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On frame and orientation localization for relative sensingvoeks
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Abstract— We develop a novel localization theory for planar  which the problem of determining the relative position for
networks of nodes that measure each other’s relative position, pair of robots moving in 2D or 3D is studied using only
.., we assume that nodes do not have the ability to perform igiance measurements between the robots. The literature

measurements expressed in a common reference frame. Wer view includ Iso the b tiful treatment in 141, wher
begin with some basic definitions of frame localizability and '€VIEW INCludes also the beautitul treatme [4], where

orientation localizability. Based on some key kinematic rela- @ theory of localization emerges.
tionships, we characterize orientation localizability for networks This paper contains several contributions and proceeds

with angle-of-arrival sensing. We then address the orientation as follows. First, we review and identify a few useful
localization problem in the presence of noisy measurements. |inematic relationships and fundamental elements of graph

Our first algorithm computes a least-square estimate of the -
unknown node orientations in a ring network given angle-of- theory. Second, we present a novel formulation of the frame

arrival sensing. For arbitrary connected graphs, our second localizability and frame computational localization piein
algorithm exploits kinematic relationships among the orienta- for networks with relative sensing. Third, we define a
tion of node in loops in order to reduce the effect of noise. characterization of frame localizability for planar netks,
We establish the convergence of the algorithm, and through ¢q,sing on consistency for the orientation localizatiootp
some simulations we show that the algorithm reduces the mean- | h | } . f th
square error due to the noisy measurements. em. Fourth, we compute a least-square estimate of the
unknown node orientations in a ring network. Fifth, we
. INTRODUCTION consider arbitrary connected graphs and provide a diségbu
) i .. algorithms for planar orientation localization which exipd
_ One of the key problems in sensor networks is localizationinematic relationships among the orientation of nodes in
l.e., determining the location of each sensor in the network,,nq in order to reduce the effect of noise. We also add some
Sensor networks are used in a large number of applicatiopgsjgerations on the convergence rate of the algorithm.

Wh'.Ch cover a wide range of flelds,.suc.h as, suryeﬂlgnce, taiEinaIIy, we provide some simulations in order to validate
geting systems, controls, communications, monitoringgyre our algorithm results

intrusion detection, vehicle trapking a_nd .mapping. The paper is organized as follows. In Section I, we
We address the problem in a distributed manner, by,e\ some kinematic conventions and elements of graph
assuming that any node in the network has its own referenge, v that are used throughout the paper. Section Il is
frame, and does not have any knowledge about its physicglgicated to the description of the network model and the
position in the environment or the position of all the Otherproblem with some preliminary relationships on relative
nodes. Each node, through a sensor, can detect the presegggiions. Section IV studies the orientation localiziapibf

and the relative position of any node inside a given Sensgfe petwork considering the measurement noise, including a
footprint. The measures are affected by noise, so we exteRgtuia to compute the optimal least-squares angle estimat

our analysis to the noisy case. We daime localizatiorthe i, 5 ying, and offers a convergent algorithm for the frame
problem of computing the relative location and orientatiofycjization problem in a general network. In Section V some

of each node of the network. We aim to solve the problenginjation results are shown. Section VI gives a short revie
through a distributed algorithm, which computes the esma ¢ i naner with conclusions and aims for future work. Al

of the angle associated to every edge of the graph tﬁfoofs can be found in the technical report [5]
distributing the error of every cycle on its edges.

