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Abstract—Consider an equal number of mobile robotic agents
and distinct target locations dispersed in an environment. Each
agent has a limited communication range and either (1) knowl-
edge of every target position, or (2) a finite-range sensor capable
of acquiring target positions and no a priori knowledge of target
positions. In this paper we study the following target assignment
problem: design a distributed algorithm with which the agents
divide the targets among themselves and, simultaneously, move
to their unique target. We evaluate an algorithm’s performance
by characterizing its worst-case asymptotic time to complete
the target assignment; that is the task completion time as the
number of agents (and targets) increases, and the size of the
environment scales to accommodate them. We introduce the
intuitive class of monotonic algorithms, and give a lower bound
on its worst-case completion time. We design and analyze two
algorithms within this class: the ETSP ASSGMT algorithm which
works under assumption (1), and the GRID ASSGMT algorithm
which works under either assumption (1) or (2). In “sparse
environments,” where communication is infrequent, the ETSP
ASSGMT algorithm is within a constant factor of the optimal
monotonic algorithm for worst-case initial conditions. In “dense
environments,” where communication is more prevalent, the
GRID ASSGMT algorithm is within a constant factor of the
optimal monotonic algorithm for worst-case initial conditions. In
addition we characterize the performance of the GRID ASSGMT
algorithm for uniformly distributed targets and agents, and for
the case when there are more agents than targets.

Index Terms—Target assignment, task allocation, distributed
algorithms, asymptotic performance, optimization.

I. INTRODUCTION

CONSIDER a group of n mobile robotic agents, equipped
with wireless transceivers for limited range communica-

tion, dispersed in an environment E ⊂ R2 which contains
n target locations. In addition, consider two scenarios: (1)
each agent is given a list containing all target positions (the
positions may be given as GPS coordinates); or (2) each agent
has no initial target information, but has a finite-range target
sensor to acquire target positions. The task is for the agents to
divide the targets among themselves so that in minimum time,
each target location is occupied by an agent. Since no a priori
assignment of target-agent pairs has been given, the agents
must solve the problem through communication and motion.
We call this the target assignment problem. This problem has
many applications in UAV surveillance and exploration, or
mobile sensor networks. The first scenario could arise when
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a high-altitude, sensory-rich aircraft communicates a large
number of target positions to a correspondingly large group
of smaller, slower, autonomous aircraft at lower altitudes. The
second (local sensing) scenario could arise in exploration tasks
where a group of UAVs are sent into a region to find, and
provide service to, spatially distributed tasks.

The centralized problem of simply assigning one agent
to each target is known in the combinatorial optimization
literature as the maximum matching problem [3]. To efficiently
assign agents to targets, we may be interested in finding a
maximum matching (i.e., an assignment of one agent to each
target) that minimizes a cost function. If the cost function is
the sum of distances from each agent to its assigned target,
then the problem is known as the sum assignment problem, or
the minimum weight maximum matching problem, [3]. Another
choice of cost function is to minimize the maximum distance
between agents and their assigned targets. This problem is
commonly referred to as the bottleneck assignment prob-
lem [4]. There exist efficient polynomial time algorithms for
the solution of all these problems [5], [6], [4]. Additionally, the
sum assignment problem can be solved in a parallel fashion
via the auction algorithm [7]. However, these solutions do
not directly apply to our problem where, due to the agents’
limited communication range, the communication topology is
time-varying, and possibly disconnected.

The class of problems commonly referred to as decentral-
ized task allocation for UAVs (or UGVs), is closely related to
our target assignment problem. In these problems the goal is
generally to assign vehicles to spatially distributed tasks while
maximizing the “score” of the mission. In [8] a taxonomy
of task allocation problems is given, dividing problems into
groups based on, among other things, the number of tasks a
robot can execute, and the number of robots required for a
task. In papers such as [9]–[11], advanced heuristic methods
are developed, and their effectiveness is demonstrated through
simulation or real world implementation. In [12] the auction
algorithm is adapted to solve a task allocation problem in
the presence of communication delays. In [13] the authors
study the problem of dynamically reassigning agents as new
tasks arrive and old tasks expire. There has also been prior
work on target assignment problems [14], [15]. In [14] the
authors formulate a target assignment problem as a multi-
player game and seek to optimize a global utility. In [15]
an algorithm based on hybrid systems tools is developed and
its performance is characterized by a bound on the number
of switches of the hybrid system. Unlike the prior work, in
this paper we study the scalability properties of the minimum-
time target assignment problem. We assume that each agent
has limited communication capabilities and either (1) full
target knowledge (i.e., each agent knows the position of
every target), or (2) local target sensing (i.e., each agent has
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a finite-range target sensor to acquire target positions). We
focus on characterizing the completion time as the number of
agents n grows, and the square environment E(n) grows to
accommodate them.1

The contributions of this paper are: a novel and concise
statement of the minimum-time target assignment problem
for robotic networks; a broad class of distributed algorithms
for solving this problem; lower bounds on the worst-case
performance achievable by any algorithm in this class; and
algorithms which perform within a constant factor of the opti-
mal monotonic algorithm for worst-case initial conditions. In
Section IV-A we introduce the class of monotonic algorithms,
which provides an intuitive approach for solving the target
assignment problem. We show that in “sparse environments,”
that is when |E(n)|/n → +∞, for every monotonic algorithm
there exists a (worst-case) set of initial target and agent
positions such that the completion time is in Ω(

√
|E(n)|n).2

In “dense environments,” that is when |E(n)|/n → 0+, every
algorithm in the class has worst-case completion time in
Ω(|E(n)|). In Section V, we assume full target knowledge
and present a monotonic algorithm, called the ETSP ASSGMT
algorithm, with worst-case completion time in O(

√
|E(n)|n).

In this algorithm, each agent computes an ETSP tour through
the n targets, turning the cloud of target points into an
ordered ring. Agents then move along the ring, looking for
the next available target. When agents communicate, they
exchange information on the location of the next available
target along the ring. Then, in Section VI we present a mono-
tonic algorithm, called the GRID ASSGMT algorithm, which
operates under either the full target knowledge assumption,
or the local target sensing assumption as long as the sensing
range is at least

√
2/5 times the communication range. Under

either assumption, the GRID ASSGMT algorithm has worst-
case completion time in O(|E(n)|). In this algorithm, the
agents partition the environment into cells, and determine local
maximum assignments in the cell which they occupy. A leader
is elected in each cell, and through communication between
leaders of adjacent cells, local assignments are merged into
a global and complete assignment. These two algorithms
are complementary in terms of worst-case performance: in
“sparse environments,” the ETSP ASSGMT algorithm is within
a constant factor of the optimal monotonic algorithm, and is
“dense environments,” the GRID ASSGMT algorithm is within
a constant factor of the optimal monotonic algorithm.

We also characterize the stochastic properties of the GRID
ASSGMT algorithm in “dense environments.” If the agents and
targets are uniformly distributed, then the completion time
belongs to O(

√
|E(n)|) with high probability. Additionally,

if there are n agents and only n/ log n targets, then the
completion time belongs to O(1) with high probability. In
Section VIII we discuss extensions of the ETSP ASSGMT and

1The size of the environment E is a function of n, and thus we write E(n). If
the environment size were independent of n, then the density of robots would
become arbitrarily large as the task size n became large, which is not realistic.
Thus, either the environment should grow with n (as is assumed here), or the
robot’s attributes should shrink with n (as discussed in Section VIII-C).

2|E(n)| denotes the area of E(n), and Ω(·) is the asymptotic notation for
lower bounds as reviewed in Section II.

GRID ASSGMT algorithms to higher dimensional spaces and
to the case of n agents and m targets, n 6= m.

II. COMBINATORIC, GEOMETRIC AND STOCHASTIC
PRELIMINARIES

In this section we review a few useful results on the cen-
tralized matching problem, the Euclidean traveling salesperson
problem, occupancy problems, and random geometric graphs.
We let R, R≥0 and N denote the set of real numbers, the
set of non-negative real numbers, and the set of positive
integers, respectively. Given a finite set A, we let |A| denote
its cardinality, and given an infinite set A ⊂ R2 we let |A|
denote its area. For two functions f, g : N → R>0, we
write f(n) ∈ O(g) (respectively, f(n) ∈ Ω(g)) if there exist
N ∈ N and c ∈ R>0 such that f(n) ≤ cg(n) for all n ≥ N
(respectively, f(n) ≥ cg(n) for all n ≥ N ). If f(n) ∈ O(g)
and f(n) ∈ Ω(g), then we say f(n) ∈ Θ(g). We say that event
A(n) occurs with high probability (w.h.p.) if the probability
of A(n) occurring tends to one as n → +∞.

A. Centralized Matching

Consider n persons and the problem of dividing them among
n tasks. For each person i, there is a nonempty set Q[i] of tasks
that i can be assigned to, and cost cij ≥ 0 associated to each
task j ∈ Q[i]. An assignment or matching M is a set of person-
task pairs (i, j) such that j ∈ Q[i] for all (i, j) ∈ M , and such
that for each person i (likewise, task j) there is at most one
pair (i, j) ∈ M . The matching M is a maximum matching
if for every matching M̃ , we have |M̃ | ≤ |M |. If |M | = n,
then the matching is complete. The matching M is maximal
if there does not exist a matching M̃ , such that M̃ is a strict
superset of M . There are several polynomial time algorithms
for determining a maximum matching. Weighted maximum
matching problems are those of finding the maximum match-
ing M that minimizes a cost function. Two common cost
functions, for which polynomial time solvers exist [3], are
the sum,

∑
(i,j)∈M cij , or the bottleneck max(i,j)∈M cij .

In this paper we will require a standard algorithm, called
MAXIMAL MATCH, for computing a maximal matching. The
algorithm chooses the person-task pair with lowest cost, adds
it to the matching, removes the person and task from the
problem, and repeats. In the case when each person can be
assigned to any of the n tasks (i.e., for each person i, the
set Q[i] contains all n tasks), this algorithm determines a
complete, and thus maximum, matching.

MAXIMAL MATCH, outputs a maximal matching M

Initialize M := ∅, and Ii := {1, . . . , n}.1

while there exists an i ∈ Ii with |Q[i]| 6= 0 do2

Compute the indices (i∗, j∗) := arg mini∈Ii,j∈Q[i] cij3

Set M := M ∪ (i∗, j∗), Ii := Ii \ {i∗}, and for each4

i ∈ Ii, Q[i] := Q[i] \ {j∗}

B. The Euclidean Traveling Salesperson Problem

For a set Q of n points in R2, let ETSP(Q) denote the
length of the shortest closed path through all points in Q. The
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following result characterizes the length of this path when Q ⊂
E(n), where (for consistency with the remainder of this paper)
E(n) is a square environment that is compact for each n.

