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On Kalman filtering for detectable systems

with intermittent observations

Kurt Plarre and Francesco Bullo

Abstract

We consider the problem of Kalman filtering when observati@me available according to a
Bernoulli process. It is known that there exists a criticebhability p. such that, if measurements
are available with probability greater thap, then the expected prediction covariance is bounded for
all initial conditions; otherwise, it is unbounded for sonméial conditions. We show that, when the
system observation matrix restricted to the observablspade is invertible, the known lower bound

on p, is tight. This result is based on a novel decomposition oftpessemidefinite matrices.

. INTRODUCTION

We consider the problem of Kalman filtering with intermittesbservations, when measure-
ments are available according to a Bernoulli proces$:°,,, with Pr[y; = 1] = p, rather than at
each time instant. Such problem is relevant to sensor nksyovbotic networks, and networked
control systems, in which the sensor and controller are conicating over an unreliable link
or network. Packet losses or excessive delays will cause tdabe unavailable at some time
instants. When measurements are available at each timatingta covariance of the prediction
error follows an Algebraic Riccati Equation (ARE). When measuents arrive according to a
stochastic process, the error covariance becomes a randantity [1]. We study conditions

under which the expected value of the prediction error damae is bounded.
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It is known from [1] that if (A, C) is detectable, andA, Q'/?) is controllable, where\ is
the system matrixC is the observation matrix, an@ is the process noise covariance, then
there exists a critical valug. such that, ifp > p. the expected error covariance is bounded for
any initial condition, and ifp < p., the expected error covariance is unbounded for somelinitia
conditions. The critical probability. is known to be lower bounded hy—1/p(A)?, wherep(A)
is the spectral radius oi. In general, however, it is not known whether this boundgsttiand
an upper bound is given as the solution to a quasi-convexngg#tion problem. In some cases
it is possible to show [1] that the lower bound pnis, in fact, the exact critical probability, for
example, ifC is invertible or if the system matriA has only one unstable eigenvalue. It is also
possible to construct examples in which the upper and lowands have different convergence
conditions; see [1].

This and similar problems have been considered in the fitezae.g., [2] studies the case when
the observations are split into two components, each oflwhre dropped independently. In [3]
a randomized algorithm for sensor selection or schedubnigtroduced. At each time instant,
the measurement of only one sensor among a number is inededomto the Kalman filter.
The choice of sensor is made according to either a Bernoultgss or a Markov chain. Other
variations of this problem have also been considered. Famele, the case where a source node
estimates the state and transmits such estimate over atpdrciing network is considered
in [4], [5]. In [6] the problem of scheduling sensors in a coomeation bus is considered.
It is shown that, under certain conditions, the optimum dakieg policy takes the form of a
threshold policy, with the thresholds depending on the arpdistribution of the measurements.
In [7] the authors model a packet dropping channel as a twie $tarkov chain, and find a
necessary condition for stability of the Kalman filter. Thandition is used to find necessary and
sufficient conditions for stability whefy’ is invertible, and in the one dimensional case. Finally,
some of these results have also been extended to controluwitliable communications; see,
for example, [8], [9], [10].

In this paper we prove that the critical probability is exadt—1/p(A)? for detectable systems
(see, for example, [11] for a definition of detectabilityitmich C is invertible on the observable
subspace, as opposed to the whole space. To prove this faotreduce two cones of positive
semidefinite (PSD) matrices, which we call “observable €aared “unobservable cone.” We

then introduce a novel decomposition of PSD matrices, ardtus prove that any PSD matrix
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can be decomposed as a sum of two PSD matrices, one in thevabigecone, and one in the
unobservable cone. We use such decomposition to constnuaper bound on the expected
Kalman filter covariance, as a sum of two terms, each of wisdbounded above. To illustrate
this result, we run simulations on an example.

The paper is organized as follows. In Section Il we give thenfd setup of the problem. In
Section Il we give some intermediate results, needed toegpthe main result. We introduce
the observable and unobservable cones in Section IV, amy Stome of their properties. In
Section V we prove the main result. We give simulations inti8acVI. Section VII contains

concluding remarks.

