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On Kalman filtering for detectable systems

with intermittent observations

Kurt Plarre and Francesco Bullo

Abstract

We consider the problem of Kalman filtering when observations are available according to a

Bernoulli process. It is known that there exists a critical probability pc such that, if measurements

are available with probability greater thanpc, then the expected prediction covariance is bounded for

all initial conditions; otherwise, it is unbounded for someinitial conditions. We show that, when the

system observation matrix restricted to the observable subspace is invertible, the known lower bound

on pc is tight. This result is based on a novel decomposition of positive semidefinite matrices.

I. I NTRODUCTION

We consider the problem of Kalman filtering with intermittent observations, when measure-

ments are available according to a Bernoulli process{γt}∞t=0, with Pr [γt = 1] = p, rather than at

each time instant. Such problem is relevant to sensor networks, robotic networks, and networked

control systems, in which the sensor and controller are communicating over an unreliable link

or network. Packet losses or excessive delays will cause data to be unavailable at some time

instants. When measurements are available at each time instant, the covariance of the prediction

error follows an Algebraic Riccati Equation (ARE). When measurements arrive according to a

stochastic process, the error covariance becomes a random quantity [1]. We study conditions

under which the expected value of the prediction error covariance is bounded.
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It is known from [1] that if (A, C) is detectable, and(A, Q1/2) is controllable, whereA is

the system matrix,C is the observation matrix, andQ is the process noise covariance, then

there exists a critical valuepc such that, ifp > pc the expected error covariance is bounded for

any initial condition, and ifp ≤ pc, the expected error covariance is unbounded for some initial

conditions. The critical probabilitypc is known to be lower bounded by1−1/ρ(A)2, whereρ(A)

is the spectral radius ofA. In general, however, it is not known whether this bound is tight and

an upper bound is given as the solution to a quasi-convex optimization problem. In some cases

it is possible to show [1] that the lower bound onpc is, in fact, the exact critical probability, for

example, ifC is invertible or if the system matrixA has only one unstable eigenvalue. It is also

possible to construct examples in which the upper and lower bounds have different convergence

conditions; see [1].

This and similar problems have been considered in the literature, e.g., [2] studies the case when

the observations are split into two components, each of which are dropped independently. In [3]

a randomized algorithm for sensor selection or scheduling is introduced. At each time instant,

the measurement of only one sensor among a number is incorporated into the Kalman filter.

The choice of sensor is made according to either a Bernoulli process or a Markov chain. Other

variations of this problem have also been considered. For example, the case where a source node

estimates the state and transmits such estimate over a packet dropping network is considered

in [4], [5]. In [6] the problem of scheduling sensors in a communication bus is considered.

It is shown that, under certain conditions, the optimum scheduling policy takes the form of a

threshold policy, with the thresholds depending on the a priori distribution of the measurements.

In [7] the authors model a packet dropping channel as a two state Markov chain, and find a

necessary condition for stability of the Kalman filter. Thiscondition is used to find necessary and

sufficient conditions for stability whenC is invertible, and in the one dimensional case. Finally,

some of these results have also been extended to control withunreliable communications; see,

for example, [8], [9], [10].

In this paper we prove that the critical probability is exactly 1−1/ρ(A)2 for detectable systems

(see, for example, [11] for a definition of detectability) inwhich C is invertible on the observable

subspace, as opposed to the whole space. To prove this fact weintroduce two cones of positive

semidefinite (PSD) matrices, which we call “observable cone” and “unobservable cone.” We

then introduce a novel decomposition of PSD matrices, and use it to prove that any PSD matrix
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can be decomposed as a sum of two PSD matrices, one in the observable cone, and one in the

unobservable cone. We use such decomposition to construct an upper bound on the expected

Kalman filter covariance, as a sum of two terms, each of which is bounded above. To illustrate

this result, we run simulations on an example.