Network localization has been the center of extensive Il. PRELIMINARIES
research work, and the various approaches are due to djf-
ferent assumptions on the deployment of the nodes and the
way sensors work. In some cases, there is the use of soméVe let R and C denote real and complex numbers,
special nodes, whose position is known, called beacons @spectively. We let|v|| denote the Euclidean norm of the
anchors. Moreover, to obtain a more accurate estimatiodectorv € R?. We define the versor operatasrs: R — R¢
some researchers, e.g., [1], investigate the possibility ®Y vers(0) = 0 andvers(v) = v/[[v|| for v # 0. Given a
choosing the position of the beacons. Particular interésg¢sa  scalart, we letproj(¢) take value in—, [, where the map
from the works of Roumeliotis and coworkers, [2] and [3], inproj: R — [—, x| is defined by

Elements of kinematics
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be a fixed reference frame iR*. A point ¢ and a vector P = (Vp,Ep) C G of the formVp £ {v;}*_, and

v expressed with respect to fram are denoted by  E, 2 {(ji,jir1) iz, where{si,--- ,jx} iS a permutation
and v', respectively. Next, leby = {p2, x2,y,,22} be a of {1,--- ,k}. The verticesv;,,---,v;,_, are the inner
vertices of P. Furthermore, every sequence of edges thait for
a closed path inG and do not visit the same node twice,
except the start/end node, is callegicle and it is denoted
by ¢.

The direction of a cycle is the order in which the nodes
are visited. We letZ(G) denote the set of all cycles @f.

We let |¢| denote the number of edges in the cyélelt
should be noted that, in a digragh,, the cycle directions
are independent of the direction of the individual edges
composing the cycles.

Definition 2 (Cycle vector) For ¢ € L(G,), the cycle vec-
tor is the vectorl, € {—1,0,+1}™ C R™ whoseith entry

reference frame fixed with a moving body. The origin ofS +1 if the ith edge belongs t@ and its orientation is
Y, is the pointp,, denoted bypl when expressed with consistentwith the orientation 6f —1 if theith edge belongs
respect toX;. The orientation ofY, is characterized by ¢ and its orientation is opposite the orientation Gfand

the 3-dimensional rotation matrix2}, whose columns are iS 0 otherwise.

the frame vector§xs, y,, z2} of X5 expressed with respect o
to ¥;. We recall here the definition of the set of rotationPefinition 3 (Set of cycle and fundamental cycle vectors)

Fig. 1. Two reference frames &3

ind - set of fundamental cycle vectods; C L is a subset ofL
S0(d) ={R e R"”| RR" = I, det(R) = +1}. that constitute a base fof. The elements of ; are called

With these notations, reference frame transformations aféndamental cycle vectors.

described by Given a set of fundamental cycle vectdrg, we letL¢(Gy)

¢ = Ryq* + pi, and o' = Riv? (2) denote the associated fundamental cycles

Recall alsoR; = (R7)”. Analogously, we letS* denote the Lsi(G)={le L(Gq)| 14 € Ly}.
point setS as expressed in the reference fralme Finally,
if three reference frames;, i € {1,2,3}, are considered, Definition 4 (Cycle and fundamental cycle matrix) The
then simple bookkeeping arguments lead to cycle matrix C' of a digacted graphGy, is the k£ x m
matrix C = [1,,,...,1,.]" wherek is the dimension of,
RyRiR) =15, and R, = R3R;. G andm is th[e number k(])f edges @F,;. Ther x m matrix
Next, it is convenient to present a planar case version ¢f; € C, with » = dim(Ly), such that each row represents
these notions. In the planar cage, and p, take values in a fundamental cycle vector iy, is called thefundamental
R?, the reference frames consist of only two orthonormatycle matrix
vectors, and the rotation matrices take values@(2). It is T
convenient to identifyR? with the set of complg‘f r?umbers Cr=[e,. 1 )7, forall 1, €Ly )
C and to denote the unit imaginary number p§-1 € C. Note thatC'; is not unique since it depends on the choice of
If we describe the planar rotation matr®; € SO(2) by the fundamental cycles vectors, and it is a full rank matrix.
its unit-length complex number representatiom(63v/—1), _ _
with angleé} € [, [, then the second part of equation (2)The following result is known from [6].
reads

vl = exp(03v/—1)v>. Theprem 5 (Number of independent f:ycles)f Ggq hasn
vertices andn edges, than the dimension of the fundamental
B. Elements of graph theory cycle spaceL; is m —n + 1, i.e., there arem — n + 1

