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On Discrete-time Pursuit-evasion Games
with Sensing Limitations

I. I NTRODUCTION

The game of pursuit can be posed as to determine a strategy
for a pursuer (a team of pursuers) to capture an evader in a
given environment. Bycapture, we mean that the evader and
the pursuer (some pursuer) meet at the same location after a
finite time. The aim of the pursuer (pursuers) is to capture the
evader for any evader trajectory. The evader wins the game if
it can avoid capture indefinitely. All the players have identical
motion capabilities. Capture strategies are important in surveil-
lance where we would like to detect and capture equally agile
intruders. Another application is search-and-rescue operations
where a worst-case capture strategy guarantees a rescue, in
spite of any unpredictable motion of the victim.

The continuous time version of this game has been studied
by Ho et al. [1], Lim et al. [2] and Pachter [3] to cite a few.
Recently, the discrete-time version of the game has received
significant attention. Sgall [4] has given sufficient conditions
and a strategy for a single pursuer to capture an evader in
a semi-open environment. This strategy has been extended
by Kopparty and Ravishankar [5] to the case of multiple
pursuers in an unbounded environment, to capture a single
evader which is inside their convex hull. Alonsoet al. [6] and
Alexanderet al. [7] propose strategies so that the pursuer can
reduce the distance between itself and the evader to a finite,
non-zero amount after finite time steps. The game has also
been studied in different types of bounded environments, e.g.,
circular environment by Alonsoet al. [6], curved environments
by LaValleet al. [8]. Visibility-based pursuit evasion has been
studied by Guibaset al. [9] and in polygonal environments by
Isler et al. [10].

Each of above mentioned works proposes strategies which
require that the pursuers have unlimited range sensing ca-
pacity. A more realistic assumption is to introduce sensing
limitations for the pursuers and the evader. In this context,
Gerkeyet al. [11] have studied a version of visibility limited
to an angle, instead of the entire region. Shevchenko [12] has
considered a successive pursuit problem in the plane with
sensing range limited to a finite disc. Isleret al. [13] have
considered the problem on a graph, with the visibility of the
pursuer limited to nodes adjacent to the current node of a
pursuer. A framework which uses probabilistic models for
sensing devices for the agents can be found in the works of
Hespanhaet al. [14] and Vidalet al. [15].

We address the case of limited range sensing capability:
a pursuer and an evader can sense each other only if the
distance between them is less than or equal to a given sensing
radius. We consider the discrete-time version with one or many
pursuers and a single evader in a planar environment. The
motion of each player is constrained to a stepping disc around

it. The evader is initially located inside a bounded subset of
the environment, which we term as thefield. The players can
leave the field but not the environment. The evader follows
a reactive rabbitmodel, i.e., does not move until it senses a
pursuer [13]. We present an algorithmic approach in the form
of a Sweep-Pursuit-Capturestrategy for the pursuer to capture
the evader. We demonstrate this strategy using two variantsof
the pursuit-evasion game: the first involves a single pursuer
and the evader in a bounded convex environment while the
second considers multiple cooperating pursuers to capturethe
evader in a boundaryless environment.

In the first game, the pursuersweepsthe environment in a
definite path until the evader is sensed, which must necessarily
happen in finite time. We then establish how a GREEDY

strategy of moving towards thelast-sensedlocation of the
evader, eventually reduces the present problem to a previously-
studied one with unlimited sensing. Finally, we show how
capture is achieved using the established LION strategy [4].
Our contributions are as follows: first, we present an analysis
which provides a novel upper bound on the time required for
the pursuit phase to terminate. Second, we obtain a sufficient
condition on the ratio of sensing to stepping radius of the
players for capture to take place in a given environment.
Finally, we give sufficient conditions and a strategy for the
evader to escape against the GREEDY strategy of the pursuer.

The second game is played with at least five cooperative
pursuers in a boundaryless environment and the field is a
bounded region known to the pursuers. Our contributions are
as follows: first, we design a novel pursuer formation and a
randomized SWEEP strategy for the pursuers to search the
field. They succeedwhen they detect the evader inside a
specialcaptureregion, which we characterize for the pursuer
formation. We show that using our SWEEP strategy, the
pursuers succeed with a certain probability which is a function
of the pursuer formation and independent of the initial evader
location. Next, we propose a cooperative pursuit strategy for
the pursuers to confine the appropriately-sensed evader within
their sensing discs. We show that using this pursuit strategy,
the present problem is reduced to a previously-studied one
with unlimited sensing. Finally, we show how capture is
achieved using the established PLANES strategy [5]. We obtain
novel upper bounds on the time for each phase in our strategy.
For both problems, we present simulation studies that suggest
robustness to sensing errors.

The inspiration for the cooperative strategy proposed in
this paper has been derived from aspects of animal behavior.
It is well known that predators hunt as a conjoined group,
when it is less efficient to hunt alone. This behavior is also
observed when the prey is large or can move as fast as the
predators [16]. Further, predators show an inclination towards
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specialized behavior by maintaining a fixed formation during
search and capture of preys [17]. Such specializations suggest
that there may be configurations that are preferred during
group hunting. Also, in the presence of sensing limitations,
groups tend to maintain spacing between each other that is
regulated by their sensory capabilities [18]. These facts give us
additional hints towards designing capture-conducive predator
formations. In this context, our analysis sheds light on how
the maximum group size of the predators varies with prey
availability and with the prey’s nutrition value in the present
set-up.

The paper is organized as follows: the problem’s mathe-
matical model and assumptions are presented in Section II.
The individual phases of thesweep-pursuit-capturestrategies
and the corresponding main results for both the problems
are presented in Section III. The proofs of the results are
presented in Section IV. Simulation results are presented in
Section V. Finally, in Section VI, we study the relationship
between pursuer group sizes and evader availability and its
nutrition value in our set-up.

II. PROBLEM SET-UP

We assume a discrete-time model with alternate motion
of the evader and the pursuers: the evader moving first. We
assume that the players can sense each other precisely only if
the distance between them is less than or equal to the sensing
radiusrsens. Further, we assume that at each time instant, the
players take measurements of each other before and after the
evader’s move, as shown in Figure 1. DefineQφ := Q ∪ φ,
whereQ ⊆ R

2 denotes the environment andφ is the null
element. The null element will be used to denote a lack of
measurement in our limited range sensing model. LetG ⊂ Q
denote the field, i.e., the region that initially contains the
evader. The evader follows areactive rabbitmodel - moves
only after being detected for the first time. We assume that the
pursuers know the fieldG and the environmentQ. The goal of
the pursuer(s) is tocapturethe evader, i.e., a pursuer and the
evader are at the same position at some finite time.Evasion
is said to occur if the pursuer cannot capture the evader. We
describe theSweep-Pursuit-Capturestrategy for the following
problems:

Players measurePlayers measure

cf. (2), (4)

At time τ ≥ 1

Evader:yp
τ−1

[τ − 1]

Pursuer:ye
τ−1

[τ − 1] Pursuer:ye
τ−1

[τ ]

Evader moves toe[τ ] Pursuer moves top[τ ]

Evader:yp
τ−1

[τ ]

cf. (3), (5)

Fig. 1. A snapshot of each time instantτ ∈ {1, 2, . . . } in our alternate
motion model. The players take measurements before and after theevader’s
move.

A. Single pursuer problem

We have a bounded convex environmentQ ⊂ R
2 and the

field G = Q. Let e[t] andp[t] denote the absolute positions of
the evader and the pursuer respectively, at timet ∈ Z≥0. The
discrete-time equations of motion are

e[t] = e[t − 1] + ue
(

e[t − 1], {yp
τ−1[τ − 1]}t

τ=1, {yp
τ−1[τ ]}t−1

τ=1

)

,

p[t] = p[t − 1] + up
(

p[t − 1], {ye
τ−1[τ − 1]}t

τ=1, {ye
τ−1[τ ]}t

τ=1

)

,

(1)

where at theτ th time instant,yp
τ−1[τ − 1], yp

τ−1[τ ] ∈ Qφ

are the measurements of the pursuer’s position taken by the
evader before and after its own move, as shown in Figure 1.
The parentheses notation{yp

τ−1[τ − 1]}t
τ=1 denotes the set

{yp
0 [0], yp

1 [1], . . . , yp
t−1[t − 1]}. Due to limited range sensing

model, forτ ∈ {1, . . . , t}, we define

yp
τ−1[τ−1] =

{

p[τ − 1], if ‖p[τ − 1] − e[τ − 1]‖ ≤ rsens,

φ, otherwise.
(2)

For notational convenience, we define{yp
τ−1[τ ]}t−1

τ=1 = φ for
the initial time t = 1. For t ≥ 2 and for τ ∈ {1, . . . , t − 1},
we have

yp
τ−1[τ ] =

{

p[τ − 1], if ‖p[τ − 1] − e[τ ]‖ ≤ rsens,

φ, otherwise.
(3)

Similarly, at theτ th time instant ,ye
τ−1[τ − 1], ye

τ−1[τ ] ∈ Qφ

are the measurements of the evader’s position taken by the
pursuer before and after the evader’s move respectively, as
shown in Figure 1. Due to limited range sensing model, for
τ ∈ {1, . . . , t}, we have

ye
τ−1[τ − 1] =

{

e[τ − 1], if ‖e[τ − 1] − p[τ − 1]‖ ≤ rsens,

φ, otherwise.