The paper is organized as follows. In Section II we give the formal setup of the problem. In

Section III we give some intermediate results, needed to prove the main result. We introduce

the observable and unobservable cones in Section IV, and study some of their properties. In

Section V we prove the main result. We give simulations in Section VI. Section VII contains

concluding remarks.

II. PROBLEM SETUP

We consider the discrete time liner dynamical system

x(t + 1) = Ax(t) + ω(t),

y(t) = Cx(t) + ν(t),
(1)

wherex(t) ∈ R
n is the state,y(t) ∈ R

m is the output,ω(t) ∈ R
n is the process noise, and

ν(t) ∈ R
m is the measurement noise.ω(t) and ν(t) are independent white Gaussian noise

processes withω(t) ∼ N (0, Q), ν(t) ∼ N (0, R). We assume thatR is invertible. The initial

condition isx(0) = x0 with x0 ∼ N (0, P0). The Kalman filter for this system is given by the

recursion

x̂(t + 1|t) = Ax̂(t|t),

P(t + 1|t) = AP(t|t)AT + Q,

x̂(t + 1|t + 1) = x̂(t + 1|t) + K(t) (y(t) − Cx̂(t + 1|t)) ,

K(t) = P(t + 1|t)CT
(

CP(t + 1|t)CT + R
)−1

,

P(t + 1|t + 1) = (I − K(t)C) P(t + 1|t),

where x̂(t|t) and x̂(t + 1|t) are the state estimate and prediction at timet, respectively, and

P(t|t) and P(t + 1|t) are the estimation and prediction error covariances, respectively; K(t) is

the Kalman gain.

We list here the notation that we use in the rest of the paper.
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(i) We letRn1×n2 denote the set ofn1 timesn2 matrices with real entries andSn
≥0, (respectively,

S
n
>0) the set of symmetric positive semidefinite (respectively,positive definite) matrices of

sizen.

(ii) We let P(t) := P(t + 1|t), andE(t) := E [P(t)].

(iii) Given A ∈ R
n×n, we defineρ(A) := max{|λ| | λ is an eigenvalue ofA}, i.e., the spectral

radius ofA.

(iv) For 1 ≤ m ≤ n, we defineBlock : R
m×m×R

m×(n−m)×R
(n−m)×m×R

(n−m)×(n−m) → R
n×n,

by

Block(X1, X2, X3, X4) :=

[

X1 X2

X3 X4

]

.

By convention, ifm = n, Block(X1, X2, X3, X4) = X1.

(v) We define the mapSeries : S
n
≥0×R

n×n×(N∪{−1, +∞}) → S
n
≥0 by Series(X, Ω,−1) := 0

and

Series(X, Ω, t) :=
t

∑

τ=0

ΩτXΩτT , t ∈ N ∪ {+∞}.

(vi) Finally, we define the “stacking map”Stack : R
n×n → R

n2

, by letting Stack(Ω) be the

vector obtained by stacking the columns ofΩ.

To simplify the presentation, we only indicate the size of a matrix explicitly when it is not clear

from the context.

III. PRELIMINARY FACTS

The evolution ofP(t) is given by the Algebraic Riccati Equation (ARE)

P(t + 1) = Q + AP(t)AT − AP(t)CT
(

CP(t)CT + R
)−1

CP(t)AT .

When measurements are available randomly,P(t) becomes a random quantity. In this paper we

assume that a measurement at timet is available ifγt = 1, where{γt}+∞
t=0 is a Bernoulli process

with Pr [γt = 1] = p. In this case, the ARE can be rewritten as [1]

P(t + 1) = Q + AP(t)AT − γtAP(t)CT
(

CP(t)CT + R
)−1

CP(t)AT . (2)

We are interested in sufficient conditions for stability of the expected value ofP(t). To find

such conditions, we construct an upper bound onE [P(t)]. From [1], [3] we know that an upper
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bound onE(t) can be obtained using Jensen’s Inequality:

E(t + 1) ≤ AE(t)AT + Q − pAE(t)CT
(

CE(t)CT + R
)−1

CE(t)AT

=
(

AE(t)AT − AE(t)CT
(

CE(t)CT + R
)−1

CE(t)AT
)

p + AE(t)AT (1 − p) + Q

= AG
(

E(t), CT R−1C
)

AT p + AE(t)AT (1 − p) + Q, (3)

where E(0) = E [P0] and where the mapG : S
n
≥0 × S

n
≥0 → S

n
≥0 is defined byG(X, M) :=

X (I + MX)−1. The last step in equation (3) follows from the matrix inversion lemma or,

equivalently, from property (iii) in the following lemma.

