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Algorithms for regional source localization

Sandra H. Dandach Francesco Bullo

Abstract— In this paper we use the MAP criterion to locate a
region containing a source. Sensors placed in a field of interest
divide the latter into smaller regions and take measurements
that are transmitted over noisy wireless channels. The sensors
aggregate their data in order to identify which of these
regions contains a source. We propose implementations of our
algorithm that consider complete and limited communication
among sensors and seek to choose the most likely hypothesis.
Each hypothesis corresponds to the event that a given region
contains the source. Corrupted measurements are used to calcu-
late conditional posteriors. In the complete communication case,
the sensors have full information access, whereas in the limited
communication case, the sensors exchange information only
with their neighbors, but each sensor tests fewer hypotheses.
We prove that the algorithms asymptotically find the correct
region almost surely as long as information is available from
three or more sensors. We also study the geometric properties
of the model that make it possible in some situations to detect
the correct region with a unique sensor. Our simulations show
that the performance of algorithms with complete and limited
information ameliorates with decreasing noise and that in noisy
environments, using fewer information from close nodes is more
reliable than full information from far away nodes.

I. I NTRODUCTION

A. Problem description and motivation

Source localization has assumed increasing interest, and
has been the subject of study for many researchers. The
general setting is that one or multiple sources lie in a
bounded regionC, and a group ofN sensors divideC into N
smaller localization regionsWi ,wherei ∈ {1, . . . , N}. They
measure a received signal strength originating at a source
s, the sensors try to cooperatively identify the regionWi

containings. We set the problem as a multiple hypothesis
decision making problem, where hypothesisHi is true if
the source lies in the regionWi. Maximum a posteriori
estimation (MAP) is used as a decision making tool. We
implement the estimation technique with an all-to-all and a
limited communication algorithm. The setting of the problem
and the proposed solution prove to have some geometric
characteristics that we derive later in the paper. If properly
exploited, these characteristics imply the possibility ofre-
gional localization with a unique sensor for certain source
positions. We also prove almost sure(a.s.) convergence of
both our all-to-all and limited communication algorithms.
To the best of our knowledge, none of the algorithms in the
literature provide a similar convergence result.

B. Literature review

In the classical setting, a number of sensors collaborate to
locate the exact position of a source. The relation between
the position of a source and the received signal strength
(RSS) is described in [1], [2], [3]. RSS indirectly provides
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the distance between the source and a sensor. It is easy to
formulate a trivial linear algorithm that permits localization
from the measurements at three sensors. However, such a
linear algorithm may deliver highly inaccurate estimates of
the distances, even when the noise is small [4]. On the other
hand, several authors [5], [6] treat localization as a noncon-
vex optimization problem. Gradient descent algorithms can
be used to solve the maximum likelihood estimation prob-
lems. Other approaches include approximating the nonlinear
nonconvex optimization problem by a linear and convex one
and then proposing algorithms for the relaxed problem [7].

Following the gradient, and approximating with a linear
convex problem have limitations. The gradient descent can
get stuck at local minima far from the correct position,
leading to the choice of wrong regions, even in the absence of
noise, [8]. The authors in [7] solve the convex approximation
problem using Semi-Definite Programming methods. The
point of convergence of these algorithms is initialization
dependent and no proof is provided on how good a solution
this approximation gives. Other attempts to solve the problem
is through weighted least squares approximations [6] which
continues to face the problem of local minima. Authors in
[5] use a method of projection onto convex sets. A necessary
and sufficient condition for the convergence of this algorithm
is that the source lies inside the convex hull of the sensors.
The limitations of these methods motivated us to look into
regional localization. We note that there are instances where
the location of the region containing a source is all that is
needed. A more detailed listing of the contributions of this
paper is presented below.

C. Contributions

This paper presents the source localization problem in a
setting and formulation that to the best of our knowledge are
new. We present algorithms based on all-to-all and limited
communication that require only the computation of integrals
and therefore present a less computationally exhaustive alter-
native to the current solutions to the localization problem. We
also show that as the noise decreases, regional localization
can be accomplished with a unique sensor for certain source
positions. We show through an asymptotic analysis that
choosing Voronoi partitions as localization regions achieves
zero probability of error in the two sensors case. The most
important advantage of our formulation is that we are able to
demonstrate the convergence of our algorithms. We provide
the proof ofa.s. convergence of our algorithms, a step that
tends to be missing in all of the work presented earlier.
Finally, the limited communication algorithm is promising
for the localization problems involving multiple sources.

D. Paper organization

The paper proceeds by a problem formulation and an
explanation of our proposed solution in Section II. In Sec-
tion III we derive some asymptotic geometric properties of



the MAP algorithm when applied to our setting. Section IV
introduces the implementation of the algorithms. The analyti-
cal proof of almost sure(a.s.) convergence of our algorithms
is presented in Section V. Section VI shows our simulation
results and we conclude in Section VII.

II. PROBLEM FORMULATION

Consider a compact connected environmentC ⊂ R
2. Sup-

pose there areN disjoint regionsWi, such that∪N
i=1Wi = C.

Suppose also that there areN sensors placed atxi ∈ Wi

and that the source located at an unknown locations ∈
C, transmits a signal whose power undergoes lognormal
shadowing described below.