Theorem 2.1 (ETSP tour length, [16]): If Q is a set of n
points in E(n), then ETSP(Q) ∈ O(

√
n|E(n)|).

The problem of computing an optimal ETSP tour is known
to be NP-complete. However, there exist polynomial time
approximation schemes. For example, it is shown in [17] that
a tour no longer than (1 + ε) times the shortest one can be
found in n(log n)O(1/ε) computation time.

C. Occupancy Problems

Occupancy problems, or “bins and balls” problems, are
concerned with randomly distributing m balls into n equally
sized bins. The following results will be useful in our analysis.

Theorem 2.2 (Bins and balls properties, [18], [19]):
Consider uniformly randomly distributing m balls into n
bins and let γ be any function such that γ(n) → +∞ as
n → +∞. The following statements hold:

(i) if m = n, then w.h.p. each bin contains at most
O
(

log n
log log n

)
balls;

(ii) if m = n log n+γ(n)n, then w.h.p. there exist no empty
bins;

(iii) if m = n log n−γ(n)n, then w.h.p. there exists an empty
bin;

(iv) if m = Kn log n, where K > 1/ log(4/e), then w.h.p.
every bin contains Θ(log n) balls.

We will be interested in partitioning a square environment
into equally sized and openly disjoint square bins such that
the area of each bin is “small.” To do this, we require the
following simple fact.

Lemma 2.3 (Dividing the environment): Given n ∈ N and
rcomm > 0, consider a square environment E(n). If E(n) is
partitioned into b2 equally sized and openly disjoint square
bins, where

b :=

⌈√
5|E(n)|
rcomm

⌉
, (1)

then the area of each bin is no more than r2
comm/5. Moreover,

if x, y ∈ E(n) are in the same bin or in adjacent bins, then
‖x− y‖ ≤ rcomm.

D. Random Geometric Graphs

For n ∈ N and rcomm ∈ R>0, a planar geometric graph
G(n, rcomm) consists of n vertices in R2, and undirected edges
connecting all vertex pairs {x, y} with ‖x− y‖ ≤ rcomm. We
also refer to this as the rcomm-geometric graph. If the vertices
are randomly distributed in some subset of R2, then we call
the graph a random geometric graph.

Theorem 2.4 (Connectivity of geometric graphs, [20]):
Consider the random geometric graph G(n, rcomm) obtained
by uniformly randomly distributing n points in the square
environment E(n) with

πr2
comm

|E(n)|
=

log n + γ(n)
n

.

Then G(n, rcomm) is connected w.h.p. if and only if γ(n) →
+∞ as n → +∞.

This theorem will be important for understanding some
of our results, as it provides a bound on the environment
size necessary for the communication graph of n randomly
deployed agents to be asymptotically connected.

III. NETWORK MODEL AND PROBLEM STATEMENT

In this section we formalize our agent and target models
and define the sparse and dense environments.

A. Robotic Network Model

Consider n agents in an environment E(n) := [0, `(n)]2 ⊂
R2, where `(n) > 0 (that is, E(n) is a square with side length
`(n)). The environment E(n) is compact for each n but its
size depends on n. A robotic agent, A[i], i ∈ I := {1, . . . , n},
is described by the tuple

A[i] := {UID[i],p[i], rcomm, rsenseu[i],M [i]},

where the quantities are as follows: Its unique identifier (UID)
is UID[i], taken from the set IUID ⊂ N. Note that each agent
does not know the set of UIDs being used and thus does not
initially know the magnitude of its UID relative to those of
other agents. Its position is p[i] ∈ E(n). Its communication
range is rcomm > 0, i.e., two agents, A[i] and A[k], i, k ∈ I,
can communicate if and only if ‖p[i]−p[k]‖ ≤ rcomm. Its target
sensing range is rsense. With this sensor agent i can determine
the relative position of targets within distance rsense of p[i].
Its continuous time velocity input is u[i], corresponding to the
kinematic model ṗ[i] = u[i], where ‖u[i]‖ ≤ vmax for some
vmax > 0. Finally, its memory is M [i] and is of cardinality
(size) |M [i]|. From now on, we simply refer to agent A[i] as
agent i.

The agents move in continuous time and communicate
according to a synchronous discrete time schedule consisting
of an increasing sequence {tk}k∈N of time instants with no
accumulation points. We assume |tk+1 − tk| ≤ tmax, for all
k ∈ N, where tmax ∈ R>0. We also assume that the time
between communication rounds tmax is much smaller than
rcomm/vmax, the amount of time taken to travel the distance
rcomm. At each communication round, agents can exchange
messages of length O(log n).3 Communication round k occurs
at time tk, and all messages are sent and received instan-
taneously at tk. Motion then occurs from tk until tk+1. It
should be noted that in this setup we are emphasizing the
time complexity due to the motion of the agents.

B. The Target Assignment Problem

Let Q := {q1, . . . ,qn} ⊂ E(n) be a set of distinct target
locations. In this paper we make one of two assumptions:
Full target knowledge: Each agent knows the position of
every target. Thus, agent i’s memory, M [i], contains a copy
of Q, which we denote Q[i]. To store Q[i] the size of each
agents’ memory, |M [i]|, must be in Ω(n).

3The number of bits required to represent an ID, unique among n agents,
is directly proportional to the logarithm of n.
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Local target sensing: Each agent has no initial target infor-
mation (i.e., Q[i] = ∅), but can acquire target positions through
its target sensor of range rsense.

Our goal is to solve the target assignment problem:
Determine an algorithm for n ∈ N agents, with at-
tributes as described above, satisfying the following
requirement; there exists a time T ≥ 0 such that for
each target qj ∈ Q, there is a unique agent i ∈ I,
with p[i](t) = qj for all t ≥ T .

If the task begins at time t = 0, then the completion time
of the target assignment task is the minimum T ≥ 0, such
that for each qj ∈ Q, there is a unique i ∈ I, with
p[i](t) = qj for all t ≥ T . In this paper we seek algorithms
that minimize this completion time. Note that in the local target
sensing assumption the agents have less target information
than in the full target knowledge assumption. Because of
this, an algorithm’s performance under the local target sensing
assumption can be no better than its performance under the
full target knowledge assumption.

Remark 3.1 (Consistent target knowledge): Another possi-
ble assumption on the target sets, Q[i], which still ensures
the existence of a complete matching, is the consistent target
knowledge assumption: For each K ⊆ I,

∣∣∪k∈KQ[k]
∣∣ ≥ |K|.

In fact, it was proved by Frobenius in 1917 and by Hall in
1935 that this is the necessary and sufficient condition for the
existence of a complete matching [3]. •

C. Sparse, Dense, and Critical Environments

We wish to study the scalability of a particular approach
to the target assignment problem; that is, how the completion
time increases as we increase the number of agents, n. The
velocity vmax and communication range rcomm of each agent
are independent of n. However, we assume that the size of
the environment increases with n in order to accommodate
an increase in agents. Borrowing terms from the random
geometric graph literature [20], we say that the environment is
sparse if, as we increase the number of agents, the environment
grows quickly enough that the density of agents (as measured
by the sum of their communication footprints) decreases; we
say the environment is critical, if the density is constant,
and we say the environment is dense if the density increases.
Formally, we have the following definition.

Definition 3.2 (Dense, critical and sparse environments):
The environment E(n) is

(i) sparse if |E(n)|/n → +∞ as n → +∞;
(ii) critical if |E(n)|/n → const ∈ R>0 as n → +∞;

(iii) dense if |E(n)|/n → 0+, as n → +∞.
It should be emphasized that a dense environment does

not imply that the communication graph between agents is
dense. On the contrary, from Theorem 2.4 we see that the
communication graph at random agent positions in a dense
environment may not even be connected.

IV. CLASSES OF ALGORITHMS

In this section we introduce a class of algorithms for the
target assignment problem that provides the structure for algo-
rithms developed in this paper. We will provide a lower bound

on the classes performance using the full target knowledge
assumption. Necessarily this also provides a lower bound for
the problem using the local target sensing assumption.

A. Monotonic Algorithms

We introduce a class of algorithms which provides an
intuitive approach to target assignment.

Definition 4.1 (Monotonic algorithms): A target assign-
ment algorithm is monotonic if it is deterministic and has the
following property: If a subset of agents J ⊂ I are all located
at target qj at time t1 (i.e., p[i](t1) = qj , ∀ i ∈ J ), then at
least one agent in J remains located at qj for all t > t1 (i.e.,
∃ i ∈ J such that p[i](t) = qj , ∀ t > t1).
We call these algorithms “monotonic” since occupied targets
remain occupied for all time, and thus the number of occupied
targets monotonically increases throughout the execution. We
focus on monotonic algorithms for two reasons: First, mono-
tonicity is a natural constraint for target assignment problems
since in many scenarios the agents will begin servicing a target
immediately upon arriving at its location—in non-monotonic
algorithms, service will be halted as agents leave their tar-
gets. Second, monotonic algorithms provide a broad class of
algorithms for which rigorous analysis remains tractable.

We are now ready to lower bound the worst-case asymptotic
completion time of the target assignment problem for any
monotonic algorithm. This bound holds under both the full
target knowledge and local target sensing assumptions.

Theorem 4.2 (Time complexity of target assignment):
Consider n agents, with communication range rcomm > 0,
and n targets in E(n). For all monotonic algorithms the
worst-case completion time of the target assignment problem
is lower bounded as follows:

(i) if E(n) is sparse, then the completion time is in
Ω(
√

n|E(n)|);
(ii) if E(n) is critical, then the completion time is in Ω(n);

(iii) if E(n) is dense, then the completion time is in
Ω(|E(n)|).

Proof: The proof proceeds by constructing a set of agent
and target positions such that the lower bound is achieved. To
do this, we place the targets in E(n) such that the rcomm-
geometric graph, generated by the target positions, has a
maximum number of disconnected components. Next we place
agents 2, . . . , n so that they occupy targets q2, . . . ,qn. We
then place agent 1 in E(n) \Q. If the agents run a monotonic
algorithm to solve the target assignment problem, then agents
2, . . . , n will not move, and thus the assignment will not be
complete until agent 1 reaches target q1. In the best case,
when agent 1 comes within distance rcomm of a connected
component, it immediately determines whether or not there
is a free target in that component (i.e., whether or not q1

is in that component). However, agent 1 will not receive
information about the availability of any targets outside of that
component. So, agent 1 must come within distance rcomm of
the connected component containing q1, before the assignment
can be completed. Since the algorithm is deterministic, we
can place the targets, and agents such that the connected
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√√√√√|E(n)|
P

rcomm

rcomm √
|E(n)|

(a) Partitioning E(n) to construct tar-
get positions that generate an rcomm-
geometric graph with a maximum
number of disconnected components.

rcomm

ε/4> 2rcomm + 3
4ε

(b) The ε/4-disk located at the center
of one of the squares in the partition.
Targets are shown in the disk, along
with a lower bound on side-length.