Lemma 1 (Properties ofG). LetM, X, Y ∈ S
n
≥0. LetM̄ ∈ R

n×n be a matrix, such that̄MM̄T = M

(such a matrix always exists). Then the following holds:

(i) G(X, M) = G(X, M)T ;

(ii) G(X, M) = X − X(I + MX)−1MX;

(iii) G(X, M) = X − XM̄
(

I + M̄T XM̄
)−1

M̄T X;

(iv) if X ≤ Y, thenG(X, M) ≤ G(Y, M); and

(v) if M is invertible, thenG(X, M) ≤ M−1.

Proof: To prove (i) we observe thatG(X, M)T = (I + MX)−T X. We then have that

(I + MX)T
(

G(X, M) − G(X, M)T
)

(I + MX) = (I + MX)T X − X(I + MX) = 0.

It can be proved that(I+MX) is invertible. This means thatG(X, M) = G(X, M)T . To prove (ii)

we observe thatG(X, M)(I + MX) = X. This implies that

G(X, M) = X − G(X, M)MX = X − X(I + MX)−1MX. (4)

We now prove (iii). We have the following sequence of implications:

G(X, M)(I + MX) = X ⇒ G(X, M)M̄ + G(X, M)M̄M̄T XM̄ = XM̄

⇒ G(X, M)M̄
(

I + M̄T XM̄
)

= XM̄ ⇒
(

I + M̄T XM̄
)

M̄TG(X, M) = M̄T X

⇒ M̄TG(X, M) =
(

I + M̄T XM̄
)−1

M̄T X ⇒ XMG(X, M) = XM̄
(

I + M̄T XM̄
)−1

M̄T X.

From (4) we know thatX − XMG(X, M) = G(X, M). This finishes the proof. To prove (iv)

we follow [1], [3]. We define a mapφ : R
n×n × S

n
≥0 → S

n
≥0 by φ(K, X) := (I + KM̄T )X(I +

KM̄T )T + KKT . We rewriteφ(K, X) as

φ(K, X) = (K − Z)
(

M̄T XM̄ + I
)

(K − Z)T + Z′,

May 29, 2008 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 6

whereZ = −XM̄(M̄T XM̄ + I)−1 and Z′ = X − Z(M̄T XM̄ + I)ZT . We can see that for fixed

X, φ(K, X) is minimized byK = KX := Z, and thatφ(KX, X) = G(X, M). Also, for anyK, if

X ≤ Y are PSD, thenφ(K, X) ≤ φ(K, Y). Let X ≤ Y. Then

G(X, M) = φ(KX, X) ≤ φ(KY, X) ≤ φ(KY, Y) = G(Y, M).

Finally, to prove (v), we observe that forX ∈ S
n
≥0, G(X, M) ≤ G(trace (X) I, M). But

G(trace (X) I, M)(I + trace (X) M) = trace (X) I.

Given thatG(trace (X) I, M) ≥ 0, we havetrace (X)G(trace (X) I, M)M ≤ trace (X) I, which

implies thatG(trace (X) I, M) ≤ M−1.

To find an upper bound on the covariance we will also need the following fact.

Lemma 2 (Bound on series). LetX ∈ S
n
≥0, andΩ ∈ R

n×n with ρ(Ω) < 1. ThenSeries(X, Ω, +∞)

exists, andSeries(X, Ω, t) ≤ Series(X, Ω, +∞) ≤ trace (Series(X, Ω, +∞)) I, for all t ≥ 0.

