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Abstract— A control strategy inspired by the hunting tactics coverage, we refer specifically to the locational cost fiomct
of ladybugs is presented to simultaneously achieve sensor introduced in [1]. A high value of this function corresponds
coverage and exploration of an area with a group of networked to poor coverage and a low value to good coverage. Further-

robots. The controller is distributed in that it requires only the function h I-defined mini dina t
information local to each robot, and adaptive in that it modifies more, the tunction has well-detinéd minima corresponding to

its behavior based on information in the environment. The Static optimal coverage configurations. This is quite défe
ladybug controller is developed as a modification to a basic from the other common notion of coverage defined as the

coverage control law, first for the non-adaptive case, then total area swept out by a sensing disk surrounding an agent.
for the adaptive case. Stability is proven for both cases Wit |, fact the swept sensing disk notion is closely related to
a Lyapunov-type proof. Results of numerical simulations ae . o )
presented. what we call exploration. Specifically, we define the degree
to which a robot trajectory is exploratory by the minimum
[. INTRODUCTION eigenvalue of a certain matrix, as defined in Section IV-

We present a decentralized adaptive control law that causBs and we show that this value is linked to the notion
networked robots to explore an area while simultaneousBf & sweeping disk. In this work, our main objective is
searching for an optimal coverage configuration for sensing
over the area. The exploration strategy is modeled on one
used by ladybugs in their hunt for aphids (Fig. 1). Further-
more, the exploration strategy is provably stable and can
be arbitrarily aggressive. The ladybug control law impove
upon previous coverage controllers by avoiding locallyi-opt
mal configurations and providing richer trajectories foitée
learning of the distribution of sensory information in the
environment. Our controller would be useful in controlling
teams of robots to carry out a number of tasks including
search and rescue missions, environmental monitoring (e.g
for forest fires), automatic surveillance of rooms, buitin
or towns, or simulating collaborative predatory behavior.
Virtually any application in which a group of automatedrig. 1. The exploration strategy that ladybugs use to hungafids was
mobile agents is required to both monitor and explore awsed to inspire a decentralized controller for networketbts to perform
area could benefit from the proposed controller. exploration and coverage tasks.

The two notions we investigate in this paper, coverage
and exploration, are often interchanged, and therefors it ¢overage (minimizing the locational cost function), while

important to clearly delineate what we mean by each. Bgxploration (maximizing the swept disk area) is considered
as an additional desirable property. We show that a certain
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to an optimal coverage configuration, and therefore subvdft1]—[13] with the controller in [1] to learn the distriboin
the main objective. of sensory information in the environment.

The controller that we present superimposes a ladybugIn this paper we use a deterministic framework, which
exploration force on a basic coverage controller causing common in the coverage control and adaptive control
both exploration and coverage to proceed orthogonal to offieerature. In Section Il we set up the problem and introduce
another. Robots explore the whole area, at first aggregsivethe necessary tools from locational optimization. In Secti
while they have little information about the sensing envilll we formulate the non-adaptive ladybug controller, and
ronment, and increasingly less aggressively as they d¢olleshow that it can provide improved performance over the
information about the sensing environment and settle intoasic controller by avoiding local minima. In Section 1V, we
an optimal configuration for coverage. The exploration éorcintroduce the adaptive ladybug controller, formalize fgers
causes the robots to spiral around regions of high sensamsnt excitation conditions, and show that it provides sigoer
interest, which is analogous to the way ladybugs turn mongerformance to the basic adaptive controller in both lewyni
tightly around areas in which they encounter aphids [2], [3land final coverage configuration. Conclusions are given in
The robots asymptotically spiral in to fixed positions suclSection V.
that their density in different regions of the environmesnt i

directly related to the sensory importance of those regions Il. PROBLEM SET-UP
Thus regions of greater importance receive more concen-A group of n robots with positiong; € R2?, wherei
trated sensor coverage than regions that are less importadt, ..., n}, move in a bounded, convex regiGhC R2. The

The control law is presented first in a non-adaptive formfunction ¢ : @ — R, (henceforthR, refers to the strictly
then in an adaptive form. The main difference between thgositive orthant), determines a weighting of importance of
two forms is that for the non-adaptive controller, the rabotpoints ¢ € Q. Let {V4,...,V,,} be the Voronoi partition of
are assumed to know priori the distribution of sensory @), for which the robot positions are the generator points.
information in the environment, whereas in the adaptivgpecifically,
form, they learn the distribution using an adaptation law.

