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Algorithms for regional source localization
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Abstract— In this paper we use the MAP criterion to locate a  the distance between the source and a sensor. It is easy to
region containing a source. Sensors placed in a field of interest formulate a trivial linear algorithm that permits localizm
divide the latter into smaller regions and take measurements f.om the measurements at three sensors. However. such a
that are transmitted over noisy wireless channels. The sensors l lqorith deli highlv i : t ti ,té
aggregate their data in order to identify which of these 'N€ar aigoriihm may deliver highly inaccurate esiimates o
regions contains a source. We propose implementations of our the distances, even when the noise is small [4]. On the other
algorithm that consider complete and limited communication hand, several authors [5], [6] treat localization as a nanco
among sensors and seek to choose the most likely hypothesis.yex optimization problem. Gradient descent algorithms can
Each hypothesis corresponds to the event that a given region e ygeq to solve the maximum likelihood estimation prob-

contains the source. Corrupted measurements are used to calcu . . . .
late conditional posteriors. In the complete communication case, |€MS: Other approaches include approximating the nonlinea

the sensors have full information access, whereas in the limited NONconvex optimization problem by a linear and convex one
communication case, the sensors exchange information only and then proposing algorithms for the relaxed problem [7].
wth their fgﬁi%ht%ms’l b“t.tﬁaCh SenSOtf :_eStl? f‘;WcjeftthPOIheSteS- Following the gradient, and approximating with a linear
regicf’r:c’;’ﬁ]o:t‘ sur%l? %grllor:%sais)i/r:?cﬁr?wé?% 3’ ismavailgbtl:grgfocm convex problem have limitations. The gradient descent can
three or more sensors. We also study the geometric properties 9€t Stuck at local minima far from the correct position,
of the model that make it possible in some situations to detect leading to the choice of wrong regions, even in the absence of
the correct region with a unique sensor. Our simulations show noise, [8]. The authors in [7] solve the convex approxinTatio
that the performance of algorithms with complete and limited  problem using Semi-Definite Programming methods. The
information ?mellpratfes with fdecre?sm]g oise and tt&at IN NOISY * point of convergence of these algorithms is initialization
fé}}’;ﬁg?ﬁ:nsfulf liﬂ?or?n\/\é?irolr? ?r[)rpnaflecl)rna\rlegl %gffag_ odes 1s more dgpendent_and.no proof is provided on how good a solution
this approximation gives. Other attempts to solve the nobl

I. INTRODUCTION is through weighted least squares approximations [6] which

A. Problem description and motivation continues to face the prob_lem of local minima. Authors in
[5] use a method of projection onto convex sets. A necessary
Source localization has assumed increasing interest, agfd sufficient condition for the convergence of this aldwnit

has been the subject of study for many researchers. TRethat the source lies inside the convex hull of the sensors.
general setting is that one or multiple sources lie in ghe limitations of these methods motivated us to look into
bounded regioi’, and a group ofV sensors divid€’ into N regional localization. We note that there are instancesevhe
smaller localization regiond/; ,wherei € {1,...,N}. They the location of the region containing a source is all that is
measure a received signal strength originating at a sourageded. A more detailed listing of the contributions of this
s, the sensors try to cooperatively identify the regidn  paper is presented below.
containings. We set the problem as a multiple hypothesis
decision making problem, where hypotheg is true if C. Contributions

the source lies in the regioll’;, Maximum a posteriori  This paper presents the source localization problem in a
estimation (MAP) is used as a decision making tool. Weetting and formulation that to the best of our knowledge are
implement the estimation technique with an all-to-all and aew. We present algorithms based on all-to-all and limited
limited communication algorithm. The setting of the prable communication that require only the computation of intégyra
and the proposed solution prove to have some geometdgd therefore present a less computationally exhaustiee al
characteristics that we derive later in the paper. If priyper native to the current solutions to the localization prohlgve
exploited, these characteristics imply the possibilityref also show that as the noise decreases, regional locafizatio
gional localization with a unique sensor for certain sourcgan be accomplished with a unique sensor for certain source
positions. We also prove almost sui@s.) convergence of positions. We show through an asymptotic analysis that
both our all-to-all and limited communication a|gorithm5.choosing Voronoi partitions as localization regions actse
To the best of our knowledge, none of the algorithms in thgero probability of error in the two sensors case. The most
literature provide a similar convergence result. important advantage of our formulation is that we are able to
. . demonstrate the convergence of our algorithms. We provide
B. Literature review the proof ofa.s. convergence of our algorithms, a step that

