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Abstract

We address discrete-time pursuit-evasion games in the plane whese ptager has identical sensing and motion ranges
restricted to closed discs of given sensing and stepping radii. A singtieeisinitially located inside a bounded subset of the
environment and does not move until detected. We propdSeeep-Pursuit-Capturpursuer strategy to capture the evader and
apply it to two variants of the game: the first involves a single pursuer arelvader in a bounded convex environment and the
second involves multiple pursuers and an evader in a boundarylessrengnt. In the first game, we give a sufficient condition
on the ratio of sensing to stepping radius of the players that guarantpegecaln the second, we determine the minimum
probability of capture, which is a function of a novel pursuer formatiod mdependent of the initial evader location. The Sweep
and Pursuit phases reduce both games to previously-studied probigmsnlimited range sensing. Thereafter, we demonstrate
how capture is achieved using available strategies. We obtain novel bppeds on the capture time and present simulation
studies that suggest robustness to sensing errors.
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On Discrete-time Pursuit-evasion Games
with Sensing Limitations

I. INTRODUCTION it. The evader is initially located inside a bounded subget o
the environment, which we term as tfield. The players can

The game of pursuit can be posed as to determine a stratggye the field but not the environment. The evader follows
for a pursuer (a team of pursuers) to capture an evader in gactive rabbitmodel, i.e., does not move until it senses a
given environment. Bycapture we mean that the evader andyyrsyer [13]. We present an algorithmic approach in the form
the pursuer (some pursuer) meet at the same location aftej;& Sweep-Pursuit-Capturgtrategy for the pursuer to capture
finite time. The aim of the pursuer (pursuers) is to captuee thye evader. We demonstrate this strategy using two varants
evader for any evader trajectory. The evader wins the gamerig pursuit-evasion game: the first involves a single pursue
it can avoid capture indefinitely. All the players have idefit anq the evader in a bounded convex environment while the
motion capabilities. Capture strategies are importantiiiesl-  second considers multiple cooperating pursuers to cafttere
lance where we would like to detect and capture equally agiégader in a boundaryless environment.
intruders. Another application is search-and-rescueatipers In the first game, the pursusweepshe environment in a
where a worst-case capture strategy guarantees a rescUjeffhite path until the evader is sensed, which must nedssar
spite of any unpredictable motion of the victim. happen in finite time. We then establish how &EEDY

The continuous time version of this game has been studiggiategy of moving towards thkast-sensedocation of the
by Ho et al. [1], Lim et al. [2] and Pachter [3] to cite a few. evader, eventually reduces the present problem to a pyiou
Recently, the discrete-time version of the game has regeiv&udied one with unlimited sensing. Finally, we show how
significant attention. Sgall [4] has given sufficient cormis  capture is achieved using the establishadN. strategy [4].
and a strategy for a single pursuer to capture an evadergir contributions are as follows: first, we present an arnslys
a semi-open environment. This strategy has been exteng@fich provides a novel upper bound on the time required for
by Kopparty and Ravishankar [5] to the case of multiplghe pursuit phase to terminate. Second, we obtain a sufficien
pursuers in an unbounded environment, to capture a singlghdition on the ratio of sensing to stepping radius of the
evader which is inside their convex hull. Alonsbal. [6] and players for capture to take place in a given environment.
Alexanderet al. [7] propose strategies so that the pursuer canally, we give sufficient conditions and a strategy for the
reduce the distance between itself and the evader to a finégader to escape against th&&kDy strategy of the pursuer.
non-zero amount after finite time steps. The game has alsorhe second game is played with at least five cooperative
been studied in different types of bounded environments, e pursuers in a boundaryless environment and the field is a
circular environment by Alonset al. [6], curved environments hounded region known to the pursuers. Our contributions are
by LaValleet al. [8]. Visibility-based pursuit evasion has beerss follows: first, we design a novel pursuer formation and a
studied by Guibast al.[9] and in polygonal environments by randomized $/EeP strategy for the pursuers to search the
Isler et al. [10]. field. They succeedwhen they detect the evader inside a

Each of above mentioned works proposes strategies whigifecialcaptureregion, which we characterize for the pursuer
require that the pursuers have unlimited range sensing €ermation. We show that using ourw&EP strategy, the
pacity. A more realistic assumption is to introduce sensingursuers succeed with a certain probability which is a fionct
limitations for the pursuers and the evader. In this contexsf the pursuer formation and independent of the initial evad
Gerkeyet al. [11] have studied a version of visibility limited location. Next, we propose a cooperative pursuit strategy f
to an angle, instead of the entire region. Shevchenko [1€] htae pursuers to confine the appropriately-sensed evadeinwit
considered a successive pursuit problem in the plane witieir sensing discs. We show that using this pursuit styateg
sensing range limited to a finite disc. Islet al. [13] have the present problem is reduced to a previously-studied one
considered the problem on a graph, with the visibility of th@ith unlimited sensing. Finally, we show how capture is
pursuer limited to nodes adjacent to the current node ofaghieved using the establishedaRES strategy [5]. We obtain
pursuer. A framework which uses probabilistic models fafovel upper bounds on the time for each phase in our strategy.
sensing devices for the agents can be found in the worksRdr both problems, we present simulation studies that sigge
Hespanheet al. [14] and Vidalet al. [15]. robustness to sensing errors.

We address the case of limited range sensing capability:The inspiration for the cooperative strategy proposed in
a pursuer and an evader can sense each other only if this paper has been derived from aspects of animal behavior.
distance between them is less than or equal to a given sending well known that predators hunt as a conjoined group,
radius. We consider the discrete-time version with one arymawhen it is less efficient to hunt alone. This behavior is also
pursuers and a single evader in a planar environment. Tdleserved when the prey is large or can move as fast as the
motion of each player is constrained to a stepping disc @aroupredators [16]. Further, predators show an inclinationaials



specialized behavior by maintaining a fixed formation dgrrinA. Single pursuer problem
search and capture of preys [17]. Such specializationsestigg \ne have a bounded convex environmehtc R2 and the

that there may be configurations that are preferred durifg|q g — 0. Let e[t] andp[t] denote the absolute positions of

group hunting. Also, in the presence of sensing limitationghe evader and the pursuer respectively, at ingeZ-. The
groups tend to maintain spacing between each other thaljgcrete-time equations of motion are -

regulated by their sensory capabilities [18]. These faivis gs

additional hints towards designing capture-conducivelgi@ e[t] = e[t — 1] + u°® (e[t — 1), {vf = 1y, {2 (7] i‘:ll),
formations. In this context, our analysis sheds light on how ' . . . .

the maximum group size of the predators varies with pré&ﬂt] =plt =1 +u' (p[t — U {yrlm = 1F=y, {9771[7]}7:1)
availability and with the prey’s nutrition value in the peses (1)

set-up. where at ther'" time instant,y?_,[r — 1],47_,[7] € Q4

The paper is organized as follows: the problgms mgth re the measurements of the pursuer’s position taken by the
matical model and assumptions are presented in Section ||

The individual oh ¢ thew i turetratea evader before and after its own move, as shown in Figure 1.
€ individual pnases ot INWeep-pursui-capiurelralegies r,o narentheses notatiopy” _,[r — 1]}._, denotes the set
and the corresponding main results for both the probleangés(p

! 4 0l,y%[1],...,y"” [t — 1]}. Due to limited range sensin
are presented in Section Ill. The proofs of the results 0[0L, v 11] il I} Du g 9
: : : : odel, forr € {1,...,t}, we define
presented in Section IV. Simulation results are presented |

Section V. Finally, in Section VI, we study the relationship , plr —1], if |p[r —1] — e[t — 1]|| < Tsens
between pursuer group sizes and evader availability and %ts-1 1] = é otherwise.
nutrition value in our set-up. 2
For notational convenience, we defifig? 7]} = ¢ for
ll. PROBLEM SET-UP the initial time¢ = 1. For¢ > 2 and forr € {1,...,¢t — 1},
we have
We assume a discrete-time model with alternate motion 1] if lplr — 1] — e[r]|| < r
of the evader and the pursuers: the evader moving first. We/? | [r] = {p ’ pIT = % (3)
assume that the players can sense each other preciselyf only i 2 otherwise.