(4)

For τ ∈ {1, . . . , t}, we have

ye
τ−1[τ ] =

{

e[τ ], if ‖e[τ ] − p[τ − 1]‖ ≤ rsens,

φ, otherwise.
(5)

The functionsue : Q × Qφ × · · · × Qφ
︸ ︷︷ ︸

2t − 1 times

→ Q and up :

Q × Qφ × · · · × Qφ
︸ ︷︷ ︸

2t times

→ Q are termed asstrategiesfor the

evader and pursuer respectively. The apparent lack of symme-
try between the number of arguments in the strategies of the
evader and the pursuer is due to the alternate motion model.
We assume that both players can move with a maximum step
size ofrstep, that is,

‖ue‖ ≤ rstep, ‖up‖ ≤ rstep. (6)

The sensing radius,rsens, is κ times the motion radius,rstep. We
assumeκ is greater than 1, i.e., both players can sense further
than they can move. From the reactive rabbit model for the
evader, we haveue = 0 until the evader is detected. After this
happens, the single pursuer problem consists ofdetermining
up that guarantees capture for any evader strategy,ue. This
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problem is described by two key parameters: the ratio of
sensing to stepping radiusκ and the ratio of the diameter of
the environment to the stepping radiusdiam(Q)

rstep
.

B. Multiple pursuer problem

We have a total ofN ≥ 5 pursuers that can communicate
among themselves the location of a sensed evader as well as
their own position with respect to a fixed, global reference
frame. The environmentQ is R

2 and the fieldG is a bounded
subset ofR2. Define R

2
φ := R

2 ∪ φ. Let pj [t] denote the
absolute positions of thejth pursuer at timet for every j ∈
{1, . . . , N}. Analogous to (1), the discrete-time equations of
motion are

e[t] = e[t − 1] + ue
(

e[t − 1], {yp
τ−1[τ − 1]}t

τ=1, {yp
τ−1[τ ]}t−1

τ=1

)

,

pj [t] = pj [t − 1]

+ upj

({

{pj [τ ]}N
j=1

}t−1

τ=1
,
{
ye

τ−1[τ − 1]
}t

τ=1
,
{
ye

τ−1[τ ]
}t

τ=1

)

,

(7)

where at the τ th time instant, yp
τ−1[τ − 1], yp

τ−1[τ ] ∈
R

2
φ × · · · × R

2
φ

︸ ︷︷ ︸

N times

denote the sets of measurements of the pur-

suers’ positions taken by the evader before and after its move.
Similarly, ye

τ−1[τ − 1], ye
τ−1[τ ] ∈ R

2
φ are the measurements

of the evader’s position taken by the pursuers before and
after the evader’s move. The measurements are given by
expressions analogous to (2)-(5). Akin to the single pursuer
problem, the functionsue : R

2 × R
2
φ × · · · × R

2
φ

︸ ︷︷ ︸

(2t − 1)N times

→ R
2

and upj : R
2
φ × · · · × R

2
φ

︸ ︷︷ ︸

(t − 1)N times

× R
2
φ × · · · × R

2
φ

︸ ︷︷ ︸

2t times

→ R
2 for every

j ∈ {1, . . . , N}, are strategies for the evader and pursuers
respectively. The constraint on the maximum step size, given
by (6), holds for the evader and every pursuer. Due to the
reactive rabbit model for the evader,ue = 0 until it is detected
by the pursuers for the first time.

The multiple pursuer problem consists ofdesigning a pur-
suer formation and a corresponding strategy that guarantees
capture of the evader. This problem is described by the
following key parameters: the ratio of sensing to stepping
radius of the playersκ, the ratio of the diameter of the field
to the stepping radiusdiam(G)

rstep
, and the number of pursuersN .

III. T HE SWEEP-PURSUIT-CAPTURE STRATEGIES AND

MAIN RESULTS

In this section, we describe the Sweep-Pursuit-Capture
strategies for both the problems and the corresponding main
results. The proofs are presented in Section IV.

We first introduce the following weak notion of capture.

Definition III.1 (Trap) The evader istrapped within the
sensing radius (resp. radii)of the pursuer (resp. pursuers) if
for any evader strategyue, the motion disc of the evader is
completely contained within the sensing disc of the pursuer
(resp. union of the sensing discs of the pursuers) after a finite
time.

To be specific, the evader is trapped at time instantTtrap if
for any evader strategy,

ye
Ttrap−1[Ttrap−1] = e[Ttrap−1], and ye

Ttrap−1[Ttrap] = e[Ttrap].

The idea behind our Sweep-Pursuit-Capture strategies is to
detect the evader and pursue it so as to trap it. Next, we show
that the evader remains trapped for all subsequent time instants
and that the pursuers achieve capture by using strategies that
were developed for the unlimited range sensing version of the
game. This principle applies to both versions of the problem.

A. Single pursuer problem

We first present each phase of the strategy for the single
pursuer problem.

1) Sweep phase -SWEEP strategy: Let diam(Q) denote
the diameter ofQ. The SWEEP strategy for the pursuer is
to move with maximum step size along a path, as shown in
Figure 2(a) such that the union of the sensing discs of the
pursuer at the end of each step until the end of this phase
containsQ. We term such a path asweeping pathfor Q.
Let tsweepdenote the time taken for this strategy to terminate.
To determine an upper bound fortsweep, consider placingQ
inside a square region of lengthdiam(Q) and the pursuer
moving along a hypothetical sweeping path for the square
region, as shown in Figure 2(b). It is straightforward to show
that to achieve coverage, this hypothetical sweeping path is

between strips of width2rstep

√

κ2 − 1
4 , parallel to the side.

There are

⌈

diam(Q)

2rstep

√
κ2− 1

4

⌉

such strips and it takes at most
⌈

diam(Q)
rstep

⌉

+
⌈√

κ2 − 1
4

⌉

steps to sweep one strip completely
and be positioned to sweep through a neighboring strip of
this hypothetical sweeping path. We thus obtain the following
result.

Lemma III.2 (S WEEP strategy) In the single
pursuer problem with parametersκ and diam(Q)

rstep
,

the time tsweep taken by the SWEEP is at most
⌈

1

2
√

κ2− 1
4

diam(Q)
rstep

⌉(⌈
diam(Q)

rstep

⌉

+
⌈√

κ2 − 1
4

⌉)

steps.

p

diam(Q)

(a)

diam(Q)

p 2rstep

√

κ2 − 1

4

(b)

Fig. 2. Single pursuer problem: SWEEP strategy. (a) shows a sweeping path.
(b) shows hypothetical sweeping path to determine upper bound on number
of steps to detect evader.
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2) Pursuit phase -GREEDY strategy: Once the evader is
detected, the GREEDY strategy for the pursuer is tomove
towards the last sensed position of the evader with maximum
step size. This strategy has the property that the pursuer senses
the evader’s position at every successive time instant. Letttrap

denote thetrapping time, i.e., the time taken by the pursuer
to trap the evader after detecting it. We now present our main
result for the GREEDY strategy.

Theorem III.3 (G REEDY strategy) In the single pursuer
problem with parametersκ and diam(Q)

rstep
, if κ >

√
2 + 2 cos βc,

where

βc :=
1

2

⌈

diam(Q)
√

3
2 rstep

⌉−1

arctan
1

4κ
, (8)

then theGREEDY strategyhas the following properties:

(i) the pursuer traps the evader within its sensing radius,
and

(ii) the trapping timettrap satisfies

ttrap ≤















log

(√
κ2−sin2 βc−cos βc−1

κ−1

)

log(1 − 1−cos βc
κ )









+ 1







⌈

diam(Q)
√

3
2 rstep

⌉

.

(9)
Furthermore, if κ > 2, then as(diam(Q)/rstep) → +∞,

ttrap ∈ O
(

(diam(Q)/rstep)
3
)

.

Theorem III.3 is tight in the sense that if the condition on
κ is violated then there exist sufficiently large environments,
an evader strategy and initial positions for the players, that
lead to evasion against the GREEDY pursuer strategy. This is
described by the following result.

Proposition III.4 (Evasion) Given a single pursuer problem
with parametersκ and diam(Q)

rstep
such thatκ ≤

√
2 + 2 cos βc,

whereβc is given by(8), and Q contains a circle of radius
rstep√
4−κ2

, then there exists an evasion strategy and initial posi-
tions of the players for which the pursuer’sGREEDY strategy
fails to trap the evader.

Figure 3 illustrates this evasion strategy under the conditions
required by Proposition III.4.

e[t + 1]

ρ

Ω

e[t]

p[t]

Fig. 3. Illustrating evasion. The dotted circles are the player’s motion discs
and the solid circle is the pursuer’s sensing disc.e[t] and p[t] are on the
circle Ω described in Proposition III.4 such that‖e[t]−p[t]‖ = rstep. Evader
chooses to move toe[t + 1] on Ω with full step size.