In the classical setting, a number of sensors collaborate tends to be missing in all of the work presented earlier.
locate the exact position of a source. The relation betwed¥inally, the limited communication algorithm is promising
the position of a source and the received signal strengfbr the localization problems involving multiple sources.
(RSS) is described in [1], [2], [3]. RSS indirectly provides o
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the MAP algorithm when applied to our setting. Section IM\the sensors for the all-to-all and the limited communiaatio
introduces the implementation of the algorithms. The diraly algorithms.

cal proof of almost suréu.s.) convergence of our algorithms ~ As sensors share information, they collaborate to decide
is presented in Section V. Section VI shows our simulatiowhich of the N regions contains the source. The information

results and we conclude in Section VII. exchanged between any two communicating sensors are: the
position of the sensors, the localization regions assediat
Il. PROBLEM FORMULATION with each sensor and the logarithms of the received powers

Consider a compact connected environm@nt R2. Sup- (corrupted with log-normal noise). Sensors can share -infor
pose there aré/ disjoint regionsiV;, such that/y | W; = C' mation as soon as they make a measurement. Alternatively
1 7 .

Suppose also that there ané sensors placed at; € W; when the noise level in the communication channel is known

and that the source located at an unknown locatiog (O be high, it is possible for each sensor to average a set of
C, transmits a signal whose power undergoes Iognormé?peated measurements and transmit the averaged logarithm
shadowing described below. of the received power. Averaging helps decrease the noise

The average power loss for an arbitrary Transmittefr@riance, and therefore as we expect and will show later,

Receiver separation is expressed as a function of distani@aProves the performance. We start by introducing the case

by using a path loss exponemt > 2. The power loss ©f ON€ NOISy measurement per sensor.

is proportional to a power of the distance between thg posterior density with a single noisy measurement
transmitter and the receiver. For a thorough description of _. .

signal attenuation models over communication channels, we Since we do not I_<now where the source IS, we m?‘ke a
refer the reader to [1], [2], [7]. For reasons to be explainelfOrst case assumption on the knowledge of its position
shortly, we work with a slight modification of the traditidna >Pecifically, we assume that the densitysobbeys:

model used in [1], [2], [7]. TPILis model for the received 1/4, if seC,

power at a sensaris, P, = 4%, where(3 indicates p(s) = {

the rate at which the power loss increases with distatige.

is a nominal distance chosen such that the received powdere A is the sum of all the areasi; of W;, with

in the vicinity of the source is almost equal t8, the j € {1,...,N}. We need to derive the probability density
transmitted power at the source. Note that while this modebnditioned on each hypothesis.

gets rid of the singularity at the source, it converges to the ) - )

same behavior as the classical model used in communicatismma 111 (Regional conditional density) Let

literature P,, = =L, when the distancge; —s|| is large. 2 = InFp,...,InF]%, and note thatP(y € W;) =
Here P, is the power received at a unit distance from thd’(H;) = =4, then

source. Taking noise into account in our model, the received

1
power satisfies p(zly € Wj) = A—/ p(z|y)dy. 3
i JW.
In P, = In(Pdy) — In(do + ||zi — s||”) +ns, (1)

0, otherwise.

J j

Proof: We compute

where n; are zero mean, independent and identically dis-

tributed (i.i.d) white gaussian noise with variancg, each  p(z|y € ;) = d Prob(Z < z,y € Wj)

associated with a sensar The joint probability density dz Py e W)

function of theln_Pr = [lnPrl,...,ln_PrN]T, co_ndition_ed d ffoc fW‘p(Z|y)p(y)dde

on the hypothesis that the source is at a paint C is = Ad— ]A

given by . “ J

. 4 e, WGl A)dydz fiy, p(ly)dy
p(lnP’f‘17"'71nPrN|y):W dz Aj A7
2 |
PO (ln P, — Wm)) From (2) and (3), we obtain

202 ) - @

Solving for the exact position of the source requires sgjvin
for ¢ that will maximize the likelihood of having the received
observation which becomes the problem of solving for,

.eXp(_

1 1
p(lnPTl,,lnPTN|HJ)P(H]) = A/W] W

2
N Pdy
Zi:l (lnpn - ln(m)) d 4
- )dy. (@)

' o Pd ’ .
j=argminy_(InP, —ln(m) : Similarly, when measurements from only one sensor are
Y= 0 Y studied, the conditional probability density is derivedbi®

