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Dynamic Multi-Agent Team Forming:
Asymptotic Results on Throughput Versus Delay

Stephen L. Smith Francesco Bullo

Abstract— In this paper we focus on problems in which tasks
(demands for service) arrive in an environment sequentially
over time. A task is completed when a robot (or team of robots)
provides the required service, and the goal is to minimize the
expected delay between a task’s arrival, and its completion.
We develop a general framework in which these problems can
be described, and propose a set of scaling laws for studying
the relationship between the number of robots, the expected
task delay, and the task arrival rate. We describe two existing
problems in our framework, namely the dynamic traveling re-
pairperson problem, and the dynamic pickup delivery problem,
and present their asymptotic performance. We then introduce
the dynamic team forming problem, in which tasks require
services that can be provided only through complex teams
of heterogeneous robots. We determine a lower bound on the
problem’s achievable performance, and propose three policies
for solving the problem. We show that for each policy, there
is a broad class of tasks for which the policy’s performance is
within a constant factor the optimal.

I. I NTRODUCTION

Consider a heterogeneous fleet of mobile robotic agents
deployed in an environmentE ⊂ R

2. Each robot in the
fleet is capable of providing certain services. Tasks, which
consist of a set of required services, arrive in the environment
sequentially over time. The fleet is notified of each task upon
its arrival, and a task is completed once the fleet provides
the required services. The goal is to minimize the expected
delay between a task’s arrival and its completion. Thus, it is
a dynamic task allocation problem; determine which robots
should service which tasks, and in what order.

In static task allocation problems, a set of tasks is given
a priori and the goal is to assign vehicles in order to
maximize the “score” of the mission. In [1] a taxonomy
of task allocation problems is given, dividing problems into
groups based on criteria such as the number of tasks a robot
can execute, and the number of robots required for a task.
In papers such as [2], [3], advanced heuristic methods are
developed, and their effectiveness is demonstrated through
extensive simulation or real world implementation.

In dynamic task allocation problems, tasks arrive sequen-
tially over a period of time. Only once a task has arrived
can the robots determine the method in which they will pro-
vide service. In the dynamic traveling repairperson problem
(DTRP) [4], [5], the robots are homogeneous, and each task
consists of a location which requires on-site service. Spatially
distributed algorithms for the DTRP were developed in [6]
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and [7]. In the dynamic pickup delivery problem (DPDP)
[8] the task consists of a source-destination pair. A message
must be picked up from the source, and delivered to the
destination. In [8] the message must be picked up and
delivered by the same robot, and in [9] the message can
be relayed to between robots. For both the DTRP and the
DPDP, lower bounds are found on the expected task delay
(which depend on quantities such as the task arrival rate,
environment size, and the number of robots), and policies
are proposed which provide delays within a constant factor
of this lower bound. In dynamic task allocation problems
the expected delay depends on the task arrival rate; if tasks
arrive more rapidly, then the expected delay increases. This
tradeoff is well known in ad hoc wireless networks [10],
[11]; If nodes increase the rate at which they send messages
(i.e., the throughput), then this increases the expected delay
a message will incur before arriving at its destination.

In this paper we introduce a framework for describing
dynamic task allocation problems. As in the work on wireless
networks, we propose scaling laws which allow us to study
the expected task delay as a function of the throughput of the
robotic network (i.e., the rate at which tasks are serviced). We
revisit the DTRP and DPDP, and present the existing results
on expected delay under our scaling laws. We then introduce
thedynamic team forming problem. The problem consists of
a heterogeneous group ofn robots in which each robot is
capable of providing one ofk services. Tasks appear in the
environment which require some subset of thek services.
Thus, for each task, a team of robots must be formed which is
capable of providing the required services. We derive a lower
bound on the expected delay of the dynamic team forming
problem, and propose three policies; Complete team, Task-
specific team, and Scheduled task-specific team. We show
that for each policy there is a broad class of tasks for which
the policy performs within a constant factor the optimal. Due
to space constraints all proofs are omitted.