Fig. 1. Partitioning the environment E(n) for the proof of Theorem 4.2.

component containing q1 is the last connected component that
agent 1 will visit.

To create the maximum number of disconnected compo-
nents, we partition the environment, E(n) into P equally sized,
and openly disjoint squares, as shown in Fig. 1(a). We consider
two cases, based on whether or not there exists an ε > 0 such
that |E(n)| ≥ (2rcomm + ε)2n.

Case 1: [there exists ε > 0 such that |E(n)| ≥ (2rcomm +
ε)2n] In this case we set P := d

√
ne2 and place a target at the

center of each square until there are no targets remaining. The
area of each square is given by |E(n)|/P , and thus the distance
between any two targets is lower bounded by

√
|E(n)|/P ≥√

(2rcomm + ε)2n/d
√

ne2, which for sufficiently large n, is
greater than 2rcomm. Thus, we have created n disconnected
components, as depicted in Fig. 1(a). The distance between
rcomm-disks centered at any two targets is lower bounded by√
|E(n)|/d

√
ne2 − 2rcomm, and we can place the agents and

targets such that one agent must travel this distance n − 1
times. Thus, the worst-case travel distance is at least

(n− 1)

(√
|E(n)|
d
√

ne2
− 2rcomm

)
∈ Ω(

√
|E(n)|n).

Since the robots travel at constant speed, the completion time
is also in Ω(

√
|E(n)|n).

Case 2: [for every ε > 0, |E(n)| < (2rcomm + ε)2n] In this
case we fix any ε > 0 and set

P :=

⌈√
|E(n)|

(2rcomm + ε)2

⌉2

.

We define a disk of radius ε/4 at the center of each of the P
squares. We then place dn/P e targets in each ε/4-disk, until
there are no targets remaining, as shown in Fig. 1(b). Note
that for any α ∈ ]0, 1[, we can find N ∈ N such that

P <
|E(n)|

(2rcomm + αε)2
, for all n ≥ N.

Letting α = 3/4, we find that for large n, the distance between

the centers of any two squares is lower bounded by
√

|E(n)|
P ≥

2rcomm +3ε/4, as shown in Fig. 1(b). So, the distance between
any two ε/4-disks is lower bounded by 2rcomm + ε/4. Thus,

we have created Ω(P ) disconnected components. The distance
between rcomm-disks centered at any two targets in different
squares is lower bounded by ε/4. Again, we can place the
agents and targets such that one agent will have to travel this
distance Ω(P ) times. Thus, the worst-case distance is lower
bounded by

ε

4
Ω(P ) ∈ Ω(|E(n)|).

Since the robots travel at constant speed, the completion time
is also in Ω(|E(n)|).

Thus, if |E(n)|/n → +∞ as n → +∞, then we are in Case
1 and the completion time is in Ω(

√
|E(n)|n). If |E(n)|/n →

const ∈ R>0 as n → +∞, then we may be in either Case 1
or Case 2, depending on the value of const, but in either case
the completion time is in Ω(n). Finally, if |E(n)|/n → 0+ as
n → +∞, then we are in Case 2 and the completion time is
in Ω(|E(n)|).

Remark 4.3 (Interpretation of lower bound): In
Theorem 4.2 we provided a worst-case lower bound.
This should be interpreted as follows. For every monotonic
algorithm there exists a set of initial target and agent position
for which the completion time is no smaller than the lower
bound. It should be noted that there are many initial positions
for which the completion time is less than this worst-case
lower bound (indeed, there are initial positions for which the
completion time is zero).

Also note that for a critical environment, the agent and target
positions used in the proof of Theorem 4.2 give a completion
time of Ω(n) for every monotonic algorithm. However, if a
centralized solver were used to assign agents to targets from
the same initial positions, then the motion time would be
O(1). Hence the distributed solutions given by a monotonic
algorithm may severely under-perform when compared to
solutions given by the optimal centralized solver. •

B. The RENDEZVOUS STRATEGY and its Drawbacks

In this section we discuss another approach to solving the
target assignment problem that we call the RENDEZVOUS
STRATEGY. The strategy, which works only under the full
target knowledge assumption, can be described as follows.

RENDEZVOUS STRATEGY (for agent i)

Compute a common meeting point, such as the centroid1

of the target positions.
Move to the meeting point and wait for all other agents2

to arrive.
Once all agents have arrived, broadcast UID[i] and p[i],3

and receive UID[k] and p[k] from all other agents.
Compute a complete assignment of target-agent pairs4

using the MAXIMAL MATCH algorithm and move to
your assigned target.

Since every agent knows the position of all targets, the
agents can compute a common meeting point. The time
for an agent to reach any meeting point is bounded by√

2|E(n)|/vmax, and thus each agent can determine when all
other agents have arrived at the meeting point. Once all agents
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reach the meeting point the communication graph is complete
and each agent can broadcast its UID and position to all
other agents in one communication round. Then, each agent
can use MAXIMAL MATCH to solve a centralized assignment,
and all agents end up with the same complete assignment. In
addition, since the agents are co-located, this assignment is
optimal. Each agent then moves to the target to which it has
been assigned. Essentially, this approach turns the distributed
problem into a centralized one.

Theorem 4.4 (Time bound for RENDEZVOUS STRATEGY):
Consider n agents and n targets in the environment E(n).
In the worst-case, the RENDEZVOUS STRATEGY solves the
target assignment problem in Θ(

√
|E(n)|) time. Moreover, if

the targets and agents are uniformly randomly distributed in
E(n), the completion time is in Θ(

√
|E(n)|).

Proof: Since all information can be exchanged in one
round, and we are not considering computation time, the
completion time is given by the time to reach the meeting point
plus the time to go from the meeting point to the assigned
target. To see the worst-case, place all targets at one side
of the environment, and all agents at the other side. Then
each agent must travel a distance Θ(

√
|E(n)|). The distance

from the meeting point back to any assigned target is also
bounded by O(

√
|E(n)|). Thus, the worst-case completion

time is Θ(
√
|E(n)|).

If we uniformly randomly distribute n agents in E(n), then
it is a well known fact (see, for example [21]) that w.h.p., the
maximum distance between agents, maxi,j∈I ‖p[i] − p[j]‖, is
in Θ(

√
|E(n)|). Thus, one agent must travel a distance of at

least 1
2 maxi,j∈I ‖p[i] − p[j]‖ ∈ Θ(

√
|E(n)|). Hence, w.h.p.,

the completion time is in Θ(
√
|E(n)|).

Remark 4.5 (Drawbacks of RENDEZVOUS STRATEGY):
From Theorem 4.4 we see that the RENDEZVOUS STRATEGY
has better worst-case performance than any monotonic
algorithm. Thus, there may be applications in which this is
the best algorithm for solving the target assignment problem.
However, there are several drawbacks to the algorithm. First,
this approach is not a distributed solution in the sense that
it requires each agent to acquire information about all other
agents in the group, and to solve a centralized assignment
problem. Second, the process of meeting to exchange
information creates a single point of failure for the system.
Third, if we consider an initial configuration where m targets
are occupied, then in the RENDEZVOUS STRATEGY all of
these targets become unoccupied as the agents travel to the
meeting point. Thus, this is not a monotonic algorithm. In
fact, if every target is occupied and we run the RENDEZVOUS
STRATEGY, all agents leave their targets, move to the meeting
point, compute a complete assignment, and move to a new
target. This is obviously not the desired behavior in this
instance. Fourth, the RENDEZVOUS STRATEGY is ill-suited
for heterogeneous situations where agents have widely distinct
speeds, or become active at different instants of time; in these
situations the RENDEZVOUS STRATEGY essentially reduces
the performance of every agent to that of the slowest agent.
Fifth, the RENDEZVOUS STRATEGY does not work under
the local target sensing assumption, whereas we will provide

1

5

3

2

6

4

1

5

3

2

6

4

tour

7

7

(a) ETSP tour of seven targets.

curr[i] = 7

next[i] = 1

prev[i] = 6

p[i]

5

3

2

4

(b) Agent i initialization.

Fig. 2. The initialization process for the ETSP ASSGMT algorithm.

an algorithm later that does. Finally, in settings where more
agent are available than targets, there is hope to complete
the target assignment problem in time that is independent of
n. The RENDEZVOUS STRATEGY never achieves this time
complexity, whereas we will prove this property for one of
our proposed algorithms below. •

Because of the drawbacks mentioned in the previous re-
mark, in the remainder of this paper, we look at distributed
monotonic algorithms and their performance in solving the
target assignment problem.

V. A CONSTANT FACTOR MONOTONIC ALGORITHM IN
SPARSE ENVIRONMENTS

We begin by introducing a monotonic algorithm, called
the ETSP ASSGMT algorithm, for solving the target assign-
ment problem. This algorithm operates only under the full
target knowledge assumption. In this algorithm, each agent
precomputes an optimal tour through the n targets, turning
the cloud of target points into an ordered ring. Agents then
move along the ring, looking for the next available target.
When agents communicate, they exchange information on the
next available target along the ring. We show that in sparse or
critical environments, the ETSP ASSGMT algorithm is within
a constant factor of the optimal monotonic algorithm for worst-
case initial conditions.

A. The ETSP ASSGMT Algorithm

The ETSP ASSGMT algorithm is designed under the full
target knowledge assumption. In the following description it
will be convenient to assume that the target positions are stored
in each agents memory as an array, rather than as an unordered
set. That is, we replace the target set Q with the target n-
tuple q := (q1, . . . ,qn), and the local target set Q[i] with
the n-tuple q[i] := q.4 The algorithm can be described as
follows. For each i ∈ I, agent i computes a constant factor
approximation of the optimal ETSP tour of the n targets in
q[i] (as discussed in Section II-B), denoted tour(q[i]). We can
think of tour as a permutation that reorders the entries of q[i].
This permutation is independent of i since all agents use the
same method. An example is shown in Fig. 2(a).