This is a nonlinear nonconvex optimization problem. At- 1 1
tempts to solve it or approximate its solution are a topic p(InP,,|H;)P(H,) = —/ i3
of great interest. In this paper we look for a regional A Jw, (2m0?)
localization, so the conditioning on the exact positioin (2) (ln P, —In(
is replaced by a regional conditioning. Before we elaborate ,exp( _ "

on this point, we introduce the information exchanged among

.eXp(_

2
Pdy )>
do+||zi—yl|P )dy (5)

202



B. Posterior density with aggregated noisy measurements I1l. PRELIMINARY PROPERTIES OF REGIONAL

In this setting each sensor is allowed to tdkeepeated LOCALIZATION FOR ONE AND TWO SENSORS
noisy measurements. Noise independence is assumed behn this section we derive certain geometric properties of
tween sensors and between different samples times for eddAP estimation ask — oo in (6). These geometric
sensor. Then defining properties allow us to conclude the following two results.
5 First, for certain source locations, a single sensor sufioe
_ Z P (1) (6) asymptotically detect the correct hypothesis. Secondthier
k7 asymptotic detection problem with two sensors, the selBcti
of Voronoi partitions as localization regions leads to éxac
the variance of the noise become$(k) = %2 The condi- localization. These results should be viewed against the

=1

tional probability in (5) then becomes fact that, even in the noise-free case, at I8asbn-collinear
sensors are needed for exact localization. In this secten w
p(nP,, (k)| H;)P(H;) / conduct a large sample analysis to prove an interesting geo-
A 271'02 1/2 metric interpretation of the conditional probability déies.

2 This analysis recognizes that whén — oo in (6), the
(ln Pr. (k) — ln(m)) Gaussian density approaches a Dirac delta function. Before
'eXp( - 202 (k) )d 5 we state the lemma that captures this property, we mention

a basic property of the Dirac delta function [9].
and the joint conditional probability becomes:

Lemma Ill.1 (On the Dirac delta function) If g: R — R

is differentiable and vanishes at positions, v € T, then
p(n Py, (k) ..., InP,, (k)| H;)P(H;) = %/ dy » P | 5
i xr—x
2 Slg(a)] = . 8)
lf_v[ ( (nPr, (k) = In(g b)) ) Z g (@)
exXp| — . . . . . .
27T02 (2mo2(k))1/2 202(k) In keeping with Remark 11.3, consider the situation where

7j=1

Note that, as: — oo, the noise variance approaches zero, ;1 p,.
and the probability density approaches a delta function. !

yGW (y e Wj)

Pd,
0({InP., —1In —— = dy.
Remark 1.2 Let § be the Dirac delta function. In the A do + [l — y|
infinite measurement_ caséin; . o*(k) = 0, and the - pefing tne mrcleC(r 5) = {y € B | |y -] =
probability density satisfies r} and denote its intersection with the regidf; by
p(In Py, |y) S(Wj,r,z;) = C(r,z;) (1 W;. Clearly, this intersection set
S(Wj,r,z;) is the union of certain arcs @f(r, z;). Define

2
. 1 (ln P, — ln(ﬁffo_ynﬂ)) 0(W;,r,z;) to be the sum of the angles subtended by these
= lim Cro(2)2 eXP( - 202 () ) arcs. CallH; = (y € W;). If we lety = [y1, y2]T and define
:5<lnpr, _lnk), 0 [f,y2.Py) =P, —InPdy
' do + ||z =yl

+In(do + (i, —y1)® + (w3, —92)*)"?),

Remark 1.3 In the sequel, for notational simplicity we will then

treat the aggregated measurement case as if it were identica 1

to the single measurement case with the caveat that thep(ln P, |H,)P(H;) = 7/ 5(f(y1,y2, Pr.))dy2dy; .
variance goes to zero. O A Jw,

C. All-to-all information MAP estimation We are now ready for the following lemma.

In the all-to-all communication (A2A) case, full informa-
tion is available. Using the conditional probability in (4)
MAP selects the hypothesid;- according to

i* =argmaxp(ln P.,,...,In P. |H;)P(H;). (7) p(n Py ly € W;)P(y € Wj)

Lemma Ill.2 (The arc-length property) Given a region
W;, the conditional probability density satisfies

