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Dynamic Multi-Agent Team Forming:
Asymptotic Results on Throughput Versus Delay
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Abstract— In this paper we focus on problems in which tasks and [7]. In the dynamic pickup delivery problem (DPDP)
(demands for service) arrive in an environment sequentially [8] the task consists of a source-destination pair. A messag
over time. A task is completed when a robot (or team of robots) must be picked up from the source, and delivered to the

provides the required service, and the goal is to minimize the L .
expected delay between a task’s arrival, and its completion. destination. In [8] the message must be picked up and

We develop a general framework in which these problems can delivered by the same robot, and in [9] the message can
be described, and propose a set of scaling laws for studying be relayed to between robots. For both the DTRP and the
the relationship between the number of robots, the expected DPDP, lower bounds are found on the expected task delay
task delay, and the task arrival rate. We describe two existing (which depend on quantities such as the task arrival rate,

problems in our framework, namely the dynamic traveling re- . tsi d th b f robot d polici
pairperson problem, and the dynamic pickup delivery problem, environment size, an e number of robots), and policies

and present their asymptotic performance. We then introduce are proposed which provide delays within a constant factor
the dynamic team forming problem, in which tasks require of this lower bound. In dynamic task allocation problems
services that can be provided only through complex teams the expected delay depends on the task arrival rate; if tasks
of heterogeneous robots. We determine a lower bound on the arrive more rapidly, then the expected delay increases Thi

problem’s achievable performance, and propose three policies . . -
for solving the problem. We show that for each policy, there tradeoff is well known in ad hoc wireless networks [10],

is a broad class of tasks for which the policy’s performance is [11]; If nodes increase the rate at which they send messages

within a constant factor the optimal. (i.e., the throughput), then this increases the expecté&d de
a message will incur before arriving at its destination.
|. INTRODUCTION In this paper we introduce a framework for describing

Consider a heterogeneous fleet of mobile robotic agen@ynamic task allocation problems. As in the work on wireless
deployed in an environmenf C R2. Each robot in the hetworks, we propose scaling laws which allow us to study
fleet is capable of providing certain services. Tasks, whicte expected task delay as a function of the throughput of the
consist of a set of required services, arrive in the enviremim robotic network (i.e., the rate at which tasks are servicé)
sequentially over time. The fleet is notified of each task upof¢Visit the DTRP and DPDP, and present the existing results
its arrival, and a task is completed once the fleet provideé¥ expected delay under our scaling laws. We then introduce
the required services. The goal is to minimize the expectdfe dynamic team forming problerithe problem consists of
delay between a task’s arrival and its completion. Thus it i@ heterogeneous group ef robots in which each robot is
a dynamic task allocation problem; determine which robotgapable of providing one of services. Tasks appear in the
should service which tasks, and in what order. environment which require some subset of theservices.

In static task allocation pr0b|em5, a set of tasks is give}ﬁhus, for each taSk, a team of robots must be formed which is

a priori and the goal is to assign vehicles in order tgcapable of providing the required services. We derive afowe
maximize the “score” of the mission. In [1] a taxonomybPound on the expected delay of the dynamic team forming
of task allocation problems is given, dividing problemsoint Problem, and propose three policies; Complete team, Task-
groups based on criteria such as the number of tasks a roi§@gcific team, and Scheduled task-specific team. We show
can execute, and the number of robots required for a tagkat for each policy there is a broad class of tasks for which
In papers such as [2], [3], advanced heuristic methods afie policy performs within a constant factor the optimaleDu
developed, and their effectiveness is demonstrated throufp space constraints all proofs are omitted.

extensive simulation or real world implementation.

In dynamic task allocation problems, tasks arrive sequen- ) . . . .
tially over a period of time. Only once a task has arrived N this section we review results on the Euclidean traveling
can the robots determine the method in which they will pros@lesperson problem (ETSP), queueing theory, and vertex
vide service. In the dynamic traveling repairperson pnoble coloring in graphs. We lefR, R-,, and N denote the
(DTRP) [4], [5], the robots are homogeneous, and each ta_§ﬁt of real num_bers, posmve _real numbers, and positive
consists of a location which requires on-site service.igyat Integers, respectively. For a finite séf we let|A| denote
distributed algorithms for the DTRP were developed in [6jtS cardinality, and for an infinite set C R* we let |A]