Agent i then replaces its n-tuple q[i] with tour(q[i]). Next,
agent i computes the index of the closest target in q[i], and
calls it curr[i]. Agent i also maintains the index of the next

4It is possible that the order of the targets in the local sets q[i] may initially
be different. However, given a set of distinct points in R2, it is always possible
to create a unique ordering.
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target in the tour that may be available, next[i], and first target
in the tour before curr[i] that may be available, prev[i]. Thus,
next[i] is initialized to curr[i] + 1 (mod n) and prev[i] to
curr[i] − 1 (mod n). This is depicted in Fig. 2(b). Agent i
also maintains the n-tuple, status[i], which records whether a
target is occupied by (assigned to) another agent or not. Letting
status[i](j) denote the jth entry in the n-tuple, the entries are
given by

status[i](j) =

0, if agent i knows q[i]
j is assigned

to another agent,
1, otherwise.

(2)

Thus, status[i] is initialized as the n-tuple (1, . . . , 1). The
initialization is summarized in Algorithm 1 of Appendix A.

Agent i then moves toward the target curr[i] at constant
speed vmax > 0:

ṗ[i] =

vmax
q

[i]

curr[i]
−p[i]

‖q[i]

curr[i]
−p[i]‖

, if q[i]

curr[i] 6= p[i],

0, otherwise,
(3)

Finally, at each communication round agent i executes the
algorithm COMM-RD displayed in Algorithm 2 of Appendix A.
The COMM-RD algorithm operates as follows: Agent i, which
is heading toward target curr[i], communicates with its neigh-
bors to determine if any other agents are heading toward
curr[i]. If another agent is heading to curr[i], then the agent
closer to curr[i] continues moving toward the target, while
the farther agent selects a new target along the tour (ties are
broken using UID’s). The agents also exchange information on
targets that are occupied using the prev, and next variables.
The following is a more formal description that omits a few
minor technicalities.

Description of COMM-RD for agent i

Broadcast msg[i], consisting of UID[i], the target indices1

prev[i], curr[i], and next[i], and the distance to the current
target, dist[i].
for message, msg[k], received do2

Set status[i](j) to assigned (‘0’) for each target j3

from prev[k] + 1 (mod n) to next[k] − 1 (mod n) not
equal to curr[i].
if curr[i] = curr[k] and dist[i] > dist[k] then Set the4

status of curr[i] to assigned (‘0’).
if curr[i] = curr[k] and dist[i] < dist[k] then Leave5

curr[i] unchanged. However, agent k will set curr[k]

to a new target. This target will be at least as far
along the tour as the farther of next[i] and next[k]. So,
set the status of next[i] and next[k] to assigned (‘0’).

Update curr[i] to the next target in the tour with status6

available (‘1’), next[i] to the next available target in the
tour after curr[i], and prev[i] to the first available target in
the tour before curr[i].

Fig. 3 gives an example of COMM-RD resolving a conflict
between agents i and k, over curr[i] = curr[k]. In this figure,
all other agents are omitted. In summary, the ETSP ASSGMT

curr[k] = curr[i] = 7 2

prev[k] = 5

next[k] = next[i] = 1

prev[i] = 6

p[k]
3

4

p[i]

(a) Before conflict over target 7.

curr[i] = 7

2 = next[k] = next[i]

prev[k] = prev[i] = 5

curr[k] = 1

6

3

4

p[k]p[i]

(b) After resolution of the conflict.

Fig. 3. The resolution of a conflict between agents i and k over target 7.
Since agent k is closer to target 7 than agent i, agent k wins the conflict.

algorithm is the triplet consisting of the initialization of each
agent (see Algorithm 1), the motion law in Eq. (3), and
COMM-RD (see Algorithm 2), which is executed at each
communication round.

B. Performance of the ETSP ASSGMT Algorithm

We now present our main result on the ETSP ASSGMT
algorithm. Section V-C contains its proof. Recall that the
ETSP ASSGMT algorithm requires the full target knowledge
assumption.

Theorem 5.1 (Worst-case bound for ETSP ASSGMT):
For any initial positions of n agents and n targets in E(n),
ETSP ASSGMT solves the target assignment problem in
O(
√

n|E(n)|) time. In addition, if E(n) is sparse or critical,
then ETSP ASSGMT is within a constant factor of the optimal
monotonic algorithm for worst-case initial positions.

C. Proof s for Statements about the ETSP ASSGMT Algorithm

To prove Theorem 5.1 we introduce a few definitions. We
say that agent i ∈ I is assigned to target q[i]

j , j ∈ I, when
curr[i] = j. In this case, we also say target j is assigned
to agent i. We say that agent i ∈ I enters a conflict over
the target curr[i], when agent i receives a message, msg[k],
with curr[i] = curr[k]. Agent i loses the conflict if agent i is
farther from curr[i] than agent k, and wins the conflict if agent
i is closer to curr[i] than agent k, where ties are broken by
comparing UIDs.

The following lemma is a direct result of the facts that the
environment is bounded for each n ∈ N, and that the agents
move at constant speed vmax > 0.

Lemma 5.2 (Conflict in finite time): Consider any commu-
nication range rcomm > 0, and any fixed number of agents
n ∈ N. If, for two agents i and k, curr[i] = curr[k] at some
time t1 ≥ 0, then agent i (and likewise, agent k) will enter a
conflict over curr[i] in finite time.

In order to prove correctness, we require a few properties
of the ETSP ASSGMT algorithm.

Lemma 5.3 (ETSP ASSGMT properties): During an execu-
tion of the ETSP ASSGMT algorithm, the following statements
hold for agent i ∈ I:

(i) the current target curr[i] satisfies status[i](curr[i]) = 1;
(ii) status[i](j) = 0 for each j ∈ {prev[i] + 1, prev[i] +

2, . . . , next[i] − 1} \ {curr[i]} (mod n);
(iii) status[i](j) = 0 only if target j is assigned to some agent

k 6= i;
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(iv) if status[i](j) = 0 at some time t1, then status[i](j) = 0
for all t ≥ t1;

(v) if agent i receives msg[k] during a communication
round, then agent i will set status[i](j) = 0 for each
j ∈ {prev[k] + 1, . . . , next[k] − 1} \ {curr[i]} (mod n).

Proof: Statements (i) and (iv) and (v) follow directly from
the initialization and COMM-RD.

Statement (ii) is initially satisfied since prev[i] + 1 =
curr[i] = next[i] − 1 implies that {prev[i] + 1, . . . , next[i] −
1} \ {curr[i]} = ∅. Assume that statement (ii) is satisfied
before the execution of COMM-RD. At the end of COMM-RD,
prev[i] is updated to the first target before curr[i] in the tour
with status available (‘1’). If status[i](curr[i]) = 1, then curr[i]

remains unchanged. If status[i](curr[i]) = 0, then curr[i] is
increased to the first target with status available (‘1’). Finally,
next[i] is set to the first target after curr[i] that is available.
Thus, at the end of COMM-RD the status of prev[i], curr[i]

and next[i] are available, and status[i](j) = 0 for each target
j ∈ {prev[i] + 1, . . . , next[i] − 1} \ {curr[i]} (mod n).

Statement (iii) is also initially satisfied since status[i] = 1n

for each i ∈ I. Assume Statement (iii) is satisfied before the
execution of COMM-RD and that during this communication
round agent i changes the status of a target j to assigned (‘0’).
We show that Statement (iii) is still satisfied upon completion
of the execution of COMM-RD. In order for status[i](j) to be
changed, agent i must have received a message, msg[k], for
which one of the following cases is satisfied: (1) Target j 6=
curr[i] lies between prev[k] and next[k] on the tour; (2) There
is a conflict between agents i and k over target j that agent i
loses; or, (3) There is a conflict between agents i and k that
agent i wins and next[i] = j or next[k] = j.

In Case (1) either status[k](j) = 0 or curr[k] = j, and thus
target j is assigned. In Case (2) agent k won the conflict
implying curr[k] = j entering the communication round. Thus
after the communication round, curr[i] 6= j and target j is
assigned to another agent. In Case (3), curr[i] = curr[k] 6= j,
and agent k loses the conflict. In this case, agent k will change
curr[k] to the next available target on its tour. All targets from
prev[k] + 1 to next[k] − 1 have been assigned. Also, during
the communication round, agent k will receive msg[i] and
determine that all targets from prev[i] + 1 to next[i] − 1 are
assigned. Thus, the next available target is at least as far along
the tour as the farther of next[i] and next[k]. Thus, after the
communication round, both next[i] and next[k] are assigned.

We are now ready to prove Theorem 5.1.
Theorem 5.1: We begin by proving the correctness of the

ETSP ASSGMT algorithm. Assume by way of contradiction
that at some time t1 ≥ 0 there are J ∈ {1, . . . , n − 1}
targets unassigned, and for all time t ≥ t1, J targets remain
unassigned. Since the algorithm is monotonic, the same n−J
assigned targets remain assigned for all time, and thus it must
be the same J targets that remain unassigned for all t ≥ t1.
Let J denote the index set of the J unassigned targets. From
our assumption, and by Lemma 5.3 (iii), for every t ≥ t1
and for every i ∈ I, status[i](j) = 1 for each j ∈ J . Now,
among the n − J assigned targets there is at least one target
to which two or more agents are assigned. Consider one such

target, call it j1, and consider an agent i1 with curr[i1] = j1.
By Lemma 5.2, agent i1 will enter a conflict over j1 in finite
time. Let us follow the loser of this conflict. The losing agent,
call it i2, will set status[i2](j1) = 0 and will move to the
next target in the tour it believes may be available, call it j2.
Now, we know j2 is not in J , for if it were J − 1 targets
would be unassigned contradicting our assumption. Moreover,
by Lemma 5.3 (i), j2 6= j1. Thus, agent i2 will enter a conflict
over j2 in finite time. After this conflict the losing agent, call
it i3, will set status[i3](j2) = 0 (because it lost the conflict),
and from Lemma 5.3 (v), status[i3](j1) = 0. Again, agent i3’s
next target j3 must not be in J , for if it were we would
have a contradiction. Thus, repeating this argument n − J
times we have that agent in−J loses a conflict over jn−J .
After this conflict, we have status[in−J ](jk) = 0 for each
k ∈ {1, . . . , n−J}, where jk1 = jk2 if and only if k1 = k2. In
other words, agent in−J knows that all n−J assigned targets
have indeed been assigned. Also, by our initial assumption,
status[in−J ](j) = 1 for each j ∈ J . By Lemma 5.3 (i), agent
in−J ’s new current target must have status available (‘1’).
Therefore, it must be that agent in−J will set curr[in−J ] to
a target in J . Thus, after a finite amount of time J−1 targets
are unassigned, a contradiction.