the distance between them is less than or equal to the sen%ﬂq"aﬂy at ther

_ al 10 th time instant ¢_, [ —1],y¢_,[7] € Q4
radiusrsens Further, we assume that at each time instant, thes the measurements of the evader's position taken by the

players take measurements of each other before and afterﬁ[]?suer before and after the evader's move respectively, as

evader's move, as shown in Figure 1. Defi@g := QU &,  shown in Figure 1. Due to limited range sensing model, for
where Q C R® denotes the environment angdis the null € {1,...,t}, we have

element. The null element will be used to denote a lack of
measurement in our limited range sensing model.det Q 1] = e[t —1], if |le[r — 1] — p[T — 1]|| < rsens
denote the field, i.e., the region that initially contain® thYr—1 19, otherwise.

evader. The evader follows r@active rabbitmodel - moves

only after being detected for the first time. We assume ttet th (4)
pursuers know the fielg and the environmer®. The goal of For 7 ¢ {1,...,t}, we have
the pursuer(s) is taapturethe evader, i.e., a pursuer and the )
evader are at the same position at some finite tiErvasion e )= {E[T]a if fle[r] = p[r —1]]| < 7sens 5)
is said to occur if the pursuer cannot capture the evader. We ~" o, otherwise.
describe Fhéweep—Purswt-Captumtrategy for the following The functionsu® : Q x Qy x---x Qy — Q and u? :
problems: . ,
2t — 1 times
Evader moves ta|7] Pursuer moves tp[r] Q X Qqﬁ X X Q(/; — Q are termed astrategiesfor the
— —

evader aﬁétgﬁﬁsuer respectively. The apparent lack of symme
try between the number of arguments in the strategies of the
evader and the pursuer is due to the alternate motion model.
We assume that both players can move with a maximum step

aimer s 1 size Of rgep that is,

Players measure Players measure wlll < r WPl < r 6
Evader:y”_ [t — 1] Evader:y;_,[] H ” = "step H H = Tstep ( )
Pursuery;_,[r — 1] Pursuery:_[] The sensing radiugsens is « times the motion radiusie, We

cf. (2),(4) cf. (3),(5)

assumes is greater than 1, i.e., both players can sense further
Fig. 1. A snapshot of each time instante {1,2,...} in our alternate than they can move. Fro_m the reactl\{e rabbit model for _the
motion model. The players take measurements before and aftevster's €vader, we have® = 0 until the evader is detected. After this
move. happens, the single pursuer problem consistsl@&rmining

uP that guarantees capture for any evader strategfy, This



problem is described by two key parameters: the ratio of To be specific, the evader is trapped at time instaag if
sensing to stepping radiusand the ratio of the diameter offor any evader strategy,
the environment to the stepping radi@llgflt(—g)

- y%rapfﬂTtrap_” = e[Ttrap_lL and y%rapfﬂTtrap} = e[Ttrap]-

B. Multiple pursuer problem . . . L
We h | ofV > h .. The idea behind our Sweep-Pursuit-Capture strategies is to
e have a total ofV > 5 pursuers that can Commun'catf{jetect the evader and pursue it so as to trap it. Next, we show

among themselves the location of a sensed evader as we {5 the evader remains trapped for all subsequent timaritsst

their own position with respect to a fixed, global referencg ; ; .
. ) e nd that the pursuers achieve capture by using strategés th
frame. The environmen® is R? and the field5 is a bounded b P y g o

b fR2. Define R? - R2 L q h were developed for the unlimited range sensing versionef th
subset ofR”. Define Ry := R* U ¢. Let p;[t] denote the o 0 This principle applies to both versions of the problem
absolute positions of th¢!” pursuer at timet for everyj €

{1,...,N}. Analogous to (1), the discrete-time equations of
motion are A. Single pursuer problem

— e P t D t—1
eft] = eft 1] +u (e[t = U Ayr ol = Uhes {yr i [7] T=1)’ We first present each phase of the strategy for the single
pjlt] = p;ft — 1] pursuer problem.
t—1 1) Sweep phase SWEEP strategy: Let diam(Q) denote
j ) N e ¢ e ¢ : i
+u” ({{pj [T]}jzl}ﬁlv {uralr =1}, {yr—lm}rﬂ)’ the diameter ofQ. The SwEEP strategy for the pursuer is
(7) to move with maximum step size along a path, as shown in
Figure 2(a) such that the union of the sensing discs of the
2 9 ursuer at the end of each step until the end of this phase
Ry x x Ry denote the sets of measurements of the pdgrontains O. We term such a path aweeping pattfor O.

N times ken by th der bef d after i Let tsweepdenote the time taken for this strategy to terminate.
S‘.Jefs p03|t€|ons taken eyt € eva Sr efore and after |tsem0\f0 determine an upper bound fégweep consider placingd
Similarly, y7_,[7 — 1],y5_,[7] € R§ are the measurements;

nside a square region of lengthi and the pursuer
of the evader’'s position taken by the pursuers before a@ au gl gtliam Q) pursu

where at ther'" time instant, y* [t — 1],47_,[7]

. ving along a hypothetical sweeping path for the square
after the evader's move. The measurements are given g g P ping b d

) | 2)-(5). Aki he sinal ion, as shown in Figure 2(b). It is straightforward towho
expressions analogous to ( )'g )- 2'” to the %lng € pgrsu&at to achieve coverage, this hypothetical sweeping path i
problem, the functionsu® : R® x R x--- xRy — R

~—_—————

between strips of widtRrsep /£2 — i, parallel to the side.

(2t — 1)N times .
and u?i : Ri N Ri > RZ X% Ri — R? for every There are {ﬁ%-‘ such strips and it takes at most
ste -1
, (t — 1)N times _ 2ttimes I% + |4/K2 — i steps to sweep one strip completely
j € {1,...,N}, are strategies for the evader and pursuels, /=

and be positioned to sweep through a neighboring strip of

respectively. The constraint on the maximum step size,ngive . . . . ;
by (6), holds for the evader and every pursuer. Due to tﬁ“s hypothetical sweeping path. We thus obtain the foligi

reactive rabbit model for the evader, = 0 until it is detected FEsul.
by the pursuers for the first time.

The multiple pursuer problem consists a@dsigning a pur- Lemma 1ll.2 (SWEEP strategy) In the single
suer formation and a corresponding strategy that guarasitepursuer problem with parametersx and %
capture of the evaderThis problem is described by thethe time tsweep taken by the Sweep is at “most
following key parameters: the ratio of sensing to steppinF 1 diam(g)-‘ Udiam(g)w n [ 2 lD steps
radius of the players;, the ratio of the diameter of the field | 2\/x2—3  7se 4 '
to the stepping radiug%, and the number of pursueré.

T'step

IIl. THE SWEEP-PURSUIT-CAPTURE STRATEGIES AND
MAIN RESULTS

In this section, we describe the Sweep-Pursuit-Capture
strategies for both the problems and the corresponding main
results. The proofs are presented in Section IV. <

We first introduce the following weak notion of capture.

T

diam(Q) diam(Q)

Definition 1ll.1 (Trap) The evader istrapped within the
sensing radius (resp. radidf the pursuer (resp. pursuers) if @ (b)

for any evader strategy.“, the motion disc of the evader iSgig 2. single pursuer problemvaer strategy. (a) shows a sweeping path.
completely contained within the sensing disc of the pursu@j shows hypothetical sweeping path to determine upper damnumber
(resp. union of the sensing discs of the pursuers) after tefinpf steps to detect evader.

time.