[I. PROBLEM SETUP
We consider the discrete time liner dynamical system

x(t+1) = Ax(t) + w(t),
1)
y(t) = Cx(t) + v(t),

wherex(t) € R™ is the statey(t) € R™ is the outputw(t) € R" is the process noise, and
v(t) € R™ is the measurement noise(t) and v(t) are independent white Gaussian noise
processes withw(t) ~ N(0,Q), v(t) ~ N(0,R). We assume thaR is invertible. The initial
condition isx(0) = xo with xo ~ N(0,Py). The Kalman filter for this system is given by the
recursion
X(t + 1[t) = Ax(t]t),
P(t + 1[t) = AP(t[t)A" + Q,
X(t+1t+1) =x(t+ 1]t) + K(t) (y(t) — Cx(t + 1]t)),
K(t) = P(t + 1/t)CT (CP(t + 1[)CT +R) ",
Pt+11t+1)=(T-K(@)C)P(t + 1|¢),
where x(t|t) and x(¢ + 1]¢) are the state estimate and prediction at titneespectively, and
P(t|t) andP(¢ + 1|¢t) are the estimation and prediction error covariances, otispd/; K(t) is

the Kalman gain.

We list here the notation that we use in the rest of the paper.
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(i) We letR™*"2 denote the set of, timesn, matrices with real entries ari#}, (respectively,
SZ,,) the set of symmetric positive semidefinite (respectivpbsitive definite) matrices of
sizen.

(i) We let P(t) :=P(t + 1|t), andE(t) := E [P(t)].

(iii) Given A € R™", we definep(A) := max{|A| | A is an eigenvalue oA}, i.e., the spectral

radius ofA.
(iv) Forl < m < n,we defineBlock : R™*™m xR (=m)  R(n—m)xm y R(n=m)x(n=m) _, Rnrxn
by
X; Xy
Block(X;, X5, X5, Xy) = .
oc ( 1, 422, 423, 4) X3 X4

By convention, ifm = n, Block(Xy, Xy, X3, X4) = X;.
(v) We define the maferies : S, x R™*" x (NU{~1, +00}) — S%, by Series(X, 2, —1) := 0
and ,
Series(X, Q, 1) := ZQTXQTT, t € NU {+o0}.

=0
(vi) Finally, we define the “stacking mapStack : R"*" — R™, by letting Stack(2) be the

vector obtained by stacking the columnsfaf

To simplify the presentation, we only indicate the size of@nm explicitly when it is not clear

from the context.

[1l. PRELIMINARY FACTS

The evolution ofP(¢) is given by the Algebraic Riccati Equation (ARE)
P(t+1) = Q+ AP(t)A” — AP(#)CT (CP(£)CT + R) ™ CP(1)A”.

When measurements are available randoiinly) becomes a random quantity. In this paper we
assume that a measurement at tinie available ify; = 1, where{+;},=5 is a Bernoulli process

with Pr [y, = 1] = p. In this case, the ARE can be rewritten as [1]
P(t 4+ 1) = Q + AP(t)A” — 3 AP(#)C” (CP(#)CT +R) ™ CP(1)A”. )

We are interested in sufficient conditions for stability betexpected value aP(¢). To find

such conditions, we construct an upper bound=dR(¢)]. From [1], [3] we know that an upper
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bound onE(t¢) can be obtained using Jensen’s Inequality:
E(t + 1) < AE(H)A” + Q — pAE(t)C” (CE(t)CT + R) ™ CE(t)A”
= (AE(t)AT — AE(H)CT (CE()CT +R) ™ CE(t)AT) p+AEM)AT(1 - p)+Q
= AG (E(t),C"R™'C) ATp+ AE(H)AT(1 - p) + Q, (3)
where £(0) = E[Pg] and where the mag : S, x S, — S%, is defined byG(X,M) :=

X(I+MX)_1. The last step in equation (3) follows from the matrix inwenslemma or,

equivalently, from property (iii) in the following lemma.

Lemma 1 (Properties of7). LetM, X, Y € SZ,. LetM € R™*" be a matrix, such thatIM” = M
(such a matrix always exists). Then the following holds:
() G(X, M) = G(X,M)”;
(i) GX,M) =X — X(I +MX) 'MX;
(i) G(X,M) = X — XM (I + M"XM) " MTX;
(iv) if X <Y, thenG(X,M) < G(Y,M); and
(v) if M is invertible, thenG(X, M) < M.

Proof: To prove (i) we observe that(X, M)” = (I + MX)~TX. We then have that
I+ MX)" (G(X, M) — G(X,M)") (I + MX) = (I+MX)"X - X(I+ MX) = 0.