We review a few useful notions from graph theory [6],independent cycles.
[7]. We let G = (V, E) represents an undirected graph
with vertex set’ = {v;}7_, and edge seE with cardinality ~Definition 6 (Plane graph) A graph is called plane graph
m. Gq = (V, E4) defines a directed graph associated3to if it has the following properties:
whereE; is an orientation of’. We denote a directed edge (j) y c R?,
from vertexv; tow; by e;; = (i, ). If the graphis undirected, (i) every edge is an arc between two vertices;
(,7) is equivalent to(j, 7). (i) the interior of an edge contains no vertex and no point

- , ) of any other edge.
Definition 1 (Path and cycle) LetG be either a directed or

undirected non-empty graph. pathis a non-empty graph The following result is known from [6].



Theorem 7 (Number of edges in a plane graph)A plane .

graph withn > 3 vertices has at mosin — 6 edges. .« .
Definition 8 (Planar network) A planar network is a . . e 1=
graph with nodes irR2. LA .’, “e®
Note not to confuse planar network with planar graph. In ..°-:° v : \ *
literature, the ternplanar graphdefines all the graphs that . Y p

can be drawn in the plane without edges crossing. This
definition is clearly different from our definition of planar

Fig. 2. The disk graph ifR?2
network. g grap

IIl. NETWORK MODEL AND LOCALIZATION PROBLEMS

In what follows we describe our notion ofietwork B- The frame localization problem
equipped with relative sensor$Ve consider a group of Loosely speaking, we caftame localizationthe problem
nodes inR?, for d € {2, 3}, and we assume that a referencedf computing the location and orientation of each node of
frame X; with origin p;, for i € {1,...,n}, is attached to a relative sensing network. Additionally, we caliientation
each node. We assume # p; for all i # j. We label the localizationthe problem of computing the orientation of each
1st node theeference node node of a relative sensing network. We begin with questions
There might or might not exist a fixed spatial referenc@bout the uniqueness of these localization problems.
frame. If a fixed spatial reference frame exists, then we
denote it byX, with origin po. Problem 9 (Frame and orientation localizability) Given
a relative sensing network with reference nadeprovide

A. Relative sensing models . . .
, , graph theoretical conditions under which:
Each nodei activates a sensor that detects the presen £

and returns a measurement about the relative position of a {/am{(yf Cailizikg:'téﬁ .thee r{t—:éferenci frg:zeﬁégangor?’;g?_ns
node inside a given sensor footprint. We t&tC R? be the mir:égibg/ the relz;tive mgés.l;?er,nents quely

sensor footprintof node: and 5, be its expression in the rientation localizability:) the orientation::‘R1 forall i €

¥; frame; we shall assume that all node sensors are equgﬂ 9 ] ni. v determined k; the relativ
so that we writeS; = S°. We assume that there exists a ;{néé.s.ljrg’r;e?\tg uniquely dete ed by the eé €
mapsns: R? — R¥, for somek, called thesensing function '

such that node acquires the symbeins(pj) for each node  gecond, we are interested in algorithmic matters.

J €A{1,...,n}\ {i} that satisfiep; € S*. The sensor we

will use thro-ughout the paper is the following: , Problem 10 (Centralized and distributed localization)

Angle-of-arrival sensing: Node i measures vers(pj),  Given a frame (respectively, orientation) localizablewek,
i.e., sns(p)) = vers(pj) € RY, for all nodesj within @ give a centralized or distributed algorithm to compute the
fixed sensing range from i, that is, the footprintS®  reference frames transformatidR;,p} } (respectively, the

7

is a disk of radiusr and the functionsns returns the orientationsRy), for all i € {2,...,n}. Give algorithms for

spherical coordinates of its argument. both noise-less and noisy sensor measurements. [
Given the node9, ..., p,, the directedsensing graph _ _ ) )
Gq = (Vs, Ey) is the directed graph where vertex corre- Finally, for the above questions, we are interested in

sponds to nodéand the directed edge, j) € E; if pz‘_ a pomplexity in arbitr_ary networks and expected complexity
that is, if nodej is inside the sensor footprint of nodeln  in random geometric networks.