The non-adaptive controller is simpler, providing an ititei Vi={q€Qlllg—pill <llg—p;ll,vj#i}.

platform from which to _descrlbe the Iadybu_g exploratlorwe can formulate a function denoting the cost incurred by
force. For the non-ad_aptlve controller, the main effecthaf _t the group of robots sensing over the regi@ras

ladybug exploration is to prevent the robots from getting

trapped in locally optimal configurations. In this way it has - 1

an effect similar to simulated annealing strategies [4], [5 H(P) = Z/v 3 lla = pill*9) da. @)
though without any stochasticity. =

On the other hand, the main benefit of ladybug exploratiofihe weightings [|¢ — p;||* is included to capture the intuition
for the adaptive controller is to improve parameter leaggnin that a robot located gb; will sense information at a point
The adaptive controller uses an adaptation law to learn tlgewith less reliability the fartheg is from p;, thus points
distribution of sensory information in the environmentrfro ¢ that are farther away are more expensive. Notice also
collected sensor measurements. The fidelity of the learndult high values of5(¢) are expensive. An optimal network
distribution to the actual distribution is intimately redd to  configuration corresponds to a set of robot positions that mi
the extent to which the robot has explored the environmeritmizes (1). The subject dealing with optimization problems
This fact is formalized in the persistent excitation condiof this kind is called Locational Optimization. More thogiu
tions, which are discussed in Section IV-A. The ladybugliscussions can be found in [1], [7].
controller, by driving each robot to explore the environitpen To solve this optimization problem, we define three prop-
provides markedly improved learning performance over therties analogous to mass-moments of rigid bodies. The mass,
basic adaptive coverage controller. This leads to markedfirst moment, and centroid df; are defined respectively as
improved final configurations and faster convergence.
A. Relation to Previous Work My, = Vi da)da. Lv.= fVi a¢la) da @)
The basic coverage controller relevant to this work was and  Cv, = Ly, /My, ©)

first introduced in [1] in a non-adaptive form, and in [6]ngte thatg(q) strictly positive imply bothAy: > 0V V; #
in an adaptive form. The ladybug exploration term can bg ;.4 Cv, € V;\aV; (Cy, is in the interior ofV;). Thus

included in either controller in essentially the same Wayyr. and Cy. have properties intrinsic to physical masses

It was shown in [1] that coverage control can be phrasegj centroids. Finally, it is useful to define the positioroer
as a locational optimization problem [7]. Many controllers

using this paradigm have been proposed, for example [8]- e; = (Cv;, — pi). 4)
[10]. Notably, in [8] a deterministic annealing approach i i L

was adapted to the locational optimization problem to find* Standard result in locational optimization is that
globally optimal solutions. The adaptive coverage cotgrol OH
presented in [6] combines techniques from adaptive control op;

= —JV[Viei. (5)



Proof: Let H be a Lyapunov-like function. Taking the
time derivative of H along the trajectories of the system
yields

H=-Y [Mw keTe; + My, fieTet|, 9)
=1

wheree;- is the vector perpendicular tg of the same length.
But el'et = 0, resulting in{ < 0. Also, the facts thati; is
continuousvi, H has continuous first partial derivativeX,
Fig. 2. A geometric representation of the non-adaptiveBadycontroller is s radially unbounded, antf < 0 imply that# is uniformly

shown. The robot is at;, its Voronoi region is labelled’;, with a centroid : ) . o
at Cy,. The two components of the control law are shown as perpeadic continuous. Therefore, by Barbalat's lemitha; .. H = 0,

vectors,e;, the coverage force, angie;-, the exploration force. which implies (8). u