1 Pd,
Per Remark 11.3, this selection scheme applies to both the =2 5(111 P, - m)dyzdyl,
single and the aggregated measurement cases. w 0 !
Before we proceed to deriving the results in the next »
section, we introduce the definition of the Voronoi diagramsand, if we letr; = (- —1)”, then
Definition 11.4 (Moronoi Diagrams) Given N sensors o (0P, |y € W;)P(y € W;) = 0 +7’¢ ST oWy, v, )

cated at positiongzy,...,zx} € C, we define the Voronoi

diagram associated with thé&h sensor, as follows o ) . )
The proof of the lemma is given in the Appendix. This

Vi={z € C:|lz — il < ||z — 2y,Vj # i} lemma can be interpreted as follows. Asymptotically,



directly provides the circle of radius; centered onz; on  We will prove in Section V that the algorithms presented in
which the source liesd(W;,r;,z;) is simply the angle Section IV below converge almost surely/as— oo in (6).
subtended by the intersection of this circle withi;. The

quantity p(ln P,y € W;)P(y € W;) that is used in |V. DECISION MAKING ALGORITHMS WITH ALL-TO-ALL

MAP is proportional to this angle. We describe further the OR LIMITED INEFORMATION

significance of this result after Lemma 111.3. In the followi ) ] )

lemma, we show that having Voronoi partitions as well as In this section we present two algorithms based on the
the MAP estimation algorithm, make the probability of errofMAP estimation scheme. The regions can take any shape as

zero in the two sensors case. long as they are compact. In the limited communication case,
sensors can only talk to their neighbors. We assume there
Lemma 111.3 (Optimality of Voronoi for 2 sensors) is a communication graph that describes the information

Consider two pointss; and 2, in C C R2. LetV; and V> exchange among robots. We consider two cases: the all-to-al
be the Voronoi diagrams associated with and x5. Take (A2A) communication case and the limited communication
s € C and letr; = ||s — z1]| andre = ||s — z2|. Then as case. In the A2A we adopt the complete undirected commu-
k in (6) tends to infinity, MAP localization algorithm finds nication graph. In the limited communication case we make
the region containings, with zero probability of error with the following degree assumption: each node has at least two
only two sensors. neighbors, i.e., each node appears in at least two edges.

A. All-to-all communication

In  this subsection we present the all-to-
all communication algorithm (Algorithm #1),
where we apply the classical MAP estimation
described in Section 1I-C on the complete network.

Algorithm #1: All-to-all communication MAP

Network: nodes{1,..., N} with complete communication graph
State of sensoi is w; := {In P, z;, W;}

Sensor; executes

1: For all j € {1,...,N}\ {¢}

2: transmit statev; and receive state;

3: calculatef; := p(ln P,,,...,In P, |H;)P(H;)

4: find j* := argmax;eqi,... N} 0;

Proof: The proof of this lemma follows the same 5: Return: deci si on j*

principle as the proof of Lemma 1ll.2. We skip the details

for lack of space, but we point out the differences below.
In figure 1, the sources is indicated as one of the two ) . . .
points of intersection of the red and green circle. Thé'SSumption IV.1 (A2A connectivity and noncollinearity)
term h defined in (14) become&(yi, P,,,z1, Py, 2) = We assume that_ the graph is complete. That is all nodes can
fH(ij) 5 (fla,yz, Pr,.21)) -8 (fa,yz, Pry,x2)) dys, here communicate with each other. We also assume that at least

P,, and P,, are the received powers by the sensors. Thipree sensors in the graph are non-collinear.
integrals are non zero only at the intersections of 6et&’ I L
andgC2 U (', as defined inythe appendix. The intersection oP' Limited communication
these two sets, is the intersection of the circles in Figure The algorithm in this subsection has two major differ-
1. The definition of Voronoi (Def. 11.4) implies in the two ences from the all-to-all communication algorithm. Fitke
sensors case that f € C, thens € V; = ¢ € V4. In  sensors deal with information coming from a different set
facts e Vi = |lz1 —s|| < |jlz2 —s|| = |lz1 —¢|| < of sensors and a different number of sensors. Second each
lze — '] == s € Vi. The other case to consider issensor decides about its neighborhood and the complement
s’ ¢ C. In this cases is the unique point of intersection of of the latter.
the circles inC. Both waysh is non-zero only in the correct  In the limited communication algorithm, each sensor ac-
region. B quires data from its neighbors and calculates a joint condi-
The two lemmas presented in this section have interestinignal density (4). Each sensor then applies MAP to choose
implications. Lemma [11.2 implies that, for certain sourcethe most likely hypothesis. In Algorithm #2 each sensor adds
locations and as the noise becomes smaller, the MAP estire hypothesis of the source being outside its neighborhood
mation algorithm can determine the correct region containi computes the corresponding conditional density and com-
the source with only one sensor. That is true when theares it to the densities corresponding to neighboringreyi
circle centered at a sensor location with radiyss included Let A; = {{j € {1,...,N} | j is a neighbor ofi} U{i}}
in the region;. Lemma l1Il.3 on the other hand, givesand let; = |\;| be its cardinality. We described the “source
one example where the selection of Voronoi partitions asutside neighborhood” hypothesis as hypothesis nuriber
localization regions makes it possible to locate the sourqd,). We also definén P, to be the vector composed of
with only two sensors. This would not have been the cas@l measurementl P, where: € A;. Finally, we mention
with two sensors with general convex regions. that given an event/; = z € W;, the complement event is