II. BACKGROUND MATERIAL

In this section we review results on the Euclidean traveling
salesperson problem (ETSP), queueing theory, and vertex
coloring in graphs. We letR, R>0, and N denote the
set of real numbers, positive real numbers, and positive
integers, respectively. For a finite setA, we let |A| denote
its cardinality, and for an infinite setA ⊂ R

2 we let |A|
denote its area. For two functionsf, g : N → R>0, we
write f(n) ∈ O(g) (respectively,f(n) ∈ Ω(g)) if there exist
N ∈ N andc ∈ R>0 such thatf(n) ≤ cg(n) for all n ≥ N
(respectively,f(n) ≥ cg(n) for all n ≥ N ). If f(n) ∈ O(g)
andf(n) ∈ Ω(g), then we sayf(n) ∈ Θ(g).



a) The Euclidean Traveling Salesperson Problem:For
a setQ of n points in R

2, let ETSP(Q) denote the length
of the shortest closed path through all points inQ. The
following result characterizes the length of this path when
Q ⊂ E , whereE is a square environment with area|E|.

Theorem 2.1 (ETSP tour length, [12]):There existsβ >
0 such that for every setQ of n points in E , ETSP(Q) ≤
β
√

n|E|.
The problem of computing an optimal ETSP tour isNP-

hard. However, there exist many efficient approximation
algorithms such as theChristofides’ algorithm[13].

b) Queueing Theory:Consider a queueing system with
Poisson arrivals at rateλ, and a single server which provides
bulk service. As customers arrive they form a queue and
are served in batches. EverytB seconds a batch is served
containing either the firstM customers in the queue, or
the entire queue, whichever is smaller. In [14] the following
result is established.

Theorem 2.2 (Mean waiting time, [14]):If M > λtB,
then the expected waiting timeW satisfies

W ≤ M − 1

λ
+

tB

2(M − λtB)
. (1)

c) Vertex Coloring: An undirected graphG = (V,E)
consists of a set of verticesV and a set of edgesE ⊂ V ×V .
An edge{v, w} ∈ E is incident tov and w, and v and
w are neighbors. Thedegreeof v ∈ V is the number of
edges incident tov. A vertex-coloringof G is a mapping
f : V → N with f(v) 6= f(w) for all {v, w} ∈ E. The
numberf(v) is thecolor of v. Finding the minimum vertex
coloring isNP-hard, and no approximation algorithms exist.
However, the following theorem gives an upper bound on
the number of colors required.

Theorem 2.3 (Vertex coloring [15]):Let G be an undi-
rected graph withn nodes and with maximum degreeα.
ThenG has a vertex coloring with at mostα+1 colors, and
such a coloring can be found inO(n) computation time.

An α + 1 coloring can be found as follows.

Greedy coloring heuristic of G = (V,E).

Let V = {v1, . . . , vn}.1
for i = 1 to n do2

Setf(vi) to the minimum colork ∈ N such that3
k 6= f(vj) for all neighboring verticesvj , j < i.

III. N ETWORK AND TASK MODEL

a) Robot model:Considern robotic agents contained
in a square environmentE ⊂ R

2. The position of agenti ∈
{1, . . . , n}, is denoted byp[i] ∈ E , and we assume the first
order dynamicsṗ[i] = u

[i], where‖u[i]‖ ≤ vmax for some
vmax > 0. Each agent is capable of providing services (or
resources) in the setR := {r1, . . . , rk}. For agenti, C[i] :
R → {0, 1} records its capabilities, i.e., agenti provides
servicerj only if C[i](rj) = 1. We assume that computations
are centralized, and leave the problem of decentralizing our
policies to future work.