It can be proved thafl + MX) is invertible. This means tha&(X, M) = G(X, M)”. To prove (ii)
we observe tha@ (X, M)(I + MX) = X. This implies that

G(X,M) = X — G(X, M)MX = X — X(I + MX)~'MX. (4)
We now prove (iii). We have the following sequence of imptlicas:
G(X,M)(I + MX) = X = G(X,M)M + G(X, M)MMTXM = XM
= G(X,M)M (I + M"XM) = XM = (I+M"XM) MTG(X,M) = M"X
= M7G(X,M) = (I+M7XM) " MTX = XMG(X,M) = XM (I + M"XM) " M7 X.
From (4) we know thatX — XMG(X,M) = G(X,M). This finishes the proof. To prove (iv)

we follow [1], [3]. We define a map) : R™*" x S, — SZ, by ¢(K,X) := (I+ KMT)X(I +
KMT)T + KKT. We rewriteg(K, X) as

H(K,X) = (K- 2) (M'XM +1) (K- 2)" + 7,
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whereZ = —XM(M”XM +I)~! andZ’ = X — Z(M"XM + I)Z”. We can see that for fixed
X, ¢(K, X) is minimized byK = Kx := Z, and thatp(Kx, X) = G(X, M). Also, for anyK, if
X <Y are PSD, them(K, X) < ¢(K,Y). Let X < Y. Then
Finally, to prove (v), we observe that fotf € S%,, G(X, M) < G(trace (X) I, M). But

G(trace (X) I, M) (I + trace (X) M) = trace (X) L.
Given thatG(trace (X)I,M) > 0, we havetrace (X) G(trace (X) I, M)M < trace (X) I, which

implies thatG (trace (X)I, M) < M1, ]

To find an upper bound on the covariance we will also need thewfimg fact.

Lemma 2 (Bound on series)LetX € S%,, andQ2 € R™" with p(Q2) < 1. ThenSeries(X, €2, +00)
exists, andSeries(X, 2, t) < Series(X, €2, +00) < trace (Series(X, 2, +00)) I, for all t > 0.

Proof: Using the stacking map, we can write the following recurdionSeries(X, 2, t):
Stack(Series(X, Q,1)) = (2 ® Q) Stack(Series(X, Q,t — 1)) 4+ Stack(X), (5)

where® denotes the Kronecker product. It is known the® ® Q) = p(Q2)2. Thus, if pp(Q2) < 1,
equation (5) defines a stable linear system with a constpat,iand hencejtack(Series(X, €2, t))
converges tdtack(Series(X, €2, +00)), ast — +oo. This means thaberies(X, €2, ¢) also con-

verges. Observing th&leries(X, 2, ¢) is increasing int, we have the result. u

IV. CONES OFPSDMATRICES

We observe that, iK € S is such thatMX = 0, thenG(X, M) = X. This means that the
Riccati equation acts oX as if there was no observation. Motivated by this fact, wek dee
decompose a PSD matrix as a sum of two components, which we denBteand P, such

that MP, = 0. This leads to the definition of the following cones of PSD mcas:

Definition 3. Given any matrixXM € R"*"2, we define thebservable coné, (M), and the
unobservable cong, (M) by
Ko (M) := {X € S | ker (MX) = ker (X)},

Ko (M) := {X € S22, | MX = 0}.
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Note that, for generality, we have defined the cones for antrixn&l. In the next theorem
we prove that, ifM € S%,, then any matrix® € S%, can be decomposed &= P, + P, with
P, € K, (M) andP, € K, (M). The proof uses the results given in the appendix.

Theorem 4 (Decomposition of PSD matrices, induced by conést M, P € S%,. Then there
exist uniqgue matrice®, € K, (M) and P, € K, (M), such thatP, + P, = P.

Proof: If M is full rank, then clearlyP, = P and P, = 0 satisfy the desired properties.
Thus, in what follows, we assume thatnk (M) = m < n. We first prove the theorem for
M = Block(Mj,0,0,0), with M; invertible. In view of Lemma 10 in the appendix, we know
that there exist matricds; € S7, L € R™*("=m), andP e Sgo’m)x(”’m), such thaP = P,+P,,
with P, := Block(Py, P,L, L7P,,L7P,L), and P, := Block(0,0,0,P). Then, it is easy to see
that P, € K, (M), and for any vector € R, MP,v = 0 if and only if P,v = 0, which means
thatP, € IC, (M). This proves that there exists at least one decompositiisfysag the required
properties. To prove uniqueness, suppose ¥atX, is another such decomposition. We can
always writeX, as X, = Block(Xy, X;N, N”X;, N"X;N) + Block(0, 0,0, X). The condition
MX,v =0 < X,v =0 for v = [vI vI]T translates t&X; (v, + Nv,) = 0 < Xv, = 0. This, in
turn, implies thatX = 0 (otherwise one can set = —Nv, with Xv, # 0). This means that
X, = Block(X;, X N, NTX,;, NTX,N). Using this fact, andiP, = M(P,+P,) = M(X,+X,) =
MX,, it can be proved thaX, = P,, and thus, als&, = P,.