3) Capture phase -L ION strategy: Once the evader is
trapped within the sensing range of the pursuer, the pursuer
employs the LION strategy from [4] to complete the capture.
For the sake of completeness, we now give a brief description
of the LION strategy, adapted to the present problem setting.

The LION strategy can be applied to this phase as follows:

(i) Prior to their(t + 1)th move, the pursuer constructs the
line e[t]p[t], as shown in Figure 4. Let this line intersect
the boundary of the environment at a pointX[t] such
that p[t] lies betweene[t] andX[t].

(ii) The pursuer then also constructs the linee[t + 1]X[t]
and moves to the intersection of this line with the circle
centered atp[t] and of radiusrstep. Of the two possible
intersection points, the pursuer selects the one closer to
e[t + 1].

X [t](≡ X [tsweep+ ttrap])

Q

e[t]

p[t + 1]e[t + 1]

p[t]

Fig. 4. Single pursuer problem: Using the LION strategy to capture the
evader. The dotted circles represent the motion discs of the players.

This construction guarantees that the intersection pointX[t]
remains the same as the pointX[tsweep+ ttrap], for every t ≥
tsweep+ ttrap, wheretsweep+ ttrap is the time at the end of the
pursuit phase. Denoting bytcap the time taken by the pursuer
to capture the evader after trapping it, we have the following
result.

Theorem III.5 (L ION strategy [4]) In the single pursuer
problem with parametersκ and diam(Q)

rstep
, after trapping the

evader within the sensing radius and using theLion strategy,

(i) the distance,‖p[t] − e[t]‖, is a non-increasing function
of time,

(ii) the pursuer captures the evader,

(iii) tcap is at most

⌈(
diam(Q)

rstep

)2
⌉

steps.

Thus, our problem with limited sensing is solved because
once the evader is trapped within the pursuer’s sensing radius,
it remains trapped until capture, from part (i) of Theorem III.5.
We have also obtained an upper bound on the total time to
capture, i.e.,tsweep+ ttrap + tcap.

B. Multiple pursuer problem

This section describes the sweep-pursuit-capture strategy for
multiple pursuers and the corresponding results. We assume
that κ ≥ 4 andN ≥ 5. We define the following formation for
multiple pursuers.

Definition III.6 (Trapping chain) A group of N ≥ 5 pur-
suers{p1, . . . , pN} are said to be in atrapping chainforma-
tion if
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(i) p2, . . . , pN−1 are placed counterclockwise on a semi-
circle with diameter equal to‖p2 − pN−1‖,

(ii) for all j ∈ {1, . . . , N − 1}

‖pj − pj+1‖ = rstep

√

4κ2 − 25,

and
(iii) p1, p2, pN−1, pN are on the vertices of a rectangle such

that the polygon with vertices{p1, . . . , pN}, in that
order, is convex (cf. Figure 5).

p4

p6

p7

p8 p9

l

p3

p2 p1

p5

Fig. 5. A trapping chain formation forN = 9 pursuers. The circles around
the pursuers denote their sensing ranges. The lightly shaded region denotes
the capture region and the darkly shaded region along with the lightly shaded
one denotes the extended capture region.

We now describe the Sweep-Pursuit-Capture strategy for the
multiple pursuer problem.

1) Sweep phase -SWEEP strategy: The pursuers begin by
placing themselves in a trapping chain formation. We define
the capture regionS for a trapping chain by

S =
⋃

j∈{3,...,N−2}
Bpj

(rsens) ∩ C̊o{p2, . . . , pN−1},

whereBpj
(rsens) ⊂ R

2 denotes the sensing disc of pursuer
pj and C̊o{p2, . . . , pN−1} ⊂ R

2 denotes the interior of the
convex hull of{p2, . . . , pN−1}. The lightly shaded region in
Figure 5 is the proposed capture region,S, for the trapping
chain. In the sweep phase, pursuers wish to detect the evader
within the capture region. We consider a square region of
length equal to diameter of the regionG diam(G) that contains
the field G. The pursuers sweep this square region in the
direction of the normal top1pN , outward with respect to the
convex hull of the pursuers. For a trapping chain shown in
Figure 5, we define theeffectivelength l as

l := ‖p1 − pN‖ − 2rsens= rstep

( √
4κ2 − 25

sin( π
2(N−3) )

− 2κ

)

. (10)

As the pursuers move in the direction described earlier, they
clear a rectangular strip of lengthdiam(G) and widthl+4rsens.
The SWEEP strategy for the pursuers is as follows.

(i) Choose the first rectangular strip at a random distance
l0 from one edge of the square region containingG
and sweep it length-wise. The distancel0 is a uni-
form random variable taking values in the interval
[−2rsens, l + 2rsens]. Here, negativel0 implies that some
of the pursuers may begin sweeping from outside the
regionG.

(ii) Form a sweeping path for the square region and sweep
along adjacent strips as shown in Figure 6.

The shaded region in Figure 6 refers to the area that would fall
in the proposed capture regionS. Now we are interested in
determining the probability that an evader falls in the shaded
region in Figure 6. That is given by the following result.

l

l0

diam(G)

2rsens

Fig. 6. Multiple pursuer problem: SWEEP strategy. The shaded region
represents the region swept by the capture region of the trapping chain.

Theorem III.7 (SWEEP strategy) In the multiple pursuer
problem with parametersκ, diam(G)

rstep
and N , for any prob-

ability distribution for the initial position of the evaderwith
support onG, using theSWEEP strategy,

(i) the probabilityP of detecting the evader insideS for a
group of pursuers in a trapping chain, satisfies

P ≥ l

l + 4rsens
≥ 1 − 2πκ

(√
4κ2 − 25(N − 3) + 2πκ

) ,

and
(ii) the timetsweeptaken by theSWEEP strategy to terminate

satisfies

tsweep≤
⌈diam(G)

rstep

( π/2√
4κ2 − 25(N − 3) + πκ

)⌉

×
⌈diam(G)

rstep
+ 2
√

4κ2 − 25N
⌉

.

Remark III.8 The minimum probabilityP of the pursuers
detecting the evader inside the capture region by using the
SWEEP strategy isindependentof the evader’s location inG.
This means that the best that the evader can do in the present
framework is to locate itself initially with a uniform probability
in G.

We shall see that the pursuers win when the evader is
detected inS by the pursuers. Otherwise, there exists a path for
the evader such that it can avoid being captured indefinitely.

2) Pursuit phase -CIRCUMCENTER strategy: If the evader
is detected within the proposed capture region at timetsweep,
the pursuers need to ensure that they trap the evader within
their sensing ranges. Before we describe the strategy for the
pursuit phase, consider the following possibility: if the evader
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steps into the darkly shaded region of the sensing range of
p2 (or of pN−1), thenp2 (resp.pN−1) can use the GREEDY

strategy (ref. Section III-A2). By moving towards the evader,
the evader’s motion disc gets contained inside that pursuer’s
sensing disc and thus the evader gets trapped. This motivates
us to define anextended capture regionSe for the trapping
chain by

Se =
⋃

j∈{2,...,N−1}
Bpj

(rsens) ∩ C̊o{p2, . . . , pN−1}.

The darkly shaded region along with the lightly shaded region
in Figure 5 is the extended capture regionSe for the trapping
chain.

We now present the following pursuit strategy. At each time
stept ≥ tsweep,

(i) While e[t+1] /∈ Se[t], the pursuersp2, . . . , pN−1 move
towards thecircumcenter1 O of the triangle formed by
p2[tsweep], e[tsweep] andpN−1[tsweep] with maximum step.
Pursuersp1 and pN move parallel top2 and pN−1

respectively.
(ii) Otherwise, one of the pursuers which senses the evader

directly, makes a GREEDY move (ref. Section III-A2)
towards the evader and the others move parallel to that
pursuer with the maximum step.

One such move is shown in Figure 7. In case (i) of the
strategy, note that the pursuers may not sense the evader in
every subsequent move. But they will encircle the evader by
“closing” the trapping chain around it and then shrink the
enclosed region around the evader. We thus have the following
result.

p5[tsweep]

e[tsweep]

p1[tsweep]p2[tsweep]

p3[tsweep]

p6[tsweep]

p7[tsweep]

p8[tsweep] p9[tsweep]

p4[tsweep]

O

Fig. 7. Multiple pursuer problem: CIRCUMCENTER strategy. At timetsweep,
the evader position is sensed byp4. Pursuersp2, . . . , p8 move towards O, the
circumcenter of triangle formed byp2, e andp8. p1 andp9 move parallel to
p2 andp8 respectively. The circles around the pursuers represent their sensing
discs.

Theorem III.9 (C IRCUMCENTER strategy) In the multiple
pursuer problem with parametersκ, diam(G)

rstep
and N , starting

from a trapping chain formation, if the evader is detected with
e[tsweep] ∈ S[tsweep], then using theCIRCUMCENTER strategy,

(i) the pursuers trap the evader within their sensing radii,

1The circumcenter of a triangle is the unique point in the planewhich is
equidistant from all of its three vertices.