The average power loss for an arbitrary Transmitter-
Receiver separation is expressed as a function of distance
by using a path loss exponentβ > 2. The power loss
is proportional to a power of the distance between the
transmitter and the receiver. For a thorough description of
signal attenuation models over communication channels, we
refer the reader to [1], [2], [7]. For reasons to be explained
shortly, we work with a slight modification of the traditional
model used in [1], [2], [7]. This model for the received
power at a sensori is, Pri

= Pd0

d0+‖xi−s‖β , whereβ indicates
the rate at which the power loss increases with distance.d0

is a nominal distance chosen such that the received power
in the vicinity of the source is almost equal toP , the
transmitted power at the source. Note that while this model
gets rid of the singularity at the source, it converges to the
same behavior as the classical model used in communication
literaturePri

= P1

‖xi−s‖β , when the distance‖xi−s‖ is large.
Here P1 is the power received at a unit distance from the
source. Taking noise into account in our model, the received
power satisfies

lnPri
= ln(Pd0) − ln(d0 + ‖xi − s‖β) + ni, (1)

where ni are zero mean, independent and identically dis-
tributed (i.i.d) white gaussian noise with varianceσ2, each
associated with a sensori. The joint probability density
function of the lnPr = [lnPr1

, . . . , ln PrN
]T , conditioned

on the hypothesis that the source is at a pointy ∈ C is
given by

p(lnPr1
, . . . , ln PrN

|y) =
1

(2πσ2)N/2

· exp
(

−
∑N

i=1

(

lnPri
− ln( Pd0

d0+‖xi−y‖β )
)2

2σ2

)

. (2)

Solving for the exact position of the source requires solving
for ŷ that will maximize the likelihood of having the received
observation which becomes the problem of solving for,

ŷ = arg min
y

N
∑

i=1

(

lnPri
− ln(

Pd0

d0 + ||xi − y||β )

)2

.

This is a nonlinear nonconvex optimization problem. At-
tempts to solve it or approximate its solution are a topic
of great interest. In this paper we look for a regional
localization, so the conditioning on the exact positiony in (2)
is replaced by a regional conditioning. Before we elaborate
on this point, we introduce the information exchanged among

the sensors for the all-to-all and the limited communication
algorithms.

As sensors share information, they collaborate to decide
which of theN regions contains the source. The information
exchanged between any two communicating sensors are: the
position of the sensors, the localization regions associated
with each sensor and the logarithms of the received powers
(corrupted with log-normal noise). Sensors can share infor-
mation as soon as they make a measurement. Alternatively
when the noise level in the communication channel is known
to be high, it is possible for each sensor to average a set of
repeated measurements and transmit the averaged logarithm
of the received power. Averaging helps decrease the noise
variance, and therefore as we expect and will show later,
improves the performance. We start by introducing the case
of one noisy measurement per sensor.

A. Posterior density with a single noisy measurement

Since we do not know where the source is, we make a
worst case assumption on the knowledge of its positions.
Specifically, we assume that the density ofs obeys:

p(s) =

{

1/A, if s ∈ C,

0, otherwise.

Here A is the sum of all the areasAj of Wj , with
j ∈ {1, . . . , N}. We need to derive the probability density
conditioned on each hypothesis.

Lemma II.1 (Regional conditional density) Let
z = [ln Pr1

, . . . , ln Pri
]T , and note thatP (y ∈ Wj) =

P (Hj) =
Aj

A , then

p(z|y ∈ Wj) =
1

Aj

∫

Wj

p(z|y)dy. (3)

Proof: We compute

p(z|y ∈ Wj) =
d

dz

Prob(Z ≤ z, y ∈ Wj)

P (y ∈ Wj)

= A
d

dz

∫ z

−∞

∫

Wj
p(z|y)p(y)dydz

Aj

= A
d

dz

∫ z

−∞

∫

Wj

(

p(z|y)/A)dydz

Aj
=

∫

Wj
p(z|y)dy

Aj
.

From (2) and (3), we obtain

p(lnPr1
, . . . , ln PrN

|Hj)P (Hj) =
1

A

∫

Wj

1

(2πσ2)N/2

· exp
(

−
∑N

i=1

(

lnPri
− ln( Pd0

d0+‖xi−y‖β )
)2

2σ2

)

dy. (4)

Similarly, when measurements from only one sensor are
studied, the conditional probability density is derived tobe

p(lnPri
|Hj)P (Hj) =

1

A

∫

Wj

1

(2πσ2)1/2

· exp
(

−

(

lnPri
− ln( Pd0

d0+||xi−y||β )
)2

2σ2

)

dy. (5)



B. Posterior density with aggregated noisy measurements

In this setting each sensor is allowed to takek repeated
noisy measurements. Noise independence is assumed be-
tween sensors and between different samples times for each
sensor. Then defining

Pri
(k) =

k
∑

l=1

Pri
(l)

k
, (6)

the variance of the noise becomesσ2(k) = σ2

k . The condi-
tional probability in (5) then becomes

p(ln Pri
(k)|Hj)P (Hj) =

1

A

∫

Wj

1

(2πσ2(k))1/2

· exp
(

−

(

ln Pri
(k) − ln( Pd0

d0+||xi−y||β )
)2

2σ2(k)

)

dy,

and the joint conditional probability becomes:

p(ln Pr1
(k), . . . , ln PrN

(k)|Hi)P (Hi) =
1

A

∫

Wi

dy

N
∏

j=1

1

(2πσ2(k))1/2
exp

(

−

(

ln Prj
(k) − ln( Pd0

d0+||xj−y||β )
)2

2σ2(k)

)

.