2) Pursuit phase -GREEDY strategy: Once the evader is 3) Capture phase -LION strategy: Once the evader is
detected, the GEEDY strategy for the pursuer is tmove trapped within the sensing range of the pursuer, the pursuer
towards the last sensed position of the evader with maxim@mploys the LON strategy from [4] to complete the capture.
step sizeThis strategy has the property that the pursuer senses the sake of completeness, we now give a brief description
the evader’s position at every successive time instanttdsgt of the LION strategy, adapted to the present problem setting.
denote thetrapping time i.e., the time taken by the pursuer The LION strategy can be applied to this phase as follows:

to trap the evader after detecting it. We now present our mainjy Prior to their (¢ + 1) move, the pursuer constructs the

result for the REEDY strategy. line e[t]p[t], as shown in Figure 4. Let this line intersect
the boundary of the environment at a poik{t] such
Theorem IIl.3 (G REEDY strategy) In the single pursuer that p[t] lies betweere[t] and X [t].
problem with parameters and d“““(Q) Jif k> +2+2cosf;, (i) The pursuer then also constructs the liel¢ + 1] X ]
where and moves to the intersection of this line with the circle
1 centered ap[t] and of radiusrsep Of the two possible
Be = 1 diam(Q) arctan 1 ©) intersection points, the pursuer selects the one closer to
cC - -— G 9
2 ?Tstep e[t +1].

then theGREEDY strategyhas the following properties:
(i) the pursuer traps the evader within its sensing radius,
and
(i) the trapping timefyap Satisfies

log <\/ K2 —sin? Be—cos Bc—1

- ) +1 {dlam(g)w

1—cos f3
_ c;)s c)

X[t)(= X [tsweep tuag)

Lirap <

log ( 1 5 I'step

Fig. 4. Single pursuer problem: Using thedn strategy to capture the
(9) evader. The dotted circles represent the motion discs of lthers.

Furthermore, ifx > 2, then as(diam(Q)/rsep — +o0,
trap € O ((diam(Q) /rstep)?’)_ This construction guarantees that the intersection p®int

remains the same as the poiiftsweep+ tuap], fOr everyt >
Theorem 111.3 is tight in the sense that if the condition Ofsweep tirapy Wher€tsweept tirap is the time at the end of the
r is violated then there exist sufficiently large environnsentpursuit phase. Denoting bi,, the time taken by the pursuer
an evader strategy and initial positions for the playerat thto capture the evader after trapping it, we have the follgwin
lead to evasion against theRGEDY pursuer strategy. This is result.
described by the following result.

Theorem III.5 (L 1ON strategy [4]) In the single pursuer
Proposition 111.4 (Evasion) Given a single pursuer problemproblem with parameters and &(), after trapping the
with parameters: and dlam(g) such thats < /2 + 2cos 3., €vader within the sensing radius and using then strategy
where (3. is given by(8), and Q contains a circle of radius (i) the distance||p[t] — e[t]||, is a non-increasing function

Zs‘e"g, then there exists an evasion strategy and initial posi-  of time,

tions of the players for which the pursueGREEDY strategy  (ii) the pursuer captures the evader,
fails to trap the evader. (iii) tcaplis at most ’-p(dia::e(pg))f‘ steps.
Figure 3 illustrates this evasion strategy under the coodit o o
required by Proposition 111.4. Thus, our problem with limited sensing is solved because
once the evader is trapped within the pursuer’s sensingsadi
it remains trapped until capture, from part (i) of Theorefbll
We have also obtained an upper bound on the total time to

Capture, i.e.tsweep+ t’[rap + tcap.

B. Multiple pursuer problem

This section describes the sweep-pursuit-capture syrébeg
multiple pursuers and the corresponding results. We assume
thatx > 4 and N > 5. We define the following formation for

multiple pursuers.
Fig. 3. lllustrating evasion. The dotted circles are they@ta motion discs
and the solid circle is the pursuer's sensing disg] and p[t] are on the o ) )
circle 2 described in Proposition 111.4 such thi[t] — p[t]|| = rsep Evader Definition I11.6 (Trapping chain) A group of N > 5 pur-
chooses to move te[t + 1] on © with full step size. suers{py,...,pn} are said to be in arapping chairforma-

tion if




(i) po,...,pn_1 are placed counterclockwise on a semi- (i) Form a sweeping path for the square region and sweep
circle with diameter equal tdps — pn_1]|, along adjacent strips as shown in Figure 6.

(i) forall je{1,...,N -1} The shaded region in Figure 6 refers to the area that would fal
o . 12 o in the proposed capture regidh Now we are interested in
Ip; = Pisall = rsepv dn® = 25, determining the probability that an evader falls in the sftad
and region in Figure 6. That is given by the following result.

(i) p1,p2,pN_1,pN are on the vertices of a rectangle such
that the polygon with verticegp;,...,pn}, in that
order, is convex (cf. Figure 5).

diam(G)

=l

TETsens @ lo

Fig. 5. A trapping chain formation foN = 9 pursuers. The circles around
the pursuers denote their sensing ranges. The lightly shestgon denotes
the capture region and the darkly shaded region along wiHightly shaded
one denotes the extended capture region.

Fig. 6. Multiple pursuer problem: BEEP strategy. The shaded region
represents the region swept by the capture region of theitrgchain.

We now describe the Sweep-Pursuit-Capture strategy for thieeorem 111.7 (SWEEP strategy) In the multiple pursuer
multiple pursuer problem. problem with parameters;, ©2*9) and N, for any prob-

1) Sweep phase SWEEP strategy: The pursuers begin by ability distribution for the initial Emosition of the evadewith
placing themselves in a trapping chain formation. We defirsipport ong, using theSwWEEP strategy,

the capture regionsS for a trapping chain by (i) the probability P of detecting the evader insid® for a

_ U By, (rsend N do{p% v ) group of pursuers in a trapping chain, satisfies
jE{3,...,N—2} P> l - 2Tk ’

where B, (rsend C R? denotes the sensing disc of pursuer [+ 47sens (V4r? = 25(N — 3) + 2k)

p; and do{pg,...,pN_l} C R? denotes the interior of the and

convex hull of{ps,...,pny_1}. The lightly shaded region in (ii) the timetsweeptaken by theSWEEP strategy to terminate

Figure 5 is the proposed capture regidh, for the trapping satisfies

chain. In the sweep phase, pursuers wish to detect the evader diam(G) /2

within the capture region. We consider a square region of tsweep < [ ( ﬂ

length equal to diameter of the regiGndiam(G) that contains step  \VAKk? —25(N —3) + 7K

the field G. The pursuers sweep this square region in the « [diam(g)
direction of the normal t@;py, outward with respect to the

convex hull of the pursuers. For a trapping chain shown in o N
Figure 5, we define theffectivelength! as Remark 111.8 The minimum probability” of the pursuers

detecting the evader inside the capture region by using the
Vak? — 25 B 25) . (10) SWEEP strategy isindependenbdf the evader’s location ii.

1+ 242 — 25 1
T'step

sin(5rv—=7) This means that the best that the evader can do in the present

l:=|lpr — pn| — 2rsens= T'step
2(N—3)

As the pursuers move in the direction described earliey thferamework is to locate itself initially with a uniform probaity

clear a rectangular strip of lengtham(G) and widthl+47rsens ng.