Now, let M € S%,, arbitrary, except for being rank deficient. Then, therestsxan orthogonal
matrix U € R™*", such thatM’ := UTMU = Block(M}, 0,0, 0), with M} diagonal and invertible
(this corresponds to the singular value decompositiodidf Let P’ := UTPU. We know we
can findP, € K, (M) and P, € K, (M), such thatP’ + P/ = P’. Let P, := UP,U” and
P, := UP,U”. ThenP,+P, = U(P/ +P/)UT = UP'UT = P. Also, MP, = UM'UTUP/ UT =
UM'P,UT = 0. If MP,v = 0, thenUM'UTUP/ U”v = 0. SinceU is invertible, this means that
M'P.UTv = 0. ThenP,U”v = 0. Finally, UP,U?v = P,v = 0, and soker (MP,,) C ker (P,).
As above, this means thktr (MP,) = ker (P,). The decomposition dP’ is unique. This means
that also the decomposition &f is unique. This completes the proof. [ |

There exists also a recursive algorithm to compute the dposition. We do not include it
here due to space constraints. We conclude this sectionawiist of some properties of the

cones.
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Lemma 5 (Separation)Let M € S%,. LetP, € K, (M), P, € K, (M). ThenG(P, + P, M) =
G(Po, M) + P,.

Proof: Let M € R™" such thatMM” = M. Then, it can be proved thatP, = 0 if and

only if M”P,, = 0. From Lemma 1-(iii) we have
G(P, + Py, M) = (P, + P,) — P,M (I+MTP,M) ™ M7P, = G(P,, M) + P,,.
|

Lemma 6 (Effect of ARE on observable matrix}et M = Block(M;,0,0,0) € SZ%; with
M; € S7,. Let P = Block(Py, P1L, L7P;, LTP,L) € K, (M). Then

g(P7 M) = BlOCk(g(Pb M1)7 g(Plu Ml)L7 LTg(Plv Ml)a LTg(Ph Ml)L>

Additionally, if P = 651, with 6p € R>, and I, = Block(I,0,0,0) € I, (M), thenG(P, M) <
trace (Ml_l) L.

Proof: We can explicitly computél + MP)~*:
(I + Block(Mj, 0,0,0)Block(Py, P,L, L7Py, LTP, L))
= Block ((I4+ M;Py)~", —(I+ M;P;)"'M;P;L, 0, I).
Let P(I+ MP)~! =: Block(z1(P, M), 22(P, M), 23(P, M), 24(P,M)). Then
21(P,M) = Py (I+M;,P;)™' = G(Py; My),
2 (P,M) = =P, (14 M,P,)'M,P,L + P,L = G(P,,M,)L,
z3(P,M) = LTP (I 4+ M,P,)™" = LYG(P,,M,),
2(P,M) = —LTP;(I1+ M,P,)"'M,P,L + L"P,L = L"G(P,,M,)L.
If P=0pl,, then
G(P,M) = G(0pl,, M) = Block(G(I, M;),0,0,0) < Block(M;*,0,0,0) < trace (M;') L.

|
We also observe that ik = Block(A,0, A3, Ay) and X = Block(0,0,0,X) , then AXAT =
Block(0,0,0, A,XAT). Finally, if X,Y € K, (M), thenX +Y € K, (M).
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V. MAIN RESULT

Theorem 7 (Critical arrival probability) Let{~;},- be a Bernoulli process withr [y; = 1] = p.
Let (A, C) be detectable, lep(A)*(1 —p) < 1, and letP(¢) be the solution to equation (2) with
trace (E [Po]) < +oo. If C is an invertible linear operator when restricted to the ohsdie

subspace ofA, C), thenE [P(¢)] is upper bounded, uniformly i

Proof: If C is invertible, we know from [1] that the expected covarianseuniformly
bounded. We thus assume thdt := CTR~!C is rank deficient. We assume without loss of
generality that the system is written in Kalman canonicaifathat is,A = Block(Ay, 0, A3, Ay),