denote its area. For two function§g : N — R-(, we
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a) The Euclidean Traveling Salesperson Probleror b) Task model:A task 7; is described by the tuple
a setQ of n points inR?, let ETSP(Q) denote the length {Q;, R;,L;,S;}. The setQ; C & contains locations and
of the shortest closed path through all pointsdh The the mapR; : Q; — 2% gives the services required at
following result characterizes the length of this path wheeach location. We assume all services at a location must
Q C &, wheref is a square environment with areg. be provided simultaneously (if this is not the case, then the
Theorem 2.1 (ETSP tour length, [12]here exists3 > location will appear more than once i@;). The set.;
0 such that for every se® of n points in&, ETSP(Q) <  contains rules, or logical connectives, which describe the
B+/nlE|. task. Possible rules are: (i) A partial ordering @j. For
The problem of computing an optimal ETSP touN®- 41,92 € Q;, wWe write q; < q2 if g1 must be serviced
hard. However, there exist many efficient approximatio®eforeqz, andq; = q if the locations must be serviced
algorithms such as th€hristofides’ algorithm{13]. simultaneously. (i) An equivalence relatienon Q;, where
b) Queueing TheoryConsider a queueing system withd: ~ dz implies thatq, andq, must be serviced by the
Poisson arrivals at rate, and a single server which providesSame set of agents. (iii) The temporal operatbr(until).
bulk service. As customers arrive they form a queue and®’ €xample,the statememjy(is unknownd(q, is serviced)
are served in batches. Evety seconds a batch is servedMPlies that locationy is unknown until servicef?;(qu) is
containing either the firsti/ customers in the queue, or Provided at locatiory;.

the entire queue, whichever is smaller. In [14] the follagin  inally, the random variablé;; : Q; — R>, gives the
result is established. on-site service time required at each location. Uséjgve

Theorem 2.2 (Mean waiting time, [14])f M > \ig, %:_?]n alsot_dle fmg the LOtaI (?[_r:_-sne fﬁ rwce@t@_etzf tg_sk?_}.t
then the expected waiting timid” satisfies € partial orderings: partitions the set; into disjoint.
subsetsl), . .., Q,, containing simultaneous tasks. That is,

M—1 tg if q1 € Q1, thenqs € @, if and only if q; = q». Thus, the
N = ) (1) total on-site service time; is s; := Y_7_, maxqeq, S;()-
c) Task arrival model:We assume that tasks enter the
environment according to a Poisson process with intensity
A. We defines := lim; ., E[s;] to be the expected total

W<

c) Vertex Coloring: An undirected graphG = (V, E)
consists of a set of verticds and a set of edges C V x V.

An edge {v,w} € E is incident tov and w, and v and _ N _ :
w are neighbors. Thelegreeof v € V is the number of on-site service time for a task. Consider a polieypy which

edges incident ta. A vertex-coloringof G is a mapping agents service tasks. This policy induces a controhiWt)
f:V — Nwith f(v) # f(w) for all {v,w} € E. The for each agent. For policy’, let D; denote the difference
nuhberf(v) is the color of v. Finding the ’minimum.vertex between the service completion time and the arrival time

coloring isNP-hard, and no approximation algorithms exist®f sk Z;. This time consists of a waiting timé’;, and

However, the following theorem gives an upper bound o@ service times;. Then, we Ie,tDP — hmj*”’o]E[Dj]’.
the number of colors required. enote theexpected delaylLittle’s result [16] states that if

Theorem 2.3 (Vertex coloring [15])Let G be an undi- eDn}\D/ir?))gfr:Z’ntthuenndé?e ;?(Cpectiid ir:/gr:tt))er]vof E’;lsi{g mlfthe
rected graph withn nodes and with maximum degree agents are servicin ptaslgsj’arri\?in at r);ue};e; a ngéessgr
ThenG has a vertex coloring with at moat+ 1 colors, and 9 9 g y

such a coloring can be found ifi(n) computation time. cond|.t|on for there to e?('St a st.able' Ro“Cy s thet/n < 1,
. That is, during an on-site service tilde fewer thann tasks
An « + 1 coloring can be found as follows.

must arrive.
Greedy coloring heuristic of G = (V, E). With the task arrival model described above, we define
1 LetV ={v1,...,vn}. the following quantities: theotal throughputis A, and the
2 for i=1ton do per-agent throughput’(n) is A/n.We let D*(n) denote the
3 L Set f(v;) to the minimum colork € N such that optimal (least achievable) delay, afd (n) the maximum
k # f(v;) for all neighboring vertices;, j < i. achievable throughput (capacity).