In general, the noise will not be vanishing and the decisiodefined by H; = = € W{. Computing the density in the
needs to be made with a finite number of measurementomplement of the neighborhood requires only the addition

Fig. 1. This figure shows two nodes; andz-, with a sources € V.




of information about the total region. In fact by the totalsuch thatD; > 0. Also for a compact region$V;, there
probability theorem we note that existsU; > 0 such that

p(lnP.)) =p(lnP. |y € C)P(y € C)
= > p(n P, |H)P(H;) +p(in P | | ) H)P(|J Hi)

g dot ly — a;]|?
do + ||s — 4]|°

U; > ‘ . (10)

max
yeWw;,ie{l,..,N}

i€N; iEN; iEN; Because of the non-collinearity and the fact tidat > 0,
there exists arl.; > 0 such that
— p(In P, |Ho)P(Hy) = p(n P, | | ) H)P(| ) H)) /
iEN; iEN; X do + ||y — 2:]|P\
L; < min ln—ﬁ (112)
=p(n P, yec)P(y € C) = > p(in P, |H;)P(H,) vew; =\ do + [|s — i

iEN; . .
© This follows from the lemma above (i.e., from the fact that
the sum has a unique global minimumsat Define

L.
Uj:\/sz‘FaTif_Uj

wherea > 1, then we have the following result.

Algorithm #2: Limited communication MAP

Network: nodes{1,..., N} with arbitrary communication graph
State of sensof is w; := {In Pr,, z;, W;}
Sensor; executes

1. For all j e N;

2: transmit statev; and receive state;

3: calculatet; ; := p(In P [H;)P(H;)

4: CalCUlateei,o = p(ln PTN;' HQ)P(HO)

5: find j* := arg max;en;, ugoy 0i.j

6: Return: deci si on j*

12)

Lemma V.2 ConsiderL;, U; andn; as defined ir{10), (11)
and (12). Suppose the source is not in region W;, and
|ni| <m; forall i e {1,...,N}. Then

N
(ln

ceWw;
Yy r—

a—1 do + |ly — =||°

L; < min
do + ||s — =P

J =

2

Assumption V.2 (Limited conn. and non-collinearity) Q
We assume that all nodes can communicate to their
neighbors. We also assume that at least three sensors are
non-collinear in each neighborhood.

Proof: In fact, the sum in (13) satisfies:

N
V. CONVERGENCE OF ALGORITHMS 2<ln
i—

In this section we prove that the algorithms presented
above give the correct decisianp.1 with three or more non-
collinear sensors. In keeping with Remark 11.3, we examine
(4) asoc — 07. We start by stating the following result.
Lemma V.1 (Property of non-collinear sensors)For
dy > 0 and 8 > 0, given a sources € R? and three
non-collinear sensorsey, zo and z3; € R?, define the

2
function f : R> — R by f(z) = 30, (ln %) .

The functionf(z) vanishes only if and only i = s.

do + |ly — i |° N })2
do+||s — il

N 2
_ (1 do + ||yxz-||ﬁ>
= E n

=1

do + ||s — ]|
N
+ 22 (m
1=1

> Lj —2U;Nn; — Nn; = L; + 2UN
Ny BNy By N
NYUT+ oy ~ N o) NS
L a—1
2NU;|U? + —L = .
+ Uj UJ+0¢N a 7

N
do + lly — ;)" 2
— 5 |+ ) n;
Byl ) " 2

Proof: In fact, it is easy to check that the sum is zero at
z = s. Uniqueness of this solution is verified by noting that
the sum of the square terms is zero only if all the summands
are zero. For that to be true one needs to fine (x,y)
such that((.');‘ — $i1)2 + (y — 371’2)2)6/2 ((s1 — l‘il)Q +
(59 —x42)%)P/2 = (r2)P/2 for i € {1,2,3}. Expanding and
subtracting, we obtain

I[V)
Y

—2(y1 — y3)
(r} —d}) — (r5 — d3)
3

L

[ ]
For simplicity of notation, we choose = 2 from here
on. Next, we introduce the final intermediate lemma before
the main results of this section.