A. Ladybug Exploration
Equation (5) implies that local minima oft correspond  The exploration gainf; can be chosen in a number of
to the configurations such that = Cv; Vi, that is, each yavs |n fact, it can be time varying and even stochastic (as
agent is located at the centroid of its Voronoi region. Sucp)ng as it remains bounded). In any case, it is invisible & th
configurations are called centroidal Voronoi configuragion convergence proof. Actual ladybugs use what appears to be
and it is known that several such configurations may exis§ siochastic algorithm in which their turning frequency and
The optimization problem is to find a centroidal Voronoiympjitude increase with increased evidence of aphids. This
configuration corresponding to the minimal value7of causes them to stochastically spiral in and linger uponggou

of aphids [2]. Furthermore, it has been found that individua

I1Il. NON-ADAPTIVE LADYBUG CONTROLLER ladybugs tend to show a significant bias toward turning eithe

Let the robots have dynamics right or left [3]. These attributes might be capturedfjnn a
variety of ways. We have chosen to use the most simplistic
Di = Ui, (6) way as it tends to give good empirical performance despite

) ) ) ) its simplicity. In particular, we letf; = +f be a constant,

wherew; is the control input. This may simply mean theréjhe same magnitude for all We capture the right or left
is a low level controller in place to enforce integratorhsndedness of the ladybugs by assigning the sigry;of
dynamics. Results can be extended to second order %domly at initialization.
nonholonomic dynamics. Such extension for the basic, Non- There is one subtle technicality that must be addressed.
adaptive controller are given in [1], and would likely applyye desire that the robot trajectories remain insiglefor
straightforwardly to the ladybug controllers we discuseehe ey entire trajectories. Indeed, this is not guaranteethb

We assume that the robots are able to compute their 0Wnvergence proof, but can be easily accomplished with a

Voronoi cell, Vi = {q | llg — pil| < llg — pl|} by commu- gtaple collision detection rule. Specifically, let
nicating their location among their Voronoi neighbors. &ls

we require the follow assumption. Filps) = { Of if A pi € 0Q (10)
H +f otherwise

Assumption 1 (Sensory Function Knowledge): The

sensory functions(q) is available to all of the robots. This choice forf; is bounded, therefore it does not affect

the convergence result, and it is guaranteed to kgep Q.
We can formulate the non-adaptive ladybug control law asTo see this, ifp; is on the boundary)Q), its velocity will
be p; = k(Cy, — p;). The centroidCy,, as was previously
u; = Ke;, where K = { ko —fi ] (7) Ppointed out, is always in the interior @, thusp; will be
’ fi k] driven toward the interior preventing any escape frgm

and wheref; € R is the exploration gain, and € R, is Unfortunately, forCv; to be on the interior of@, @
a control gain. A geometric schematic of the control law i§NUSt be convex (as was previously stated). This precludes

shown in Fig. 2. The key attributes of the gain matfix environments with obstacles or “room and hallway” type
is that it is positive definiteand it has a skew-symmetric structures. In practice the controller works well in somehsu

component. The controller from [1] can be recovered simpl nvironments and not well in others. Extending the corgroll
by settingf; = 0 Vi 0 nonconvex environments is a topic of ongoing research
P = .

[14].
Theorem 1 (Non-Adaptive Ladybug Convergence): ) _
Under Assumption 1, for the system of agents with- Simulation Results
dynamics (6) and the control law (7), Simulations were carried out in a Matlab environment to
compare the performance of the ladybug and basic con-
limoce; =0 Vie{l,...,n} (8) trollers. The dynamics in (6) with the control law in (7)



with k£ = 1, for a group ofn = 10 robots were integrated !

using a fixed time step solver. For the basic controller, the 0.8 0.8
exploration gainf; = 0, Vi. For the ladybug controller,

f = 10 was used with the sign determined randomly at
initialization, and with the collision detection law deibad 0.4 0.4
in (10). The region@ was taken to be the unit square.
The sensory functiow(q) was constructed as a sum of two

0.6 0.6

0.2t /. 0.2t /.

Gaussians, 0 02 04 06 08 1 0 02 04 06 08 1
100 (q —u ‘)2 (a) Ladybug Initial Config. (b) Basic Initial Config.
$(q) = exp § — 0. (1 1 i
@ ; oiV2m 207% NS
. 1 o /39
where o; = .18. One of the Gaussian was centered at
TP

ui = [1/6 1/6]T and the other was centered pt =
[5/6 5/6]T7. The robots in the network were started from
the same initial positions for the two controllers, confined
to the lower-left1/10 square of@. The spatial integrals
in (2) required for the control law were approximated by
discretizing each \Voronoi regiof; into a 7 x 7 grid
and summing contributions of the integrand over the grid.
Voronoi polygons were computed for each robot using a
distributed algorithm similar to the one described in [1gW o8
point out that each robot must compute its Voronoi region at
each execution of the control loop, therefore controlldrs o
this kind can be computationally expensive, though stillwe 0.4
within the abilities of modern micro-controllers, as dktdi
in the robot experiments carried out in [10].