IV. ANALYZING THROUGHPUT AND DELAY

1. NETWORK AND TASK MODEL In this section we introduce scaling laws for studying the
expected delay as a function of the per-agent throughput and
a) Robot model:Considern robotic agents contained look at two existing dynamic task allocation problems.
in a square environmerd C R2. The position of agent € )
{1,...,n}, is denoted bypl! € £, and we assume the first A- Scaling laws
order dynamicp!l! = ul?l, where |ulll|| < vnax for some ~ We are interested in studying the expected task delay
vmax > 0. Each agent is capable of providing services (0D(n) as a function of the per-agent throughglitr). In
resources) in the s&® := {ry,...,r.}. For agenti, Cl :  particular we look at the case where the number of agents
R — {0,1} records its capabilities, i.e., agentprovides becomes large and the arrival ratescales (increases) with
servicer; only if cll (rj) = 1. We assume that computationsn. We assume that, the expected on-site service time of a
are centralized, and leave the problem of decentralizing otask, remains constant. Also, asncreases, the environment
policies to future work. must grow to accommodate the increase in agents. In [17]



it was shown that in order to maintain a reasonable safey. Dynamic pickup delivery problem
distance between agents, the rafj¢€]/vmax must scale |y the dynamic pickup delivery problem (DPDP) [8] there
critical environment These scaling laws can be summarizg,as the capability of providing both services, and so foheac

as follows. agenti, Cll(pi ckup) = Cll(del i ver) = 1. The tasks

Definition 4.1 (Asymptotic regime)n the asymptotic gare of the form7 := {{qi.q.}, R, L, S}, where the set

regime @) the ng_mber of ageQntB — 4o0; (i) 51iS  of rules £ indicates thatq; < q2, g1 ~ g2, and @i, q>
independent of; (iii) |£(n)|/(nvmax(n)) — const € Rso.  are unknowriY(7 arrives)! The service requirements are

B. Multiple dynamic traveling repairperson problem

R(q1) = pi ckup and R(q2) = del i ver. Thus, when a
task arrives, a message must be picked up from a known
In the multiple dynamic traveling repairperson problensource locationg; and delivered to known destination lo-

(DTRP), there is a single servicg, := {r1}, andCl!(r;) = cation q, by the same agent. A fixed on-site service time

1

for each agenti. The tasks are of the fornf¥ := of s := S(qi) = S(q2) is incurred at each location. Tasks

{a,,71,L, s}, where an agent must visif, which is known arrive according to a Poisson process with rateand for
upon task arrival (i.e.,d is unknownd/(7 arrives)), and each taskqg; andq, are uniformly randomly distributed in
provide servicer; for time s. Tasks arrive according to £. In [8] it is shown that for this problem

a

service times are independent with mean

presented. The first states that

Poisson process with rate , and the locationq is

401 )% 2oL —p)

independently and uniformly distributed i. The on-site  p« - maX{’YQ A€ VIE } @

In [5], two lower bounds on the expected delay ar?/vherep := As/n. In addition, a policyP is introduced which

yields a delayD p within a constant factor of the lower bound
) _ in (4). Thus, we have the following result.

E LIU%%* lla - qo} + 3 @ Theorem 4.3 (DPDP delay, [8])in the  asymptotic

regime, if '(n) — const< 1/(2s), then the optimal delay

D* >

Umax

where D* is the set ofn locations that minimizes the ;¢ihe DPDP is N0 (y/n). If T(n) — const> 1/(2s), then

expected distance to the uniformly distributed locatign
The second bound states that there exjsts 0 such that

D*>fy2

the optimal delay is infinite.
This result implies that a delay of ordeyn must be

MNE| 5(1—2p) incurred regardless of the per-agent throughput.
53 5 = =: Dprre(n), (3)
n*Vihax(1 = p) 2p V. DYNAMIC TEAM FORMING PROBLEM

where p := \s/n. In the asymptotic regime (2) becomes We now introduce thedynamic team forming problem
D*(n) € Q(1), and (3) become®*(n) € Q(T(n)). Note (DTFP) and present a lower bound on the optimal delay. In
that for stabilityA\s/n < 1, and thusT'(n) < 1/3. the DTFP there is a heterogeneous group of vehicles in which

In [5] several policies are developed. Wheiin) — 0T  each vehicle provides one &fservices. Tasks appear in the

asn — oo, an optimal policy is to place the vehicles atenvironment which require some subset of theservices.
locations D* and service tasks first-come, first-served, byrhus, teams of agents must be formed in order to provide
the closest vehicle, which returns to its locationIn after the services required for each task. This type of problem
each service is completed. Whéi(n) — conste R, as could arise in UAV surveillance [19] where the services
n — +oo, the TSP partitioning policy is developed. represent waveforms for interrogation of a target/regsoich

The TSP partitioning policy

as electro-optical, infra-red, synthetic aperture raftdiage

1
2

Optimize: over M penetrating radar, and moving target indication radar.