(ii) the trapping timettrap satisfies

ttrap ≤
√

4κ2 − 25N
(

1 +
1

2 sin φ

)

,

where

φ(κ) =
π

4
− arctan

( κ√
3κ2 − 25

)

,

and
(iii) at that time, the evader is inside the pursuers’ convex

hull in such a way that

B rstep
2

(e[tsweep+ ttrap]) ⊂ Co{p1, . . . , pN}[tsweep+ ttrap].
(11)

The CIRCUMCENTER strategy guarantees trapping of the
evader even without pursuersp1 andpN . But in that case, the
inclusion in (11), which will be required to establish an upper
bound on the time for the capture phase that follows, is not
guaranteed.

3) The Capture phase -PLANES strategy: Once the evader
is trapped within the sensing ranges of the pursuers, the
pursuers use the PLANES strategy from [5] to capture the
evader. Before stating our results, we reproduce this strategy
for completeness.

Let the time at the end of the pursuit phase betsweep+ ttrap

and the evader be inside the convex hull of the pursuers as
in n (11) (cf. Figure 8). Fort ≥ tsweep+ ttrap and for every
pursuerpj :

• Draw the linehj [t + 1] throughe[t + 1], parallel to the
line joining e[t] andpj [t], as shown in Figure 9.

• Move to the point closest toe[t+1] on the linehj [t+1]
with maximum step size.

p3[tsweep+ ttrap]
p2[tsweep+ ttrap]

p1[tsweep+ ttrap]

e[tsweep+ ttrap]

p4[tsweep+ ttrap]

Fig. 8. Multiple pursuer problem: evader trapped inside pursuers’ convex
hull.

pj[t + 1]

pj[t]

e[t]

e[t + 1]

hj[t + 1]

Fig. 9. Multiple pursuer problem: PLANES strategy. Draw the linehj [t+1]
throughe[t+1], parallel to the line segmente[t]pj [t] and move onto it closest
to the evader.

Theorem III.9 shows that use of the CIRCUMCENTER strat-
egy in the pursuit phase leads to the evader being trapped and
inside the convex hull of the pursuers. Now capture follows
from the following theorem, which was partly inspired by the
results on the PLANES strategy in [5].
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Theorem III.10 (PLANES strategy) In the multiple pursuer
problem with parametersκ, diam(G)

rstep
and N , let the evader

be trapped inside the convex hull of the pursuers such that
property(11) is satisfied. If every pursuer follows thePLANES

strategy, then

(i) the distances,‖pj [t] − e[t]‖ for everyj ∈ {1, . . . , N},
are non-increasing functions of time,

(ii) the pursuers capture the evader and
(iii) the time tcap taken in the capture phase is at most

18κ
√

4κ2 − 25N .

Item (iii) of Theorem III.10 implies that once the evader is
trapped within the sensing ranges of the pursuers, it remains
trapped within their sensing ranges at the end of every pursuer
move. The capture is now complete and we obtained a novel
upper bound on the total time to capture, i.e.,tsweep+ttrap+tcap.

IV. PROOFS OF THERESULTS

In this section, we formally prove the main results.

A. Single pursuer problem

To prove Theorem III.3, we need some preliminary defi-
nitions and results which we present now. In what follows,
the notation∠ABC refers to the smaller of the two angles
between segmentsAB andBC.

Definition IV.1 (Deviation and evasion angles)Given
evader and pursuer at positionse[τ ], p[τ ], for τ ∈ {t, t + 1},
define thedeviation angleα[t] and the evasion angleβ[t] by:

α[t] := ∠e[t + 1]p[t + 1]e[t],

β[t] := α[t] + ∠p[t + 1]e[t + 1]e[t].

These angles are illustrated in Figure 10. The following result
follows trivially.

Proposition IV.2 When the pursuer uses theGREEDY strat-
egy, for every instant of timet,

|β[t]| ≥ |α[t]|. (12)

Note that equality in (12) only holds when the evader moves
away from the pursuer along the linep[t]e[t].

s[t + 1]

s[t]
p[t + 1]

α[t]

e[t + 1]

β[t]

e[t]

rstep
rstep

p[t]

Fig. 10. Relation between the deviation angleα[t] and the evasion angle
β[t]. The dotted circles represent the motion discs of the players. The circle
centered atp[t] (shown partially here) is the pursuer’s sensing range.

It can be deduced that when the pursuer employs the
GREEDY strategy, the distance between the pursuer and evader
is a non-increasing function of time. We now define a geomet-
ric construction which is useful in the proof.

Definition IV.3 (Cone sector sequence)Let t0 denote the
time at the end of the sweep phase. Given a time instant
k ∈ Z≥0, the sequenceCk of cone sectorsCk,i for i ∈ Z≥0 is
defined as follows:

(i) Define the cone sectorCk,0 with p[tk] as its vertex, angle
bisector defined by the segmente[tk]p[tk] and extended to
a pointX beyonde[tk] such thatLcone := ‖p[tk]−X‖ =
2κrstep, as shown in Figure 11. Let the segmentY Z be of
length rstep

2 and perpendicular to the segmentp[tk]X with
X as its midpoint. Accordingly, letθ := ∠Y p[tk]Z =
arctan(1/4κ) be thecone angle.

(ii) For k, i ≥ 0, denote byt∗ the time when the evader
leaves the cone sectorCk,i. There are two possibilities:
(a) the pursuer first constructs a new cone sectorCk,i+1

which is a translation ofCk,i having vertex atp[t∗]. This
is illustrated in Figure 12.
(b) If the evader is not insideCk,i+1, then we denote
tk+1 := t∗. The pursuer constructs a new cone sector
sequenceCk+1.

Lcone := 2κrstep

e[t0]
X

rstep

2
Y

Z

p[t0]
θ

Fig. 11. Construction of coneC0,0. ChooseX on the linee[t0]p[t0] such
that ‖p[t0] − X‖ = 2κrstep. Y Z has length

rstep
2

and is perpendicular to
segmentp[t0]X with X as its midpoint.θ is the cone angle.

Ck,i+1
p

e

Ck,i

p′
e′

Fig. 12. Construction of cone sectorCk,i+1. Translate cone sectorCk,i to
have its vertex atp′.

The cone sector sequence described above has the following
property.

Proposition IV.4 (Cone sector sequence)Given a cone sec-
tor sequenceCk, the maximum number of stepsN∗ for which
the evader can remain inside it without being captured satisfies

N∗ ≤ 4κ√
3

⌈
diam(Q)

2κrstep

⌉

. (13)

Proof: We compute an upper bound on the number of
steps a pursuer in any cone sector while using the GREEDY

strategy. From the definition of a cone sector, this is also an
upper bound on the number of steps the evader can remain
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inside a cone sector. Construct a rectangle with lengthLcone

and width rstep

2 such that it contains a cone sector, as shown in
Figure 13. Orient a frame of reference such that itsX axis is
parallel to the angle bisector of the cone sector. Letp[tk]−P1−
· · · −P4 denote the path as a result of the pursuer’s GREEDY

strategy while in the cone sectorCk,0. We now construct a
path with step size equal torstep at each time instant, that has
length no lesser than any such greedy pursuer paths. Select
a pointP ′

1 betweenA andB such that‖p[tk] − P ′
1‖ = rstep.

Then select another pointP ′
2 on betweenC andD such that

‖P ′
1 − P ′

2‖ = rstep. Of the two possible points, select that
point which is farther fromp[tk] as P ′

2. Selecting oddP ′
i ’s

betweenA andB and evenP ′
i ’s betweenA andB until it is

not possible to select any more of thePi’s on segmentsAB
and CD. This is illustrated in Figure 13. This construction
leads to the property that theX coordinates of theP ′

i ’s are
greater than those of the correspondingPi’s. Thus the number
of P ′

i ’s are no lesser than the number ofPi’s. Thus, the path
p[tk] − P1 − · · · − P7 has its length at least equal to that of
p[tk] − P1 − · · · − P4. Since the length of segmentAB is
Lcone, the number of steps of such a path is at most equal to
Lcone divided by the difference inX coordinates of any two
consecutiveP ′

i ’s, i.e., ⌈ Lcone√
3

2
rstep

⌉. SinceQ has a finite diameter,

there can be at most⌈diam(Q)
Lcone

⌉ cone sectors in any cone sector
sequence. Thus, the upper bound (13) is established.

Y

P1

rstep

2

Lcone

rstep

P ′
1

P ′
2

P ′
3

P ′
4

P ′
5

P ′
6

P ′
7

A B

CD

p[tk] P2

P3

P4

X

Fig. 13. Upper bound on the number of steps a pursuer can be inside a
cone sector. The cone sectorCk,0 is illustrated here. The dotted path shows
a hypothetical pursuer path that takes the maximum number of steps before
leaving a cone sector.

We now state two additional results needed to prove Theo-
rem III.3.

Proposition IV.5 (Maximum evasion angle) If the pursuer
uses theGREEDY strategy and if(κ2 − 1)r2

step≥ s2[t], where
s[t] = ‖p[t] − e[t]‖, then define

βmax[t] := arccos

(

(κ2 − 1)r2
step− s2[t]

2s[t]rstep

)

. (14)

If at some timet, β[t] ≥ βmax[t], then the pursuer moves
towardse[t + 1] and traps the evader.

This result is obtained by applying the cosine rule to
△p[t]e[t]e[t+1], where the notation△ABC stands for triangle
formed by pointsA,B andC, as shown in Figure 14. .