Figure 3 shows the results of numerical simulations for o 0
the ladybug controller (left column) and the basic conéoll o 02 04 0608 1 0 02 04 06 08
(right column), with the Gaussian centers marked by red () Ladybug Final Config. () Basic Final Config.
xS. The figures show the explorative, spiralling behavior ofig. 3. The initial configuration, robot trajectories, aneafi configuration

i i i i re shown for a network of robots with the non-adaptive ladybontroller
the. lady.bUQ controller .In comparlson Wlth. the rath.er dll’.ec‘;’(:n the left (3(a), 3(c), and 3(e)) and with the basic non-tdagontroller
trajectories of the basic algorithm. The final configurationy, e rignt (3(b), 3(d), and 3(f)). The Gaussian centers(gh are marked

for the ladybug controller has an equal number of robotsy the redxs.
concentrated around the two Gaussians, whereas the basic
controller has caused more robots to collect around the
Gaussian close to where they started. Assumption 3 (Matching Conditions): Ja € R and K :
Figure 4 shows that both controllers cause the network @ — R, such that
converge to a centroidal Voronoi configuration, as guaexhte
: ¢(q) = K(q)"a (12)
by Theorem 1. However, Fig. 5 shows that the ladybug ’

controller obtained a significantly lower cost configuratio \;nere the vector of basis functiori€ is known by each

than the basic controller at a significantly faster convecge agent, but the parameter vectofs unknown. Furthermore
rate. This supports the assertion that exploration helps th ’ '

ladybug controller to avoid local minima. a(j) > amin Vi €{1,...,m} (13)

1 0 02 04 06 08 1
(d) Basic Trajectories

IV. ADAPTIVE LADYBUG CONTROLLER where a(j) denotes thej'" element of the vector, and

The adaptive controller is significantly more complicatedmin > 0 is @ known real bound.
than its non-adaptive counterpart because it has to maintai Requirements such as Assumption 3 are common for
a stable_learning algorithm within Fhe controller. Consideadaptive controllers. In theory, the assumption is nottlirgi
robots with the same dynamics as in (6). since any function (with some smoothness requirements)
We relax Assumption 1 with the following two less gyer a bounded domain can be approximated arbitrarily well
restrictive assumptions. by a network of basis functions [15]. In practice, however,
Assumption 2 (Sensory Function Measurement): The designir_lg a suita_b_le functi(_)n approximation ne_twork re_aami
robots are able to measusép; ). That is, they are equipped application-specific expertise. We use Gaussian basis func

with sensors from which they can determine the value of tions in our simulations, but there is a variety of other
at their own positiorp; at any point in time. basis function families to chose from including, wavelets,

sigmoids, and splines.



Ao.zs — Ladybug with K defined as before. The parametérsised to calculate
E o2 -~-Basic é; are adjusted according to a set of adaptation laws which
go 15 are introduced below.
j ) Define two quantities,
£ 04 t
= A; z/ U}(T)K:i(T)K:i(T)T dr, (19)
£ 0.05 0
and
Y t
0 5 10 15 20
Time (s) i :/ w(T)IC; ()i (T) dr. (20)
0

Fig. 4. The position erroe; averaged over the robots is shown for theThe functionw(t) e [l wherew(t) > 0. determines a
ladybug and the basic non-adaptive controllers. . . - -

data collection weighting. These quantities can be catedla
differentially by roboti using A; = w(t)K;KF, and \; =

4
10 . L - v
10, —adybug w(t)KC; ¢;, with zero initial conditions.

5 ---Basic Define another quantity

g e " Jv, K(@)(g = pi)" dgK [, (¢ — pi)K(q)" dg 1)

T Y T T — ~ 5

c

§ The matrix F; can also be computed by robbtas it does

x not require any knowledge af.