b) Task model:A task Tj is described by the tuple
{Qj , Rj ,Lj , Sj}. The setQj ⊂ E contains locations and
the mapRj : Qj → 2R gives the services required at
each location. We assume all services at a location must
be provided simultaneously (if this is not the case, then the
location will appear more than once inQj). The setLj

contains rules, or logical connectives, which describe the
task. Possible rules are: (i) A partial ordering onQj . For
q1,q2 ∈ Qj , we write q1 ≺ q2 if q1 must be serviced
beforeq2, and q1 ≏ q2 if the locations must be serviced
simultaneously. (ii) An equivalence relation∼ onQj , where
q1 ∼ q2 implies thatq1 and q2 must be serviced by the
same set of agents. (iii) The temporal operatorU (until).
For example,the statement (q2 is unknown)U(q1 is serviced)
implies that locationq2 is unknown until serviceRj(q1) is
provided at locationq1.

Finally, the random variableSj : Qj → R≥0 gives the
on-site service time required at each location. UsingSj we
can also define the total on-site service timesj of taskTj .
The partial ordering4 partitions the setQj into disjoint
subsetsQ1, . . . , Qp, containing simultaneous tasks. That is,
if q1 ∈ Q1, thenq2 ∈ Q1 if and only if q1 ≏ q2. Thus, the
total on-site service timesj is sj :=

∑p
i=1 maxq∈Qi

Sj(q).
c) Task arrival model:We assume that tasks enter the

environment according to a Poisson process with intensity
λ. We defines̄ := limj→+∞ E[sj ] to be the expected total
on-site service time for a task. Consider a policyP by which
agents service tasks. This policy induces a control lawu

[i](t)
for each agent. For policyP , let Dj denote the difference
between the service completion time and the arrival time
of task Tj . This time consists of a waiting timeWj , and
a service timesj . Then, we letDP := limj→+∞ E[Dj ],
denote theexpected delay. Little’s result [16] states that if
DP exists, then the expected number of tasksN̄P in the
environment under policyP , is given byN̄P = λDP . If n
agents are servicing tasks arriving at rateλ, then a necessary
condition for there to exist a stable policy is thatλs̄/n < 1.
That is, during an on-site service timēs, fewer thann tasks
must arrive.

With the task arrival model described above, we define
the following quantities: thetotal throughputis λ, and the
per-agent throughputT (n) is λ/n.We letD∗(n) denote the
optimal (least achievable) delay, andT ∗(n) the maximum
achievable throughput (capacity).

IV. A NALYZING THROUGHPUT AND DELAY

In this section we introduce scaling laws for studying the
expected delay as a function of the per-agent throughput and
look at two existing dynamic task allocation problems.

A. Scaling laws

We are interested in studying the expected task delay
D(n) as a function of the per-agent throughputT (n). In
particular we look at the case where the number of agents
becomes large and the arrival rateλ scales (increases) with
n. We assume that̄s, the expected on-site service time of a
task, remains constant. Also, asn increases, the environment
must grow to accommodate the increase in agents. In [17]



it was shown that in order to maintain a reasonable safety
distance between agents, the ratio

√

|E|/vmax must scale
with n as

√
n. In [18] this scaling was referred to as a

critical environment. These scaling laws can be summarize
as follows.

Definition 4.1 (Asymptotic regime):In the asymptotic
regime (i) the number of agentsn → +∞; (ii) s̄ is
independent ofn; (iii) |E(n)|/(nv2

max(n)) → const2 ∈ R>0.

B. Multiple dynamic traveling repairperson problem

In the multiple dynamic traveling repairperson problem
(DTRP), there is a single service,R := {r1}, andC[i](r1) =
1 for each agenti. The tasks are of the formT :=
{q, , r1,L, s}, where an agent must visitq, which is known
upon task arrival (i.e., (q is unknown)U(T arrives)), and
provide servicer1 for time s. Tasks arrive according to
a Poisson process with rateλ , and the locationq is
independently and uniformly distributed inE . The on-site
service times are independent with means̄.