Lemma IV.6 (Constraint on maximum evasion angle)
For the evader to move out of a cone sector sequence

κrstep

e[t]

e[t + 1]

p[t] s[t]

rstep

βmax[t]

Fig. 14. Constraint on maximum evasion angle. The dotted circle represent
the evader’s motion disc. The circle centered atp[t] (shown partially here) is
the pursuer’s sensing range.

Ck, described in Definition IV.3, there exists a time instant
t ∈ [tk, tk+1[ (ref. Definition IV.3) such that

|β[t]| >
θ

2N∗ =: βc, (15)

whereN∗ is defined in Proposition IV.4.

Proof: For the evader to move out of the cone sector
sequenceCk, the sum of the angles of deviation for the pursuer
must exceed half of the cone angleθ, i.e.,

tk+1∑

t=tk

|α[t]| >
θ

2
.

Geometrically, this condition implies that the angle between
the vectorse[tk+1]−p[tk+1] ande[tk]−p[tk] must be at least
θ
2 . This is illustrated in Figure 15. From Proposition IV.2, it
implies that

tk+1∑

t=tk

|β[t]| >
θ

2
.

Equation (15) now follows from the fact thattk+1− tk ≤ N∗,
for every k, since there exists a maximum number of time
stepsN∗ for which the evader can remain inside any cone
sector sequence, as derived in Proposition IV.4.

p[tk + 2]

β[tk + 1]

p[tk] e[tk]

e[tk + 1]

e[tk + 2]

α[tk] β[tk]

Ck

α[tk + 1]

p[tk + 1]

Fig. 15. Illustrating Lemma IV.6. This is a case of the evader moving out
of the cone sector sequenceCk by moving out ofCk,0.

We are now ready to prove Theorem III.3.
Proof of Theorem III.3:Two cases need to be considered:

(i) Evader does not move out of a cone sector sequence:
Capture follows from the construction of the cone sector
sequence and from Proposition IV.4.

(ii) Evader moves out of a cone sector sequence: In this
case, we seek to show that the evader cannot keep moving
out of an arbitrarily large number of cone sector sequences.If
the evader leaves the cone sector sequenceCk, then for some
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τ ∈ {tk, . . . , tk+1 − 1}, β[τ ] > βc. Applying the cosine rule
to △p[τ ]e[τ ]e[τ + 1], we obtain

s2[τ +1] = r2
step+(s[τ ]−rstep)

2+2rstep(s[τ ]−rstep) cos β[τ ],

=⇒ s2[τ ]−s2[τ +1] = 2rstep(s[τ ]−rstep)(1−cos β[τ ]).

Using equation (15) and since

s[τ ] + s[τ + 1] ≤ 2κrstep,

we obtain

s[τ +1]−rstep≤
(

1 − (1 − cos( θ
2N∗ ))

κ

)

(s[τ ]−rstep). (16)

Defining χk := s[tk] − rstep, we conclude that

χk+1 ≤ s[τ + 1] − rstep,

≤
(

1 − (1 − cos( θ
2N∗ ))

κ

)

(s[τ ] − rstep),

≤
(

1 − (1 − cos( θ
2N∗ ))

κ

)

χk, (17)

where the first and third inequalities follow from the fact that
distances[t] is non-increasing in the GREEDY strategy and
the second inequality follows from equation (16). Recall that
κ > 1 by assumption and hence the term in the parenthesis is
positive and strictly less than1. Thus,χk → 0 asymptotically,
i.e., the distance between the pursuer and evader tends torstep

asymptotically. Moreover, forκ > 2, the distance reduces to
(κ − 1)rstep after a finite time. Thus, the motion disc of the
evader will become completely contained within the sensing
disc of the pursuer. Hence, the result follows.

The case ofκ = 2: We have seen that the distances[t]
between the pursuer and evader tends asymptotically torstep.
From Proposition IV.5, we obtain that ass[t] → rstep, the angle
βmax → 0. So, after some finite time,

βmax <
θ

2N∗ =: βc.

Thus, the evader becomes confined to the present cone sector
sequence according to Lemma IV.6 and from Proposition IV.4,
and we can see from part (i) of this proof that the pursuer traps
the evader within its sensing radius.

If κ < 2: We have seen that at each time stept, there is
a maximum valueβmax[t] of the evasion angleβ[t], so that
the evader’s next stepe[t + 1] is not in the pursuer’s sensing
disc centered atp[t]. This is shown in Figure 16. The key
idea of this part of the proof is that if we ensure that for all
subsequent times after a certain timet∗, βmax[t] is less than
the minimum valueβc (cf. Lemma IV.6) needed for the evader
to leave a cone sector sequence, then the evader is forced
to remain inside a final cone sector sequence and trapping
follows from part (i). In previous cases, we have seen that the
GREEDY strategy reduces the distances[t] asymptotically to
rstep. Thus after a finite timet∗, s[t∗] attains a value such that
the maximum evasion angle is less than or equal to(1 + δ)γ,
whereγ is the maximum evasion angle if the evader is ate′[t∗],
which satisfies‖p[t∗]−e′[t∗]‖ = rstep andδ is a given positive

e′[t∗]

γ(1 + δ)

rstep

γ

κrstep

rstep

e′[t∗ + 1]

e[t∗ + 1]

e[t∗]p[t∗]

Fig. 16. Illustrating parameters in Equation (18).e′[t∗] is a point such that
‖p[t∗]− e′[t∗]‖ = rstep. γ is the value of the maximum evasion angle if the
evader were ate′[t∗]. The circle of radiusκrstep around the pursuer (shown
partially here) is the pursuer’s sensing disc which the dotted circle around
e[t∗] is the evader’s motion disc.

number. At this time instanttfinal, let the pursuer construct a
new cone sector sequence,Cfinal. So, if

(1 + δ)γN∗ =
θ

2
, (18)

where N∗ and θ are defined in Proposition IV.4 and in
the definition of a cone respectively, then for someτ ∈
{tfinal, . . . , tfinal +N∗}, β[τ ] ≥ (1+ δ)γ = βc for the evader to
leaveCfinal. This means that the evader is forced to step inside
the sensing disc of the pursuer or to remain inside the final
coneCfinal. In both cases, the pursuer traps the evader within
its sensing radius. From equation (18),

γ <
θ

2N∗ = βc.

Applying the cosine rule to△p[t]e′[t]e′[t + 1],

κ =
√

2 + 2 cos γ >
√

2 + 2 cos βc.

Thus, we have shown that ifκ >
√

2 + 2 cos βc, then the
pursuer’s GREEDY strategy guarantees that the evader is
trapped.

Computing an upper bound on the trapping time: We have
seen that when the pursuer uses the GREEDY strategy, the
evader cannot leave an arbitrarily large number of cone sector
sequences. Thus, to compute an upper bound on the trapping
time, we compute an upper bound on the number of cone
sector sequences that the evader can leave. We have seen
that using the GREEDY strategy,βmax ≤ βc after finite time.
From (14), we can determine that distancesc for which
βmax = βc, so that subsequently, the evader is confined to
the final cone sequence:

sc = (

√

κ2 − sin2 βc − cos βc)rstep.

If k is the final cone sequence index, then using equation (17),

sc − rstep≤ χk ≤ λχk−1 ≤ · · · ≤ λk(κ − 1)rstep,

whereλ = 1− 1−cos( θ
2N∗ )

κ and the worst-caseχ0 = (κ−1)rstep.
Upon simplifying, we obtain

k ≤









log

(√
κ2−sin2 βc−cos βc−1

κ−1

)

log(λ)









The result now follows from the fact that for the case ofκ < 2,
we construct an extra final cone sequence and the maximum
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number of steps in each cone sequence can be at mostN∗.
The asymptotic result follows by routine simplifications.
Proof of Proposition III.4:We prove this result by determining
a set of initial conditions and an evader strategy that leadsto
evasion. Suppose at timet, the pursuer and the evader are on
a circle Ω with radiusρ =

rstep√
4−κ2

, such that‖e[t] − p[t]‖ =
rstep as shown in Figure 3. The evader is not trapped as its
motion disc is not completely contained inside the pursuer’s
sensing disc. An evader strategy is to choose a pointe[t + 1]
on Ω such that‖e[t] − e[t + 1]‖ = rstep. Sinceρ =

rstep√
4−κ2

,
e[t+1] lies outside the pursuer’s sensing disc before its move
at time t + 1. By the GREEDY strategy,p[t + 1] = e[t]. Thus,
‖e[t + 1] − p[t + 1]‖ = rstep and the evader can avoid getting
trapped.

B. Multiple pursuer problem

We first state a property of the effective length of the
trapping chain.

Proposition IV.7 The effective length of the trapping chain
satisfies

2(
√

4κ2 − 25(N − 3) − πκ)

π
<

l

rstep
<
√

4κ2 − 25N − 2κ.