what follows, we assume that the sensor footpiitis a

unit-radius disk withp; as the center, so that the sensindRemark 11 (Data referencing motivation) It is worth re-
graph is the so-called unit-disk geometric graph illustat marking that the frame localization problem needs to be
in Figure 2. With this assumption, if nodesenses nodg, solved in relative sensing networks if measurement taken by
then nodej senses nodéeas well. Therefore, ifi, j) € E;,  arbitrary sensors in their respective reference framesl nee
then (j,i) € E4 as well. To simplify notation we use an to be expressed (and possibly fused) in a common unique
undirected graphGs = (Vs, Es) with vertex setVs and reference frame. Measurements might include positions of
undirected edge sdfs satisfying(i,j) € Es < (i,j) € targets, environment boundaries, etc. |

E;, < (j,i) € E;. We call Gg the undirected sensing o ) )

graph or simply the sensing graph. We further assume th&t Preliminary relationships

a pair of nodesi and j communicate with each other if In three dimensions, for any sensing and communication
and only if they can sense each other, i@,j) € Es. undirected edgdgi,;), the basic relationship between the
In summary, the physical components ofedative sensing relative positiong? andp§. and the change of frame rotation
network consist ofn nodes with identifiers in{1,...,n},  matrix R: can be computed from (2) to be

with configurations iR x SO(d), and with relative sensors ! }

described by the sensor footprisit and sensing functiogns. p;’» = —Ré.pg. (5)



It is possible to write a normalized version of this equatioB. Orientation localization with noisy angle-of-arrivaés-
that applies to angle-of-arrival measurements: sors

Now we follow Theorem 14, and we consider a planar
network with angle-of-arrival sensing. We assume that, for
It is also possible to write a planar version of equation (5)ach undirected edde, j) of the sensing graph, nodésnd
where relative positions are complex numbers and rotationsmeasure, respectively, the angles
matrices are unit-length complex numbers:

0% = proj(£Lp} — Zp] + ). @)

Vers(pé) = —R; vers(p?). (6)

Apé- + n; and ép{ + nf,

where we suppose the noise$ and ng to be independent,
Remark 12 (Measurements and variables)Recall that Gaussian random variables with zero mean and variance
the two nodes andj measure each other’s relative positionsTherefore, for each undirected edge;), we can measure
p' andp] (through the sensing function), respectively. Thenly
unknown variable in equation (5) is the rotation matﬁ'% y; — proj((£pi + ni) (Zp + )Jr ), 8)
with d degrees of freedom. J v

nd not the true relative onentatlc&r;u as in equation (7).
It is possible to parametrize the solutions to equation (6§l

Remark 17 (Redundant measurements in cycles)f the
sensing graph is a tree, then there is no redundant mea-
surement and we cannot reduce the effect of measurement
noise on our angle estimates. However, for every cycle in the
network, we can enforce a cycle constraint (see equation (3)

Lemma 13 (Feasible orientations)Given unit-length mea-
surementgaj and p?, computeH7 € SO(3) by

HJ = exp (a ej)

wheree;l € R3, a;‘, € [0, 7] are defined by We formalize this statement as follows. |
. {Vers(p;; « p{), if p§- « pg‘ £0, LeBGS :ézs, gs) bev\t/he un_direct%q sensing grapE w(ijth
e; = . i . n nodes andn edges. We assign a direction to each edge
any unit-length vector. pj, - otherwise in Eg in the following way: the direction is from to j

ol = arctany (|[p} x p! |, —p’ - pl). if i < j. Noting that this direction assignment is different
from/independent of the sensing/communication relatitats

Then every solution to equatiq6) may be written as us denote the directed graph obtained, @y — (Vs, Eq).