In [5], two lower bounds on the expected delay are
presented. The first states that

D∗ ≥ 1

vmax
E

[

min
q0∈D∗

‖q − q0‖
]

+ s̄, (2)

where D∗ is the set ofn locations that minimizes the
expected distance to the uniformly distributed locationq.
The second bound states that there existsγ > 0 such that

D∗ ≥ γ2 λ|E|
n2v2

max(1 − ρ)2
− s̄(1 − 2ρ)

2ρ
=: DDTRP(n), (3)

where ρ := λs̄/n. In the asymptotic regime (2) becomes
D∗(n) ∈ Ω(1), and (3) becomesD∗(n) ∈ Ω(T (n)). Note
that for stabilityλs̄/n < 1, and thusT (n) < 1/s̄.

In [5] several policies are developed. WhenT (n) → 0+

as n → +∞, an optimal policy is to place the vehicles at
locationsD∗ and service tasks first-come, first-served, by
the closest vehicle, which returns to its location inD∗ after
each service is completed. WhenT (n) → const∈ R>0 as
n → +∞, the TSP partitioning policy is developed.

The TSP partitioning policy
Optimize: over M .
PartitionE into n regions and assign a vehicle to each region.1
foreach region-vehicle pairdo2

As tasks arrive in the region, form sets of sizeM .3
As sets are formed, deposit them in a queue.4
Service the queue first-come, first-served, following an5
optimal TSP tour on each set ofM tasks.

By combining the analysis in [5] , combined with The-
orem 2.1 one can show that in the asymptotic regime, the
delay of this TSP partitioning policy is inO(max{T (n), 1})
whenT (n) < 1/s̄. Thus, we have the following.

Theorem 4.2 (DTRP delay, [5]):In the asymptotic
regime, if T (n) → const< 1/s̄, then the optimal delay of
the DTRP is inΘ(1). If T (n) → const > 1/s̄, then the
optimal delay is infinite.

Thus, in the DTRP we can achieve a per-agent throughput
of Θ(1), while incurring a delay of onlyΘ(1).

C. Dynamic pickup delivery problem

In the dynamic pickup delivery problem (DPDP) [8] there
are two services,R := {pickup,deliver}. Each agent
has the capability of providing both services, and so for each
agent i, C[i](pickup) = C[i](deliver) = 1. The tasks
are of the formT := {{q1,q2}, R,L, S}, where the set
of rules L indicates thatq1 ≺ q2, q1 ∼ q2, and (q1,q2

are unknown)U(T arrives).1 The service requirements are
R(q1) = pickup and R(q2) = deliver. Thus, when a
task arrives, a message must be picked up from a known
source locationq1 and delivered to known destination lo-
cation q2 by the same agent. A fixed on-site service time
of s := S(q1) = S(q2) is incurred at each location. Tasks
arrive according to a Poisson process with rateλ, and for
each task,q1 andq2 are uniformly randomly distributed in
E . In [8] it is shown that for this problem

D∗ ≥ max

{

γ2

4

λ|E|
n3/2v2

max(1 − ρ)2
,

√

|E|
2vmax(1 − ρ)

, s

}

, (4)

whereρ := λs/n. In addition, a policyP is introduced which
yields a delayDP within a constant factor of the lower bound
in (4). Thus, we have the following result.

Theorem 4.3 (DPDP delay, [8]):In the asymptotic
regime, if T (n) → const< 1/(2s), then the optimal delay
of the DPDP is inΘ(

√
n). If T (n) → const> 1/(2s), then

the optimal delay is infinite.
This result implies that a delay of order

√
n must be

incurred regardless of the per-agent throughput.

V. DYNAMIC TEAM FORMING PROBLEM

We now introduce thedynamic team forming problem
(DTFP) and present a lower bound on the optimal delay. In
the DTFP there is a heterogeneous group of vehicles in which
each vehicle provides one ofk services. Tasks appear in the
environment which require some subset of thek services.
Thus, teams of agents must be formed in order to provide
the services required for each task. This type of problem
could arise in UAV surveillance [19] where the services
represent waveforms for interrogation of a target/region,such
as electro-optical, infra-red, synthetic aperture radar,foliage
penetrating radar, and moving target indication radar.