Proof: The left hand side of the inequality follows from
the fact that the circumference of the circle passing through
the vertices of the trapping chain is greater than the sum of the
distances of neighboring vertices. The right hand side follows
from repeated use of the triangle inequality.
Proof of Theorem III.7:Let the evader be located at a point
Ye ∈ G and let its distance from the edgeAB be y, as shown
in Figure 17. Note that the distance of the evader from the
edgeAD does not play any role in what follows. The main
idea behind this proof is as follows:Ye would lie in the shaded
region in Figure 17 ifl0+2rsens< y or l0−2rsens> y. This is
equivalent to choosing a length equal to the effective length l
of the trapping chain from a total lengthl+4rsens, if we let l0
take a uniformly random value from[−2rsens, l+2rsens]. Thus,
the probability of success for the pursuers is at least the ratio
of l to l + 4rsens.

To be more specific, let the spatial probability density
of the Y coordinate of the evader insideG be p(y). Thus,
∫ diamG
0

p(y)dy = 1. The probability that the evader is detected
inside the capture regionS is given by

P (e ∈ S) =

∫ l+2rsens

−2rsens

P (e ∈ S|l0 = k)P (l0 = k)dl0,

wherek ∈ [−2rsens, l+2rsens]. Assuming the pursuers have no
information about the evader’s location insideG, l0 is chosen
uniformly randomly from[−2rsens, l+2rsens]. Hence, we have

P (e ∈S) ≥
∫ l+2rsens

−2rsens

P (e ∈ S|l0 = k)
1

l + 4rsens
dl0

=
1

l + 4rsens

∫ l+2rsens

−2rsens

( n−1∑

j=0

∫ l0+2rsens+j(l+2rsens)+l

l0+2rsens+j(l+2rsens)

p(y)dy

+

∫ diamG

l0+2rsens+n(l+4rsens)+l

p(y)dy
)

dl0,

where n := ⌈diamG/(l + 4rsens)⌉ is the number of times
the pursuers sweep to clear the entire environment. Since the
variablesl0 andy are independent (cf. Figure 18 for the region
of integration), changing the order of integration gives

P (e ∈ S) ≥ 1

l + 4rsens

n−1∑

j=0

∫ (j+1)(l0+4rsens)

j(l0+4rsens)

p(y)f(y, l)dy

=
1

l + 4rsens

∫ n(l0+4rsens)

0

p(y)f(y, l)dy,

where

f(y, l) :=

{∫ y−2rsens

−2rsens
dl0 +

∫ l+2rsens

y+2rsens
dl0, for y ≤ l,

∫ y−2rsens

y−2rsens−l
dl0, otherwise.

In both cases,f(y, l) = l. Thus, the minimum probability
of success isl/(l + 4rsens), since

∫ n(l0+4rsens)

0
p(y)dy =

∫ diamG
0

p(y)dy +
∫ n(l0+4rsens)

diamG p(y)dy, and p(y) = 0 outside
of G. The second inequality in part (i) follows by use of the
left hand inequality in Proposition IV.7. The reason why this is
a lower bound on the required probability is that if the pursuers
had some information about the evader’s location, then they
could choosel0 randomly from a smaller interval than the
current one and thus increase the probability of detecting the
evader in the capture region.

From the SWEEP strategy, the width of each strip swept
is l + 4rsens. So the maximum number of strips after which
the sweep phase terminates is⌈diam(G)

l+4rsens
⌉. It takes at most

diam(G)+2(l+2rsens)
rstep

time steps for the pursuers to clear a strip
followed by aligning themselves parallel to the adjacent strip.
The result now follows using Proposition IV.7.

l

l0

diam(G)

2rsensYe
y

A B

CD

Fig. 17. Illustrating the proof of Theorem III.7.

To prove Theorem III.9, we first establish the following
properties of a trapping chain. In what follows, given points
a, b, c ∈ R

2, the notationdist(a, bc) is the distance of pointa
from the linebc.

Lemma IV.8 (Trapping chain properties) If e[t] ∈ S[t],
then the following statements hold:

(i) If dist(e[t], pj [t]pj+1[t]) > 3
2rstep, for all j ∈

{1, . . . , N − 1}, then the evader cannot step out-
side Co{p1[t], . . . , pN [t]} at time t + 1 by crossing
pj [t]pj+1[t].
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(−2rsens, 0) (l + 2rsens, 0)

(l + 2rsens, l + 4rsens)

(2rsens, 0)

(0, 0)

l

l0

y

Fig. 18. The region of integration in determiningP (e ∈ S) in the proof of
Theorem III.7. Fix a value ofl0 in the interval(−2rsens, l + 2rsens) to get
the values ofy that correspond toP (e ∈ S).

(ii) If dist(e[t], pj [t]pj+1[t]) ≤ 3
2rstep or dist(e[t +

1], pj [t]pj+1[t]) ≤ 3
2rstep, for somej ∈ {1, . . . , N − 1},

then the evader istrapped within the sensing radiiof
pursuerpj or pj+1 or of bothpj and pj+1.

(iii) There exists aφ > 0, independent ofN , such
that for every pointq ∈ ⋃

j∈{3,...,⌊N
2
⌋+1} Bpj

(rsens) ∩
C̊o{p2, . . . , pN−1},

∠qp2pN−1 > φ,

Proof: Parts (i) and (ii) follow trivially from the defini-
tions of trapping within sensing radii and from the construction
of the trapping chain. For part (iii), we can see that for
j∗ = ⌊N

2 ⌋ + 1 if q (in the specified set) is the point of
intersection of the tangent fromp2 to the sensing disc ofpj∗ ,
then the angle∠qp2pN−1 is minimized. This follows from
the fact that the linep2pj∗ is parallel top3 − pj∗−1. This
angle is minimum whenN = 5. Thus, given aκ ≥ 4, from
trigonometry, we obtain

φ =
π

4
− arctan

( κ√
3κ2 − 25

)

.

The use of the CIRCUMCENTER strategy in the pursuit
phase and the geometry of the trapping chain gives us the
following result.

Lemma IV.9 If the evader is trapped within the union of
the sensing radii of pursuers at timettrap, for every j ∈
{1, . . . , N − 1}, then

dist(e[ttrap], pj [ttrap]pj+1[ttrap]) >
rstep

2
.

Proof: Let the evader be trapped at timettrap in the
sensing radii of the pursuers. From part (ii) of Lemma IV.8,
at time ttrap− 1 and for everyj ∈ {1, . . . , N − 1},

dist(e[ttrap− 1], pj [ttrap− 1]pj+1[ttrap− 1]) >
3

2
rstep.

Thus, immaterial of where the evader decides to step, its
distance frompj [ttrap − 1]pj+1[ttrap − 1] is greater thanrstep

2 .
Two cases are possible:

(a) the evader steps inside the sensing disc of some pursuer
pj : There are two further possibilities. Ifdist(e[ttrap], pj [ttrap−
1]pj+1[ttrap − 1]) ≤ 3

2rstep, then the evader is trapped by
part (ii) of Lemma IV.8 and the present lemma is proven.
Else, we havedist(e[ttrap], pj [ttrap−1]pj+1[ttrap−1]) > 3

2rstep.
Now, pj uses part (ii) of the CIRCUMCENTER strategy. Even
in this case,dist(e[ttrap], pj [ttrap]pj+1[ttrap]) >

rstep

2 , for every
j ∈ {1, . . . , N − 1}.

(b) the evader steps outside the sensing disc of every
pursuer: In a trapping chain, the overlap between the sensing
discs of any two neighboring pursuers has the property that
length of the common chord of these discs is greater than
3
2rstep. This means that even if any two neighboring pursuers
pj and pj+1 happen to move parallel to each other, we have
dist(e[ttrap], pj [ttrap]pj+1[ttrap]) >

rstep

2 .
We now present the proof of Theorem III.9.

Proof of Theorem III.9:
We first look at a case in which

dist(e[tsweep], pj [tsweep]pj+1[tsweep]) ≤ 3
2rstep for some

j ∈ {1, . . . , N −1}. In this case, the evader is already trapped
within the sensing radii of the pursuers, from part (ii) of
Lemma IV.8 and the result holds.

Now let dist(e[tsweep], pj [tsweep]pj+1[tsweep]) > 3
2rstep, for

everyj ∈ {1, . . . , N −1}. There are two possibilities: ife[t+
1] ∈ Se[t], for any t ≥ tsweep, then there is a pursuerpj for
which ye[t + 1] = e[t + 1]. This pursuer uses part (ii) of
the CIRCUMCENTER strategy and the evader is trapped within
the sensing radius ofpj . Part (iii) of the result follows using
Lemma IV.9.