C = [Cy 0], with A4 stable andC; invertible. ThenM := Block(My,0,0,0), with M; :=
CTR™'C,. We define the matricek, := Block(1,0,0,0) € K, (M), I, := Block(0,0,0,1) €
Ko (M), S(t) := Series(I,\/T—pA,t), and G(t) := Series(I,,A,t). By Lemma 2 and the
condition onp, we know thatS(¢) < 6sI. Again, using Lemma 2, and the detectability(ef, C'),
G(t) < 6cl. Herefs and 6 satisfy fs := trace (S(4+00)) < +oo and g := trace (G(+0)) <
~+o00. Let

a := max {trace (E[Po]), ptrace (Ml_l) trace (AIOAT) + trace (Q)} , b := pabs.

We will prove that, for allt > 0, E[P(t)] < aS(t) + bAG(t — 1)AT < afsI + bOcAAT. The
proof is by induction. It is clearly true at time= 0. Assume it is true at time. At time ¢ + 1

we have
E(t +1) < AG (E(t), M) ATp + AE(H)AT (1 - p) + Q
(%) AG (aS(t) + bAG(t — 1)A", M) ATp+ A (aS(t) + bAG(t — 1)AT) AT(1 - p) + Q
Y AG (aS(t), M) ATp + aAS(HAT(1 — p) + bA2G(t — DAY +Q
(2 AG (aBsT, M) ATp + aAS(H)AT (1 — p) + bA’G(t — 1)A*T + Q
D AG (absly, M) ATp + aAS(H)AT(1 — p) + pabs AL AT + bA2G(t — 1A +Q

(e)
< trace (My) " ALATp + Q + aAS(H)AT(1 — p) + bA (I, + AG(t — 1)AT) AT

% a(I+AS(t)AT(1—p)) + bAG(t)A"

—~
~

9D 4S(t + 1) + bAG(1)AT,
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where (a) follows from Lemma 1-(iv) and the induction hypesls, (b) follows from Lemma 5,
(c) follows from the bound ors(¢) and Lemma 1-(iv), (d) also uses Lemma 5, (e) is obtained
from Lemma 6 and the definition @ and finally, (f) and (g) follow from the definitions af,
S(t), and G(t). [

VI. SIMULATIONS

In this section we present simulations to illustrate theiltss We used the following system

in the simulations:

111 0 Lo o

A= 1.2 C= =
’ R [0 1 0]’ @
1 1 05

Clearly, A is unstable andA, C) is detectable. We have

1 00

0 10|, R=
0 01

(A) = 1.25, which means that the
critical probability isp. = 1—1/p(A)? = 0.36. Figure 1 shows the results of the simulations. The
thick solid curve corresponds to the average trace of thar@wce forp = 0.38. For this value

of p, the Kalman filter is stable. The dotted curve shows the eha¥ the error covariance for

p = 0.30, i.e., a value for which the Kalman filter is unstable. The ftmbghown as a horizontal
line corresponds tarace (a951+bGGAAT), i.e., the trace of the upper bound computed in
Section V. The upper bound was computed with= 0.38. The number of simulations used
to compute the averages wag*. We can see from Figure 1 that the stable expected error
covariance is less than the upper bound, for.als opposed to this, the average covariance of
the unstable filter presents large peaks over the compi@tglation interval, reaching above the

upper bound.

VIlI. CONCLUSIONS

We have introduced a decomposition of PSD matrices, and iigedorove that the known
necessary condition for the stability (in expectation) lud Kalman filter with Bernoulli obser-
vations is also sufficient, when the observation matrixfricted to the observable subspace,
defines an invertible linear operator. The decompositios used to construct an upper bound
on the expected Kalman filter covariance. It is worth mentigrthat the bounds in Theorem 7
can be made tighter by replacing some of the uses of the tratleebspectral norm.
AcknowledgemeniBhe support by ARO Award W911NF-05-1-0219 is gratefully amkfedged.
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Fig. 1. Trace of expected error covariance fo 0.30 (dotted), andp = 0.38 (thick solid). The trace of the upper bound for

p = 0.38 is shown as an horizontal line and marked “upper bound.”

(1]

(2]

(3]

REFERENCES

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. |. Jordamd S. S. Sastry, “Kalman filtering with intermittent
observations,IEEE Transactions on Automatic Contralol. 49, no. 9, pp. 1453-63, 2004.