Note that, ask → ∞, the noise variance approaches zero,
and the probability density approaches a delta function.

Remark II.2 Let δ be the Dirac delta function. In the
infinite measurement case,limk→∞ σ2(k) = 0, and the
probability density satisfies

p(ln Pri
|y)

= lim
k→∞

1

(2πσ(k)2)1/2
exp

(

−

(

ln Pri
− ln( Pd0

d0+||xi−y||β )
)2

2σ2(k)

)

= δ
(

ln Pri
− ln

Pd0

d0 + ‖xi − y‖β

)

. �

Remark II.3 In the sequel, for notational simplicity we will
treat the aggregated measurement case as if it were identical
to the single measurement case with the caveat that the
variance goes to zero. �

C. All-to-all information MAP estimation

In the all-to-all communication (A2A) case, full informa-
tion is available. Using the conditional probability in (4)
MAP selects the hypothesisHi∗ according to

i∗ = arg max
i

p(ln Pr1
, . . . , ln Prn

|Hi)P (Hi). (7)

Per Remark II.3, this selection scheme applies to both the
single and the aggregated measurement cases.

Before we proceed to deriving the results in the next
section, we introduce the definition of the Voronoi diagrams.

Definition II.4 (Voronoi Diagrams) Given N sensors lo-
cated at positions{x1, . . . , xN} ∈ C, we define the Voronoi
diagram associated with theith sensor, as follows

Vi = {x ∈ C : ‖x − xi‖ ≤ ‖x − xj‖,∀j 6= i}.

III. PRELIMINARY PROPERTIES OF REGIONAL
LOCALIZATION FOR ONE AND TWO SENSORS

In this section we derive certain geometric properties of
MAP estimation ask → ∞ in (6). These geometric
properties allow us to conclude the following two results.
First, for certain source locations, a single sensor suffices to
asymptotically detect the correct hypothesis. Second, forthe
asymptotic detection problem with two sensors, the selection
of Voronoi partitions as localization regions leads to exact
localization. These2 results should be viewed against the
fact that, even in the noise-free case, at least3 non-collinear
sensors are needed for exact localization. In this section we
conduct a large sample analysis to prove an interesting geo-
metric interpretation of the conditional probability densities.
This analysis recognizes that whenk → ∞ in (6), the
Gaussian density approaches a Dirac delta function. Before
we state the lemma that captures this property, we mention
a basic property of the Dirac delta function [9].

Lemma III.1 (On the Dirac delta function) If g : R → R

is differentiable and vanishes at positionsxγ , γ ∈ Γ, then

δ[g(x)] =
∑

γ∈Γ

δ(x − xγ)

|g′(xγ)| . (8)

In keeping with Remark II.3, consider the situation where

p(lnPri
|y ∈ Wj)P (y ∈ Wj)

=
1

A

∫

Wj

δ

(

lnPri
− ln

Pd0

d0 + ‖xi − y‖β

)

dy.

Define the circleC(r, xi) = {y ∈ R
2 | ‖y − xi‖ =

r} and denote its intersection with the regionWj by
S(Wj , r, xi) = C(r, xi)

⋂

Wj . Clearly, this intersection set
S(Wj , r, xi) is the union of certain arcs ofC(r, xi). Define
θ(Wj , r, xi) to be the sum of the angles subtended by these
arcs. CallHj = (y ∈ Wj). If we let y = [y1, y2]

T and define

f(y1, y2, Pri
) = lnPri

− lnPd0

+ ln(d0 + ((xi1 − y1)
2 + (xi2 − y2)

2)β/2),

then

p(ln Pri
|Hj)P (Hj) =

1

A

∫

Wj

δ(f(y1, y2, Pri
))dy2dy1.

We are now ready for the following lemma.

Lemma III.2 (The arc-length property) Given a region
Wj , the conditional probability density satisfies

p(lnPri
|y ∈ Wj)P (y ∈ Wj)

=
1

A

∫

Wj

δ
(

lnPri
− Pd0

d0 + ‖xi − y‖β

)

dy2dy1,

and, if we letri = ( P
Pri

− 1)β , then

p(lnPri
|y ∈ Wj)P (y ∈ Wj) =

d0 + rβ
i

Aβrβ−2
i

θ(Wj , ri, xi).

The proof of the lemma is given in the Appendix. This
lemma can be interpreted as follows. Asymptotically,Pri



directly provides the circle of radiusri centered onxi on
which the source lies.θ(Wj , ri, xi) is simply the angle
subtended by the intersection of this circle withWj . The
quantity p(ln Pri

|y ∈ Wj)P (y ∈ Wj) that is used in
MAP is proportional to this angle. We describe further the
significance of this result after Lemma III.3. In the following
lemma, we show that having Voronoi partitions as well as
the MAP estimation algorithm, make the probability of error
zero in the two sensors case.