The SvEekep strategy for the pursuers is as follows. We shall see that the pursuers win when the evader is

(i) Choose the first rectangular strip at a random distandetected irS by the pursuers. Otherwise, there exists a path for

lo from one edge of the square region containiig the evader such that it can avoid being captured indefinitely
and sweep it length-wise. The distanégis a uni- 2) Pursuit phase CIRCUMCENTER strategy: If the evader
form random variable taking values in the intervais detected within the proposed capture region at tigagep
[—2rsens | + 27rsend. Here, negativé, implies that some the pursuers need to ensure that they trap the evader within
of the pursuers may begin sweeping from outside thbeir sensing ranges. Before we describe the strategy ér th
regiong. pursuit phase, consider the following possibility: if theader



steps into the darkly shaded region of the sensing range dfi) the trapping timety,, satisfies

p2 (or of py_1), thenpy (resp.py_1) can use the EEEDY

strategy (ref. Section IlI-A2). By moving towards the evade trap < V4K2 — 25N (1 +
the evader's motion disc gets contained inside that pussuer

sensing disc and thus the evader gets trapped. This mativate ~where

2ng)
2sin¢g/’

us to define arextended capture regio§¢ for the trapping T K
chain by o) = § = mwetan ().
S¢ = B, (r ﬂdop7...,p 1} and
. U B by (rsend tp2 w1} (i) at that time, the evader is inside the pursuers’ convex
je{2,...,.N—1}

. ) ) , hull in such a way that
The darkly shaded region along with the lightly shaded negio

in Figure 5 is the extended capture regisf for the trapping Brsen (e[tsweep ttrap]) € Co{p1, ..., PN }tsweep tirap)-

chain. ’ (11)
We now present the following pursuit strategy. At each time .

stept > toweep The QORCUMCENTER strategy guarantees trapping of the

evader even without pursueps andpy . But in that case, the
inclusion in (11), which will be required to establish an epp
bound on the time for the capture phase that follows, is not
guaranteed.
3) The Capture phaseRLANES strategy: Once the evader
(i) Otherwise, one of the pursuers which senses the evaésertrapped within the sensing ranges of the pursuers, the
pursuers use the LRNES strategy from [5] to capture the

directly, makes a ®EEDY move (ref. Section 1lI-A2) : .
towards the evader and the others move parallel to tr}ea\‘;{ader. Before stating our results, we reproduce thisesfyat

pursuer with the maximum step or completeness.
) ) ) i Let the time at the end of the pursuit phasetbgep+ tuap
One such move is shown in Figure 7.

In case () of the,q the evader be inside the convex hull of the pursuers as
strategy, note that the pursuers may not sense the evadej,in (11) (cf. Figure 8). FOI > teweep+ tuap and for every
every subsequent move. But they will encircle the evader Bﬁrsuerp-' -

»

“closing” the trapping chain around it and then shrink the
enclosed region around the evader. We thus have the folipwin
result.

(i) While e[t + 1] ¢ S°[t], the pursuergs,,...,py_1 Move
towards thecircumcentet O of the triangle formed by
D2[tsween €[tsweeg ANAP N _1[tsweeg With maximum step.
Pursuersp; and py move parallel top, and py_1
respectively.

« Draw the lineh;[t + 1] throughe[t + 1], parallel to the
line joining e[t] andp;t], as shown in Figure 9.

« Move to the point closest tot + 1] on the lineh;[t + 1]
with maximum step size.

pa [tsweep+ ttrap] pl[tsweepﬁL ttrap]

P3ltsweept tirap) P2(tsweept tap)

Fig. 8. Multiple pursuer problem: evader trapped inside pers convex
hull.

Fig. 7. Multiple pursuer problem: ICUMCENTER strategy. At timefsweep
the evader position is sensed py. Pursuers, .. ., ps move towards O, the
circumcenter of triangle formed ky., e andps. p1 andpg move parallel to
p2 andpsg respectively. The circles around the pursuers represeirtdensing
discs.

Fig. 9. Multiple pursuer problem:IRANES strategy. Draw the liné; [t + 1]
throughe(t+1], parallel to the line segmeaft]p; [t] and move onto it closest

Theorem 111.9 (CIRCUMCENTER strategy) In the multiple © e evader

pursuer problem with parameters d“:f‘i:(g) and N, starting

. . . . step . .
from a trapping chain formgtlon, if the evader is detectethwi egy in the pursuit phase leads to the evader being trapped and
eltsweed € Sltsweed, then using theCIRCUMCENTER Strategy, ipgide the convex hull of the pursuers. Now capture follows
(i) the pursuers trap the evader within their sensing radiifrom the following theorem, which was partly inspired by the
results on the PANES strategy in [5].

Theorem 111.9 shows that use of theREUMCENTER strat-

1The circumcenter of a triangle is the unique point in the plaich is
equidistant from all of its three vertices.



Theorem I11.10 (PLANES strategyg In the multiple pursuer It can be deduced that when the pursuer employs the
problem with parameters:, % and N, let the evader GREEDY strategy, the distance between the pursuer and evader
be trapped inside the convex hull of the pursuers such thata non-increasing function of time. We now define a geomet-

property(11) is satisfied. If every pursuer follows tlReANES  ric construction which is useful in the proof.

strategy, then

(i) the distances|p;[t] — e[t]| for everyj € {1,..., N}, Definition 1V.3 (Cone sector sequence).et ¢, denote the
are non-increasing functions of time time at the end of the sweep phase. Given a time instant

(i) the pursuers capture the evader and k € Z>q, the sequencé,, of cone sectorg;, ; for i € Z>q is

(iii)y the time tcp taken in the capture phase is at mosflefined as follows:

(i) Define the cone sectd, o with p[ty] as its vertex, angle
bisector defined by the segmefti]p[tx] and extended to

18kv/4kK2 — 25N.

Item (iii) of Theorem 111.10 implies that once the evader is
trapped within the sensing ranges of the pursuers, it resnain
trapped within their sensing ranges at the end of every pursu

move. The capture is now complete and we obtained a novel

upper bound on the total time to capture, itgveepttrap+teap

a point X beyonde[ty] such thatLcone := ||p[t] — X || =
2kTstep s shown in Figure 11. Let the segm& be of
length = and perpendicular to the segmenit,] X with
X as its midpoint. Accordingly, lef := /Y p[t]Z =
arctan(1/4x) be thecone angle

(i) For k,i > 0, denote byt* the time when the evader
leaves the cone sectdy, ;. There are two possibilities:
(a) the pursuer first constructs a new cone se@py;
which is a translation o€, ; having vertex ap[t*]. This

is illustrated in Figure 12.

(b) If the evader is not insid€; ;+1, then we denote
try1 := t*. The pursuer constructs a new cone sector

sequenc&y 1.

IV. PROOFS OF THERESULTS
In this section, we formally prove the main results.

A. Single pursuer problem

To prove Theorem 1.3, we need some preliminary defi-
nitions and results which we present now. In what follows,
the notation/ABC refers to the smaller of the two angles
between segmentd B and BC'.

Definition 1V.1 (Deviation and evasion angles)Given
evader and pursuer at position$r], p[r], for 7 € {t,t + 1},
define thedeviation anglex[t] and the evasion anglg[t] by:

aft] := Ze[t + 1]p[t + 1]e[t],
Blt] == alt] + Zp[t + 1]e[t + 1]e[t].

Lcone = 2f'”'step

Fig. 11. Construction of conép,o. ChooseX on the linee[tg]p[to] such
that ||p[to] — X|| = 2krstep YZ has Iength%e” and is perpendicular to
segmenp[to] X with X as its midpointd is the cone angle.

These angles are illustrated in Figure 10. The followingiltes
follows trivially.

Proposition IV.2 When the pursuer uses tf&REEDY strat-
egy, for every instant of timg

B[] = |eft]]-

Note that equality in (12) only holds when the evader moves
away from the pursuer along the lipgt]e[t].

(12)

Fig. 12. Construction of cone sect6f, ;1. Translate cone sectdl ; to
have its vertex ap’.

The cone sector sequence described above has the following
property.

o] Proposition 1V.4 (Cone sector sequencelsiven a cone sec-
tor sequencé&y,, the maximum number of steps* for which

the evader can remain inside it without being captured fiats
N* < 4k "dlam(Q)—‘ -

\/g 2/4:7'3[ep

Proof: We compute an upper bound on the number of

Fig. 10. Relation between the deviation anglg] and the evasion angle steps a pursuer in a”Y (_:9ne sector while using thKE@Y
B[t]. The dotted circles represent the motion discs of the playée circle  Strategy. From the definition of a cone sector, this is also an

centered aplt] (shown partially here) is the pursuer’s sensing range. upper bound on the number of steps the evader can remain

MTEETR S

sk 7

(13)



inside a cone sector. Construct a rectangle with lerigie
and Width%’ such that it contains a cone sector, as shown in
Figure 13. Orient a frame of reference such thatXtaxis is
parallel to the angle bisector of the cone sectorllgf]— P, —

--- — P4 denote the path as a result of the pursuerse&py
strategy while in the cone sectd}, o. We now construct a
path with step size equal tQp at each time instant, that has

length no lesser than any such greedy pursuer paths. Select _ _ _ _
Fig. 14. Constraint on maximum evasion angle. The dottedeciepbresent

a point Pll betweenA and B such that”p[tk] - P1/H = Tstep  the evader's motion disc. The circle centerechft (shown partially here) is
Then select another poiri?, on betweenC' and D such that the pursuer's sensing range.