A. Problem statement

In the DTFP, there is a set of servicesR := {r1, . . . , rk}.
In addition, there arek different types of agents, and an
agent of typej ∈ {1, . . . , k}, can provide only service
rj . We assume that the total number of agentsn satisfies
n/k ∈ N, and thus we say that for agenti, C[i](rj) = 1
only if i(modk) = j. That is, agenti can provide only
serviceri(modk). The task we consider is of the formT :=
{q, R,L, S}, whereR(q) ⊂ R, L dictates that (q, R(q) are
unknown)U(T arrives). Tasks arrive according to a Poisson
process with rateλ, and the locationq is independently and
uniformly distributed inE . For each task, the setR(q) is
independently and uniformly randomly selected from a set
of subsets ofR of cardinality K ≤ 2k − 1 (at this time,

1The case where (q2 is unknown)U (q1 is serviced) is also considered.
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Fig. 1. Dynamic team forming lower bound: Delay versus throughput.

we leave the set of subsets unspecified). The on-site service
time is independent of the number of services required for
a task, has mean̄s, and is upper bounded bysmax ∈ R>0.
Thus for a task withR(q) = {r1, r4}, the task is completed
when agents1(modk) and 4(modk) simultaneously spend
an on-site service time ofS(q) = s at locationq.

B. Lower bound on optimal delay

In total there areK different task types. Letfj denote
the fraction of task types that require servicerj . In order
to derive a lower bounds, and analyze proposed policies we
make two simplifications. First, we assume thatf1 = · · · =
fk =: fK. This implies that the required services are spread
evenly over the task types, and thus, each service appears
in fKK task types. Since the service set for each task is
chosen uniformly and randomly, this also implies thatfK
is the probability that a task requires serviceri. Notice that
1/k ≤ fK ≤ 1. Second, we only considertask-type unbiased
policies. These are policies for which the delay for each task
type is equal,limj→+∞ E[Dj |task j is of typeR(q)] = D∗,
for each task typeR(q) ∈ R.

With these assumptions we can lower bound the optimal
delay. Note, that all parameters are potentially a function
of n and we should be writingk(n), K(n), fK(n), and so
on. However, to simplify the notation we omit the explicit
dependence. For convenience, Table I contains a list of
parameters and their definitions.

Theorem 5.1 (Optimal delay):In the asymptotic regime,
if kfKT (n) → const< 1/s̄, then the optimal delay of the dy-
namic team forming problem is inΩ(max{fKk2T (n),

√
k}).

If kfKT (n) → const> 1/s̄, then the delay is infinite.
Fig. 1 shows the order of the optimal delay as a function

of the per-agent throughput.

VI. POLICIES FOR DYNAMIC TEAM FORMING

A. Complete team policy

Here we propose a policy that has good performance when
each service is required in a constant fraction of the tasks.

Complete team policy
Form n/k teams ofk agents, where each team contains one1
agent of each type.
Have each team meet and move as a single entity.2
As tasks arrive, service them by one of then/k teams3
according to the TSP partitioning policy.

TABLE I

PARAMETERS USED IN THE DYNAMIC TEAM FORMING PROBLEM.

Parameter Definition
T expected per-agent throughput
D expected task delay
k number of different services
K number of different task types,≤ 2k − 1
fK fraction of tasks requiring an individual service
s̄ expected on-site service time

smax maximum on-site service time
L number of time slots in service schedule
w fractional length of service schedule,L/K
b maximum number of services required for a task

Fig. 2. Complete team policy: Delay versus throughput.

With this policy, the problem is simply a DTRP with
n/k vehicles, and an arrival rate ofλ. Hence, we have the
following result.

Theorem 6.1 (Complete team delay):In the asymptotic
regime, if kT (n) → const< 1/s̄, then the expected delay
of the Complete team policy isO(max{k2T (n),

√
k}). If

kT (n) → const> 1/s̄, then the delay is infinite.
Notice that if fK ∈ Ω(1), then the policy is within a

constant factor of the optimal. Fig. 2 shows the order of
the delay as a function of the per-agent throughput.