X. Liu and A. J. Goldsmith, “Kalman filtering with partial observation lesg in IEEE Conf. on Decision and Control
Paradise Island, Bahamas, Dec. 2004, pp. 4180-4186.

V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a statfasensor selection algorithm with applications in
sensor scheduling and sensor coverag@fomatica vol. 42, no. 2, pp. 251-260, 2006.

[4] A.F. Dana, V. Gupta, J. Hespanha, R. M. Murray, and B. Has4#stimation over communication networks: Performance

bounds and achievability results,” #famerican Control ConferencéNew York, Jul. 2007, pp. 3450-3455.

[5] V. Gupta, A. F. Dana, J. P. Hespanha, and R. M. Murray, “Datagmission over networks for estimation,”Nfathematical

(6]

(7]

(8]
9]

[10]

[11]

Theory of Networks and Systenkgoto, Japan, Jun. 2006.

O. Imer and T. Basar, “Optimal estimation with scheduled measen¢sii Journal of Applied and Computational
Mathematicsvol. 4, no. 2, pp. 1-11, 2005.

M. Huang and S. Dey, “Stability of Kalman filtering with Markov packess$es,”Automatica vol. 43, no. 4, pp. 598-607,
2007.

N. Elia, “Remote stabilization over fading channelSystems & Control Lettervol. 54, pp. 237-249, 2005.

L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. Singdfoundations of control and estimation over lossy
networks,”|EEE Proceedingsvol. 95, no. 1, pp. 163-187.

R. Touri and C. N. Hadjicostis, “Stabilization with feedback contrilizing packet dropping network linksET (IEE)
Proceedings on Control Theory and Applicatiorsl. 1, no. 1, pp. 334-342, 2007.

E. D. SontagMathematical Control Theory: Deterministic Finite Dimensional Systensl ed., ser. TAM. New York:
Springer Verlag, 1998, vol. 6.

May 29, 2008 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 12

APPENDIX

We give here some results that are used in Section IV.

The following is a simple fact. We include its proof for coraf@ness.

Lemma 8 (Kernels) Let X € R™*™ andY € R"*"2, If ker (X) C ker (Y), then there exists
L € R™*™ such thatY = LX.

Proof: For eachi = 1,...,n4, let xI' € R™ be thei—th row of X. Likewise, for each
j=1,...,n3, let y;ff € R™ be thej—th row of Y. Assume that there exists such thaty; ¢
y +¥5 Wherey‘j‘ € span {Xy,...,Xpn,
y; L span{xiy,...,x,}, andy; # 0. ThenXy; = 0, but Yy; # 0, contradictingker (X) C

ker (Y). This means that there existse R™, such thaty; = X’1; € span {xy,...,x,, }. This

span {x1, ...,X,, }. Then we can decompose asy, =y

is true for anyl < 5 < m, and so,Y = LX, where thej — th row of L is 1;-.”. [ |

Lemma 9 (A property of PSD matrices).et X := Block(X;, Xy, X3, X,) € S%,. ThenX, =
X, L for some matrixL.

Proof: Suppose there exists a vectosuch thatX;v = 0, but XIv # 0. Then, lettingw =
VT — (eXTv)T]T, with ¢ € R to be chosen, we have’ Xw = —2cvI XoXTv + v XX XT v
We can choose > 0 small enough, such that’Xw < 0, contradicting the fact that > 0. This
means thaker (X;) C ker (X7). By Lemma 8, there exists a matrl, such thatX] = LX;.
Letting L = L7, we haveX, = X, L. [

Lemma 10 (Decomposition of PSD matrices)et X € S%,. Let1 < m < n. Then there exist
X, € 87, L e R™(=m and X e sUy ™™ such that
X = Block(Xy, Xy, XT, X4) = Block(Xy, X, L, LTX;, LTX; L) + Block(0, 0,0, X) |
whereX := X, — LTX,L € S(Z"O_m). This decomposition is unique.
Proof: From Lemma 9, we know that there exidtssuch thatX, = X;L. Assume there
exist a vectorv, such thatv”Xv < 0. Then, lettingw = [—(Lv)” v7]”, we have thatv” Xw =
vI'Xv < 0, which contradictsX > 0. To prove uniqueness, we notice thatXifL = X;L = Xo,

thenL = L+ L, with L € ker (X;). This means that”X,L = L”X;L, and soL. andL produce
the same decomposition. [ |
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