The adaptation law foé, is defined as
10 15 20 : N .
Time (s) aprei = —Eai — 7(Aiai — )\i), (22)

Fig. 5. The_ decreasing Lyapunov function is shown for both Iﬁdybug éli = I‘(élprei - Iprojl. aprei) (23)
%r;\?e:h\jealﬁz.sw non-adaptive controllers. The ladybug ctetrachieves a wherel' € R™*™ is a diagonal, positive definite adaptation

gain matrix, andy € R, is an adaptation gain scalar. The
diagonal matrixlyr;, is defined element-wise as
Let a,;(t) be roboti's approximation of the parameter
vector. Naturally,¢; = K(¢)"a, is roboti’s approximation Ioroi, (j) =
of ¢(q). Define the mass moment approximations proj; \J

0 for a;(j) > amin
0 for a;(j) = amin @andapre, (j) >0 ,
1 otherwise

. . . . (24)
My, :/ ¢idg, Lv, = [, q¢:dg, (14)  where (j) denotes thej* element for a vector and the
Vi . . . 4" diagonal element for a matrix. Equations (23) and (24)
and Cvy; = Lv,/My,. implement a projection operation that prevents any element

of a; from dropping below the lower bound,,;,. The

Next, define the parameter error X
P controller and adaptation law from [6] can be recovered by

a; = a; — a, (15) setting f; = 0 Vi.
_ The terms in the adaptation law 22 have a natural inter-
and the sensory function error pretation. The term-F;a; compensates for uncertainty in
-~ . the centroid position, and the term(A;a; — A;) carries out
. = s — P T~* . ! . . . v v v .
i = ¢i — ¢ =K(q)" @ (16) a gradient descent to minimize the sensory function error
Also define theestimated position error vector ¢i(p:) integrated over time. The projection is then required
X because the controller has a singularity di, = 0. We
é; = (Cv, — pi), (17) could also add a consensus term to the adaptation law to

o ) - speed convergence, as described in [16]. The controller and
which is not to be confused with the actual position errofyaniation law cause the network of robots to converge to

defined previouslye; = (Cv, — pi). Most importantly, the 5, advantageous configuration as formalized in the follow
robots do not knowe;, but they do knowé;. Notice also that theorem.

a; = a implies ¢; = e;. . )
Finally, in order to compress the notation, we introduce the Theqrem 2 (Adaptive Ladybug Convergence): Un_der As- .
shorthandC; — K(p; (t)) for the value of the basis function sumptions 2 and 3, for the system of agents with dynamics

vector at the position of robat and¢; = ¢(p;(t)) for the (6) and the control law (18),

value of ¢ at the position of robot. As previously stated in i) lim; 0o €; =0 Vie{l,...,n} (25)
Assumption 2, robot can measure; with its sensors.
Consider a control law of a similar form to (7), i) iy Ks(M)Ta(t) =0 V7 [w(r) > 0 (26)

u; = Ké;, (18) andvi € {1,...,n}.



Proof: Let then the following also occur

n 1 ) 1 oy tlim a; = a, (32)
V= (/ Slla —pill*o(q) dg + sa; T a> - (27) L
; v, 2 2 lim é;=¢ VgeQ, (32)
Taking the time derivative o along the trajectories of the }HEO e; = 0. (33)
system yields Proof: Consider the last term in the sum from (29).
n Take the twoa; outside of the integral to give
V=N |Mykéle, + My, fiele + (28) , n ¢
; [ V= Z < 4 V&iT/ w(T)C; (1)KT () dT&Z—> .
0

i=1

t
al Ioroj apre, + / KI(m)ai(t)* dr|, .
@; Zproj, Apre; T 7 0 w(r) (K7 (7)ai(t)) T} SinceV — 0, if fot w(T)K; (7)KT (1) dr is positive definite

for somei, a; — 0. Convergence of the sensory function (32)
then follows directly from (16), and impligSy, — Cy;, from
(14), which in turn implies position error convergence (33)