We now prove the upper bound on the performance of the
ETSP ASSGMT algorithm. First notice the following: Consider
the optimal ETSP tour through all n targets. This provides an
ordering in which the n targets are visited. Now, suppose k
targets are removed from the tour, and the n − k remaining
targets are visited in the order they appeared in the n-target
tour. In general, this is not the optimal tour through the n− k
points. However, by the triangle inequality, the length of the
tour is no longer than that of the tour through all n points.
Because of this, in the worst-case some agent must travel to
its nearest target, and then around its entire ETSP tour, losing
a conflict at each of the first n− 1 targets in the tour. For any
initial agent and target positions, the distance to the nearest
target is O(

√
|E(n)|). Since the length of each agent’s tour

is a constant factor approximation of the optimal, the tour
length is O(

√
nE(n)) (see Theorem 2.1). The agent will not

follow the ETSP tour exactly because it may enter conflicts
before actually reaching the targets; however, by the triangle
inequality, the resulting path cannot be longer than the ETSP
tour. Hence, the total distance traveled is in O(

√
nE(n)), and

since the agents move at constant speed, the completion time
is in O(

√
nE(n)). Combining this with Theorem 4.2 we see

that in critical or sparse environments the completion time is
in Θ(

√
nE(n)).

VI. A CONSTANT FACTOR MONOTONIC ALGORITHM IN
DENSE ENVIRONMENTS

In the previous section we presented the ETSP ASSGMT
algorithm which operates only with full target knowledge
but has provably good performance in sparse and critical
environments. In this section we introduce a monotonic al-
gorithm called the GRID ASSGMT algorithm which operates
under both full target knowledge and local target sensing with
rsense ≥

√
2/5rcomm. In this algorithm, the agents partition the
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C(1, 1)

C(2, 1)

C(3, 1)

C(1, 2)

C(2, 2)

C(3, 2)

C(1, 3)

C(2, 3)

C(3, 3)

Fig. 4. Partitioning E(n), containing 35 targets, into b2 = 9 cells.

environment into cells. Agents then determine local maximum
assignments, and elect a leader in the cell which they occupy.
Through communication between leaders of adjacent cells,
each leader obtains estimates of the location of free targets,
and uses this information to guide unassigned agents to free
targets. We show that in critical or dense environments, the
GRID ASSGMT algorithm is within a constant factor of the
optimal monotonic algorithm for worst-case initial conditions.
In addition, we characterize the stochastic performance of the
GRID ASSGMT algorithm.

A. The GRID ASSGMT Algorithm

In the GRID ASSGMT algorithm we make either the full
target knowledge assumption (i.e., Q[i] := Q), or the local
target sensing assumption with rsense ≥

√
2/5rcomm. In ad-

dition we assume each agent knows the environment E(n).
Each agent partitions the environment into b2 equally sized
square cells, where b ∈ N. It then labels the cells like entries
in a matrix, so cell C(r, c) resides in the rth row and cth
column, as shown in Fig. 4. Since the agents started with
the same information, they all create the same partition. The
quantity b is chosen so that an agent in cell C(r, c) is within
communication range of any agent in cells C(r, c), C(r−1, c),
C(r+1, c), C(r, c−1), and C(r, c+1). In light of Lemma 2.3,
we see that this is satisfied when b = d

√
5|E(n)|/rcomme. Note

that with rsense ≥
√

2/5rcomm an agent in cell C(r, c) can
sense the position of all targets in that cell. We now outline
the GRID ASSGMT algorithm.

Outline of the GRID ASSGMT algorithm
Initialization and role assignment: Each agent partitions the

environment as described above. In each cell, agents find
a maximum assignment between agents and targets occu-
pying the cell, and assigned agents elect a leader among
them. Accordingly, agents are labeled leader, unassigned,
or assigned non-leader. According to their role, agents
allocate certain variables describing their location and
their knowledge about target assignments.

Assigned non-leader agents: Each assigned non-leader agent
move to its assigned target and goes silent.

Cell leaders: Each cell leader estimates the number of avail-
able targets in all cells below it in its column. The
leader i of cell C(r, c) stores this estimate in the variable
∆[i]

blw(r, c); to maintain the estimates, cell leaders com-
municate to the cell leader in the cell directly above it.
Additionally, each cell leader in the top row communi-
cates to the cell leader in the cell directly to the right, to
obtain an estimate of the number of available targets in

∆
[j]
rght(1, 3) ≤ 0

∆
[i]
blw(3, 3) ≤ 0

∆
[k]
blw(1, 2) ≤ 0

Fig. 5. The left figure shows the nominal order in which an agent (blue
square) searches the cells in the absence of communication. The blue lines on
the right figure show how this path is shortened by the non-positive estimates
from leader i of C(3, 3), leader j of C(1, 3) and leader k of C(1, 2).

all columns to the right (denoted ∆[j]
rght(1, c) for leader j

of cell C(1, c)).
Unassigned agents: Each unassigned agent seeks a free target

by entering cells and querying their respective leaders.
The motion of unassigned agents is illustrated in Fig.
5. Assuming no communication with the leaders, the
nominal order in which an unassigned agent visits all
cells of the grid is shown in the left-hand figure. The
way in which this path is shortened as the unassigned
agent receives available target estimates from cell leaders
is shown on the right-hand figure.

Remark 6.1 (Computations performed by cell leaders): If
agent i is the leader of cell C(r, c), it computes ∆[i](r, c),
which is (# of targets)− (# of agents) in C(r, c). In addition,
leader i maintains ∆[i]

blw(r, c), which is an estimate of
(# of targets) − (# of agents) in cells C(r + 1, c) to C(b, c).
This quantity must be estimated because agent i does not
initially know the number of agents in cells C(r + 1, c) to
C(b, c). The variable ∆[i]

blw(r, c) is initialized to +∞ (i.e., a
very large positive number) for the leaders in rows 1 to b− 1,
and to 0 for the leaders in row b. Then, at each communication
round agent i updates its estimate by communicating with
the leaders in cells C(r − 1, c) and C(r + 1, c):

1 Send msg[i] := ∆[i]
blw(r, c) + ∆[i](r, c) to leader in

cell C(r − 1, c) and receive msg[k] from
agent k, the leader of C(r + 1, c).

2 Set ∆[i]
blw(r, c) := msg[k] = ∆[k]

blw(r + 1, c) +
∆[k](r + 1, c).

The update procedure is depicted in Fig. 6. A leader j of
cell C(1, c) in the top row uses a similar method to maintain
the estimate ∆[j]

rght(1, c). It should be noted that as unassigned
agents enter and exit cells, the actual values of ∆blw and
∆rght change. Thus, to maintain accurate estimates, there is a
procedure whereby agents send enter and exit messages
to cell leaders. This is detailed in Appendix B. •

Remark 6.2 (Motion performed by unassigned agents):
Let us describe the unassigned agents motion in more detail.
First, each unassigned agent seeks a free target in its column
as follows. It queries the leader of its current cell about free
targets in its column, below its current cell. If the leaders
estimate ∆[i]

blw(r, c) is positive, then the agent moves down
the column. Otherwise, the agent moves up the column.
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∆[k](3, c)

∆
[k]
blw(3, c)

−2

+∞

+1

+∞

+1

+∞

−1

0

−2

+∞

+1

+∞

+1

−1

−1

0

−2

+∞

+1

0

+1

−1

−1

0

−2

+1

+1

0

+1

−1

−1

0

InitializationExample column c Fixed point

comm.
round

comm.
round

comm.
round

∆[l](4, c)

∆
[l]
blw(4, c)

∆[i](1, c)

∆
[i]
blw(1, c)

∆[j](2, c)

∆
[j]
blw(2, c)

Fig. 6. In the column c, blue squares depict agents, and black disks depict
targets. The figure shows how the estimates ∆ and ∆blw are initialized and
updated by leader i of C(1, c), j of C(2, c), k of C(3, c), and l of C(4, c).
The estimates converge to true values in three communication rounds.

While moving down, upon entering a new cell the agent first
queries the cell leader on free targets in the cell, and then on
free targets in cells below. If the agent starts moving up the
column, then it only queries cell leaders on free targets in the
cell (since it knows no targets are free in the cells below).

Second, if the agent reaches the top cell of its column,
then the column contains no free targets. To transfer to a
new column, the agent queries the leader of the top cell
about free targets in all columns to the right. If the leader’s
estimate ∆[j]

blw(1, c) is positive, then the agent moves to the
right; otherwise, the agent moves to the left. Upon reaching
the next cell, the agent recommences the column procedure.•

A detailed description of the GRID ASSGMT algorithm is
given in Appendix B: all variables maintained by the agents
are listed in Table I; the initialization and role assignment is
performed by the ROLE ASSGMT algorithm, see Algorithm 3;
the behavior of the cell leaders and of the unassigned agents
are described by the LEADER and UNASSIGNED algorithms,
see Algorithms 4 and 5, respectively.

Remark 6.3 (Using a single transfer row): In our descrip-
tion of the GRID ASSGMT algorithm, agents use the top row
to transfer to a new column. This choice of “transfer row”
is arbitrary and the top row was chosen for simplicity of
presentation. Intuitively, it seems the middle row is a more
efficient choice. The upcoming analysis shows that such a
choice does not affect the algorithm’s asymptotic performance.
The reason we require unassigned agents to use a single
transfer row is because it allows for cell leaders to easily
maintain up-to-date estimates of unassigned agent and free
target locations. To understand this, suppose that there were
two transfer rows, row 1 and row b, and that two unassigned
agents simultaneously transfer from column c−1 to column c,
one using row 1, and the other using row b. Then, it would take
b ∈ Θ(

√
|E(n)|) communication rounds for the leader in cell

C(1, c) to become aware that an unassigned agent transferred
using row b, implying that leader estimates are not up-to-
date. To overcome this, one would need to halt unassigned
agent motion until leader estimates have been updated; a
process which would require more leader communication.
In addition, using more transfer rows does not appear to
change the asymptotic performance (although the constant
factor could be significantly reduced since the algorithm would

rely more heavily on communication than agent motion). Thus,
we have utilized a single transfer row to minimize excess
communication, and avoid introducing more complexity in the
algorithm. This also reduces wireless congestion, which can
become significant for large numbers of agents [22]. •

Remark 6.4 (Details of the GRID ASSGMT algorithm): (1)
Agents move at speed vmax, and to transfer between cells
agents move toward the center of the new cell. (2) If an
agent or target lies on the boundary between cells, a simple
tie breaking scheme is used assign it to a cell. (3) In our
presentation, we implicitly assumed that every cell initially
contains at least one agent and one target. If a cell has no
targets, then any agents initially in the cell leave, and the
empty cell is then ignored. If a cell initially contains targets
but no agents, then the first agents to enter the cell run the
MAXIMAL MATCH algorithm and a leader is elected. •

B. Performance of the GRID ASSGMT Algorithm

We now present our main results on the GRID ASSGMT
algorithm. Section VI-C contains their proofs. Recall that the
GRID ASSGMT algorithm operates under full target knowl-
edge, or local target sensing with rsense ≥

√
2/5rcomm.

