V̇ = −
n

∑

i=1

[

M̂Vi
kêT

i êi + M̂Vi
fiê

T
i ê⊥i + (28)

ãT
i Iproj

i
apre

i
+ γ

∫ t

0

w(τ)(KT
i (τ)ãi(t))

2 dτ
]

,

For details of this derivation, please refer to [6]. As before
êT

i ê⊥i = 0, resulting in

V̇ = −
n

∑

i=1

[

M̂Vi
kêT

i êi + ãT
i Iproj

i
apre

i
+ (29)

γ

∫ t

0

w(τ)(KT
i (τ)ãi(t))

2 dτ
]

,

It can be shown that all terms inside the sum are positive,
therefore V̇ ≤ 0. Also, the facts thatui is continuous
∀i, V has continuous first partial derivatives,V is radially
unbounded, anḋV ≤ 0 imply thatV̇ is uniformly continuous.
Therefore, by Barbalat’s lemmalimt→∞ V̇ = 0, which
implies (8) from Theorem 2, and

lim
t→∞

∫ t

0

w(τ)(KT
i (τ)ãi(t))

2 dτ = 0 ∀i ∈ {1, . . . , n}.

The integrand in (30) is non-negative, therefore it must
converge to zero for allτ , which implies (26) from Theorem
2.

A. Persistent Excitation and Ladybug Exploration

The closeness of the learned sensory distribution to the
true sensory distribution is intimately related to the extent to
which a robot has explored the environment. Indeed, this was
the main justification for introducing the ladybug force. The
concept of persistent excitation (PE) from adaptive control
captures this intuition precisely. In our case, conditionsfor
PE fall out naturally, along with a metric for determining
how explorative, or persistently exciting, a robot’s trajectory
is.

Formally, the assertion (26) of Theorem 2 states that the
estimate of the sensory function̂φi will converge asymptot-
ically to the true sensory functionφ for all points on the
robot’s trajectory with positive weightingw(τ). This does
not, however, imply that̂φi(q) → φ(q) everywhere inQ.
This requires an extra condition.

Corollary 1 (Persistent Excitation): In addition to the re-
quirements for Theorem 2, if for somei ∈ {1, . . . , n}

∫ t

0

w(τ)Ki(τ)KT
i (τ) dτ > 0, (30)

then the following also occur

lim
t→∞

âi = a, (31)

lim
t→∞

φ̂i = φ ∀q ∈ Q, (32)

lim
t→∞

ei = 0. (33)

Proof: Consider the last term in the sum from (29).
Take the twoãi outside of the integral to give

V̇ = −
n

∑

i=1

(

· · · + γãT
i

∫ t

0

w(τ)Ki(τ)KT
i (τ) dτãi

)

.

SinceV̇ → 0, if
∫ t

0
w(τ)Ki(τ)KT

i (τ) dτ is positive definite
for somei, ãi → 0. Convergence of the sensory function (32)
then follows directly from (16), and implieŝCVi

→ CVi
from

(14), which in turn implies position error convergence (33).

What is more, even if PE is achieved, parameter conver-
gence can be prohibitively slow. A useful metric for assessing
parameter convergence rates is

λmini
(t) = mineig

∫ t

0

w(τ)Ki(τ)KT
i (τ) dτ, (34)

where mineig denotes the minimum eigenvalue of a matrix.
If this quantity is strictly positive, PE has been achieved,
and the larger it is, the faster parameter convergence will
take place. Intuitively, the more ofQ visited by a robot, the
largerλmini

will be, and the faster parameter estimates will
converge to the true parameters. The ladybug exploration
gain fi promotes exploration of the space and is therefore
likely to produce trajectories that aremore PE than the basic
controller.

There is also an implicit trade-off between the richness
of the basis function set and the difficulty of achieving a PE
trajectory. For example, ifK(q) consists of a single Gaussian
function, all trajectories are PE. IfK(q) consists of two
Gaussian functions with radial symmetry, all trajectoriesare
PE except those which are perpendicular to the line passing
through the centers of the Gaussians. As the number of basis
functions grows, the set of non-PE trajectories also grows.If
the set of basis functions is too rich, it becomes very unlikely
that PE will be achieved. Thus a balance must be found
depending upon the requirements of the application. This is
a manifestation of the well-known dichotomy of goodness-
of-fit vs. generalizability.

B. Simulation Results

Simulations were carried out in the same environment
as for the non-adaptive controllers, with the same initial
configuration and exploration gain. The functionφ(q) was
constructed slightly differently to meet the requirementsof
Assumption 3. Specificallyφ(q), was parameterized as a
Gaussian network with 9 Gaussians and a constant offset.
In particular, for K = [ 1 K(2) · · · K(10) ]T , each
component,K(j) for 2 ≤ j ≤ 10, was implemented as

K(j) =
1

σj

√
2π

exp

{

− (q − µj)
2

2σ2
j

}

, (35)



(a) Ladybug Initial Config. (b) Basic Initial Config.