Partition £ into n regions and assign a vehicle to each region. oA proplem statement
foreach region-vehicle paido

3 | As tasks arrive in the region, form sets of sié. In the DTFP, there is a set of servicRs:= {ry, ..., 7}
4 As sets are formed, deposit them in a queue. In addition, there are: different types of agents, and an
5 Service the queue first-come, first-served, following an  agent of type; € {1,...,k}, can provide only service

optimal TSP tour on each set of tasks. r;. We assume that the total number of agenmtsatisfies

orem 2.1 one can show that in the asymptotic regime, thseervicer-
K3

n/k € N, and thus we say that for agentClil(r;) = 1
only if i(modk) = j. That is, agent can provide only
(modk)- The task we consider is of the forth :=

By combining the analysis in [5] , combined with The-

delay of this TSP partitioning policy is i@ (max{T'(n),1}) {q.R. L, S}, whereR(q) C R, £ dictates thatd, R(q) are

whenT'(n) < 1/5. Thus, we have the following.

regime, if T'(n) — const< 1/5, then the optimal delay of
the DTRP is in©(1). If T'(n) — const> 1/5, then the
optimal delay is infinite.

unknown}{(7 arrives). Tasks arrive according to a Poisson
process with rate\, and the locatiory is independently and
uniformly distributed in€. For each task, the sdt(q) is
independently and uniformly randomly selected from a set

. _ of subsets ofR of cardinality X < 2¥ — 1 (at this time,
Thus, in the DTRP we can achieve a per-agent throughput

Theorem 4.2 (DTRP delay, [5])In  the  asymptotic

of ©(1), while incurring a delay of only®(1). 1The case whereqgf is unknown}/(q; is serviced) is also considered.



D* TABLE |

+00-+ —_ PARAMETERS USED IN THE DYNAMIC TEAM FORMING PROBLEM
Parameter | Definition
k4 T expected per-agent throughput
D expected task delay
k number of different services
Vi K number of different task types; 2% — 1
) frc fraction of tasks requiring an individual service|
5 expected on-site service time
‘ ‘ Smax maximum on-site service time
1 1 T L number of time slots in service schedule
k32 Tk w fractional length of service scheduld,/KC
b maximum number of services required for a task
Fig. 1. Dynamic team forming lower bound: Delay versus thrqugh b
CT
+00 -

we leave the set of subsets unspecified). The on-site service
time is independent of the number of services required for L
a task, has meapn, and is upper bounded by, € R+.

Thus for a task withR(q) = {r1,r4}, the task is completed /
when agentd (modk) and 4(modk) simultaneously spend Vi

an on-site service time df(q) = s at locationg.

B. Lower bound on optimal delay | ‘1 T
. 32 %
In total there arelC different task types. Leff; denote K
the fraction of task types that require service In order Fig. 2. Complete team policy: Delay versus throughput.

to derive a lower bounds, and analyze proposed policies we

make two simplifications. First, we assume tlifat=--- =

fx =: fx. This implies that the required services are spread With this policy, the problem is simply a DTRP with

evenly over the task types, and thus, each service appesird: vehicles, and an arrival rate of Hence, we have the

in fick task types. Since the service set for each task fellowing result.

chosen uniformly and randomly, this also implies that Theorem 6.1 (Complete team delayj: the asymptotic

is the probability that a task requires servige Notice that regime, if k7°(n) — const< 1/s, then the expected delay

1/k < fx < 1. Second, we only considéask-type unbiased Of the Complete team policy i®(max{k*T'(n),Vk}). If

policies. These are policies for which the delay for eack tagi?'(n) — const> 1/5, then the delay is infinite.

type is equa|hmj_)+oo E[Dj|taskj is of typeR(q)] — D*, Notice that if f]C S Q(l), then.the pOllcy is within a

for each task typeR(q) € R. constant factor of the optimal. Fig. 2 shows the order of
With these assumptions we can lower bound the optim#h€ delay as a function of the per-agent throughput.