Thus, when each service is required in a constant fraction
of the tasks, or whenk(n) → const ∈ N as n → +∞,
the Complete team policy is within a constant factor of the
optimal. However, in certain instances the above policy may
be inefficient as each agent visits every task, not just the ones
which require its service. This manifests itself as a limit on
the per-agent throughput to1/k, independent offK.

B. Task-specific team policy

Notice that there aren/k agents of each type, and each ser-
vice appears infKK service sets. Thus, iffKK ≤ n/k there
are enough agents of each type to create allK service sets.
More specifically, we could createNcopy := ⌊n/(kfKK)⌋
copies of each of theK service sets. Thus, whenfKK ≤ n/k
we have the following policy.

Task-specific team policy
Assumes: fKK ≤ n/k.
For each of theNcopy := ⌊n/(kfKK)⌋ different service sets,1
createNcopy teams of agents, where the number of agents in
each team is equal to the number of required services, and
each agent provides a required service.
Service each task by one of itsNcopy corresponding teams,2
according to the TSP partitioning policy.



Fig. 3. Task-specific team policy: Delay versus throughput.

In the following theorem we characterize the delay of
Task-specific team policy.

Theorem 6.2 (Task-specific policy delay):In the asymp-
totic regime, If kfKT (n) → const < 1/(2s̄),
then the expected delay of the Task-specific policy is
O(max{f2

Kk2KT (n),
√

fKkK}). If kfKT (n) → const >
1/s̄, then the delay is infinite.

Fig. 3 shows the order of the delay as a function of the
per-agent throughput for the Task-specific team policy.

C. Scheduled task-specific team policy

The Task-specific team policy can only be applied when
fKK ≤ n/k. Here we propose a policy for all parameter
values which divides the task types into several groups, and
then runs the Task-specific policy on each group sequentially.
We begin by defining aservice schedule.

Definition 6.3 (Service schedule):A service scheduleS is
a partition of theK service sets intoL time slots, such
that each service set appears in exactly one time slot, and
the service sets in each time slot are pairwise disjoint. The
schedule haslengthL, and fractional lengthw := L/K.

The following lemma lower bounds the length of a service
schedule by using the fact that for eachi ∈ {1, . . . , k}, fKK
contain serviceri.

Lemma 6.4 (Schedule length I):If S is a service sched-
ule, then it contains at leastfKK time slots (i.e.,w ≥ fK).

From Lemma 6.4, every service schedule must contain
at leastfKK slots. We now give a method for creating a
schedule. Consider the graph consisting ofK vertices, one
for each service set, and edges connecting any two vertices
whose service sets have a non-empty intersection. This is
known as an intersection graph. A service schedule, is then
simply a vertex coloring of this graph. From Section II the
problem of determining the optimal (minimal) coloring is
NP-hard. However, we can color the graph using the greedy
heuristic in Section II. An example is shown in Fig. 4. Using
Theorem 2.3 we arrive at the following result.

Lemma 6.5 (Schedule length II):If each task requires no
more thanb ≤ k services, then a service schedule withw ≤
min{bfK, 1} can be found inO(K) computation time.

We are now ready to present the Scheduled task-specific
team policy.
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{1, 4, 6}

{2, 3, 5}

{2, 4, 6}

{4, 5, 6}

Fig. 4. Creating a service schedule using the greedy vertex coloring
heuristic. In this figure,k = 6, K = 18, fK = 6/18, and the resulting
schedule has lengthL = 6.
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Fig. 5. Service schedule created by the coloring in Fig. 4. The task types
serviced during each time slot are shown (e.g., in time slot[tB, 2tB[, agents
1(modk) and2(modk) meet to service tasks with service set{1, 2}).