(c) Ladybug Trajectories (d) Basic Trajectories

(e) Ladybug Final Config. (f) Basic Final Config.

Fig. 6. The initial configuration, robot trajectories, and final configuration
are shown for a network of robots with the adaptive ladybug controller on
the left (6(a), 6(c), and 6(e)) and with the basic adaptive controller on the
right (6(b), 6(d), and 6(f)). The Gaussian centers ofφ(q) are marked by the
red x’s.

where σj = .18. The unit square was divided into
an even 3 × 3 grid and eachµj was chosen so that
one of the 9 Gaussians was centered at the middle of
each grid square. The parameters were chosen asa =
[ amin 100 amin · · · amin 100 ]T , with amin = .1
so that only the lower left and upper right Gaussians
contributed significantly to the value ofφ(q), producing a
bimodal distribution essentially identical to the one used
previously.

Each robot used a copy of the9 Gaussians described above
for K(q). The estimated parametersâi for each robot were
started at a value ofamin, andΛi andλi were each started
at zero. The gains used by the robots werek = 1, Γ = I10,
and γ = 5. The data weighting function was chosen to be
w(t) = ‖ṗi‖2. In all other respects the simulations were
identical to those described previously.

Figure 6 shows the results of numerical simulations for
the adaptive ladybug controller (left column) and the basic
controller (right column), with the Gaussian centers marked
by red×s. As in the non-adaptive case, the figures show the
spiralling behavior of the ladybug controller. Evidently,the

(a) True Pos. Error (b) Est. Pos. Error

Fig. 7. The true position errorei is shown on the left and the estimated
position errorêi on the right averaged over all of the robots for the ladybug
and the basic adaptive controllers. The convergence ofêi is guaranteed by
Theorem 2 for both controllers, however the ladybug controller leads to a
lower true position error.

Fig. 8. The decreasing Lyapunov function is shown for both the ladybug
and the basic adaptive controllers. The ladybug controllerachieves a lower
value indicating a better sensing configuration and a bettersensory function
approximation.

ladybug controller finds a better final configuration for sens-
ing over the bi-modal distribution than the basic controller.
Recall that the robots had no knowledge of the distribution
before hand, but each robot learned an approximation of it
during its trajectory.

The right side of Fig. 7 illustrates that the estimated
position error converges to zero for both controllers, as
asserted in Theorem 2. However, the true error (shown in the
left of Fig. 7) indicates that the ladybug controller converged
to a truly centroidal Voronoi configuration and the basic
controller did not. Also, Fig. 8 shows that the ladybug
controller obtained a lower Lyapunov function than the basic
controller at a faster convergence rate, indicating both a

(a) Minimum Eigenvalue (b) Exploration Area

Fig. 9. The left plot shows a metric indicating the richness of the robot
trajectories. A larger value denotes faster parameter convergence and also
indicates more exploration. The ladybug controller gives richer trajectories
than the basic controller. The plot on the right shows the minimum over
all the robots of the area explored during a trajectory. Again, the ladybug
controller causes the robots to explore more of the space than the basic one.



lower-cost configuration and a better function approximation.
Finally, Fig. 9 compares the richness of robot trajectories

for the two controllers. The minimum over all the robots of
λmini

(as defined in (34)) is shown for the two controllers
on the left (Fig. 9(a)). With the adaptive controller, PE was
achieved for every robot in the network, thus satisfying the
conditions for Corollary 1. For the basic controller, at least
one of the robots (in fact 8 of them, though this is not
evidenced in the plot) did not have PE trajectories, and
therefore did not gather enough information to learning the
true sensory distribution function. Also, the minimum over
the robots of the area explored by a robot is shown on the
right (Fig. 9(b)). This was computed by dividing the areaQ
into a50×50 grid and summing up the grid areas visited by a
robot. Even the least exploring robot visits 12% of the space
with the ladybug controller, while for the basic controller,
the least exploring robot visits less than 1% of the space.

V. CONCLUSION

In this work we proposed a decentralized controller for
causing a network of robots to explore and cover an area. The
exploration was inspired by the strategy used by ladybugs to
hunt for aphids. A non-adaptive and an adaptive version of
the controller was presented, with the ladybug exploration
force appearing as an addition to a basic controller in each
case. Convergence of the controller was proven with a
Lyapunov-type proof. In both the adaptive and non-adaptive
cases, the ladybug controller was shown to perform better
than the basic controller. For the non-adaptive controller, this
was attributed to the ladybug controller’s ability to avoid
locally optimal configurations. For the adaptive controller
this was explained by showing that exploration leads to
richer trajectories, causing better parameter learning, and
eventually better coverage. In the future we would like
to carry out experimental investigations with this control
strategy on robot platforms, such as those used in [10]. Also,
it would be interesting to look for adaptation rules to allow
the positions and number of basis functions to adapt based
on sensor measurements. We hope that the combination of
animal behaviors with control theoretic concepts can lead to
more creative and effective control strategies in the future.
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