Theorem 6.5 (Worst-case bound for GRID ASSGMT): For
any initial positions of n agents and n targets in E(n),
the GRID ASSGMT algorithm solves the target assignment
problem in O(|E(n)|) time. In addition, if E(n) is dense
or critical, then the GRID ASSGMT algorithm is within
a constant factor of the optimal monotonic algorithm for
worst-case initial conditions.

Remark 6.6 (GRID ASSGMT vs. ETSP ASSGMT): The
worst-case bound for the ETSP ASSGMT algorithm in
Theorem 5.1 was O(

√
|E(n)|n). Thus, in sparse environments

the ETSP ASSGMT algorithm performs better, where as in
dense environments the GRID ASSGMT algorithm performs
better. In critical environments, the bounds are equal. Thus,
the two algorithms are complementary. In practice, a robot
can determine which algorithm to run by comparing the area
of the environment |E(n)| to the area of n disks of radius
rcomm. That is, given n, E(n) and rcomm, a robot could use a
rule such as the following: if |E(n)| > πr2

commn, then execute
the ETSP ASSGMT algorithm, else if |E(n)| < πr2

commn, then
execute the GRID ASSGMT algorithm. •

The following theorem shows that for randomly placed
targets and agents, the performance of the GRID ASSGMT
algorithm is considerably better than in the worst-case.

Theorem 6.7 (Stochastic time complexity): Consider n
agents and n targets, uniformly randomly distributed in
E(n). Then, the GRID ASSGMT algorithm solves the target
assignment problem in O(

√
|E(n)|) time with high probability

if
|E(n)| ≤ r2

comm

5
n

log n + γ(n)
,

where γ is any function such that γ(n) → +∞ as n → +∞.
Remark 6.8 (Generalization of Theorem 6.7): The bound

in Theorem 6.7 holds, more generally, for any initial positions
such that every cell contains at least one target and at least
one agent.
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Theorem 6.9 (Stochastic time complexity, cont’d):
Consider n agents and n/ log n targets, uniformly randomly
distributed in E(n). Then the GRID ASSGMT algorithm
solves the target assignment problem in O(1) time with high
probability if there exists K > 1/ log(4/e), such that

|E(n)| ≤ r2
comm

5
n

K log n
.

C. Proofs for Statements about the GRID ASSGMT Algorithm

In this section we prove the results presented in Sec-
tion VI-B. The leaders of each cell maintain estimates of the
difference between the number of targets and agents in various
parts of the grid. In order to talk about the convergence of
these estimates we introduce a few quantities. Let tar(r, c)
denote the number of targets in C(r, c). Let ∆(r, c)(t) denote
the difference between tar(r, c) and the number of agents
with currcell[i] = C(r, c) at time t > 0. (Notice the lack of
superscript on ∆(r, c)(t), when compared to agent i’s estimate
of the quantity, ∆[i](r, c).) Recall that in our model, commu-
nication round k occurs instantaneously at time tk. Thus, we
let t−k denote start of the round, and t+k , its completion, and
so ∆[i](r, c)(t+k ) denotes value of ∆[i](r, c) at the completion
of communication round k.

Lemma 6.10 (Convergence of estimates): During an execu-
tion of the GRID ASSGMT algorithm, if agent i ∈ I is the
leader of cell C(r, c) then for each communication time tk,
k ∈ N:

(i) ∆[i](r, c)(t+k ) = ∆(r, c)(tk);

(ii) ∆[i]
blw(r, c)(t+k ) ≥

b∑
r∗=r+1

∆(r∗, c)(tk);

(iii) if k > b and each cell in column c contains a leader,

then ∆[i]
blw(r, c)(t+k ) =

b∑
r∗=r+1

∆(r∗, c)(tk).

Proof: To see part (i) notice that each agent j ∈ I initially
sets currcell[j] to the cell it occupies. The leader of cell C(r, c),
call it agent i, can communicate with all agents in its cell,
and it knows the number of targets in C(r, c). Thus, at t1
agent i counts the agents in its cell, and correctly calculates
∆[i](r, c)(t+1 ) = ∆(r, c)(t1). Assume that ∆[i](r, c) is correct
at t+k−1. We will show that it is correct at t+k . If at t−k agent j

changes currcell[j] to C(r, c), then it must either be in C(r−
1, c) or C(r + 1, c), or if r = 1, possibly C(r, c − 1) and
C(r, c+1). Upon changing currcell[j] to C(r, c), agent j sends
an enter message to the leader of C(r, c), and by Lemma 2.3
the leader will receive it at tk. Likewise, if an agent changes
currcell[j] from C(r, c) to another cell, the agent must be in
cell C(r, c). Thus, when this agent sends the exit message,
the leader of C(r, c) will receive it at tk. Hence, after the
leader updates ∆[i](r, c) (Step 8 of LEADER), it will have
∆[i](r, c)(t+k ) = ∆(r, c)(tk).

The proof of (ii) is as follows. Notice that we can write the
sum

∑b
r∗=r+1 ∆(r∗, c)(tk) as

b∑
r∗=r+1

(∆(r∗, c)(tk−1))+enter(tk−1, tk)−exit(tk−1, tk). (4)

where enter(tk−1, tk) is the number of agents that entered cells
C(r + 1, c), . . . , C(b, c) between time tk−1 and time tk, and
exit(tk−1, tk) is the number that exited.

Let agent i be the leader of cell C(r, c). Agent i initializes
∆[i]

blw(r, c) to +∞, so the inequality is satisfied initially.
Assume (ii) is satisfied at t+k−1. We will show that it is satisfied
at t+k . If there is no leader in C(r+1, c), then agent i will not
receive a message. In this case one of two updates occurs: 1)
If an unassigned agent enters cell C(r, c) from cell C(r+1, c)
then agent i sets ∆[i]

blw(r, c) := 0 (Step 10 of LEADER). But,
from UNASSIGNED, an agent moves up a column only if
there are no available targets below, and thus the inequality
is satisfied at t+k . Alternatively, 2) agent i leaves ∆[i]

blw(r, c)
unchanged, and thus the inequality will be satisfied at t+k .

The other case is that leader j is in cell C(r + 1, c), and
agent i receives the message

∆[j]
blw(r + 1, c)(t+k−1) + ∆[j](r + 1, c)(t+k−1), (5)

But by assumption

∆[j]
blw(r + 1, c)(t+k−1) ≥

b∑
r∗=r+2

(∆(r∗, c)(tk−1))

and from (i), ∆[j](r + 1, c)(t+k−1) = ∆(r + 1, c)(tk−1).
Thus, Eq. (5) is no smaller than

∑b
r∗=r+1 ∆(r∗, c)(tk−1).

But, when agent i receives the message in Eq. (5), it adds
enter(tk−1, tk) and subtracts exit(tk−1, tk) (see Step 9 of
LEADER). Thus, from Eq. (4), the inequality is satisfied at t+k .

In light of the proof for (ii), we see that to prove (iii) we
need only show that for all k ≥ b, the message in Eq. (5)
equals

∑b
r∗=r+1 ∆(r∗, c)(tk−1). We do this by induction.

Notice that in cell C(b, c), ∆[j]
blw(b + 1, c)(t+k−1) = 0, and

so (iii) holds trivially for k > 0. In cell C(b − 1, c), for
k > 1, the message in Eq. (5) becomes ∆[j](b, c)(t+k−1),
which by (i) equals ∆(b, c)(tk−1). Thus (iii) holds for
cell C(b − 1, c) and C(b, c) for all k > 1. Assume that
(iii) holds for C(r + 1, c), . . . , C(b, c) at time t+k−1, where
k > b − r. We will show it holds for C(r, c) at time
t+k . Since (iii) holds for cell C(r + 1, c) at tk−1, the first
term in Eq. (5) is

∑b
r∗=r+2 ∆(r∗, c)(tk−1), and from (i),

the second term is ∆(r + 1, c)(tk−1). Thus, the message is∑b
r∗=r+1 ∆(r∗, c)(tk−1).
We have an analogous result for the convergence of

∆[i]
rght(r, c). It follows directly from Lemma 6.10 (i) and (iii)

and the fact that ∆[i]
rght(c) is initially overestimated.

Lemma 6.11 (Convergence of estimates, cont’d): If agent
i ∈ I is the leader of cell C(1, c), then for each commu-
nication time tk, k ∈ N,

(i) ∆[i]
rght(c)(t

+
k ) ≥

b∑
c∗=c+1

b∑
r∗=1

∆(r∗, c∗)(tk);

(ii) if each cell contains a leader and if k > 2b,

∆[i]
rght(c)(t

+
k ) =

b∑
c∗=c+1

b∑
r∗=1

∆(r∗, c∗)(tk).

We will now prove theorems 6.5, 6.7, and 6.9.
Theorem 6.5: We begin by proving the correctness of the

GRID ASSGMT algorithm. Assume by way of contradiction
that J ∈ {1, . . . , n − 1} targets remain unassigned for all
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time and thus B ∈ {1, . . . , J} cells contain unassigned
targets. By construction of the GRID ASSGMT algorithm, an
assigned target never becomes unassigned. Thus, the same
targets remain unassigned for all time. Let C denote the set of
cells containing these unassigned targets.

Consider a cell C(r, c) ∈ C. If C(r, c) does not contain a
leader, then it has never been entered by an agent. If it does
contain a leader, then taravail[i](r, c) contains the available
targets. Thus if there is an unassigned agent in cell C(r, c) ∈ C,
then upon querying the leader (or if there is no leader, electing
a leader), at least one of the targets in C(r, c) will become
assigned, contradicting our assumption. Likewise, for each cell
C(r, c) /∈ C, either there is a leader and taravail[i](r, c) = ∅,
or there are no targets in the cell.