Lemma III.3 (Optimality of Voronoi for 2 sensors)
Consider two pointsx1 and x2 in C ⊂ R

2. Let V1 and V2

be the Voronoi diagrams associated withx1 and x2. Take
s ∈ C and let r1 = ‖s − x1‖ and r2 = ‖s − x2‖. Then as
k in (6) tends to infinity, MAP localization algorithm finds
the region containings, with zero probability of error with
only two sensors.

s

s’

V1 V2

x1 x2

Fig. 1. This figure shows two nodesx1 andx2, with a sources ∈ V1.

Proof: The proof of this lemma follows the same
principle as the proof of Lemma III.2. We skip the details
for lack of space, but we point out the differences below.
In figure 1, the sources is indicated as one of the two
points of intersection of the red and green circle. The
term h defined in (14) becomesh(y1, Pr1

, x1, Pr2
, x2) =

∫

H(a,Wj)
δ (f(a, y2, Pr1

, x1)) · δ (f(a, y2, Pr2
, x2)) dy2, here

Pr1
and Pr2

are the received powers by the sensors. The
integrals are non zero only at the intersections of setsC1∪C′

1

andC2 ∪ C′
2 as defined in the appendix. The intersection of

these two sets, is the intersection of the circles in Figure
1. The definition of Voronoi (Def. II.4) implies in the two
sensors case that ifs′ ∈ C, thens ∈ V1 =⇒ s′ ∈ V1. In
fact s ∈ V1 =⇒ ‖x1 − s‖ ≤ ‖x2 − s‖ =⇒ ‖x1 − s′‖ ≤
‖x2 − s′‖ =⇒ s′ ∈ V1. The other case to consider is
s′ /∈ C. In this cases is the unique point of intersection of
the circles inC. Both waysh is non-zero only in the correct
region.
The two lemmas presented in this section have interesting
implications. Lemma III.2 implies that, for certain source
locations and as the noise becomes smaller, the MAP esti-
mation algorithm can determine the correct region containing
the source with only one sensor. That is true when the
circle centered at a sensor location with radiusri is included
in the regionWj . Lemma III.3 on the other hand, gives
one example where the selection of Voronoi partitions as
localization regions makes it possible to locate the source
with only two sensors. This would not have been the case
with two sensors with general convex regions.

In general, the noise will not be vanishing and the decision
needs to be made with a finite number of measurements.

We will prove in Section V that the algorithms presented in
Section IV below converge almost surely ask → ∞ in (6).

IV. D ECISION MAKING ALGORITHMS WITH ALL -TO-ALL
OR LIMITED INFORMATION

In this section we present two algorithms based on the
MAP estimation scheme. The regions can take any shape as
long as they are compact. In the limited communication case,
sensors can only talk to their neighbors. We assume there
is a communication graph that describes the information
exchange among robots. We consider two cases: the all-to-all
(A2A) communication case and the limited communication
case. In the A2A we adopt the complete undirected commu-
nication graph. In the limited communication case we make
the following degree assumption: each node has at least two
neighbors, i.e., each node appears in at least two edges.

A. All-to-all communication

In this subsection we present the all-to-
all communication algorithm (Algorithm #1),
where we apply the classical MAP estimation
described in Section II-C on the complete network.

Algorithm #1: All-to-all communication MAP

Network: nodes{1, . . . , N} with complete communication graph
State of sensori is wi := {ln Pri , xi, Wi}
Sensori executes

1: For all j ∈ {1, . . . , N} \ {i}
2: transmit statewi and receive statewj

3: calculateθj := p(ln Pr1
, . . . , ln PrN

|Hj)P (Hj)
4: find j∗ := arg maxj∈{1,...,N} θj

5: Return: decision j∗

Assumption IV.1 (A2A connectivity and noncollinearity)
We assume that the graph is complete. That is all nodes can
communicate with each other. We also assume that at least
three sensors in the graph are non-collinear.

B. Limited communication

The algorithm in this subsection has two major differ-
ences from the all-to-all communication algorithm. First,the
sensors deal with information coming from a different set
of sensors and a different number of sensors. Second each
sensor decides about its neighborhood and the complement
of the latter.

In the limited communication algorithm, each sensor ac-
quires data from its neighbors and calculates a joint condi-
tional density (4). Each sensor then applies MAP to choose
the most likely hypothesis. In Algorithm #2 each sensor adds
the hypothesis of the source being outside its neighborhood,
computes the corresponding conditional density and com-
pares it to the densities corresponding to neighboring regions.
Let Ni = {{j ∈ {1, . . . , N} | j is a neighbor ofi}∪{i}}
and letNi = |Ni| be its cardinality. We described the “source
outside neighborhood” hypothesis as hypothesis number0
(H0). We also definelnPrNi

to be the vector composed of
all measurementslnPri

wherei ∈ Ni. Finally, we mention
that given an eventHi = x ∈ Wi, the complement event is
defined byHi = x ∈ WC

i . Computing the density in the
complement of the neighborhood requires only the addition



of information about the total region. In fact by the total
probability theorem we note that

p(lnPrj
) = p(ln Prj

|y ∈ C)P (y ∈ C)