Lemma V.3 (Upper bound for wrong hypothesis) Given

—2(z1 — 22) L;, U; andn; as defined in(10), (11) and (12), define

—2(x1 — x3)

—2(y1 — ¥2)

1

Ij :p(lnPT.l, PN 7IIII:)TN|I{_]‘)F)(}Ij

[<r§—d§)—(1—d§>}v 9)

whered? = 2% + 2, andd? = 2? + y?. Equation (9) has a

unique solution if and only if the determinant of the matrix

is non zero, i.e., the three points are non-collinear. =
In fact given non-collineat;, i € {1,..., N} with N > 3,
a compact regiori¥; and a sources ¢ W, there always
exists
D; = min ||s — y|| = dist(W,, s),
5= min [ls — yl| = dist(W;. )

)= A(2ma?)N/2
2
er\; ]‘nPTi_ln P(ﬁj ATE]
/ exp(— 1( do+(ly—al ) )dy.
W
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If |n;| <mn; forie{1,...,N}, thenforj e {1,...,N}

Ajexp(—L;/40?)
A(2mo?)N/2

I <



Proof: Because of the equality Furthermore, as o . 0+, we have
o P dotly e’ (o) = plnFy,....nPry) >0 and Q) — 17,
do + [ly — | do + ||s — ail|”

the result directly follows from Lemma V.2 and from the fac
that the surface integral of a functighis upper bounded by
the surface integral of a constant functignwhereg takes

InP, —

+ Proof: The proof of this theorem follows directly

from Theorem V.4 and the total probability theorem. Call
2= [InP,,...,InP,.,]T. We know from the total proba-
bility theorem that

the maximum value off. ] N
We are now ready for the convergence theorem. As usual, p(z) = Zp(z|Hj)P(Hj)
we define thel-function @ : R — R+, by j=1
1 teo = p(z|H;)P(H; z|H;)P(H
Q= [ et PCAHOP(H) + 3 plelHy)P(H)
21 Jg =2
J#i
Theorem V.4 (Elimination property of wrong hypothesis) and, in turn, that
Consider z; non-collinear sensorsj € {1,...,N} with
N > 3. Leto be the noise variance. Given a source W, p(z|H;)P(H;) = p(z) — Z p(z|H;)P(H;).
then we have j:;;'e'i’N

Prob|p(In Py, ..., In P, |H;)P(H;) <€;(0)| > p;(o), From Theorem V.4

where
B 2 R Prob | p(s| H)P(H:) 2 p() = 3 €(0)
¢j(0) = AQ2mo?)N/2 7 Hi(o) = (1=2Q(n;/))~ i
Furthermore, as o — 07, we have > Prob HAP(H:) < e
ej(a) — 0+ and Mj(U) - 73211_[1\/ rob | p(z| J) ( J)fej(o—)
Proof: From Lemmas V.2 and V.3 , we have that 7
> Lilo
Prob[p(InP,,,...,In P |H;)P(H;) < ¢;(0)] . FH,N’ ()
> Prob [[n1,...,nn]" € [=nj,n;]"] 7

N 1 Asc — 01, ¥(o) — p(z) andQ(c) — 1. [ |
= H( — Prob[n; > n;] + 5 — Prob[n; < —ﬂj]> Theorem V.5 complements Theorem V.4 in that is shows
i=1 2 2 that asc — 07T, the probability density conditioned on the
= (1-2Q(n; /a))N correct hypothesis is lower bounded by a strictly positive
J ’ term. This event happens asymptotically with probability
The first inequality comes from the fact that Lemmas V.2 Under Assumption V.1, as MAP follows (7), Theo-
and V.3 hold whenever alk;| < ;. The proofs of the two rems V.5 and V.4 complete the proof afs convergence of

limits of ¢; and ;; are immediate. m the all-to-all communication MAP algorithm. Similarly for
This theorem states that, as— 07, the probability that the the limited communication, under Assumption V.2, MAP
joint density functionp(ln P, ...,In P, |H;)P(H,) takes estimation converges almost surely when applied to regiona