[Pl — P3| = rsep Of the two possible points, select that

point which is farther fromp[ti] as Pj. Selecting oddP,’s

betweenA and B and evenP;’s betweenA and B until itis  C, described in Definition V.3, there exists a time instant

not possible to select any more of tie's on segmentsAB  t € [ty, ty41] (ref. Definition IV.3) such that

and C'D. This is illustrated in Figure 13. This construction 9

leads to the property that th& coordinates of theP/’s are |B1t]| > SN

greater than those of the correspondifés. Thus the number

of P’s are no lesser than the number Bfs. Thus, the path WhereN* is defined in Proposition IV.4.

plts] — P1 — --- — P; has its length at least equal to that of

plty] — P — --- — P4. Since the length of segmemtB is

Leone the number of steps of such a path is at most equal

Leone divided by the difference inX' coordinates of any two

consecutiveP’/’s, i.e., [2==7. SinceQ has a finite diameter, thi1
2

=: [, (15)

Proof: For the evader to move out of the cone sector
§8quenc€k, the sum of the angles of deviation for the pursuer
must exceed half of the cone andlei.e.,

—5 Tstep 0
there can be at mo$f“%(f)] cone sectors in any cone sector Z ledt]] > 2
sequence. Thus, the upper bound (13) is established. B =t
Geometrically, this condition implies that the angle bedwe
the vectorse[ty41] — pltr+1] andeft,] — p[tx] must be at least
g. This is illustrated in Figure 15. From Proposition 1V.2, it

2 implies that
te4+1
0
> 181 > 5.
t=ty
Leone Equation (15) now follows from the fact thgt,, — ¢, < N*,

for every k, since there exists a maximum number of time

Fig. 13. Upper bound on the number of steps a pursuer can hgeiasi * ; TR
cone sector. The cone seciOy  is illustrated here. The dotted path showsStepSN for which the evader can remain inside any cone

a hypothetical pursuer path that takes the maximum number p$ stefore SECtOr sequence, as derived in Proposition 1V.4. u
leaving a cone sector.
c[lk+2]

alty +1]

We now state two additional results needed to prove Theo-
rem I11.3.

Proposition IV.5 (Maximum evasion angle) If the pursuer
uses theGREEDY strategy and if(x* — 1)rge, > s°[t], where
s[t] = |Iplt] — e[t]||, then define

2 2 2
._ (k% = Drgiep— s7[1] Fig. 15. lllustrating Lemma IV.6. This is a case of the evader impwut
Bmax[t] := arccos ) (14) .
QS[t]Tstep of the cone sector sequen€g by moving out ofCy, .

If at some timet, 3[t] > Fmat], then the pursuer movesWe are now ready to prove Theorem lIl.3.
towardse[t + 1] and traps the evader. Proof of Theorem IIl.3:Two cases need to be considered:

(i) Evader does not move out of a cone sector sequence

This result is obtained by applying the cosine rule t@apture follows from the construction of the cone sector
Apltle[t]e[t+1], where the notatior\ A BC' stands for triangle sequence and from Proposition V.4.

formed by pointsA, B and ', as shown in Figure 14. . (i) Evader moves out of a cone sector sequeteethis
case, we seek to show that the evader cannot keep moving
Lemma V.6 (Constraint on maximum evasion angle) out of an arbitrarily large number of cone sector sequerites.

For the evader to move out of a cone sector sequentt® evader leaves the cone sector sequépcéhen for some



T € {tk,...,tg+1 — 1}, B[r] > Bc. Applying the cosine rule
to Ap[rle[r]e[T + 1], we obtain ﬁ
)l

s*[r+1] = Tgtep+ (s[7] = rstep)® +2rstepl s[7] —step) cos B[7],
— 1] =8P [r+1] = 27stegs[T] —T'step) (1 —cos B[]).

Using equation (15) and since
Fig. 16. lllustrating parameters in Equation (18)[t*] is a point such that

S[T] + S[T + 1] < 2KTstep lIp[t*] — €’ [t*]]] = rstep 7 is the value of the maximum evasion angle if the
evader were at’[t*]. The circle of radiussrsiep around the pursuer (shown
we obtain partially here) is the pursuer's sensing disc which theedbttircle around
( ( P ) e[t*] is the evader’'s motion disc.
1 — cos -
S[T —+ 1] — T'step S <1 — KDQJV> (8[7—} — Tstep). (16)
o number. At this time instant,g, let the pursuer construct a
Defining x. := s[tx] — rstep We conclude that new cone sector sequen@a. SO, if
Xi+1 < S[T+ 1] — Tstep, (14 6)yN* = 97 (18)
(1= cos( ) o |
<(1- — (s[T] = 7step) where N* and 6§ are defined in Proposition 1V.4 and in
the definition of a cone respectively, then for somee
(1 — cos(55=)) 17 {tfinal, - - - » tinal + N*}, B[7] > (148)y = f3 for the evader to
=|1- K Xk> a7 leaveCiina. This means that the evader is forced to step inside

the sensing disc of the pursuer or to remain inside the final
where the first and third inequalities follow from the facath coneCj,q. In both cases, the pursuer traps the evader within
distances[t] is non-increasing in the REEDY strategy and its sensing radius. From equation (18),
the second inequality follows from equation (16). Recaditth

x > 1 by assumption and hence the term in the parenthesis is v < oNE = Be.

positive and strictly less thah Thus,y, — 0 asymptotically, )

i.e., the distance between the pursuer and evader tendggo APPIYiNg the cosine rule ta\p[tle’[tle’[t + 1],
asymptotically. Moreover, for > 2, the distance reduces to o — \/2 ¥ 2cosy > \/2 208 fe.

(k — 1)rswep after a finite time. Thus, the motion disc of the

evader will become completely contained within the sensindius, we have shown that € > /2 + 2cos 3., then the

disc of the pursuer. Hence, the result follows. pursuer's REEDY strategy guarantees that the evader is
The case ofx = 2: We have seen that the distansg] trapped.

between the pursuer and evader tends asymptoticaliydo Computing an upper bound on the trapping tintée have

From Proposition IV.5, we obtain that ag] — rsp the angle seen that when the pursuer uses thre€Dy strategy, the

Bmax — 0. So, after some finite time, evader cannot leave an arbitrarily large number of conesect
9 sequences. Thus, to compute an upper bound on the trapping
5max< =: f. time, we compute an upper bound on the number of cone

sector sequences that the evader can leave. We have seen
Thus, the evader becomes conflned to the present cone segigf using the ®EEDY strategy,Smax < [ after finite time.
sequence according to Lemma IV.6 and from Proposition IV.grom (14), we can determine that distanse for which
and we can see from part (i) of this proof that the pursuesstrag, .. = 3., so that subsequently, the evader is confined to

the evader within its sensing radius. the final cone sequence:
If x < 2: We have seen that at each time stephere is
a maximum valuefmay/t] of the evasion anglgi[t], so that sc = (\/ k2 — sin? c — cos Be)rstep

the evader’s next stegt + 1] is not in the pursuer’s sensing
disc centered ap[t]. This is shown in Figure 16. The key
idea of this part of the proof is.tha.t if we ensure that for all Sc— Tstep< Xk < AXko1 < -+ < A (k — D)rsiep
subsequent times after a certain tinfe Smat] is less than
the minimum values.. (cf. Lemma I1V.6) needed for the evademwhere) = 1 and the worst-casgy = (k—1)7step
to leave a cone sector sequence, then the evader is fortgubn simplifying, we obtain

to remain inside a final cone sector sequence and trapping .