=
∑

i∈Nj

p(ln Prj
|Hi)P (Hi) + p(lnPrj

|
⋃

i∈Nj

Hi)P (
⋃

i∈Nj

Hi)

=⇒ p(ln Prj
|H0)P (H0) = p(lnPrj

|
⋃

i∈Nj

Hi)P (
⋃

i∈Nj

Hi)

= p(lnPrj |y∈C)P (y ∈ C) −
∑

i∈Nj

p(ln Prj
|Hi)P (Hi)

Algorithm #2: Limited communication MAP

Network: nodes{1, . . . , N} with arbitrary communication graph
State of sensori is wi := {ln Pri , xi, Wi}
Sensori executes

1: For all j ∈ Ni

2: transmit statewi and receive statewj

3: calculateθi,j := p(ln PrNi
|Hj)P (Hj)

4: calculateθi,0 = p(ln PrNi
| H0)P (H0)

5: find j∗ := arg maxi∈Ni ∪{0} θi,j

6: Return: decision j∗

Assumption IV.2 (Limited conn. and non-collinearity)
We assume that all nodes can communicate to their
neighbors. We also assume that at least three sensors are
non-collinear in each neighborhood.

V. CONVERGENCE OF ALGORITHMS

In this section we prove that the algorithms presented
above give the correct decisionw.p.1 with three or more non-
collinear sensors. In keeping with Remark II.3, we examine
(4) asσ → 0+. We start by stating the following result.
Lemma V.1 (Property of non-collinear sensors)For
d0 > 0 and β > 0, given a sources ∈ R

2 and three
non-collinear sensorsx1, x2 and x3 ∈ R

2, define the

function f : R
2 → R by f(z) =

∑3
i=1

(

ln d0+‖z−xi‖
β

d0+‖s−xi‖β

)2

.

The functionf(z) vanishes only if and only ifz = s.

Proof: In fact, it is easy to check that the sum is zero at
z = s. Uniqueness of this solution is verified by noting that
the sum of the square terms is zero only if all the summands
are zero. For that to be true one needs to findz = (x, y)
such that((x − xi1)

2 + (y − xi2)
2)β/2 = ((s1 − xi1)

2 +
(s2 − xi2)

2)β/2 .
= (r2

i )β/2, for i ∈ {1, 2, 3}. Expanding and
subtracting, we obtain

[

−2(x1 − x2) −2(y1 − y2)
−2(x1 − x3) −2(y1 − y3)

] [

x
y

]

=

[

(r2
1 − d2

1) − (r2
2 − d2

2)
(r2

3 − d2
3) − (r2

1 − d2
1)

]

, (9)

whered2
0 = x2 + y2, andd2

i = x2
i + y2

i . Equation (9) has a
unique solution if and only if the determinant of the matrix
is non zero, i.e., the three points are non-collinear.
In fact given non-collinearxi, i ∈ {1, . . . , N} with N ≥ 3,
a compact regionWj and a sources /∈ Wj , there always
exists

Dj = min
y∈Wj

‖s − y‖ = dist(Wj , s),

such thatDj > 0. Also for a compact regionsWj , there
existsUj > 0 such that

Uj ≥ max
y∈Wj ,i∈{1,...,N}

∣

∣

∣

∣

ln
d0 + ‖y − xi‖β

d0 + ‖s − xi‖β

∣

∣

∣

∣

. (10)

Because of the non-collinearity and the fact thatDj > 0,
there exists anLj > 0 such that

Lj ≤ min
y∈Wj

N
∑

i=1

(

ln
d0 + ‖y − xi‖β

d0 + ‖s − xi‖β

)2

. (11)

This follows from the lemma above (i.e., from the fact that
the sum has a unique global minimum ats). Define

ηj =

√

U2
j +

Lj

αN
− Uj , (12)

whereα > 1, then we have the following result.

Lemma V.2 ConsiderLj , Uj andηj as defined in(10), (11)
and (12). Suppose the sources is not in regionWj , and
|ni| ≤ ηj for all i ∈ {1, . . . , N}. Then

α − 1

α
Lj ≤ min

y∈Wj

N
∑

i=1

(

ln
d0 + ‖y − xi‖β

d0 + ‖s − xi‖β
+ ni

)2

. (13)

Proof: In fact, the sum in (13) satisfies:

N
∑

i=1

(

ln
d0 + ‖y − xi‖β

d0 + ‖s − xi‖β
+ ni

)2

=
N

∑

i=1

(

ln
d0 + ‖y − xi‖β

d0 + ‖s − xi‖β

)2

+ 2

N
∑

i=1

(

ln
d0 + ‖y − xi‖β

d0 + ‖s − xi‖β

)

ni +

N
∑

i=1

n2
i

≥ Lj − 2UjNηj − Nη2
j = Lj + 2U2

j N

− 2UjN

√

U2
j +

Lj

αN
− N(U2

j +
Lj

αN
) − NU2

j

+ 2NUj

√

U2
j +

Lj

αN
=

α − 1

α
Lj .

For simplicity of notation, we chooseα = 2 from here
on. Next, we introduce the final intermediate lemma before
the main results of this section.