For details of this derivation, please refer to [6]. As befor
el'ed =0, resulting in

n [ |
) — T kéLe. + al I o
V= El {Mvikel €+ a; Toroj, apre, + (29) What is more, even if PE is achieved, parameter conver-
= ¢ gence can be prohibitively slow. A useful metric for assegsi
7/ w(T) (KT (1)a;(t))? dr|, parameter convergence rates is
0 t
— minei T
It can be shown that all terms inside the sum are positive, ~ Awin: (t) = mlnelg/o w(m)Ki (1)K () dr, (34)

thereforeV < 0. Also, the facts thatu; is continuous
Vi, V has continuous first partial derivatives, is radially
unbounded, ant < 0 imply thatV is uniformly continuous.
Therefore, by Barbalat's lemmém; ..V = 0, which
implies (8) from Theorem 2, and

where mineig denotes the minimum eigenvalue of a matrix.
If this quantity is strictly positive, PE has been achieved,
and the larger it is, the faster parameter convergence will
take place. Intuitively, the more @ visited by a robot, the
larger Anin, Will be, and the faster parameter estimates will
. t o ) _ converge to the true parameters. The ladybug exploration
Jm | w(r)(K5 (T)a;(t))"dr =0  Vie{l,...,n}.  gain f; promotes exploration of the space and is therefore
likely to produce trajectories that ansore PE than the basic
The integrand in (30) is non-negative, therefore it mustontroller.
converge to zero for alt, which implies (26) from Theorem  There is also an implicit trade-off between the richness
2. B of the basis function set and the difficulty of achieving a PE
trajectory. For example, i£(¢) consists of a single Gaussian
function, all trajectories are PE. IK(q) consists of two
Gaussian functions with radial symmetry, all trajectoiaes
The closeness of the learned sensory distribution to tHeE except those which are perpendicular to the line passing
true sensory distribution is intimately related to the exte through the centers of the Gaussians. As the number of basis
which a robot has explored the environment. Indeed, this wdignctions grows, the set of non-PE trajectories also grdfvs.
the main justification for introducing the ladybug force.€Th the set of basis functions is too rich, it becomes very uhjike
concept of persistent excitation (PE) from adaptive cdntréhat PE will be achieved. Thus a balance must be found
captures this intuition precisely. In our case, conditifms depending upon the requirements of the application. This is
PE fall out naturally, along with a metric for determininga manifestation of the well-known dichotomy of goodness-
how explorative, or persistently exciting, a robot’s tagey of-fit vs. generalizability.
is.

A. Persistent Excitation and Ladybug Exploration

) B. Smulation Results
Formally, the assertion (26) of Theorem 2 states that the _. . . . .
Simulations were carried out in the same environment

estimate of the sensory functiagh will converge asymptot- ! . I
y o g ymp as for the non-adaptive controllers, with the same initial

ically to the true sensory functiop for all points on the i i q lorati i The funcii
robot's trajectory with positive weighting:(7). This does con |?urat\ 'gn If'mhtl e>:jp.ﬁora Iotln ?aln. teth unc 'm.(‘q) ng
not, however, imply that);(q) — ¢(q) everywhere inQ. constructed sughtly diterently 1o meet the requiremenits
: - - Assumption 3. Specificallyy(q), was parameterized as a
This requires an extra condition. . . :
Gaussian network with 9 Gaussians and a constant offset.
Corollary 1 (Persistent Excitation): In addition to the re- In particular, foriC = [ 1 K(2) --- K(10) |7, each
quirements for Theorem 2, if for somiec {1,...,n} componentf(;j) for 2 < j <10, was implemented as
t . 1 (q - /Lj)Q
(T K(j) = exp{ ———22 % 35
/0 w(F)Ki (KT (7) dr > 0, (30) 0= 75 XP{ 307 (35)
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Fig. 7. The true position errog; is shown on the left and the estimated

(a) Ladybug Initial Config.

(b) Basic Initial Config.

position erroré; on the right averaged over all of the robots for the ladybug
and the basic adaptive controllers. The convergencg @ guaranteed by

o N Theorem 2 for both controllers, however the ladybug colgrdeads to a
/ ? lower true position error.
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Fig. 8. The decreasing Lyapunov function is shown for both lddybug
and the basic adaptive controllers. The ladybug contraitdrieves a lower
value indicating a better sensing configuration and a beéesory function
approximation.
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(e) Ladybug Final Config.