So, let e[tsweep+ 1] /∈ S[tsweep]. Now, the pursuers com-
pute the circumcenterO of △p2[tsweep]e[tsweep]pN−1[tsweep].
Lemma IV.8 implies that the evader cannot step out of the
pursuers’ convex hull by crossing linepj [t]pj+1[t], for any
j ∈ {1, . . . , N − 1}. Thus, it suffices to show that the
evader cannot leave the pursuers’ convex hull by crossing line
p1[t]pN [t]. In fact, we show that at the end of every pursuer
move, the evader remains on the same side ofp2pN−1 until
it gets trapped. We argue this as follows. As illustrated in
Figure 19, any point on linesp2[tsweep]O andpN−1[tsweep]O is
reached faster byp2 andpN−1 respectively than by the evader.
Thus, the motion of the evader is confined to the convex hull of
{O, p2, . . . , pN−1}, which reduces to the pointO in a number
of time steps upper bounded by

max
j∈{2,...,N−1}

⌈‖pj [tsweep] − O‖
rstep

⌉

,

which is essentially the time taken by the furthest pursuer to
reachO. Thus,

ttrap ≤
R + l + 2κrstep

rstep
,

where R denotes the circumradius of
△p2[tsweep]e[tsweep]pN−1[tsweep]. From elementary geometry,
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at time tsweep we have

R =
‖p2 − e‖‖pN−1 − e‖‖p2 − pN−1‖

4Area(△p2epN−1)
,

≤ l + 2κrstep

2 sin ∠ep2pN−1
,

≤ l + 2κrstep

2 sin φ
,

where the second and third inequalities follow from part (iii)
of Lemma IV.8. Thus, part (ii) of the theorem follows from
the use of right hand inequality in Proposition IV.7.

e[tsweep]

p1[tsweep]p2[tsweep]
p3[tsweep]

p4[tsweep]

p5[tsweep]

p6[tsweep]

p7[tsweep]
p8[tsweep] p9[tsweep]

O

Fig. 19. A move of the CIRCUMCENTER strategy. The evader is confined
to the shaded region. The circles around the pursuers represent their sensing
discs.

To prove part (iii), recall that pursuersp1 and pN move
parallel top2 andpN−1, respectively. Since the evader remains
inside the convex hull of pursuersp2, . . . , pN−1, the distance
of the evader from linep1pN is always greater thanrstep

2 , until
it gets trapped. From this fact and Lemma IV.9, part (iii) now
follows.
Proof of Theorem III.10:Part (i) follows the PLANES strategy.
Thus, once the evader is trapped, it remains trapped at all
successive time instants when the pursuers use the PLANES

strategy. Thus, the problem is reduced to one with unlimited
sensing for the pursuers. To show that the algorithm leads to
capture in finite time, we refer the reader to [5].

We now determine an upper bound on the time taken for
the capture phase in terms of the trapping chain parameters.
Referring back to the proof of correctness of the PLANES

strategy, since the evader is in the convex hull of the pursuers,
let vj denote vectors of magnituderstep in the direction of
pj [ttrap]− e[ttrap]. We now wish to seek a lower bound on the
radius ǫ of the largest circle centered at the origin that can
be inscribed inside the convex hull of the vectorsvj . This
is equivalent to determining what is the largest of the angles
∠pi[ttrap]e[ttrap]pj [ttrap]. Due to the property (11) and to the
fact that the distance between any two adjacent pursuers in the
trapping chain is non-increasing during the CIRCUMCENTER

strategy, the angle∠pi[ttrap]e[ttrap]pj [ttrap] is the greatest when
i and j are adjacent and the evader is equidistant from both
of them and at a distance ofrstep

2 from pi[ttrap]pj [ttrap]. This
is shown in Figure 20. This gives,ǫ = rstep

rstep/2
κrstep

=
rstep

2κ .
Now, following [5], we observe that there exist three pursuers

which contain the evader within their convex hull at the end
of the pursuit phase, such that the sum of the distances of
these pursuers to the evader decreases by at leastǫ

3 at the end
of every pursuer move. The result now follows from the fact
that the distance between any one of the three pursuers and the
evader is at mostl+2κrstep at the end of the pursuit phase and
the use of the right hand side inequality in Proposition IV.7.

e

rstep

2

pjpi

Fig. 20. Illustrating proof of Theorem III.10. Given the evader to be at a dis-
tance greater than

rstep
2

from the linepipj , the angle∠pi[ttrap]e[ttrap]pj [ttrap]
is the greatest when the evader is equidistant from both of them

V. SIMULATION RESULTS

We now present simulation studies to investigate the robust-
ness of the algorithms to sensing errors. The simulations were
run using MATLAB R©.

A. Single pursuer problem

We assume zero-mean additive Gaussian measurement er-
rors in the position of the evader with a standard deviation
given by

σ[t] = ǫ‖p[t] − e[t]‖,
for some constantǫ > 0. This means that the uncertainty in
the location of the evader increases with its distance from the
pursuer. Under this noisy sensor model:

• The SWEEP strategy remains unchanged. It terminates
when an evader measurement is available.

• For the GREEDY and LION strategies, the pursuer uses
the noisy measurements of the evader position instead of
the true positione[t] to compute its next position.

The evader is defined to be captured if the probability of
the evader being inside the motion disc of the pursuer before
the pursuer’s move is more than a certain threshold. In other
words, for somet

Bσ[t](y
e
t−1[t]) ⊂ Brstep(p[t − 1]),

whereBσ[t](y
e
t−1[t]) denotes the circular region of radiusσ[t]

centered atye
t−1[t]. For the evader’s motion, we assume that it

moves away from the pursuer with some randomization, while
avoiding the boundary. Specifically,

• if the evader is not close to the boundary of the environ-
ment, then it chooses to move to a point on its motion
circle, selected uniformly randomly in a sector with angle
0.2 radians. This sector is placed symmetrically along the
line e[t]p[t] and away from the pursuer.

• If the boundary is visible to the evader, then it chooses
to move to a pointe[t + 1] on its motion circle such that
∠e[t + 1]e[t]p[t] = π − 0.2. Of the two points possible,
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the evader chooses that point which is further away from
the boundary. In other words, when the evader reaches the
boundary, it chooses to move to a point that is away from
the pursuer as well as not very close to the boundary.

We study how the average capture time after evader detection
varies with ǫ. We assume the environment is a circle with
diameter40 units. We assumeκ = 5 units andrstep = 1
unit. The initial position of the evader was chosen uniformly
randomly in the environment. An upper limit of2, 000 time
steps was set to decide whether the strategy terminated in a
success. The plots of probability of success of the strategyand
average capture times after detection (given that the strategy
terminates with capture) versusǫ are shown in Figures 21(a)
and 21(b).
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(a) Estimate of capture probability versus noise parameterǫ. The
vertical bars give a95% confidence interval about the probability es-

timateP (ǫ) which is given by
h

P (ǫ) − 2
q

0.25
n

, P (ǫ) + 2
q

0.25
n

i

,
wheren = 100 is the number of trials [19].
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(b) Average capture time, given that the strategy succeeds ver-
sus noise parameterǫ. The vertical bars give a95% confidence
interval about the average capture timeT (ǫ) which is given by
h

T (ǫ) − 2
q

SD(ǫ)
nP (ǫ)

, T (ǫ) + 2
q

SD(ǫ)
nP (ǫ)

i

, whereSD(ǫ) is the stan-

dard deviation in the capture time,P (ǫ) is the estimated probability
of success andn = 100 is the number of trials [19].

Fig. 21. Simulation results for the single pursuer problem. For a particular
evader strategy, we study how the average capture time varieswith the noise
parameterǫ.

B. Multiple pursuer problem

We assume zero-mean additive independent Gaussian mea-
surement errors in the position of the evader with standard
deviations given by

σj [t] = ǫ‖pj [t] − e[t]‖,
for some noise parameterǫ > 0. Under this noise model:

• The SWEEP strategy remains unchanged. It terminates
when an evader measurement is available.

• For the CIRCUMCENTER and PLANES strategies, the
team of pursuers use the average of the available evader
measurements̃yt-1[t−1] andỹt-1[t], to compute their next
positions.

The evader is defined to be captured if for some pursuerj ∈
{1, . . . , N},

Bσj [t](ỹt-1[t]) ⊂ Brstep(pj [t − 1]).

For the sake of simulations, we assumeN = 7 pursuers
with κ = 5 units andrstep = 1 unit. We assume a square field
of edge length100 units, where the evader is initially placed
at a uniformly randomly selected location. Upon detection,we
assume that the evader moves away from the closest pursuer
with some randomization. Specifically, it moves to a point on
its motion circle, selected uniformly randomly in a sector of
angle equal to0.2 radians. This sector has its vertex ate[t] and
angle bisector parallel to the linee[tsweep]O, wheretsweepis the
time when the evader is detected andO is the circumcenter of
the trianglep2[tsweep], p6[tsweep] and e[tsweep]. We study how
the average capture time after detection varies withǫ. An upper
limit of 1000 time steps was set to decide whether the strategy
terminated in a failure. The plots of probability of successof
the strategy and average capture times after detection (given
that the strategy terminates with capture) versusǫ are shown
in Figures 22(a) and 22(b).

In both the problems, we observe a decreasing trend in
the probability of success of the strategies with increasing
values of the error parameterǫ. The average capture times after
detection, given that the strategies lead to capture is observed
to increase withǫ.

VI. B IOLOGICAL INTERPRETATIONS

Our analysis in the previous sections can shed light on the
trade-offs that predators face when deciding upon the group
size. Based on our results from Section III-B, we now study
how the group size of the pursuers varies with the evader
availability in the multiple pursuer problem.