an arbitrarily small value goes arbitrarily closeltovhen#; localization.
is not the correct hypothesis. This is so@é:) — 0 as

x — oo. To complement the Theorem V.4, we prove below V1. SIMULATIONS

that for thecorrect hypothesis, the probability density will In this section we show simulation results illustrating the
be lower bounded by a positive termp.1. type of decision obtained by our algorithms. We also show

a comparison plot between the all-to-all and the limited
Theorem V.5 (Strict positivity for correct hypothesis) information algorithms. The plot in Figure 2 shows a correct
Consider z; non-collinear sensors; € {1,...,N} with

N > 3. Let o be the noise variance. § € W;, then we
have

Prob[p(In P, ,...,In P.,|H;)P(H;) > Y (0)] > Q(0),

where
Ajexp(—L;/40?)
U(o)=p(InP,,,...,InP.)— | Z AQ@roD)NE
j=1,....N
J#i
Qo)= [ wmo)= [[ @-2Q0m/0)". | N -
j=1,..,N j=1,...N Fig. 2. This figure shows the all-to-all communication algorithm with 25 sensors

i i and one source whose region was correctly detected.



detection of the source. The shaded region correspondsragions, so that we minimize the probability of error of our
the one detected by the algorithm, the source is shown asakgorithms.

star and the sensors as the dots. Figure 3 shows the results
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d; = d is the same for alj € {1,...,N}. In the limited
communication case, a decisidnis made about the sensors ~ Proof: [Proof of Lemma I11.2] Let
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containing the remaining part of the field is added to the
localization regions being tested; is compared tad* to
check if the correct decision was made. An error is counted

APPENDIX

H(a,W;) = (y2 € R such that givery; = a, [a,y2] € W)

every time sensoj gives a wrong decision over thE)00 (Y1, Pryy i) =

runs. Errors are counted for each sensor separately. The slmp —1 Pdy J

curves that are in solid black and bunched up together in ) e T G T e — ylB )
LR

Figure 3, represent the limited communication decisions.
The stand alone dotted blue curve represents the all-to-all :/ 0 (f(a,ya, P, x;)) dys. (14)
communication decision. Figure 3 shows the probability of H(a,W;)
making a correct decision asincreases. It is not surprising Since
that as the noise variance increases the probability oécbrr
decision making decreases, but it is interesting to see that ,
as the noise becomes larger, an algorithm where sensorsfﬂyhy%Pw@ﬂ = I"(Y1, 92, Pri i)
communicate to their neighbors only performs better than 5_4
an all to all communication algorithm. One interpretatisn i 3 (—1)- (25, —12) ((:L'i1 —y1)% + (24, — y2)2) 5

. e e U = 2.2.(=1)-(24,— .
that in the limited communication case a decision is madeé™ 9 do + (s, — y1)? + (24, — yz)Q)%

about closer regions than in the other case.
If we fix y; = a, we can solve forys(a) such that,
VIl. CONCLUSION f(a,y2(a), P,,, ;) = 0. In fact

In this paper we have presented an all-to-all and a limited
communication algorithm based on MAP that succeed in fla,y2(a), Pr, xi) =0

identifying a region that contains a source. We have also(:}1 o1 Pdy _0
presented an asymptotic analysis and derived some geomef=” ™" i — 5 -

. : : . do + ((zs, —a)? + (23, — y2(a))?)?

ric properties of our algorithms. Those properties had the ! 2 )
implication that for certain source positions, it is possitn N 2, . 9 P—-P, s,
solve the regional localization problem with a unique senso < (@i, —a)” + (23, —y2(a))” = P do | =17,
We showed that choosing Voronoi partitions for localizatio ! (15)

regions asymptotically achieves zero probability of error
in the two sensors case. We were also able to prove tha P B

when readings from three or more non-collinear sensors af& €€ = ((PT B 1)_d0 : OpserveH(a, W;) has at most
available, the algorithms choose the correct region almo®© elements satisfying equation (15), one or both of:
surely. As an extension to this work we are studying how to

optimally position the sensors, and choose the localimatio y2,1(a) = iy — /17 — (zi, — a)? (16)



or,

Yo,2(a) = xi, + /77 — (24, — a)?, 17
wheneverr? > (x;, —a)?. Using property (8) of the dirac
delta function, and substituting withy; 1 (a) and y22(a)

obtained in (16) and (17), (14) becomes:

h<a/7P’l‘i7xi) = / 6<f<a?y27p’fi)5xi)dy2’
H(a,j)

takes the values

&( (a))
Jot(a,w) T Cargarbr, e 02
if yg,l( ) S H(a W ) but yg,g(a) ¢ H(CL, W])
f 5(9*1!2,2(11)) d