Proof: Using the stacking map, we can write the following recursionfor Series(X, Ω, t):

Stack(Series(X, Ω, t)) = (Ω ⊗ Ω) Stack(Series(X, Ω, t − 1)) + Stack(X), (5)

where⊗ denotes the Kronecker product. It is known thatρ(Ω⊗Ω) = ρ(Ω)2. Thus, ifρρ(Ω) < 1,

equation (5) defines a stable linear system with a constant input, and hence,Stack(Series(X, Ω, t))

converges toStack(Series(X, Ω, +∞)), as t → +∞. This means thatSeries(X, Ω, t) also con-

verges. Observing thatSeries(X, Ω, t) is increasing int, we have the result.

IV. CONES OFPSDMATRICES

We observe that, ifX ∈ S
n
≥0 is such thatMX = 0, thenG(X, M) = X. This means that the

Riccati equation acts onX as if there was no observation. Motivated by this fact, we seek to

decompose a PSD matrixP as a sum of two components, which we denotePo and Pu, such

that MPu = 0. This leads to the definition of the following cones of PSD matrices:

Definition 3. Given any matrixM ∈ R
n1×n2, we define theobservable coneKo (M), and the

unobservable coneKu (M) by

Ko (M) := {X ∈ S
n2

≥0 | ker (MX) = ker (X)},

Ku (M) := {X ∈ S
n2

≥0 | MX = 0}.
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Note that, for generality, we have defined the cones for any matrix M. In the next theorem

we prove that, ifM ∈ S
n
≥0, then any matrixP ∈ S

n
≥0 can be decomposed asP = Po + Pu, with

Po ∈ Ko (M) andPu ∈ Ku (M). The proof uses the results given in the appendix.

Theorem 4 (Decomposition of PSD matrices, induced by cones). Let M, P ∈ S
n
≥0. Then there

exist unique matricesPo ∈ Ko (M) and Pu ∈ Ku (M), such thatPo + Pu = P.

Proof: If M is full rank, then clearlyPo = P and Pu = 0 satisfy the desired properties.

Thus, in what follows, we assume thatrank (M) = m < n. We first prove the theorem for

M = Block(M1, 0, 0, 0), with M1 invertible. In view of Lemma 10 in the appendix, we know

that there exist matricesP1 ∈ S
m
≥0, L ∈ R

m×(n−m), andP̃ ∈ S
(n−m)×(n−m)
≥0 , such thatP = Po+Pu,

with Po := Block(P1, P1L, LT P1, L
T P1L), andPu := Block(0, 0, 0, P̃). Then, it is easy to see

that Pu ∈ Ku (M), and for any vectorv ∈ R
n, MPov = 0 if and only if Pov = 0, which means

thatPo ∈ Ko (M). This proves that there exists at least one decomposition satisfying the required

properties. To prove uniqueness, suppose thatXo, Xu is another such decomposition. We can

always writeXo as Xo = Block(X1, X1N, NT X1, N
T X1N) + Block(0, 0, 0, X̃). The condition

MXov = 0 ⇔ Xov = 0 for v = [vT
1 vT

2 ]T translates toX1(v1 + Nv2) = 0 ⇔ X̃v2 = 0. This, in

turn, implies thatX̃ = 0 (otherwise one can setv1 = −Nv2 with X̃v2 6= 0). This means that

Xo = Block(X1, X1N, NT X1, N
T X1N). Using this fact, andMPo = M(Po+Pu) = M(Xo+Xu) =

MXo, it can be proved thatXo = Po, and thus, alsoXu = Pu.