Now, consider an unassigned agent i, in cell C(r, c) /∈ C.
Agent i must never enter a cell in C, for if it did an unassigned
target would become assigned, a contradiction. We will show
this is not possible. According to the UNASSIGNED algorithm,
agent i travels down its current column, querying the leader of
each cell for available targets in the cell and in cells below. By
Lemma 6.10(ii) agent i will only travel back up the column if
all targets in cells below have been assigned. After traveling
back up the column, if there are no available targets in the
top cell in the column, agent i will set colstatus[i](c) = 0
and will never enter column c again. By Lemmas 6.10 and
6.11, agent i will travel down each column that may possibly
have a free target. Thus, at some point agent i necessarily will
enter a column containing a cell in C. Hence, either agent i, or
another assigned agent will enter the cell in C at which point
the number of assigned targets will increase by at least one, a
contradiction.

We now prove the upper bound on the performance of the
GRID ASSGMT algorithm. In the worst case, the targets are
positioned such that leaders cannot exchange any information
about availability of targets. Then, in the worst case an agent,
call it i, must visit all b2 cells before reaching an unassigned
target. In the worst case agent i will travel up and down once
in every column in the grid, and back and forth once along the
top of the grid. In each cell, agent i will query the leader for
available targets. If there is no leader in the cell, then agent i
will solve a maximum matching among agents that entered at
the same time as it, and one of them will become the leader.
In either case, the time spent in each cell is O(1). The length
of each column is

√
|E(n)|, and thus the worst-case travel

distance is bounded by 2
√
|E(n)|(b + 2) ∈ O(|E(n)|). Since

the agent moves at constant speed vmax, the time for the last
agent to reach its final target is in O(|E(n)|).

Theorem 6.7: From Lemma 2.3, b ≤
d
√

n/(log n + γ(n))e, where γ(n) → +∞ as n → +∞.
From Theorem 2.2 when we uniformly randomly distribute n
targets and n agents into b2 cells, w.h.p. each cell contains
at least one agent, and one target. The maximum matching
and leader election in the ROLE ASSGMT algorithm can be
performed in O(1) time. Thus in O(1) time there will be a
leader in every cell. By Lemma 6.10(iii), in b ∈ O(

√
|E(n)|

communication rounds, every leader will know the difference
between the number of agents and the number of targets in
the cells below it. Thus after O(

√
|E(n)|) time, the leader

(a) Initial positions. (b) Mid execution. (c) Final assignment.

Fig. 7. Simulation of the ETSP ASSGMT algorithm for 20 agents in a sparse
environment. Targets are black dots and agents are blue squares. The ETSP
tour is shown connecting the targets, and a red line is drawn between agents
within communication range.

of each cell will only let an agent move further down the
column if it knows the agent will find an assignment. Also,
by Lemma 6.11(ii) after O(

√
|E(n)|) time, each leader

in the top row will only send agents right if there are
available targets to the right. Thus, in the worst case, an
agent may have to travel out of its own column, across the
top column, and then down a new column in order to find
its target. This distance is in O(

√
|E(n)|), and since the

agent spends O(1) time in each cell, the time complexity
is in O(

√
|E(n)|). Thus the total time complexity is in

O(
√
|E(n)|) + O(

√
|E(n)|) ∈ O(

√
|E(n)|) time.

Theorem 6.9: From Lemma 2.3, there are b2 ≤
d
√

(n/K log n)e2 cells, where K is a constant satisfy-
ing K > 1/ log(4/e). Equivalently, we can write b2 =

1
c(n)d

√
(n/K log n)e2, where c(n) ≥ 1 for all n ∈ N. From

Theorem 2.2(i), when we distribute n/ log n targets into b2

cells, w.h.p. there are at most c(n)O
(

log n
log log n

)
targets in any

given cell. From Theorem 2.2(iv), w.h.p. there are at least
c(n)Ω(log n) agents in each cell. Thus, w.h.p, there are more
agents than targets in every cell. Thus after running the ROLE
ASSGMT algorithm, every target in each cell will be assigned.
The maximum matching can be found in O(1) time. Since
each cells area is ≤ r2

comm/5, and the agents move at constant
speed, the assignment will be complete in O(1) time, with
high probability.

VII. SIMULATIONS

We have performed extensive simulations of the ETSP
ASSGMT and GRID ASSGMT algorithms. The ETSP ASS-
GMT algorithm has been simulated in both two and three
dimensional environments. To compute the ETSP tour we have
used the concorde TSP solver.5 A representative simulation
for 20 agents and targets uniformly randomly placed in a
sparse environment is shown in Fig. 7. The ETSP tour is
shown connecting the target positions. Dashed blue trails in
Fig. 7(b) and Fig. 7(c), give the trajectories of agents that
have yet to reach a target. A representative simulation of the
GRID ASSGMT algorithm for 65 agents and targets uniformly
randomly distributed in a dense environment is shown in
Fig. 8. In Fig. 8(c) the communication between the leaders
of each cell is shown with red lines, and a dashed blue trail

5The concorde TSP solver is available for research use at
http://www.tsp.gatech.edu/concorde
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(a) Initial positions. (b) Role assignment. (c) Final assignment.

Fig. 8. A simulation of 65 agents in a dense environment. Targets are black
disks and agents are blue squares. The partition of E(n) is shown in dashed
lines, and red lines are drawn between communicating agents.

0 100 200 300 400
0

500

1000

1500

2000

2500

3000

3500

4000

Number of agents

C
o

m
p
le

ti
o

n
 t

im
e

 

 

Mean completion time√
n|E(n)|/20

(a) ETSP ASSGMT algorithm in a
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(b) GRID ASSGMT algorithm in a
dense environment.

Fig. 9. Monte Carlo simulations for uniformly randomly generated agent and
target positions. Each point is the mean completion time of 30 independent
trials. Error bars show plus-minus one standard deviation.

shows the trajectory for the final agent, as it is about to reach
its target in cell C(1, 1).

Fig. 9 contains the numerical outcomes of Monte Carlo
simulations for the ETSP ASSGMT and GRID ASSGMT al-
gorithms with uniformly randomly generated target and agent
positions. Both sets of simulations were performed for agents
with rcomm = 10 and vmax = 1. Each data point is the mean
completion time of 30 trials, where each trial was performed
at randomly generated agent and target positions. Error bars
show plus/minus one standard deviation. The simulation for
the ETSP ASSGMT algorithm in Fig 9(a) was performed in a
square environment with area 4r2

commn, and suggests that even
for uniformly randomly generated positions, ETSP ASSGMT
solves the target assignment problem in time proportional to√

n|E(n)|. The Monte Carlo simulation for the GRID ASSGMT
algorithm is shown in Fig. 9(b). These simulations were
performed in a square environment with area r2

commn/(6 log n),
which satisfies the bound in Theorem 6.7. For simplicity of
implementation we discard trials in which there exists a cell
without targets. This is justified by the fact that w.h.p. every
cell contains at least one target, and thus the number of
discarded trials tends to zero as n increases. The simulation
suggests that asymptotically, the expected completion time is
bounded below by 1.5

√
|E(n)| and above by 2.5

√
|E(n)|. This

agrees with the O(
√
|E(n)|) bound in Theorem 6.7 and gives

some idea as to the constant in front of this bound.

VIII. EXTENSIONS AND CONCLUSIONS

We have attempted to present the ETSP ASSGMT and GRID
ASSGMT algorithms in their most basic forms. In this section
we discuss some extensions to these algorithms.

A. Higher Dimensional Spaces

We have presented our algorithms for the environment
E(n) := [0, `(n)]2 ⊂ R2. However, these algorithms can be
generalized to subsets of Rd, d ≥ 1. The ETSP ASSGMT
algorithm we have presented is valid for any environment
E(n) ⊂ Rd, d ≥ 1. In [1], we have presented time complexity
bounds for environments in Rd. In this case, the length
of the ETSP tour is bounded by O(n(d−1)/d|E(n)|1/d) and
thus the ETSP ASSGMT algorithm has time complexity in
O(n(d−1)/d|E(n)|1/d).6

The GRID ASSGMT algorithm we have presented is only
valid for environments in R2. This was done in an effort
to simplify the presentation. However, the extension to Rd

is straightforward. For example, in R3 the environment is
partitioned into small cubes. Agents first try to find a free
target in their own cube, then in their own column, then in their
own plane, and then finally, they transfer into a new plane that
has an available target. The worst-case bound is then given by
O(|E(n)|), and for uniformly randomly generated target and
agent positions, when the environment satisfies the bound

|E(n)| ≤ r2
comm

K(d + 3)
n

log n
,

where K > 1, is O(|E(n)|1/d), with high probability.

B. The Case of n Agents and m Targets

It should be noted that both the ETSP ASSGMT and GRID
ASSGMT algorithms work, without any modification, when
there are n agents and m targets. If m ≥ n, at completion,
then n targets are assigned and m− n targets are not. When
m < n, at completion, all m targets are assigned, and the n−m
unassigned agents come to a stop after losing a conflict at each
of the m targets. By modifying the algorithms so that the n−m
unassigned agents revisit assigned targets to check for failed
agents, the robustness of the algorithms can be increased.
It is a straightforward exercise to alter the upper bounds
when m 6= n. For example, the worst-case upper bound on
the ETSP ASSGMT algorithm becomes O(

√
|E(n)|N), where

N := min{n, m}, and holds for any n and m. Similarly,
the worst-case upper bound on the GRID ASSGMT algorithm
remains O(|E(n)|) and holds for any n and m. In addition,
the lower bound on the monotonic class easily extends when
m ≥ n. However, the extension for m < n appears to require a
different construction of worst-case agent and target positions.

C. Alternate Scaling Laws

We have given complexity bounds for the case when rcomm
and vmax are fixed constants, and E(n) grows with n. We
allow the environment E(n) to grow with n so that, as more

6Here |E(n)| denotes the d-dimensional volume of E(n).
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agents are involved in the task, their workspace is larger. An
equivalent setup would be to consider a fixed size environment,
and allow rcomm and vmax to decrease with increasing n.
Scaling the communication radius inversely with the number
of agents arises in the study of wireless networks [22]. As the
density of wireless nodes in a fixed area increase, the effects
of wireless congestion and media access problems become
more prevalent. To reduce these effects, the nodes reduce their
transmission radius, thus reducing their interference footprint.
The idea of scaling the agents’ maximum speed inversely with
n occurs due to physical congestion [21]. As the density of
robots increases, it necessarily takes longer for the robots to
travel across their environment.

Motivated by this discussion, we introduce a new set of
parameters, Ẽ , r̃comm(n), and ṽmax(n) satisfying |Ẽ | ∈ R>0

and ṽmax(n) = Θ(r̃comm(n)). Since ṽmax(n) and r̃comm(n)
scale at the same rate, the amount of time required to travel a
distance r̃comm(n) is independent of n. Then, analogous to the
definition of environment size, we define the communication
range to be: sparse if r̃comm(n)

√
n → 0+, as n → +∞;

critical if r̃comm(n)
√

n → const ∈ R>0 as n → +∞; dense if
r̃comm(n)

√
n → +∞, as n → +∞.