follows from part (i). In previous cases, we have seen that th log ( v “251”1ﬁ°1°05ﬁcl>

GREEDY strategy reduces the distaneg] asymptotically to k<

rsiep Thus after a finite time*, s[t*] attains a value such that
the maximum evasion angle is less than or equdllte 0)~,
wherey is the maximum evasion angle if the evader is’&t], The result now follows from the fact that for the casesof. 2,
which satisfieg|p[t*] —e/[t*]|| = rsiepandd is a given positive we construct an extra final cone sequence and the maximum

If k£ is the final cone sequence index, then using equation (17),

71—cos(2NL*)

- log(A)
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number of steps in each cone sequence can be at Most wheren := [diamG/(l + 47send]| IS the number of times
The asymptotic result follows by routine simplificationsB the pursuers sweep to clear the entire environment. Sirece th
Proof of Proposition I1l.4:We prove this result by determiningvariablesly andy are independent (cf. Figure 18 for the region
a set of initial conditions and an evader strategy that léadsof integration), changing the order of integration gives
evasion. Suppose at tintethe pursuer and the evader are on el (D)o rees

a circle Q with radiusp = %, such that|e[t] — p[t]|| = PlecS)> 1 /] o

rstep @S shown in Figure 3. The evader is not trapped as its T [+ 4rsens — J;
motion disc is not completely contained inside the pursuer’ !

p(y) f(y,D)dy
(lo+4rsens

. . . n(l +4"‘sens)
sensing disc. An evader strategy is to choose a pdint- 1] — 1 / ’ p(y) f(y, )dy
— — i — Tste) ) + 4r ’ )
on Q such that|e[t] — e[t + 1]|| = rsiep Sincep = T sens./o

et + 1] lies outside the pursuer’s sensing disc before its moygere
at timet + 1. By the GREEDY strategy,p[t + 1] = e]t]. Thus,

. . —2Tsens [+27sens
lle[t + 1] — p[t + 1]|| = rsiep and the evader can avoid getting Fly,1) = 3275% dly + fy+2r5en5dlo7 fory <1,
trapped. [ | o f;’:zr”r , dlo, otherwise.
B. Multiple pursuer problem In both cases/f(y,l) = [. Thus, the minimum probability
. . H H n(lo+4rsen
We first state a property of the effective length of thef success isl/(l + 4rsend, since Joltotrend )y =
trapping chain. Odlamgp(y)dy + fdfillffg‘”“"s) p(y)dy, and p(y) = 0 outside

N _ _ ~of G. The second inequality in part (i) follows by use of the
Proposition IV.7 The effective length of the trapping chaineft hand inequality in Proposition IV.7. The reason whystisi
satisfies a lower bound on the required probability is that if the persu

2(V4r2 — 25(N — 3) — k) l had some information about the evader’s location, then they
- < et < V4r? —25N — 2K could choosel, randomly from a smaller interval than the

] ) ) current one and thus increase the probability of detectieg t
Proof: The left hand side of the inequality follows fromgader in the capture region.
the fact that the circumference of the circle passing thinoug From the SVEEP strategy, the width of each strip swept

the vertices of the trapping chain is greater than the surheof ts g + 4rsens SO the maximum number of strips after which

distances of neighboring vertices. _The rlg_ht hand sidefal sweep phase terminates ﬂ%ia‘rﬁ(g)]_ It takes at most
from repeated use of the triangle inequality. diam (G)+2(1+2rsend 4 A7 sens .
Proof of Theorem 111.7:Let the evader be located at a point rser) ] _t|me steps for the pursuers to c!ear a strip
Y, € G and let its distance from the edgtB be y, as shown followed by aligning themselves parallel to the adjaceripst

in Figure 17. Note that the distance of the evader from tH&'e result now follows using Proposition IV.7. =
edge AD does not play any role in what follows. The main diom(G)
idea behind this proof is as follow¥?, would lie in the shaded D c

region in Figure 17 ifg+ 2rsens< y OF lo— 2rsens> . This is
equivalent to choosing a length equal to the effective legt
of the trapping chain from a total length- 4rseps if we let g
take a uniformly random value frofa-2rseng [ + 27send. Thus,
the probability of success for the pursuers is at least ttie ra
of l to ! + 4rsens

To be more specific, let the spatial probability density

of the Y coordinate of the evader insidg be p(y). Thus,
diam G

e

o p(y)dy = 1. The probability that the evader is detected Y, [2rsens @lo
inside the capture regiofi is given by A B
P(e . 5’) _ /l+2TsensP(e . S|lo _ k)P(lo _ k)dlo Fig. 17. lllustrating the proof of Theorem III.7.
—27sens

wherek € [—2rgens [ + 2rsend. Assuming the pursuers have no To prove Theorem 1.9, we first establish the_ foIIowi_ng
information about the evader’s location insi@el, is chosen Properties of a trapping chain. In what follows, given psint

uniformly randomly from[—2rsens [ +27send. Hence, we have @b, ¢ € R?, the notationdist(a, be) is the distance of poini
from the linebe.

4+27sens 1
Ple €8) > / Ple € Slio = k) y—p—dlo
~2sens + 4Tsens Lemma V.8 (Trapping chain properties) If ¢[t] € S[t],
1 /l+2T5ens n1/lo+2rsengw(l+2rsens)+z W) then the following statements hold:
L Arsens) —2reens =0  lo+27senstj (I+2rsend P () If  dist(e[t],p;[tlpj1[t]) > 3rsep for all j €
diam G {1,...,N — 1}, then the evader cannot step out-
+/ p(y)dy)dlo, side Co{p:[t],...,pn[t]} at time ¢ + 1 by crossing
lo+27senstn (I+4rseng +1 Dj [t}pj+1 [t]
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. Thus, immaterial of where the evader decides to step, its
. distance fromp; [tiap — 1]pj+1[twap — 1] is greater than=®.
Two cases are possible:

(a) the evader steps inside the sensing disc of some pursuer
p;: There are two further possibilities. dfist(e[tap], p;[trap—
Upjiiltvap — 1]) < 3reep then the evader is trapped by
part (i) of Lemma IV.8 and the present lemma is proven.
Else, we haveiist(e[ttrap],pj [ttrap_ l]pj+1[ttrap— 1]) > %Tstep
Now, p; uses part (ii) of the GRCUMCENTER strategy. Even
in this case dist(e[tap]; p; [tiraplpj+1 [trap]) > 52, for every
je{l,...,N—1}L

(b) the evader steps outside the sensing disc of every
pursuer:In a trapping chain, the overlap between the sensing
discs of any two neighboring pursuers has the property that
length of the common chord of these discs is greater than
Fig. 18. The region of integration in determinidg(e € S) in the proof of %Tstep This means that even if any two neighboring pursuers
Theorem I11.7. Fix a value ofo in the interval(—2rsens I + 2rsend to get  p; andp;,; happen to move parallel to each other, we have
the values ofy that correspond td(e € S). dist(e[ttrap],pj [ttrap]pj—kl [ttrap]) > Ts2tep_ m

We now present the proof of Theorem 111.9.

(I + 2rsens | + 47send

(0,0) )
(=2rsens 0) (2rsens 0) (I + 2rsens 0)

(i) 1f  dist(e[t], p;[tlpjp1lt]) < Zreep or dist(elt +
1], p;[tlpj11[t]) < Sreep for somej € {1,...,N — 1},
then the evader igrapped within the sensing radif
pursuerp; or p;11 or of bothp; andp;, .

(i) There exists a¢p > 0, independent ofN, such

that for every pointg € Ujcs,... | x 41} By, (Tsend N

Proof of Theorem II1.9:

We first look at a case in which
diSt(e[tsweeéapj [tsweedpj-i-l[tsweed) < %Tstep for some
je{l,...,N—1}. In this case, the evader is already trapped
within the sensing radii of the pursuers, from part (i) of
. Lemma IV.8 and the result holds.