Now, let M ∈ S
n
≥0, arbitrary, except for being rank deficient. Then, there exists an orthogonal

matrix U ∈ R
n×n, such thatM′ := UT MU = Block(M′

1, 0, 0, 0), with M′
1 diagonal and invertible

(this corresponds to the singular value decomposition ofM). Let P′ := UT PU. We know we

can find P′
o ∈ Ko (M′) and P′

u ∈ Ku (M′), such thatP′
o + P′

u = P′. Let Po := UP′
oU

T and

Pu := UP′
uU

T . ThenPo +Pu = U(P′
o +P′

u)U
T = UP′UT = P. Also, MPu = UM′UT UP′

uU
T =

UM′P′
uU

T = 0. If MPov = 0, thenUM′UT UP′
oU

T v = 0. SinceU is invertible, this means that

M′P′
oU

T v = 0. ThenP′
oU

T v = 0. Finally, UP′
oU

T v = Pov = 0, and so,ker (MPo) ⊆ ker (Po).

As above, this means thatker (MPo) = ker (Po). The decomposition ofP′ is unique. This means

that also the decomposition ofP is unique. This completes the proof.

There exists also a recursive algorithm to compute the decomposition. We do not include it

here due to space constraints. We conclude this section witha list of some properties of the

cones.
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Lemma 5 (Separation). Let M ∈ S
n
≥0. Let Po ∈ Ko (M), Pu ∈ Ku (M). ThenG(Po + Pu, M) =

G(Po, M) + Pu.

Proof: Let M̄ ∈ R
n×n such thatM̄M̄T = M. Then, it can be proved thatMPu = 0 if and

only if M̄T Pu = 0. From Lemma 1-(iii) we have

G(Po + Pu, M) = (Po + Pu) − PoM̄
(

I + M̄T PoM̄
)−1

M̄T Po = G(Po, M) + Pu.

Lemma 6 (Effect of ARE on observable matrix). Let M = Block(M1, 0, 0, 0) ∈ S
n
≥0 with

M1 ∈ S
m
>0. Let P = Block(P1, P1L, LT P1, L

T P1L) ∈ Ko (M). Then

G(P, M) = Block(G(P1, M1),G(P1, M1)L, LTG(P1, M1), L
TG(P1, M1)L).

Additionally, if P = θP Io, with θP ∈ R≥0 and Io = Block(I, 0, 0, 0) ∈ Ko (M), thenG(P, M) ≤
trace

(

M−1
1

)

Io.

Proof: We can explicitly compute(I + MP)−1:

(

I + Block(M1, 0, 0, 0)Block(P1, P1L, LT P1, L
T P1L)

)−1

= Block
(

(I + M1P1)
−1, −(I + M1P1)

−1M1P1L, 0, I
)

.

Let P(I + MP)−1 =: Block(z1(P, M), z2(P, M), z3(P, M), z4(P, M)). Then

z1(P, M) = P1(I + M1P1)
−1 = G(P1; M1),

z2(P, M) = −P1(I + M1P1)
−1M1P1L + P1L = G(P1, M1)L,

z3(P, M) = LT P1(I + M1P1)
−1 = LTG(P1, M1),

z4(P, M) = −LT P1(I + M1P1)
−1M1P1L + LT P1L = LTG(P1, M1)L.

If P = θP Io, then

G(P, M) = G(θP Io, M) = Block(G(I, M1), 0, 0, 0) ≤ Block(M−1
1 , 0, 0, 0) ≤ trace

(

M−1
1

)

Io.

We also observe that ifA = Block(A1, 0, A3, A4) andX = Block(0, 0, 0, X̃) , thenAXAT =

Block(0, 0, 0, A4X̃AT
4 ). Finally, if X, Y ∈ Ku (M), thenX + Y ∈ Ku (M).
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V. M AIN RESULT

Theorem 7(Critical arrival probability). Let{γt}+∞
t=0 be a Bernoulli process withPr [γt = 1] = p.

Let (A, C) be detectable, letρ(A)2(1− p) < 1, and letP(t) be the solution to equation (2) with

trace (E [P0]) < +∞. If C is an invertible linear operator when restricted to the observable

subspace of(A, C), thenE [P(t)] is upper bounded, uniformly int.