delay. Note, that all parameters are potentially a function Thus, when each service is required in a constant fraction

of n and we should be writind:(n), K(n), fic(n), and so Of the tasks, or wherk(n) — conste N asn — +oo,

on. However, to simplify the notation we omit the explicitthe Complete team policy is within a constant factor of the

dependence. For convenience, Table | contains a list 8ptimal. However, in certain instances the above policy may

parameters and their definitions. be inefficient as each agent visits every task, not just ttes on
Theorem 5.1 (Optimal delay)n the asymptotic regime, which require its service. This manifests itself as a limmt o

if kfcT(n) — const< 1/3, then the optimal delay of the dy- the per-agent throughput /%, independent offic.

namic team forming problem is @(max{ fick*T(n), Vk}). B. Task-specific team policy

If kficT(n) — const> 1/5, then the delay is infinite. . :
Fig. 1 shows the order of the optimal delay as a functiooic'iogceggi E:}er]i ifré Iiccigseenttss ?hiicr;ftylge%an/dkia(;?eser
of the per-agent throughput. Pp K : K <n

are enough agents of each type to createCadlervice sets.
VI. POLICIES FOR DYNAMIC TEAM FORMING More specifically, we could creat®copy = |n/(kficK)]
A. Complete team policy copies of each of th& service sets. Thus, whefix C < n/k

i we have the following policy.
Here we propose a policy that has good performance wheg

each service is required in a constant fraction of the tasks_ 2SK-SPecific team policy

C = T Assumes fxK < n/k.
ompiete team policy 1 For each of theNeopy := |n/(kficK)] different service sets,

1 Formn/k teams ofk agents, where each team contains one create Ncopy teams of agents, where the number of agents in

agent of each type. each team is equal to the number of required services, and
2 Have each team meet and move as a single entity. each agent provides a required service.
3 As tasks arrive, service them by one of thé¢k teams 2 Service each task by one of if§.py cOrresponding teams,

according to the TSP partitioning policy. according to the TSP partitioning policy.
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In the following theorem we characterize the delay of
Task-specific team policy.

Theorem 6.2 (Task-specific policy delayy: the asymp- Fig. 4. Creating a service schedule using the greedy vertéoriog
totic regime, If kfxcT(n) — const < 1/(2s), ';iﬁg'jﬂﬁ; L';s“]ﬁng?;ﬁ’g: 6. K =18, fic = 6/18, and the resulting
then the expected delay of the Task-specific policy is
O(max{f2k*KT(n),/fickK}). If kfcT(n) — const > o
1/s, then the delay is infinite. o)

Fig. 3 shows the order of the delay as a function of the )
per-agent throughput for the Task-specific team policy. W || g

{5} | {3.4} | {25} |{1,2,3}|{1,3,5}{1,4,6}

C. Scheduled task-specific team policy {6} | {56} | {3,6} |{4,5,6}|{2.4,6}| {2,3,5}
DT [
The Task-specific team policy can only be applied when 0 g 2g By A Sty Gig time

< . Here we pr licy for all parameter
f’ClK — 71/kh .e.e ehp op?(se a p.o cy for a | paramete Figg. 5. Service schedule created by the coloring in Fig. 4 Hsk types
values which divides the task types into several groups, ahiced during each time slot are shown (e.g., in time [¢pt2ts[, agents

then runs the Task-specific policy on each group sequentialli(modk) and2(modk) meet to service tasks with service gt 2}).
We begin by defining aervice schedule

Definition 6.3 (Service schedule service schedul§ is _ i
a partition of theXC service sets intal time slots, such _Scheduled task-specific team policy
that each service set appears in exactly one time slot, andAssumes A service schedule with time slot duratiap.
the service sets in each time slot are pairwise disjoint. The OPtimize: overtg and M.

) o 1 Partition £ into n/k regions and assign one agent of each
schedule hatength L, andfractional lengthw := L/K. type to each region.