i 3 i Consider the oriented edge= (j,7) € E4, with i > j. Let
R; = exp (ﬂ vers(p j) )Hj 1. denote the estimate ofgfﬁ; t(rjue)relative angle as]sociated to
for an appropriate angles € [, 7[. e, 0. = 0!. Lety € R™ denote the vector of angle estimates
for all the edges of the graph. Analogously, we jetenote
IV. PLANAR FRAME LOCALIZATION the measurement vector with componegts= v/, for i > j.
A. Orientation localizability with angle-of-arrival seoss For ¢ € L(G4), thecycle errore, at e is
Our first localizability result follows. €0 = proj(1e - ¥), )

Theorem 14 (Orientation localizability for planar net- where the maproj: R — [—, «[ is defined in (1) and the
works with angle-of-arrival sensing) Consider a relative mapproj: R" — [—m, «[" is defined by
sensing network witld = 2 (i.e., a planar network) and with

noiseless angle-of-arrival sensing. The following staets proj([z1, ..., ]") = [proj(a1). ..., proj(an)]".  (10)
are equivalent: Note that
(i) the sensing graph is connected, and ) )
(i) the network is orientation localizable. proj(1¢ - ) = proj (Z iwf)’
fee
Proposition 15 A network with only range measurements isvhere 4 indicates whether or not the direction of the edge
not orientation localizable. f is concordant with the direction of the cyclewhich f

belongs to.

Proof: The range measurement is independent of the | 4t follows, we aim to solve the following least-square
reference frame. That is, given a fixed geometry of a netWOfE’sUmation problem:

each node may have an infinite number of orientatiorill.

P ition 16 (Sufficient conditions for localizabilit ki o 11)
roposition ufficient conditions for localizabili

A IE:etwork wit(h n nodes capable of angle—of—z)rrival subj. o proj(1¢-4) =0, for all £ & L(Ga).

measurement is both frame localizable and orientatiomote that the Optimaw lives in a set of countable affine

localizable if the sensing graph is rigid and at least one oubspaces; once the optimal affine subspace is determined,

the edge lengths is known. the optimal estimate is computed via a linear projection.



C. Optimal estimation in a ring E. Some remarks on complexity

Now, suppose the sensing graghy is a ring with nodes in order to speed up the exponential convergence factor
{1,...,n} and with undirected edgds, (i+1) modn), for  of algorithm (14), it is desirable to maximize To compute
1 € {1,...,n}. In what follows, we write(i + 1) to denote the largest possible; that guarantees convergence, it is
(i + 1) modn. Compute a set of angle estimates, , by natural to ask how to choosgy, i.e., how to choose the
fundamental cycle set in order to minimize the maximum

1—1 . . . .
P 1 . i 1 eigenvalue of the matrix' = OfCJT. At this time, we
Vit1 = Yip1 — g(prOJ (Z Yier — yn))’ (12) only provide the following conservative analysis. One can
=t see thattrace(F) = Y,y 1], and, sinc@\max(F) <
and ¢, = —¢f. Equation (12) can be written in vectorial trace(F"), exponential convergence of algorithm (14) is guar-
form as 1 anteed if 9
Y =y — 1,—proj(1l - y), (13) K< :
n L+ ieq,... . il
wherey = [y5, 43, ys|" andy = [¥3,93, -, ¥5]".  From Theorem 5, we know the fundamental cycle space has

This affine map is a projection onto one of the affingank,, —n+1ina digraph withn nodes andn edges. In
subspaces that describe the constraint in the optimizatigRe worst-case, it is possible for a digraph to have order
problem (11). edges and it is certainly true that each cycle has at most orde

n edges. Therefore, in the worst-case, we can only choose
Theorem 18 (Solution to the least squares)he angle es-

timates computed in equatiofi2) are the solution to the K € O(i)

least squares estimation problefhl). n?
Suppose now instead that (i) the graph is planar, so that it