For simplicity, we assume a square field where the evader
is initially located and denote byδ := 1

diam2(G)
the evader

density. From the results in Section III-B, an upper bound on
the total time taken by the pursuers in all three phases of the
strategy is given by

1

δ(aN + b)
+

cN√
δ(aN + b)

+ kN,

wherea := 2r2
step

√
4κ2 − 25/π, b := (2πκ−6

√
4κ2 − 25)/π,

c := 2rstep

√
4κ2 − 25 and k :=

√
4κ2 − 25(1 + 1/ sin φ) +

18κ
√

4κ2 − 25 are constants independent ofN or δ.
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(a) Estimate of capture probability versus noise parameterǫ. The
vertical bars give a95% confidence interval for the probability
estimate is defined identically as in Figure 21(a).
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(b) Average capture time, given that the strategy succeeds versus noise
parameterǫ. The vertical bars give a95% confidence interval about
the average capture time is defined identically as in Figure 21(b).

Fig. 22. Simulation results for the multiple pursuer problem. For N = 7
and for a particular evader strategy, we study how the average capture time
varies with noise parameterǫ.

From part (i) of Theorem III.7, we observe that when all
other variables are kept constant, the lower bound on suc-
cessful detection probability of the SWEEP strategy increases
with N . However, a higherN results into a greater time to
capture the evader. This suggests a trade-off on the group size
N which we analyze as follows.

Let ν denote the nutritional content of the evader. We
quantify the energy spent by each pursuer as the time taken
to capture the evader. The energy gain from the pursuit is
quantified as the amount of nutrition each participating pursuer
receives from the evader. For a self-sustaining pursuit, wemust
have that the energy gained by each pursuer is at least equal
to the energy spent during the hunt. Thus,

ν

N
≥ 1

δ(aN + b)
+

cN√
δ(aN + b)

+ kN.

From this relation, we observe that for a given value ofδ,
there exists an upper limit on the number of pursuers in the
group for which it is advantageous for the pursuers to engage
in a pursuit with the prospect of gaining energy. A plot of the

upper limit on the group sizeN versus the evader densityδ
is shown in Figure 23.

This analysis shows that for higher values ofδ, a larger
number of pursuers can be accommodated in the trapping
chain. This is consistent with observations in the biology
literature by Caraco and Wolf [20] that have reported higher
group size in foraging lions during the wet season (prey
abundance), than in the dry season, (prey scarcity). Further,
from our analysis, it also follows that for a given evader
density, the higher the prey nutrition valueν, the higher is
the upper limit on the number of pursuers in the trapping
chain. This is consistent with the observations reported by
Griffiths [21] regarding how the size of hunting packs relate
to the size of the prey relative to that of the predators.
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Fig. 23. Plot of maximum group size of pursuers that can be sustained versus
the evader densityδ, for κ = 5, rstep = 1, ν = 10000.

VII. C ONCLUSIONS ANDFUTURE DIRECTIONS

We have addressed discrete-time pursuit-evasion problems
in the plane with sensing capabilities restricted to a finitedisc.
We consider two variants of the pursuit-evasion in discrete-
time. The first involves a single pursuer and an evader in a
bounded convex environment. The second is a formation de-
sign problem for multiple communicating pursuers to capture a
single evader in a boundaryless environment. In both problems,
the evader is initially located inside a bounded subset of the
environment and moves only when detected. We propose a
Sweep-Pursuit-Capture strategy for both problems.

In the first problem, we give sufficient conditions on the
range of values taken by the ratio of sensing to stepping radius
of the players so that the GREEDY pursuer strategy of moving
towards the last-sensed evader position leads to the evader
being trapped within the pursuer’s sensing disc and finally
to capture. We also give conditions under which there exist
locations from which the evader can escape. In the second
problem, we have shown that the pursuers capture the evader
with a certain probability that is independent of the initial
evader location in a bounded region. We give novel upper
bounds on the total time taken to capture for both problems.
We also present simulation studies that suggest robustnesswith
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respect to sensing errors. Finally, on the basis of the obtained
upper bound on the total capture time, we provide an upper
bound on the group size of the pursuers for which the pursuit
is advantageous from the point of view of gaining energy.
The conclusions based on our analysis are consistent with
observations reported in ecology literature.

In the future, it would be interesting to study the effects
of communication losses or errors in the multiple pursuer
problem. Another interesting direction for future research
would be to consider more sophisticated sensing models for
the players.

ACKNOWLEDGMENTS

This material is based upon work supported in part by ARO
MURI Award W911NF-05-1-0219, ONR Award N00014-07-
1-0721 and by the Institute for Collaborative Biotechnologies
through the grant DAAD19-03-D-0004 from the U.S. Army
Research Office. The authors would like to thank Prof. David
Skelly for insightful conversations into animal behavior.

REFERENCES

[1] Y. Ho, A. E. Bryson, and S. Baron, “Differential games and optimal
pursuit-evasion strategies,”IEEE Transactions on Automatic Control,
vol. 10, no. 4, pp. 385–389, 1965.

[2] S.-H. Lim, T. Furukawa, G. Dissanayake, and H. F. Durrant-Whyte, “A
time-optimal control strategy for pursuit-evasion games problems,” in
IEEE Int. Conf. on Robotics and Automation, New Orleans, LA, Apr.
2004, pp. 3962–3967.

[3] M. Pachter, “Simple motion pursuit-evasion differentialgames,” in
Mediterranean Conference on Control and Automation, Lisbon, Por-
tugal, July 2002, Electronic Proceedings.

[4] J. Sgall, “A solution of David Gale’s lion and man problem,”Theoretical
Computational Science, vol. 259, no. (1-2), pp. 663–670, 2001.

[5] S. Kopparty and C. V. Ravishankar, “A framework for pursuit evasion
games inR

n,” Information Processing Letters, vol. 96, no. 3, pp. 114–
122, 2005.

[6] L. Alonso, A. S. Goldstein, and E. M. Reingold, “Lion and Man: Upper
and lower bounds,”ORSA Journal of Computing, vol. 4, no. 4, pp. 447–
452, 1992.

[7] S. Alexander, R. Bishop, and R. Ghrist, “Pursuit and evasion in non-
convex domains of arbitrary dimension,” inRobotics: Science and
Systems II (Philadelphia PA), G. S. Sukhatme, S. Schaal, W. Burgard,
and D. Fox, Eds. Cambridge, MA: MIT Press, 2007.

[8] S. M. LaValle and J. Hinrichsen, “Visibility-based pursuit-evasion: The
case of curved environments,”IEEE Transactions on Robotics and
Automation, vol. 17, no. 2, pp. 196–201, 2001.

[9] L. J. Guibas, J. C. Latombe, S. M. LaValle, D. Lin, and R. Motwani,
“A visibility-based pursuit-evasion problem,”International Journal of
Computational Geometry & Applications, vol. 9, no. 4, pp. 471–494,
1998.

[10] V. Isler, S. Kannan, and S. Khanna, “Randomized pursuit-evasion in a
polygonal environment,”IEEE Transactions on Robotics, vol. 5, no. 21,
pp. 864–875, 2005.

[11] B. P. Gerkey, S. Thrun, and G. Gordon, “Visibility-based pursuit-evasion
with limited field of view,” International Journal of Robotics Research,
vol. 25, no. 4, pp. 299–315, 2006.

[12] I. Shevchenko, “Successive pursuit with a bounded detection domain,”
Journal of Optimization Theory & Applications, vol. 95, no. 1, pp. 25–
48, oct 1997.

[13] V. Isler, S. Kannan, and S. Khanna, “Randomized pursuit-evasion with
local visibility,” SIAM Journal on Discrete Mathematics, vol. 1, no. 20,
pp. 26–41, 2006.

[14] J. P. Hespanha, H. J. Kim, and S. Sastry, “Multiple-agentprobabilistic
pursuit-evasion games,” Electrical Engineering and Computer Science,
University of California at Berkeley, Tech. Rep., Mar. 1999.

[15] R. Vidal, O. Shakernia, H. Kim, D. H. Shim, and S. Sastry, “Probabilistic
pursuit-evasion games: Theory, implementation and experimental eval-
uation,” IEEE Transactions on Robotics and Automation, vol. 18, no. 2,
pp. 662–669, 2002.

[16] C. Packer and L. Ruttan, “The evolution of cooperative hunting,” The
American Naturalist, vol. 132, no. 2, pp. 159–198, 1988.

[17] S. K. Gazda, R. C. Connor, R. K. Edgar, and F. Cox, “A division
of labour with role specialization in group-hunting bottlenose dolphins
(Tursiops truncatus) off Cedar Key, Florida,”Proceedings of the Royal
Society B: Biological Sciences, vol. 272, no. 1559, pp. 135–140, 2005.

[18] B. L. Partridge and T. J. Pitcher, “The sensory basis of fish schools:
Relative roles of lateral line and vision,”Journal of Comparative
Physiology A, vol. 135, no. 4, pp. 315–325, 1980.

[19] R. E. Walpole, R. H. Myers, and S. L. Myers,Probability and Statistics
for Engineers and Scientists, 6th ed. New Jersey, USA: Prentice Hall,
1998.

[20] T. Caraco and L. L. Wolf, “Ecological determinants of group sizes of
foraging lions,” The American Naturalist, vol. 109, no. 967, pp. 343–
352, May-June 1975.

[21] D. Griffiths, “Foraging costs and relative prey size,”The American
Naturalist, vol. 116, no. 5, pp. 743–752, 1980.