We now summarize the worst-case results as follows.
Corollary 8.1 (Scaling radius and speed): Consider any

initial positions of n agents, with communication range
r̃comm(n) and maximum speed ṽmax(n) = Θ(r̃comm(n)), and
n targets in the fixed environment Ẽ . Then:

(i) the ETSP ASSGMT algorithm solves the target assign-
ment problem in O(

√
n/r̃comm(n)) time;

(ii) if r̃comm(n) is sparse or critical, then ETSP ASSGMT
is within a constant factor of the optimal monotonic
algorithm for worst-case initial conditions;

(iii) the GRID ASSGMT algorithm solves the target assign-
ment problem in O(1/r̃comm(n)2) time; and

(iv) if r̃comm(n) is dense or critical, then the GRID ASSGMT
algorithm is within a constant factor of the optimal
monotonic algorithm for worst-case initial conditions.

D. Conclusions
In this paper we have studied a version of the target

assignment problem in which each agent has a list of the
target positions, but has only limited communication capa-
bilities. We introduced the class of monotonic algorithms for
approaching these problems and gave a lower bound on its
asymptotic performance. We introduced two algorithms in this
class, the ETSP ASSGMT algorithm and the GRID ASSGMT
algorithm. We have shown that in sparse environments, where
communication between agents is infrequent, the ETSP ASS-
GMT algorithm is within a constant factor of the optimal
monotonic algorithm for worst-case initial conditions. On the
other hand, in dense environments, where communication
is more prevalent, the GRID ASSGMT algorithm is within
a constant factor of the optimal monotonic algorithm for
worst-case initial conditions. Both algorithms extend to higher
dimensional spaces and to problems where the number of
agents and targets differ, and the GRID ASSGMT algorithm
can be implemented in a sensor based version, where agents
have no a priori target knowledge.

There are many future research directions such as extensions
to vehicles with motion constraints, or to the case when targets
are dynamically appearing and disappearing. Also, we believe
it is possible to extend our algorithms and analysis from
the synchronous communication model to an asynchronous,
or event-based, model. Another area of future research is to
develop a communication framework for robotic networks that
adequately models congestion and media access problems that
are inherently present in wireless communications.

APPENDIX A
FORMAL DESCRIPTION THE ETSP ASSGMT ALGORITHM

Algorithm 1: Initialization of agent i in ETSP ASSGMT.

Assumes: Agent i has the target array q[i] := q, stored in its memory.
Compute a TSP tour of q[i], tour(q[i]), and set q[i] := tour(q[i]).1
Compute the closest target in q[i], and set curr[i] equal to its index:2

curr[i] := arg minj∈I{‖q
[i]
j − p[i]‖}.

Set next[i] := curr[i] + 1 (mod n).3
Set prev[i] := curr[i] − 1 (mod n).4
Set status[i] := 1n (i.e., an n-tuple containing n ones).5

Algorithm 2: COMM-RD, executed at each communication round.

Assumes: Agent i has been initialized as in Algorithm 1.
Compute dist[i] := ‖p[i] − q

[i]

curr[i]
‖.1

Broadcast msg[i] := (prev[i], curr[i], next[i], i, dist[i])2
Receive msg[k], from each k 6= i satisfying ‖p[i] − p[k]‖ ≤ r.3
foreach msg[k] received do4

for s = prev[k] + 1 to next[k] − 1 (mod n) do5
if s 6= curr[i] then Set status[i](s) := 06

if prev[k] = next[k] = curr[k] 6= curr[i] then Set7
status[i](curr[k]) := 0
if curr[i] = curr[k] then8

if (dist[i] > dist[k]) OR (dist[i] = dist[k] AND i < k) then9
Set status[i](curr[i]) := 0.10

if next[i] 6= curr[i] then Set status[i](next[i]) := 0.11
if next[k] 6= curr[i] then Set status[i](next[k]) := 0.12

if status[i](j) = 0 for every target j then Exit ETSP ASSGMT and13
stop motion.
while status[i](curr[i])=0 do curr[i] := curr[i] + 1 (mod n).14
Set next[i] := curr[i] + 1 (mod n).15
while status[i](next[i])=0 do next[i] := next[i] + 1 (mod n).16
while status[i](prev[i])=0 do prev[i] := prev[i] − 1 (mod n).17

APPENDIX B
FORMAL DESCRIPTION OF THE GRID ASSGMT ALGORITHM

As noted in Remark 6.4, we have simplified the presentation
of the UNASSIGNED algorithm by assuming that every cell
initially contains at least one agent and one target. It is
straightforward to relax this assumption. If a cell has no then
any agents initially in the cell move to the cell below, and the
empty cell is ignored for the rest of the algorithm. If there is
a cell that contains targets but no agents, then the first agents
to enter the cell run the ROLE ASSGMT algorithm and one
becomes the leader.
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Algorithm 3: ROLE ASSGMT, executed at the start of the GRID ASSGMT
algorithm to assign roles, and initialize agent i.

Assumes: Agent i is in C(r, c), knows E(n), and either (1) knows all
target positions, or (2) has rsense ≥

√
2/5rcomm.

Compute b as in Lemma 2.3, partition E(n) into the b2 square cells.1
Set currcell[i] := C(r, c), leader[i] := null and curr[i] := null.2
Broadcast msg[i] containing UID[i], p[i], and currcell[i] to agents in3
currcell[i].
Receive msg[k] from, all agents in C(r, c).4
Use the MAXIMAL MATCH algorithm to find a maximum matching5
between agents and targets C(r, c).
Elect a leader among assigned agents in C(r, c).6
case unassigned7

Set dircol[i] := down, dirrow[i] := right, and colstatus[i](c) to8
notfull for each c ∈ {1, . . . , b}.
Run UNASSIGNED algorithm.9

case assigned to q ∈ C(r, c) and not elected leader10
Set curr[i] := q, and move to curr[i] at speed vmax11

case assigned and elected leader12
Set leader[i] := currcell[i], curr[i] := q, and move to curr[i] at13
speed vmax
Set ∆[i](r, c) to number of targets in C(r, c) minus number of14
agents in C(r, c).
Set taravail[i](r, c) to the collection of unassigned targets in15
C(r, c).
Set ∆

[i]
blw(r, c) to +∞ if r ∈ {1, . . . , b− 1} and to 0 if r = b.16

if r = 1 then Set ∆
[i]
rght(c) to +∞ if c ∈ {1, . . . , b− 1} and to 017

if c = b.
Run LEADER algorithm.18

Algorithm 4: LEADER, executed at each communication round.

Assumes: Agent i is the leader of C(r, c).
Send msg[i]

1 := ∆
[i]
blw(r, c) + ∆[i](r, c) to leader in cell C(r − 1, c).1

if r = 1 then2

Send msg[i]
2 := ∆

[i]
rght(c) + ∆

[i]
blw(1, c) + ∆[i](1, c) to leader of3

C(1, c− 1).
Receive msg[k]

2 from leader k of C(1, c + 1) and set4

∆
[i]
rght(c) := msg[k]

2 .
For each enter msg from an agent coming from C(1, c + 1),5

add 1 to ∆
[i]
rght(1, c) and for each exit msg from an agent going

to C(1, c + 1) subtract 1 from ∆
[i]
rght(1, c).

If ∆
[i]
rght(1, c) > 0 and an enter msg was received from an agent6

coming from C(1, c + 1), then set ∆
[i]
rght(1, c) := 0.

Receive msg[k]
1 from leader k of C(r + 1, c), and set7

∆
[i]
blw(r, c) := msg[k]

1 .
Subtract 1 from ∆[i](r, c) for each enter msg received, and add 1 for8
each exit msg received.
For each enter msg from an agent coming from C(r + 1, c), add 19

to ∆
[i]
blw(r, c) and for each exit msg from an agent going to

C(r + 1, c) subtract 1 from ∆
[i]
blw(r, c).

If ∆
[i]
blw(r, c) > 0 and an enter msg was received from an agent10

coming from C(r + 1, c), then set ∆
[i]
blw(r, c) := 0.

forall queries on availability of target in C(r, c) do11
if taravail[i] 6= ∅ then12

Select a target in taravail[i], assign it requesting agent, and13
remove it from taravail[i].

else if taravail = ∅ then Reply no.14

forall queries on availability of target below C(r, c) do15

Respond yes to ∆
[i]
blw(r, c) requests, and no to all others.16

if r = 1 then17
forall queries on availability of target to right of column c do18

Respond yes to ∆
[i]
rght(c) requests, and no to all others.19

Algorithm 5: UNASSIGNED, executed each time a new cell is entered.

Assumes: Agent i has run ROLE ASSGMT, and currcell[i] = C(r, c).
Query leader of C(r, c) on free targets in currcell[i].1
if leader returns a target q ∈ C(r, c) then Set curr[i] := q, and move2
to target.
else if leader returns no then3

case dircol[i] = down4
Query leader on availability of target below C(r, c).5
if leader returns yes then6

Set prevcell[i] := currcell[i] and7
currcell[i] := C(r + 1, c)

else if leader returns no then8
Set dircol[i] := up, prevcell[i] := currcell[i] and9
currcell[i] := C(r − 1, c).

case (dircol[i] = up) and (r > 1)10
Set prevcell[i] := currcell[i], currcell[i] := C(r − 1, c), and11
dircol[i] := up

case (dircol[i] = up) and (r = 1) and (dirrow[i] = right)12
Set colstatus[i](c) := full.13
Query leader on availability to the right of column c.14
if leader returns yes then15

Set prevcell[i] := currcell[i], currcell[i] := C(1, c + 1)16
if colstatus[i](c + 1) = notfull then17
dircol[i] := down.

else if leader returns no then18
Set prevcell[i] := currcell[i], currcell[i] := C(1, c− 1),19
dirrow[i] := left.
Set colstatus[i](c∗) := full for each20
c∗ ∈ {c + 1, . . . , b}.
if colstatus[i](c− 1) = notfull then21
dircol[i] := down.

case (dircol[i] = up) and (r = 1) and (dirrow[i] = left)22
Set prevcell[i] := currcell[i] and currcell[i] := C(1, c− 1).23
if colstatus[i](c− 1) = notfull then dircol[i] := down.24

Send exit to leader in prevcell[i], enter to leader in currcell[i],25
and move to currcell[i].
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