Coipz,-...pn-1}, Now let dist(e[tsweed: D; [tsweedPj1[tsweed) > Tsiep fOT
everyj € {1,..., N —1}. There are two possibilities: [t +
1] € S°[t], for anyt > tsweep then there is a pursuer; for
Proof: Parts (i) and (ji) follow trivially from the defini- Which y°[t + 1] = e[t + 1]. This pursuer uses part (i) of
tions of trapping within sensing radii and from the constiare the ORCUMCENTER strategy and the evader is trapped within
of the trapping chain. For part (i), we can see that fdine sensing radius of;. Part (iii) of the result follows using
j* = | Y| + 1if ¢ (in the specified set) is the point ofbemma IV.9.
intersection of the tangent fropy, to the sensing disc qf;-, SO, leteltsweep+ 1] ¢ S[tsweed. Now, the pursuers com-
then the angle/gpspy 1 is minimized. This follows from Pute the circumcente© of Aps|[tsweede[tsweedpn —1[tsweed-
the fact that the linepyp;- is parallel tops — p;- ;. This Lemma IV.8 implies that the evader cannot step out of the
angle is minimum whenV = 5. Thus, given ax > 4, from Pursuers’ convex hull by crossing ling;[t]p;1], for any
trigonometry' we obtain j S {1,7N - ].} Thus, it suffices to show that the
evader cannot leave the pursuers’ convex hull by crossirgy li
7) p1[tlpn[t]. In fact, we show that at the end of every pursuer
V3k2 — 25 move, the evader remains on the same side.pfy_; until
m it gets trapped. We argue this as follows. As illustrated in
The use of the GRCUMCENTER strategy in the pursuit Figure 19, any point on lines; [tsweedO andpn —1[tsweedO is

phase and the geometry of the trapping chain gives us ti§&ched faster by, andpy_1 respectively than by the evader.
following result. Thus, the motion of the evader is confined to the convex hull of

{O,p2,...,pn—1}, Which reduces to the poird? in a number
fof time steps upper bounded by

Zgpapn—1 > @,

¢ = % —arctan(

Lemma IV.9 If the evader is trapped within the union o

the sensing radii of pursuers at timi,p, for everyj e [P [tsweed — O
{1,...,N — 1}, then 176{21}1“355[71} [ Tetep w )
,
dist(e[tuap), P; [tuapDj +1 [trap]) > S;p. which is essentially the time taken by the furthest pursaer t
reachO. Thus,

Proof: Let the evader be trapped at tintgsp in the Rilto
sensing radii of the pursuers. From part (i) of Lemma IV.8, tap < w’
at timetyap — 1 and for everyj € {1,..., N — 1}, T'step

) 3 where R denotes the circumradius of
dist(e[twap — 1], pj [trap — 1Ipj+1[tuap = 1]) > 57step Aps[tsweegeltsweedDn —1[tsweed. From elementary geometry,
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at time tsyeepWe have which contain the evader within their convex hull at the end

of the pursuit phase, such that the sum of the distances of
P2 — ellllpx—1 — ellllp2 — pr—1ll

R= , these pursuers to the evader decreases by atjeaisthe end
4 Area(Aprepn-1) of every pursuer move. The result now follows from the fact
< _ U+ 2rsep that the distance between any one of the three pursuers and th
= 2sin Zepapn 1’ evader is at most+ 2k7sep at the end of the pursuit phase and
l + 2krsiep the use of the right hand side inequality in Proposition IV.7
2sin¢g [ |

where the second and third inequalities follow from pai) (ii
of Lemma IV.8. Thus, part (ii) of the theorem follows from
the use of right hand inequality in Proposition I1V.7. ‘

Fig. 20. [llustrating proof of Theorem 111.10. Given the el to be at a dis-
tance greater thah%*® from the linep;p;, the angle<p; [tuaple[ttapp; [tiap]
is the greatest when the evader is equidistant from bothevhth

V. SIMULATION RESULTS

We now present simulation studies to investigate the rebust
ness of the algorithms to sensing errors. The simulatiorre we
run using MATLAB®.

P9 tswee&

Fig. 19. A move of the GRCUMCENTER strategy. The evader is confined A Slngle pursuer problem

to the shaded region. The circles around the pursuers esgrédeir sensing . .
discs. We assume zero-mean additive Gaussian measurement er-

rors in the position of the evader with a standard deviation

To prove part (iii), recall that pursuens; and pyy move given by
parallel top, andpy_1, respectively. Since the evader remains olt] = €|lp[t] — e[t]]l,
inside the convex hull of pursuefs,...,pn_1, the distance
of the evader from line, py is always greater thafe®, until
it gets trapped. From this fact and Lemma IV.9, part (iii) no
follows. |
Proof of Theorem IIl.10Part (i) follows the RANES strategy. ~ * 1he SWEEP strategy remains unchanged. It terminates
Thus, once the evader is trapped, it remains trapped at all When an evader measurement is available.
successive time instants when the pursuers use theis ~  For the GREEDY and LION strategies, the pursuer uses
strategy. Thus, the problem is reduced to one with unlimited ~the noisy measurements of the evader position instead of
sensing for the pursuers. To show that the algorithm leads to the true positior[t] to compute its next position.
capture in finite time, we refer the reader to [5]. The evader is defined to be captured if the probability of

We now determine an upper bound on the time taken ftite evader being inside the motion disc of the pursuer before
the capture phase in terms of the trapping chain parametdhg pursuer's move is more than a certain threshold. In other
Referring back to the proof of correctness of theaAREs Wwords, for somet
strategy, since the evader is in the convex hull of the pussue e
let v; denote vectors of magnitudeyep in the direction of Bo (vi-1[t]) © Brogy(plt — 1),
Pjltrap] — €[trap]. We now wish to seek a lower bound on thevhereB,,;(y;_,[t]) denotes the circular region of radiu$]
radius e of the largest circle centered at the origin that cacentered ay;_, [t]. For the evader’s motion, we assume that it
be inscribed inside the convex hull of the vecters This moves away from the pursuer with some randomization, while
is equivalent to determining what is the largest of the anglavoiding the boundary. Specifically,
Zpi[twaple[tuappj[trap]. Due to the property (11) and to the , if the evader is not close to the boundary of the environ-
fact that the distance between any two adjacent pursuehgint  ment, then it chooses to move to a point on its motion
trapping chain is non-increasing during theRCUMCENTER circle, selected uniformly randomly in a sector with angle
strategy, the angle‘p; [tuaple[twaplpj [trap] is the greatest when 0.2 radians. This sector is placed symmetrically along the
i andj are adjacent and the evader is equidistant from both |ine ¢[¢]p[t] and away from the pursuer.
of them and at a distance 6§* from p;[tuaplp;[twap]. This o If the boundary is visible to the evader, then it chooses
is shown in Figure 20. This gives, = rsep - reep/2 _ Isiep to move to a poink[t + 1] on its motion circle such that

KTste 2K

Now, following [5], we observe that there exist three pursue Zelt + 1le[t]p[t] = = — 0.2. Of the two points possible,

for some constan¢ > 0. This means that the uncertainty in
\Xpe location of the evader increases with its distance frioen t
pursuer. Under this noisy sensor model:
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the evader chooses that point which is further away froB. Multiple pursuer problem

the boundary. In other words, when the evader reaches th§ye assume zero-mean additive independent Gaussian mea-

boundary, it chooses to move to a point that is away frogyrement errors in the position of the evader with standard
the pursuer as well as not very close to the boundary. geviations given by

We study how the average capture time after evader detection ailt] = ellp;[t] — elt]|l,

varies withe. We assume the environment is a circle with ) ) )

diameter40 units. We assumes = 5 units andrgep = 1 for some noise parameter> 0. Under this noise model:

unit. The initial position of the evader was chosen unifgrml * The SVEEP strategy remains unchanged. It terminates
randomly in the environment. An upper limit @f 000 time when an evader measurement is available.