Lemma V.3 (Upper bound for wrong hypothesis) Given
Lj , Uj and ηj as defined in(10), (11) and (12), define

Ij = p(lnPr1
, . . . , ln PrN

|Hj)P (Hj) =
1

A(2πσ2)N/2

·
∫

Wj

exp
(

−
∑N

i=1

(

lnPri
− ln Pd0

d0+‖y−xi‖β

)2

2σ2

)

dy.

If |ni| ≤ ηj for i ∈ {1, . . . , N}, then forj ∈ {1, . . . , N}

Ij ≤ Aj exp
(

− Lj/4σ2
)

A(2πσ2)N/2
.



Proof: Because of the equality

lnPri
− ln

Pd0

d0 + ‖y − xi‖β
= ln

d0 + ‖y − xi‖β

d0 + ‖s − xi‖β
+ ni,

the result directly follows from Lemma V.2 and from the fact
that the surface integral of a functionf is upper bounded by
the surface integral of a constant functiong, whereg takes
the maximum value off .

We are now ready for the convergence theorem. As usual,
we define theQ-function Q : R → R>0 by

Q(x) =
1√
2π

∫ +∞

x

exp(−y2/2)dy.

Theorem V.4 (Elimination property of wrong hypothesis)
Consider xi non-collinear sensors,i ∈ {1, . . . , N} with
N ≥ 3. Letσ be the noise variance. Given a sources /∈ Wj ,
then we have

Prob

[

p(lnPr1
, . . . , ln PrN

|Hj)P (Hj) ≤ ǫj(σ)

]

≥ µj(σ),

where

ǫj(σ) =
Aj exp(−Lj/4σ2)

A(2πσ2)N/2
, µj(σ) = (1 − 2Q(ηj/σ))N .

Furthermore, as σ → 0+, we have
ǫj(σ) → 0+ and µj(σ) → 1−.

Proof: From Lemmas V.2 and V.3 , we have that

Prob
[

p(lnPr1
, . . . , ln PrN

|Hj)P (Hj) ≤ ǫj(σ)
]

≥ Prob
[

[n1, . . . , nN ]T ∈ [−ηj , ηj ]
N

]

=

N
∏

i=1

(

1

2
− Prob[ni > ηj ] +

1

2
− Prob[ni < −ηj ]

)

=
(

1 − 2Q(ηj/σ)
)N

.

The first inequality comes from the fact that Lemmas V.2
and V.3 hold whenever all|ni| ≤ ηj . The proofs of the two
limits of ǫj andµj are immediate.
This theorem states that, asσ → 0+, the probability that the
joint density functionp(ln Pr1

, . . . , ln PrN
|Hj)P (Hj) takes

an arbitrarily small value goes arbitrarily close to1 whenHj

is not the correct hypothesis. This is so asQ(x) → 0 as
x → ∞. To complement the Theorem V.4, we prove below
that for thecorrect hypothesis, the probability density will
be lower bounded by a positive termw.p.1.

Theorem V.5 (Strict positivity for correct hypothesis)
Consider xi non-collinear sensors,i ∈ {1, . . . , N} with
N ≥ 3. Let σ be the noise variance. Ifs ∈ Wi, then we
have

Prob [p(ln Pr1
, . . . , ln PrN

|Hi)P (Hi) ≥ Ψ(σ)] ≥ Ω(σ),

where

Ψ(σ) = p(ln Pr1
, . . . , ln PrN

) −
∑

j=1,...,N
j 6=i

Aj exp(−Lj/4σ2)

A(2πσ2)N/2
,

Ω(σ) =
∏

j=1,...,N
j 6=i

µj(σ) =
∏

j=1,...,N
j 6=i

(1 − 2Q(ηj/σ))N .

Furthermore, as σ → 0+, we have
Ψ(σ) → p(lnPr1

, . . . , ln PrN
) > 0 and Ω(σ) → 1−.

Proof: The proof of this theorem follows directly
from Theorem V.4 and the total probability theorem. Call
z = [ln Pr1

, . . . , ln PrN
]T . We know from the total proba-

bility theorem that

p(z) =

N
∑

j=1

p(z|Hj)P (Hj)

= p(z|Hi)P (Hi) +
∑

j=1,...,N
j 6=i

p(z|Hj)P (Hj)

and, in turn, that

p(z|Hi)P (Hi) = p(z) −
∑

j=1,...,N
j 6=i

p(z|Hj)P (Hj).

From Theorem V.4

Prob









p(z|Hi)P (Hi) ≥ p(z) −
∑

j=1,...,N
j 6=i

ǫj(σ)









≥
∏

j=1,...,N
j 6=i

Prob

[

p(z|Hj)P (Hj) ≤ ǫj(σ)

]

≥
∏

j=1,...,N
j 6=i

µj(σ)

As σ → 0+, Ψ(σ) → p(z) andΩ(σ) → 1−.
Theorem V.5 complements Theorem V.4 in that is shows
that asσ → 0+, the probability density conditioned on the
correct hypothesis is lower bounded by a strictly positive
term. This event happens asymptotically with probability1.

Under Assumption IV.1, as MAP follows (7), Theo-
rems V.5 and V.4 complete the proof ofa.s convergence of
the all-to-all communication MAP algorithm. Similarly for
the limited communication, under Assumption IV.2, MAP
estimation converges almost surely when applied to regional
localization.