H(a,W;) T (a2, Pr, wi)] Y2

if y2,2(a) eﬁ(H(a, V[(/j))) but y%%(a) ¢ {f)()a, W)
y27y2,1 a y27y2,2 a
Jitaw,) Flam bra] T [Plags by el 492

if both ygyl(a) and y2_’2(a) S H((l, Wj)
Define I (a, W), the indicator function satisfying

Ii(a,W;) = { 1 if yo1(a) € H(a, W)

0 otherwise
Similarly definel,(a, W;), the indicator function satisfying

_J 1 if yaa(a) € H(a, W)
Ix(a, Wj) = { 0 otherwise ’
Then, (14) becomes
1
h(a, P, ,x;) = Ii(a,W;
( ) ) ‘fl(a’7y271<a)7p7‘mxi)‘ 1( ])

1
_|_
|f/(a7 y2,2(a)7 PT'H IZ)|
By substituting from (16), we get

IQ((I, Wj)

1
/(@ y2(a), Pro, o)
do + ((zi, —a)? + 712 — (z;, — a)z)g
BT — (s, — a)? (@i, — )2 +72 — (25, —a)2) 7"
do + 17 1 do+r7 1
T —aR Al P (m, —ap

Let C; = {z € R such that(x,y21(x)) € W;} and(’; =
{z € R such that(x, y2 2(z)) € W;}. Note that

w€Cj= Li(x,W;) =1andz €C'j = I(z,W;) =1
Then,

p(n P |y € W;)P(y € Wj) = h(y1, Py, x;)dy

1
A ¢ U

1
= A</ h(yhpmxi)dyl-F/ h(yl,PmﬂCi)dw)
C. Ij

J

1/ 1 dy
= - 1
A Je, 1/ (y1, 92,1 (1), Prys i)

1 1

+ J—
A Jer, 1 (s y2,2(1),
Write

(18)

dy.
P )| Y1

riy L

Cj _LJAa,mm[jA =0, andA, = [a

a=1

7a2a]u

(19)

= [a/1a7a/2a]'

(20)

i=J A4, with (A, =0, and 4,
a=1 e}
Equation (18) can then be written as the sum
A-p(InP, |y € W;)P (yEWj)z

>/
+§:/

a1, 1
/a% |f" (1, y2,1(y1), Pr,s i)

’
S

as, 1
>
Z a’m |f/(y17y2,2(y1)7pm,fﬂi)|

a=1 1
_y [ i
— Jan,  Br)7? 7 — (i, —y1)?

all@d0+r~ﬁ 1
Ly [
2 o, B = (@, —w)?
d0+7ﬂ;8 Ty — @

= -arctan 5 5
a1 BTy ri = (@ —y1)

SZ dO + T;‘H Liy, — Y1 ‘a/zu

- arctan
. (o0 )’

Ty —

dy,
"(y1,Y2,1 y1) P, ;)| Y

Yi-
y17y22 yl) mei)\

S

dy:

a=1

dyl )

dy:

asz,,
ai,

!
al,
a=1

Note that [10]
—a

— CL)2

l‘il

arctan
Tiz - (Ih
V(@i —a)? + (2i, —y2(a))? —
a7 T arctan Y2 Y219 v2(0)

i, —ya2(a) 2 i, —a

The conditional probability density becomes after simplifi
cations,

T;, —a

= arctan

(ziy — a)?

= arctan

do + 7' -
p(In P ly € W;)P(y € Wj) = ABrA-2 Z
a=1
T arctan Tiy — y2(a2.) _ T 4 arctan Tip —12(01,)
2 Tiy — Az, 2 Yo T M
do + rf ™ Tiy —y2(ay,) w
53 5 —arctan ———— — 5
A/@T,L' a=1 xil - a2a
T, — Yol(aj do + - 4
+ arctan —> yz(,1a)> = ,67}2 ZGCH'ZH/ ’
xil - a’la Aﬁr1 a=1 a=1

wheref,, and@,, are the angles of the arcs B(W;,r;, z;)
described on distinct supports as in (19) and (20) when
applicable. [ ]