steps was set to decide whether the strategy terminated in a For the GRCUMCENTER and RANES strategies, the
success. The plots of probability of success of the straaegly team of pursuers use the average of the available evader
average capture times after detection (given that theeglyat ~ Measurementg.. [t — 1] andg.1[t], to compute their next

terminates with capture) versasare shown in Figures 21(a)  Positions.
and 21(b). The evader is defined to be captured if for some purguer
{1,..., N},

B, 11 (Gea[t]) C Broey(pi[t — 1]).

it ] For the sake of simulations, we assuriNe= 7 pursuers

] with k = 5 units andrsep = 1 unit. We assume a square field

of edge lengthl00 units, where the evader is initially placed

at a uniformly randomly selected location. Upon detective,
assume that the evader moves away from the closest pursuer
with some randomization. Specifically, it moves to a point on
its motion circle, selected uniformly randomly in a sectér o
angle equal td).2 radians. This sector has its vertexe&f and

Variation of probability of capture with the error parameter &
T T T T

o o
o ©
T T

o
I
T

Estimate of probability of capture

o
N

0 L L L L L L L L
0.15 0.2 0.25 0.3 0.35 0.4 0.45 05

Error parameter &

L L
0 0.05 0.1

(a) Estimate of capture probability versus noise parametéefhe
vertical bars give 5% confidence interval about the probability es-
timate P(e) which is given by[P(e) —2,/925 P(e) + 2,/ 228

wheren = 100 is the number of trials [19].

Variation of average time to capture given that the strategy succeeds with the error parametere
T T T T T T T T T T

250

Average time to capture
1 N
@ S
S 3
T

=

1)

S
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015 02 025 03 035 04 045 05

Error parameter &

L L
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(b) Average capture time, given that the strategy succeeds ve
sus noise parameter. The vertical bars give ®5% confidence
interval about the average capture tirfi§c) which is given by

[T(e) N WELIOR JP ) SD(E)], where SD(e) is the stan-

nP(e)’ nP(e)
dard deviation in the capture timé&(¢) is the estimated probability
of success and = 100 is the number of trials [19].

angle bisector parallel to the lingtsweedO, Wheretsyeepis the
time when the evader is detected ands the circumcenter of
the triangleps [tsweed, P6[tsweed and eftsweed. We study how
the average capture time after detection varies witkn upper
limit of 1000 time steps was set to decide whether the strategy
terminated in a failure. The plots of probability of succes$s
the strategy and average capture times after detectioen(giv
that the strategy terminates with capture) versase shown

in Figures 22(a) and 22(b).

In both the problems, we observe a decreasing trend in
the probability of success of the strategies with incregasin
values of the error parameterThe average capture times after
detection, given that the strategies lead to capture isrebde
to increase withe.

V1. BIOLOGICAL INTERPRETATIONS

Our analysis in the previous sections can shed light on the
trade-offs that predators face when deciding upon the group
size. Based on our results from Section 11I-B, we now study
how the group size of the pursuers varies with the evader
availability in the multiple pursuer problem.

For simplicity, we assume a square field where the evader
is initially located and denote by := m the evader
density. From the results in Section IlI-B, an upper bound on
the total time taken by the pursuers in all three phases of the

strategy is given by
1 n cN
d(aN +b) * /§(aN +b

)+l<:N,

Fig. 21. Simulation results for the single pursuer problent. &@articular
evader strategy, we study how the average capture time waitlegshe noise
parametert.

wherea := 2rgeV/4k2 — 25/, b := (2mk — 6v/4K2 — 25)/,
¢ = 2rsepV/4r? — 25 and k 1= 4k? — 25(1 + 1/sin¢) +
18xv4r? — 25 are constants independent &F or 4.
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Vertaton of probabilty o capture with the error parametere upper limit on the group sizé&V versus the evader densiby
is shown in Figure 23.
| | ] This analysis shows that for higher values ®fa larger
[ 1L 1 number of pursuers can be accommodated in the trapping
chain. This is consistent with observations in the biology
literature by Caraco and Wolf [20] that have reported higher
group size in foraging lions during the wet season (prey
abundance), than in the dry season, (prey scarcity). Rurthe
from our analysis, it also follows that for a given evader
density, the higher the prey nutrition value the higher is
the upper limit on the number of pursuers in the trapping
chain. This is consistent with the observations reported by
0 o ez oos T o1 o Griffiths [21] regarding how the size of hunting packs relate
to the size of the prey relative to that of the predators.

1.2

N

4
@
T

)
IS
T

Estimate of probability of capture
o
@

o
)
T

(a) Estimate of capture probability versus noise parametefhe
vertical bars give a95% confidence interval for the probability

. . 9 . . . . Variation of upper limit on pursuer group size with evader densi
estimate is defined identically as in Figure 21(a). 13 pperimionp gow id
Variation of average time to capture given that the strategy succeeds with the error parametere
55 , . ! : 12 e
o 11F
501 P
o
>
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=]
g 45 E
Eol o
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o
£ 40 =
s E 8 o
2
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Z 3sf Sl e
30F 6r
5 . . . . .
25 L L L L L 0 0.2 0.4 0.6 0.8 1
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(b) Average capture time, given that the strategy succeedaseoise Fig. 23. Plot of maximum group size of pursuers that can be isestaersus

parametete. The vertical bars give 5% confidence interval about the evader density, for k = 5, rsep= 1, v = 10000.
the average capture time is defined identically as in Figufe)21

Fig. 22. Simulation results for the multiple pursuer problerar N = 7

and for a particular evader strategy, we study how the aeecagture time VIl. CONCLUSIONS ANDFUTURE DIRECTIONS
varies with noise parameter . . . .
We have addressed discrete-time pursuit-evasion problems

in the plane with sensing capabilities restricted to a fidite.
From part (i) of Theorem 1Il.7, we observe that when alVe consider two variants of the pursuit-evasion in diserete
other variables are kept constant, the lower bound on siiigne. The first involves a single pursuer and an evader in a
cessful detection probability of thew&EP strategy increases bounded convex environment. The second is a formation de-
with N. However, a highetV results into a greater time toSign problem for multiple communicating pursuers to captur
capture the evader. This suggests a trade-off on the graep siingle evader in a boundaryless environment. In both pragle
N which we analyze as follows. the evader is initially located inside a bounded subset ef th
Let v denote the nutritional content of the evader. Wenvironment and moves only when detected. We propose a
quantify the energy spent by each pursuer as the time tak&weep-Pursuit-Capture strategy for both problems.
to capture the evader. The energy gain from the pursuit isIn the first problem, we give sufficient conditions on the
quantified as the amount of nutrition each participatingspar range of values taken by the ratio of sensing to steppingisadi
receives from the evader. For a self-sustaining pursuitywst Of the players so that theREEDY pursuer strategy of moving
have that the energy gained by each pursuer is at least ed@alards the last-sensed evader position leads to the evader

to the energy spent during the hunt. Thus, being trapped within the pursuer’s sensing disc and finally
to capture. We also give conditions under which there exist
v 1 cN . .
N Z 5aN b + + EN. locations from which the evader can escape. In the second
(@N +b) ~ V5(aN +b) problem, we have shown that the pursuers capture the evader

From this relation, we observe that for a given valuedpf with a certain probability that is independent of the iditia
there exists an upper limit on the number of pursuers in tlegader location in a bounded region. We give novel upper
group for which it is advantageous for the pursuers to engalgeunds on the total time taken to capture for both problems.
in a pursuit with the prospect of gaining energy. A plot of th&Ve also present simulation studies that suggest robustitss
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respect to sensing errors. Finally, on the basis of the o&dhi [16] C. Packer and L. Ruttan, “The evolution of cooperativeting,” The
upper bound on the total capture time, we provide an upper American Naturalistvol. 132, no. 2, pp. 159-198, 1988.

bound on the group size of the pursuers for which the purshll ]
is advantageous from the point of view of gaining energy.
The conclusions based on our analysis are consistent
observations reported in ecology literature.

In the future, it would be interesting to study the effects
of communication losses or errors in the multiple pursué®!
problem. Another interesting direction for future reséarc
would be to consider more sophisticated sensing models fe]

the players.
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