VI. SIMULATIONS

In this section we show simulation results illustrating the
type of decision obtained by our algorithms. We also show
a comparison plot between the all-to-all and the limited
information algorithms. The plot in Figure 2 shows a correct
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Fig. 2. This figure shows the all-to-all communication algorithm with 25 sensors
and one source whose region was correctly detected.



detection of the source. The shaded region corresponds to
the one detected by the algorithm, the source is shown as a
star and the sensors as the dots. Figure 3 shows the results
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Fig. 3. This figure shows the probability of correct decision making of the all-to-all
and limited communication cases over1000 runs, with20 sensors. The stand alone
dotted blue curve corresponds to the A2A communication algorithm, and the curves
bunched up together in solid black correspond to the limited communication algorithm.

obtained from batches of1000 runs, withN = 20 sensors.
The plots are obtained as follows: Ifdj is the index of the
region chosen by sensorj, we compare it to the correct
index d∗. An error is counted whenever the two indices
are not equal. In the all-to-all communication algorithm,
dj = d is the same for allj ∈ {1, . . . , N}. In the limited
communication case, a decisiondj is made about the sensors
in the neighborhood of sensorj, and an additional region
containing the remaining part of the fieldC is added to the
localization regions being tested.dj is compared tod∗ to
check if the correct decision was made. An error is counted
every time sensorj gives a wrong decision over the1000
runs. Errors are counted for each sensor separately. The
curves that are in solid black and bunched up together in
Figure 3, represent the limited communication decisions.
The stand alone dotted blue curve represents the all-to-all
communication decision. Figure 3 shows the probability of
making a correct decision asσ increases. It is not surprising
that as the noise variance increases the probability of correct
decision making decreases, but it is interesting to see that
as the noise becomes larger, an algorithm where sensors
communicate to their neighbors only performs better than
an all to all communication algorithm. One interpretation is
that in the limited communication case a decision is made
about closer regions than in the other case.

VII. C ONCLUSION

In this paper we have presented an all-to-all and a limited
communication algorithm based on MAP that succeed in
identifying a region that contains a source. We have also
presented an asymptotic analysis and derived some geomet-
ric properties of our algorithms. Those properties had the
implication that for certain source positions, it is possible to
solve the regional localization problem with a unique sensor.
We showed that choosing Voronoi partitions for localization
regions asymptotically achieves zero probability of error
in the two sensors case. We were also able to prove that
when readings from three or more non-collinear sensors are
available, the algorithms choose the correct region almost
surely. As an extension to this work we are studying how to
optimally position the sensors, and choose the localization

regions, so that we minimize the probability of error of our
algorithms.
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APPENDIX

Proof: [Proof of Lemma III.2] Let

H(a,Wj) = (y2 ∈ R such that giveny1 = a, [a, y2] ∈ Wj)

h(y1, Pri
, xi) =

∫

H(a,Wj)

δ

(

lnPri
− ln

Pd0

d0 + ‖xi − y‖β

)

dy2

=

∫

H(a,Wj)

δ (f(a, y2, Pri
, xi)) dy2. (14)

Since

d

dy2
f(y1, y2, Pri

, xi) = f ′(y1, y2, Pri
, xi)

=
β

2
·2·(−1)·(xi2−y2)

(

(xi1 − y1)
2 + (xi2 − y2)

2
)

β
2
−1

d0 + ((xi1 − y1)2 + (xi2 − y2)2)
β
2

If we fix y1 = a, we can solve fory2(a) such that,
f(a, y2(a), Pri

, xi) = 0. In fact

f(a, y2(a), Pri
, xi) = 0

⇔ lnPri
− ln

Pd0

d0 + ((xi1 − a)2 + (xi2 − y2(a))2)
β
2

= 0

⇔ (xi1 − a)2 + (xi2 − y2(a))2 =

(

P − Pri

Pri

d0

)
2

β

= r2
i ,

(15)

whereri =
(

( P
Pri

− 1)d0

)
1

β

. ObserveH(a,Wj) has at most
two elements satisfying equation (15), one or both of:

y2,1(a) = xi2 −
√

r2
i − (xi1 − a)2 (16)



or,

y2,2(a) = xi2 +
√

r2
i − (xi1 − a)2, (17)

wheneverr2
i ≥ (xi1 − a)2. Using property (8) of the dirac

delta function, and substituting withy2,1(a) and y2,2(a)
obtained in (16) and (17), (14) becomes:

h(a, Pri
, xi) =

∫

H(a,j)

δ(f(a, y2, Pri
), xi)dy2,

takes the values


































∫

H(a,Wj)
δ(y2−y21(a))

|f ′(a,y2,Pri
,xi)|

dy2

if y2,1(a) ∈ H(a,Wj) but y2,2(a) /∈ H(a,Wj)
∫

H(a,Wj)
δ(y−y2,2(a))

|f ′(a,y2,Pri
,xi)|

dy2

if y2,2(a) ∈ H(a,Wj) but y21(a) /∈ H(a,Wj)
∫

H(a,Wj)
δ(y2−y2,1(a))

|f ′(a,y2,Pri
,xi)|

+
δ(y2−y2,2(a))

|f ′(a,y2,Pri
,xi)|

dy2

if both y2,1(a) andy2,2(a) ∈ H(a,Wj)