02 04 06 08 1

(f) Basic Final Config. . . . .
ladybug controller finds a better final configuration for sens

ing over the bi-modal distribution than the basic contmlle
Recall that the robots had no knowledge of the distribution
before hand, but each robot learned an approximation of it

Fig. 6. The initial configuration, robot trajectories, andafi configuration
are shown for a network of robots with the adaptive ladybugtradier on
the left (6(a), 6(c), and 6(e)) and with the basic adaptivetrodler on the
right (6(b), 6(d), and 6(f)). The Gaussian centersp¢f) are marked by the

red x’s. during its trajectory.
The right side of Fig. 7 illustrates that the estimated
position error converges to zero for both controllers, as
where o; = .18. The unit square was divided into asserted in Theorem 2. However, the true error (shown in the

an even3 x 3 grid and eachyu; was chosen so that left of Fig. 7) indicates that the ladybug controller corgext
one of the9 Gaussians was centered at the middle ofo a truly centroidal Voronoi configuration and the basic
each grid square. The parameters were chosem as controller did not. Also, Fig. 8 shows that the ladybug
[ @min 100 amin amin 100 )T, with a,;,, = .1 controller obtained a lower Lyapunov function than the basi
so that only the lower left and upper right Gaussiansontroller at a faster convergence rate, indicating both a
contributed significantly to the value af(g), producing a
bimodal distribution essentially identical to the one used
previously. —Tadybug
Each robot used a copy of tieGaussians described above Besle
for KC(q). The estimated parameteis for each robot were
started at a value of,,;,, andA; and \; were each started
at zero. The gains used by the robots were 1, I = Iy,
and~y = 5. The data weighting function was chosen to be T RS TR
w(t) = ||p:||*>. In all other respects the simulations were Time )
identical to those described previously.
Figure 6 shows the results of numerical simulations fogig. 9. The left plot shows a metric indicating the richne$she robot
the adaptive ladybug controller (left column) and the basittajectories. A larger value denotes faster parameterergemce and also
controllr (fght columr), with the Gaussian centers mrkefccees Tre enoralon, e g convole gheher factres
by red xs. As in the non-adaptive case, the figures show th the robots of the area explored during a trajectory. Agdie ladybug
spiralling behavior of the ladybug controller. Evidentllzge  controller causes the robots to explore more of the spacetiteabasic one.
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-
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lower-cost configuration and a better function approxiomati  [7]
Finally, Fig. 9 compares the richness of robot trajectories
for the two controllers. The minimum over all the robots of (g
Amin; (@s defined in (34)) is shown for the two controllers
on the left (Fig. 9(a)). With the adaptive controller, PE Was[g]
achieved for every robot in the network, thus satisfying the
conditions for Corollary 1. For the basic controller, atdea
one of the robots (in fact 8 of them, though this is nott®l
evidenced in the plot) did not have PE trajectories, and
therefore did not gather enough information to learning thgi]
true sensory distribution function. Also, the minimum overlz]
the robots of the area explored by a robot is shown on the
right (Fig. 9(b)). This was computed by dividing the aga [13]
into a50 x 50 grid and summing up the grid areas visited by 314]
robot. Even the least exploring robot visits 12% of the space
with the ladybug controller, while for the basic contro]ler
the least exploring robot visits less than 1% of the space.[15]

V. CONCLUSION [16]

In this work we proposed a decentralized controller for
causing a network of robots to explore and cover an area. The
exploration was inspired by the strategy used by ladybugs to
hunt for aphids. A non-adaptive and an adaptive version of
the controller was presented, with the ladybug exploration
force appearing as an addition to a basic controller in each
case. Convergence of the controller was proven with a
Lyapunov-type proof. In both the adaptive and non-adaptive
cases, the ladybug controller was shown to perform better
than the basic controller. For the non-adaptive contraihés
was attributed to the ladybug controller’'s ability to avoid
locally optimal configurations. For the adaptive controlle
this was explained by showing that exploration leads to
richer trajectories, causing better parameter learnimgl a
eventually better coverage. In the future we would like
to carry out experimental investigations with this control
strategy on robot platforms, such as those used in [10].,Also
it would be interesting to look for adaptation rules to allow
the positions and number of basis functions to adapt based
on sensor measurements. We hope that the combination of
animal behaviors with control theoretic concepts can lead t
more creative and effective control strategies in the futur
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