It is interesting to note that equation (13) is a particulase has at mostn — 6 edges by Theorem 7, and that (ii) we

of the Kaczmarz’s projection method [8] for solving a systenzonsider only cycles with bounded length (e.g., in a planar

of linear equations through iterative projections. graph that is a triangulation, one can choose a fundamental

. . o . . cycle set with all cycles of lengtB). Then we can choose

D. An iterative estimation algorithm for arbitrary graphs
We now consider an arbitrary network,; with set of K € O(l).

cycles £L(G4) and we propose a natural generalization of "

the optimal estimation algorithm (13). Lét C L(Gy) be a _Mor_e generally, how to choose a fundar_ne_ntal_ cycle set to

subset of the cycle set, and let denote the estimate of the Minimize the sum of cycle lengths is an optimization problem

angle associated to the edgeFor0 < x < 1, consider the known as theminimum cycle basis problerm the beautiful

following “cycle-distributed” discrete-time system: work of Elkin and coworkers [9], the authors construct a
fundamental cycle basis for an unweighted undirected graph
Ye(0) = ye, of lengthO(n?).
Vet +1) = Ye(t) — k Z (1 - ec) proj(Le - 1(t)), (14) V. SIMULATIONS
CeL: ect

We provide some simulations to illustrate the performance
wheree; is them-dimensional vector whoséh entry is1, of the proposed distributed algorithm consideriggas a
and all the other entries are equal to zero. We will ofteset of independence cycles. We consider arbitrary network
focus our attention to the case where the set of cy€lés configurations with fixed node positions and varying sensing
a set of fundamental cycles;. footprints, e.g., see Figure 3. Different number of edges in
the network lead to different number of independent loops.
Theorem 19 (Exponential convergence)Consider a pla- As illustrated by the plot in Figure 4, the mean-square error
nar relative sensing network/ with noisy angle-of-arrival [[¢» — 6||* is smaller than|ly — 6||* and decreases as the
sensing and sensing graghis = (Vs, Es) with n vertices number of independent loops increases. Convergence of (14)
and m edges, and its associated directed graply = is shown in Figure 5.
(Vs, Eq). Let Ly be a fundamental cycle set for the digraph
with associated fundamental cycle matfi¥%. The solution . ] - )
of the discrete-time systef14) with £ = £; converges This paper introduces the frame localization problem in a
exponentially fast with exponential converges factor=  connected network. For the orientation localization peabl

(1 — k)2, to the set of angles with zero cycle error forwith angle-of-arrival (bearing) sensors, we developed an
k< 2/(1 + Amax(F)), Where F = OfoT, and Amax(F) algorithm that reduces the effect of noise. Our algorithm

is the maximum eigenvalue &f. computes the correct least-square estimate for ring nkswvor

in one step. Our algorithm is proved to converge expo-

At this time, it is not known whether the proposednentially fast and is validated it through some simulations

algorithm computes the optimal least-square estimate ®fe are currently extending the work in several directions.
the unknown angles. Numerical experiments in Section Yirst, we want to improve the efficiency of the orienta-
illustrate however its compelling performance in this melga tion localization algorithm and either show its least-ggua

VI. CONCLUSIONS AND FUTURE WORK



Fig. 6. This figure shows a complete network performing self-
localization considering a set of independent cycles. The solid lines
are the true frames. The dotted lines are the measured frames (with
respect to the pre-specified frame in the bottom left corner). The
dashed line are the estimated frame computed by algorithm (14).

(b) (c)

Fig. 3. Plot (a) refers to a configuration of = 10 points. By gaqqdress the problem of position localization, defined earli
considering different sensing footprints, in plot (b) it is shown the thi Fourth and final im to f lat dii
complete graph witl36 independent loops, and in (c) we show the!N IS paper. Fourth and final, we aim to formulate condsion

same nodes configuration but witlh independent loops. for frame localization in three dimensions. In particulag
are investigating orientation localizability for three des
in 3D space, to subsequently expand the work towards
o8l T ] localizability for arbitrary networks.
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