Proof: If C is invertible, we know from [1] that the expected covarianceis uniformly

bounded. We thus assume thatM := CT R−1C is rank deficient. We assume without loss of

generality that the system is written in Kalman canonical form, that is,A = Block(A1, 0, A3, A4),

C = [C1 0], with A4 stable andC1 invertible. ThenM := Block(M1, 0, 0, 0), with M1 :=

CT
1 R−1C1. We define the matricesIo := Block(I, 0, 0, 0) ∈ Ko (M), Iu := Block(0, 0, 0, I) ∈

Ku (M), S(t) := Series(I,
√

1 − p A, t), and G(t) := Series(Iu, A, t). By Lemma 2 and the

condition onp, we know thatS(t) ≤ θSI. Again, using Lemma 2, and the detectability of(A,C),

G(t) ≤ θGI. HereθS and θG satisfy θS := trace (S(+∞)) < +∞ and θG := trace (G(+∞)) <

+∞. Let

a := max
{

trace (E [P0]) , p trace
(

M−1
1

)

trace
(

AIoA
T
)

+ trace (Q)
}

, b := paθS.

We will prove that, for allt ≥ 0, E [P(t)] ≤ aS(t) + bAG(t − 1)AT ≤ aθSI + bθGAAT . The

proof is by induction. It is clearly true at timet = 0. Assume it is true at timet. At time t + 1

we have

E(t + 1) ≤ AG (E(t), M) AT p + AE(t)AT (1 − p) + Q

(a)

≤ AG
(

aS(t) + bAG(t − 1)AT , M
)

AT p + A
(

aS(t) + bAG(t − 1)AT
)

AT (1 − p) + Q

(b)
= AG (aS(t), M) AT p + aAS(t)AT (1 − p) + bA2G(t − 1)A2T + Q

(c)

≤ AG (aθSI, M) AT p + aAS(t)AT (1 − p) + bA2G(t − 1)A2T + Q

(d)
= AG (aθSIo, M) AT p + aAS(t)AT (1 − p) + paθSAIuA

T + bA2G(t − 1)A2T + Q

(e)

≤ trace (M1)
−1 AIoA

T p + Q + aAS(t)AT (1 − p) + bA
(

Iu + AG(t − 1)AT
)

AT

(f)

≤ a
(

I + AS(t)AT (1 − p)
)

+ bAG(t)AT

(g)
= aS(t + 1) + bAG(t)AT ,
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where (a) follows from Lemma 1-(iv) and the induction hypothesis, (b) follows from Lemma 5,

(c) follows from the bound onS(t) and Lemma 1-(iv), (d) also uses Lemma 5, (e) is obtained

from Lemma 6 and the definition ofb, and finally, (f) and (g) follow from the definitions ofa,

S(t), andG(t).

VI. SIMULATIONS

In this section we present simulations to illustrate the results. We used the following system

in the simulations:

A =







1.1 1 0

0 1.25 0

1 1 0.5






, C =

[

1 0 0

0 1 0

]

, Q =







1 0 0

0 1 0

0 0 1






, R =

[

1 0

0 1

]

.

Clearly, A is unstable and(A, C) is detectable. We haveρ(A) = 1.25, which means that the

critical probability ispc = 1−1/ρ(A)2 = 0.36. Figure 1 shows the results of the simulations. The

thick solid curve corresponds to the average trace of the covariance forp = 0.38. For this value

of p, the Kalman filter is stable. The dotted curve shows the behavior of the error covariance for

p = 0.30, i.e., a value for which the Kalman filter is unstable. The bound shown as a horizontal

line corresponds totrace
(

aθSI + bθGAAT
)

, i.e., the trace of the upper bound computed in

Section V. The upper bound was computed withp = 0.38. The number of simulations used

to compute the averages was104. We can see from Figure 1 that the stable expected error

covariance is less than the upper bound, for allt. As opposed to this, the average covariance of

the unstable filter presents large peaks over the complete simulation interval, reaching above the

upper bound.