The following lemma lower bounds the length of a service: foreach regiondo
schedule by using the fact that for each {1,...,k}, fxrtkK 3 Form a queue for each of th€ task types.
contain servicer;. foreach time slot in the scheduldo

4
. . 5 Divide agents into teams to form required task types.
Lemma 6.4 (Schedule length II. S is a service sched- For each team, service the firsf tasks in the queue,

ule, then it contains at leagjcK time slots (i.e.w > fx). or as many as can be served in timge(whichever
From Lemma 6.4, every service schedule must contain comes first), by following an optimal TSP tour.
at leastfickC slots. We now give a method for creating a; when the end of the service schedule is reached, repeat.
schedule. Consider the graph consistingkofvertices, one
for each service set, and edges connecting any two verticesBy applying the results on the Euclidean traveling sales-
whose service sets have a non-empty intersection. This person tour and on batch queues in Section Il, we are able to
known as an intersection graph. A service schedule, is théound the delay of the Scheduled task-specific team policy.
simply a vertex coloring of this graph. From Section Il the Theorem 6.6 (Scheduled task-specific team delby}he
problem of determining the optimal (minimal) coloring isasymptotic regime, ikwT (n) — const< 1/sy.x, then the
NP-hard. However, we can color the graph using the greedsxpected delay of the Scheduled task-specific team policy is
heuristic in Section Il. An example is shown in Fig. 4. UsingD (max {ka:ZICT(n), wlcﬁ}) . f kwT(n) — const>
Theorem 2.3 we arrive at the following result. 1/5, then the delay is infinite.

Lemma 6.5 (Schedule length I1) each task requires no  Fig. 6 shows delay as a function of the per-agent through-
more thanh < k services, then a service schedule with<  put for the Scheduled task-specific team policy.
min{bfi, 1} can be found inD(K) computation time. Remark 6.7 (Comments on Theorem 68Jhen bfc <

We are now ready to present the Scheduled task-specific the greedy vertex coloring scheme creates a service
team policy. schedule withw < bfc. In this case, one can achieve
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O(1), then the per-agent throughput of the Complete team
policy cannot be raised above'k, whereas the Scheduled
task-specific and Task-specific policies provide capaaity
delay, within a constant factor of the optimal.

VIl. CONCLUSIONS

In this paper we presented a model for dynamic task
allocation problems, and a framework within which they
can be studied. We introduced the dynamic team forming
problem, and proposed three team forming policies. There

are many areas for future work. We would like to look

Fig. 6. Scheduled task-specific team policy: Delay versusutfhput.

TABLE Il
POLICY COMPARISON WITHK = bk, AND fic € O(b/k).

into creating distributed versions of our policies, andeext
our dynamic team forming analysis to nonuniform task type
distributions, task-type biased policies, and the caserevhe

services are not evenly spread among task types.

Policy Capacity | Delay at capacity
Optimal O(1/b) Q(k)
Complete team O(1/k) O(k) [1]
Task-specific team O(1/b) O(b2k)
Scheduled task-specific (greedy) ©(1/b%) O(b3k)
Scheduled task-specific (optimal) ©(1/b) O(b%k) [2
(3]

a per-agent throughput ad(1/(bfick)), with a delay of
O(bfxkK). Thus, if b is small compared t&, the service
schedule can provide a near optimal maximum per-agent
throughput (i.e., capacity). However, the delay depends on
the number of different task type&;, and thus could be
significantly larger than the optimal delay.

When the per-agent throughput is “high,” the delay of 6]
the Task-specific team policy i©(max{k? fZKT(n)). In
comparison, the delay of the Scheduled task-specific tean
policy is O(max{w?k?KT(n)). By Lemma 6.4,w > f,
and thus the Task-specific policy performs at least as well;
as the Scheduled task-specific policy. However, we can only
use the policy wherfx K < n/k. Also, the policy does not
easily adapt to situations where new tasks types are adde@,
and old task types are removed, since the entire partioninio]
of the agents into teams must be recalculated. °

D. Policy comparison (1]

To compare the performance of the policies, considtﬂz]
the specific case where, for eagh € {1,...,b}, with
b < k, there arek service sets with cardinality. That is,
k task types require one servick,task types require two [13]
services, and so on. Thu&, = bk. Further, assume that
each individual service appears jrof the k service sets of [14]

cardinality j, for eachj € {1,...,b}. From this, we obtain
b [15]
fe = Zjlgly _ b(b—sb-kl)/2 c O(b/k).
[16]

An example of service sets satisfying these assumptions is
shown in Fig. 4 and Fig. 5. Using these values, we cai’]
compare the maximum achievable throughput (or capacity)

for each of the policies, and the delay at capacity. Theges]
results are summarized in Table Il, where Scheduled task-
specific team bounds assurte< k. In Table Il we see that 19
if b € ©(k) whenn is large, then the Complete team policy

is within a constant factor of the optimal. However,bife
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