Scheduled task-specific team policy
Assumes: A service schedule with time slot durationtB.
Optimize: over tB andM .
PartitionE into n/k regions and assign one agent of each1
type to each region.
foreach regiondo2

Form a queue for each of theK task types.3
foreach time slot in the scheduledo4

Divide agents into teams to form required task types.5
For each team, service the firstM tasks in the queue,6
or as many as can be served in timetB (whichever
comes first), by following an optimal TSP tour.

When the end of the service schedule is reached, repeat.7

By applying the results on the Euclidean traveling sales-
person tour and on batch queues in Section II, we are able to
bound the delay of the Scheduled task-specific team policy.

Theorem 6.6 (Scheduled task-specific team delay):In the
asymptotic regime, ifkwT (n) → const< 1/smax, then the
expected delay of the Scheduled task-specific team policy is
O

(

max
{

w2k2KT (n), wK
√

k
})

. If kwT (n) → const >

1/s̄, then the delay is infinite.
Fig. 6 shows delay as a function of the per-agent through-

put for the Scheduled task-specific team policy.
Remark 6.7 (Comments on Theorem 6.6):When bfK ≤

1, the greedy vertex coloring scheme creates a service
schedule withw ≤ bfK. In this case, one can achieve



Fig. 6. Scheduled task-specific team policy: Delay versus throughput.

TABLE II

POLICY COMPARISON WITHK = bk, AND fK ∈ Θ(b/k).

Policy Capacity Delay at capacity
Optimal Θ(1/b) Ω(k)

Complete team Θ(1/k) O(k)
Task-specific team Θ(1/b) O(b2k)

Scheduled task-specific (greedy) Θ(1/b2) O(b3k)
Scheduled task-specific (optimal) Θ(1/b) O(b2k)

a per-agent throughput ofΘ(1/(bfKk)), with a delay of
O(bfKkK). Thus, if b is small compared tok, the service
schedule can provide a near optimal maximum per-agent
throughput (i.e., capacity). However, the delay depends on
the number of different task types,K, and thus could be
significantly larger than the optimal delay.

When the per-agent throughput is “high,” the delay of
the Task-specific team policy isO(max{k2f2

KKT (n)). In
comparison, the delay of the Scheduled task-specific team
policy is O(max{w2k2KT (n)). By Lemma 6.4,w ≥ fK,
and thus the Task-specific policy performs at least as well
as the Scheduled task-specific policy. However, we can only
use the policy whenfKK ≤ n/k. Also, the policy does not
easily adapt to situations where new tasks types are added,
and old task types are removed, since the entire partitioning
of the agents into teams must be recalculated. •

D. Policy comparison

To compare the performance of the policies, consider
the specific case where, for eachj ∈ {1, . . . , b}, with
b < k, there arek service sets with cardinalityj. That is,
k task types require one service,k task types require two
services, and so on. Thus,K = bk. Further, assume that
each individual service appears inj of the k service sets of
cardinality j, for eachj ∈ {1, . . . , b}. From this, we obtain

fK =

∑b
j=1 j

K =
b(b + 1)/2

bk
∈ Θ(b/k).

An example of service sets satisfying these assumptions is
shown in Fig. 4 and Fig. 5. Using these values, we can
compare the maximum achievable throughput (or capacity)
for each of the policies, and the delay at capacity. These
results are summarized in Table II, where Scheduled task-
specific team bounds assumeb2 ≤ k. In Table II we see that
if b ∈ Θ(k) whenn is large, then the Complete team policy
is within a constant factor of the optimal. However, ifb ∈

Θ(1), then the per-agent throughput of the Complete team
policy cannot be raised above1/k, whereas the Scheduled
task-specific and Task-specific policies provide capacity,and
delay, within a constant factor of the optimal.

VII. C ONCLUSIONS

In this paper we presented a model for dynamic task
allocation problems, and a framework within which they
can be studied. We introduced the dynamic team forming
problem, and proposed three team forming policies. There
are many areas for future work. We would like to look
into creating distributed versions of our policies, and extend
our dynamic team forming analysis to nonuniform task type
distributions, task-type biased policies, and the case where
services are not evenly spread among task types.
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