DefineI1(a,Wj), the indicator function satisfying

I1(a,Wj) =

{

1 if y2,1(a) ∈ H(a,Wj)
0 otherwise

Similarly defineI2(a,Wj), the indicator function satisfying

I2(a,Wj) =

{

1 if y2,2(a) ∈ H(a,Wj)
0 otherwise

Then, (14) becomes

h(a, Pri
, xi) =

1

|f ′(a, y2,1(a), Pri
, xi)|

I1(a,Wj)

+
1

|f ′(a, y2,2(a), Pri
, xi)|

I2(a,Wj).

By substituting from (16), we get

1

|f ′(a, y2(a), Pri
, xi)|

=
d0 +

(

(xi1 − a)2 + r2
i − (xi1 − a)2

)
β
2

β
√

r2
i − (xi1 − a)2 ((xi1 − a)2 + r2

i − (xi1 − a)2)
β
2
−1

=
d0 + rβ

i

β
√

r2
i − (xi1 − a)2

1

rβ−2
i

=
d0 + rβ

i

βrβ−2
i

· 1
√

r2
i − (xi1 − a)2

Let Cj = {x ∈ R such that(x, y2,1(x)) ∈ Wj} and C′
j =

{x ∈ R such that(x, y2,2(x)) ∈ Wj}. Note that

x ∈ Cj ⇒ I1(x,Wj) = 1 andx ∈ C′
j ⇒ I2(x,Wj) = 1.

Then,

p(lnPri
|y ∈ Wj)P (y ∈ Wj) =

1

A

∫

Cj

S

C′
j

h(y1, Pri
, xi)dy1

=
1

A

(∫

Cj

h(y1, Pri
, xi)dy1 +

∫

C′
j

h(y1, Pri
, xi)dy1

)

=
1

A

∫

Cj

1

|f ′(y1, y2,1(y1), Pri
, xi)|

dy1

+
1

A

∫

C′
j

1

|f ′(y1, y2,2(y1), Pri
, xi)|

dy1. (18)

Write

Cj =

s
⋃

α=1

Aα , with
⋂

α

Aα = ∅ , andAα = [a1α
, a2α

],

(19)

C′
j =

s′

⋃

α=1

A′
α , with

⋂

α

A′
α = ∅ , andA′

α = [a′
1α

, a′
2α

].

(20)

Equation (18) can then be written as the sum

A · p(lnPri
|y ∈ Wj)P (y ∈ Wj) =

s
∑

α=1

∫

Aα

1

|f ′(y1, y2,1(y1), Pri
, xi)|

dy1

+

s′

∑

α=1

∫

A′
α

1

|f ′(y1, y2,2(y1), Pri
, xi)|

y1.

=

s
∑

α=1

∫ a1α

a2α

1

|f ′(y1, y2,1(y1), Pri
, xi)|

dy1

+
s′

∑

α=1

∫ a′
2α

a′
1α

1

|f ′(y1, y2,2(y1), Pri
, xi)|

dy1,

=

s
∑

α=1

∫ a1α

a2α

d0 + rβ
i

βrβ−2
i

· 1
√

r2
i − (xi1 − y1)2

dy1

+

s′

∑

α=1

∫ a′
1α

a′
2α

d0 + rβ
i

βrβ−2
i

· 1
√

r2
i − (xi1 − y1)2

dy1

=

s
∑

α=1

d0 + rβ
i

βrβ−2
i

· arctan
xi1 − a

√

r2
i − (xi1 − y1)2

|a2α
a1α

+

s′

∑

α=1

d0 + rβ
i

βrβ−2
i

· arctan
xi1 − y1

√

r2
i − (xi1 − y1)2

|a
′
2α

a′
1α

Note that [10]

arctan
xi1 − a

√

r2
i − (xi1 − a)2

= arctan
xi1 − a

√

(xi1 − a)2 + (xi2 − y2(a))2 − (xi1 − a)2

= arctan
xi1 − a

xi2 − y2(a)
=

π

2
− arctan

xi2 − y2(a)

xi1 − a
.

The conditional probability density becomes after simplifi-
cations,

p(lnPri
|y ∈ Wj)P (y ∈ Wj) =

d0 + rβ
i

Aβrβ−2
·

s
∑

α=1
(

π

2
− arctan

xi2 − y2(a2α
)

xi1 − a2α

− π

2
+ arctan

xi2 − y2(a1α
)

xi1 − a1α

)

+
d0 + rβ

i

Aβrβ−2
i

s′

∑

α=1

(

π

2
− arctan

xi2 − y2(a
′
2α

)

xi1 − a′
2α

− π

2

+arctan
xi2 − y2(a

′
1α

)

xi1 − a′
1α

)

=
d0 + rβ

i

Aβrβ−2
i





s
∑

α=1

θα +

s′

∑

α=1

θ′α



 ,

whereθα andθ′α are the angles of the arcs inS(Wj , ri, xi)
described on distinct supports as in (19) and (20) when
applicable.