VII. C ONCLUSIONS

We have introduced a decomposition of PSD matrices, and usedit to prove that the known

necessary condition for the stability (in expectation) of the Kalman filter with Bernoulli obser-

vations is also sufficient, when the observation matrix, restricted to the observable subspace,

defines an invertible linear operator. The decomposition was used to construct an upper bound

on the expected Kalman filter covariance. It is worth mentioning that the bounds in Theorem 7

can be made tighter by replacing some of the uses of the trace by the spectral norm.

AcknowledgementsThe support by ARO Award W911NF-05-1-0219 is gratefully acknowledged.

We thank the anonimous reviewers for their comments and suggestions.

May 29, 2008 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 11

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16

x 10
4

t

tr
ac

e(
E

[P
(t

)]
)

upper bound

Fig. 1. Trace of expected error covariance forp = 0.30 (dotted), andp = 0.38 (thick solid). The trace of the upper bound for

p = 0.38 is shown as an horizontal line and marked “upper bound.”
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APPENDIX

We give here some results that are used in Section IV.

The following is a simple fact. We include its proof for completeness.

Lemma 8 (Kernels). Let X ∈ R
n1×n2 and Y ∈ R

n3×n2 . If ker (X) ⊆ ker (Y), then there exists

L ∈ R
n3×n1 such thatY = LX.

Proof: For eachi = 1, . . . , n1, let xT
i ∈ R

n2 be thei− th row of X. Likewise, for each

j = 1, . . . , n3, let yT
j ∈ R

n2 be thej−th row of Y. Assume that there existsyj such thatyj /∈
span {x1, . . . , xn1

}. Then we can decomposeyj asyj = y
||
j +y⊥

j , wherey
||
j ∈ span {x1, . . . , xn1

},

y⊥
j ⊥ span {x1, . . . , xn1

}, and y⊥
j 6= 0. Then Xyj = 0, but Yyj 6= 0, contradictingker (X) ⊆

ker (Y). This means that there existslj ∈ R
n1 , such thatyj = XT lj ∈ span {x1, . . . , xn1

}. This

is true for any1 ≤ j ≤ m, and so,Y = LX, where thej − th row of L is lTj .

Lemma 9 (A property of PSD matrices). Let X := Block(X1, X2, X
T
2 , X4) ∈ S

n
≥0. ThenX2 =

X1L for some matrixL.

Proof: Suppose there exists a vectorv such thatX1v = 0, but XT
2 v 6= 0. Then, lettingw =

[vT − (cXT
2 v)T ]T , with c ∈ R to be chosen, we havewT Xw = −2cvT X2X

T
2 v + c2vT X2X4X

T
2 v.

We can choosec > 0 small enough, such thatwT Xw < 0, contradicting the fact thatX ≥ 0. This

means thatker (X1) ⊆ ker
(

XT
2

)

. By Lemma 8, there exists a matrix̄L, such thatXT
2 = L̄X1.

Letting L = L̄T , we haveX2 = X1L.

Lemma 10 (Decomposition of PSD matrices). Let X ∈ S
n
≥0. Let 1 ≤ m < n. Then there exist

X1 ∈ S
m
≥0, L ∈ R

m×(n−m), and X̃ ∈ S
(n−m)×(n−m)
≥0 , such that

X = Block(X1, X2, X
T
2 , X4) = Block(X1, X1L, LT X1, L

T X1L) + Block(0, 0, 0, X̃) ,

whereX̃ := X4 − LT X1L ∈ S
(n−m)
≥0 . This decomposition is unique.

Proof: From Lemma 9, we know that there existsL such thatX2 = X1L. Assume there

exist a vectorv, such thatvT X̃v < 0. Then, lettingw = [−(Lv)T vT ]T , we have thatwT Xw =

vT X̃v < 0, which contradictsX ≥ 0. To prove uniqueness, we notice that, ifX1L = X1L̄ = X2,

thenL = L̄+ L̃, with L̃ ∈ ker (X1). This means thatLT X1L = L̄T X1L̄, and so,L andL̄ produce

the same decomposition.
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