A Geometric Assignment Problem for Robotic
Networks

Stephen L. Smith and Francesco Bullo

Department of Mechanical Engineering
Center for Control, Dynamical Systems and Computation
University of California, Santa Barbara, CA 93106-5070, USA

stephen@engineering.ucsb.edu, bullo@engineering.ucsb.edu

Summary. In this chapter we look at a geometric target assignment problem con-
sisting of an equal number of mobile robotic agents and distinct target locations.
Each agent has a fixed communication range, a maximum speed, and knowledge
of every target’s position. The problem is to devise a distributed algorithm that
allows the agents to divide the target locations among themselves and, simultane-
ously, leads each agent to its unique target. We summarize two algorithms for this
problem; one designed for “sparse” environments, in which communication between
robots is sparse, and one for “dense” environments, where communication is more
prevalent. We characterize the asymptotic performance of these algorithms as the
number of agents increases and the environment grows to accommodate them.

1 Introduction

Consider a group of n mobile robotic agents, equipped with wireless transceivers
for limited range communication, dispersed in an environment & C R2. Sup-
pose the environment also contains n target locations, and each agent is given
a list containing their positions (these positions may be given as GPS coor-
dinates). We would like each target location to be occupied be an agent as
quickly as possible. Since no a priori assignment of target-agent pairs has
been given, the agents must solve the problem through communication and
motion. We call this the target assignment problem. Such a problem could
arise in several applications, such as UAV’s on a surveillance mission, where
the targets are the centers of their desired loitering patterns.

The centralized problem of simply assigning one agent to each target is
known in the combinatorial optimization literature as the maximum matching
problem [1]. There are several polynomial time algorithms for solving this
problem, the best known being [2] by Hopcroft and Karp. To efficiently assign
agents to targets, we may be interested in finding a maximum matching (i.e.,
an assignment of one agent to each target) which minimizes a cost function.
If the cost function is the sum of distances from each agent to its assigned

2 Stephen L. Smith and Francesco Bullo

target, then the problem is known as the assignment problem, or the minimum
weight maximum matching problem, [1]. This problem can be written as an
integer linear program and optimal solutions can be computed in polynomial
time [3]. Another choice of cost function is to minimize the maximum distance
between agents and their assigned targets. This problem is commonly referred
to as the bottleneck assignment problem [4], and although the cost function is
not linear, there still exist several polynomial time algorithms for its solution.
There has also been work on developing algorithms for the assignment problem
which can be implemented on parallel computing systems. One example is the
auction algorithm [5], which can be implemented with one processor for each
agent.

There is set of problems, commonly referred to as decentralized task al-
location, that are closely related to our target assignment problem, see for
example [6, 7, 8]. In these problems the goal is generally to assign vehicles to
spatially distributed tasks while maximizing the “score” of the mission. Most
works on this problem develop advanced heuristic methods, and demonstrate
their effectiveness through simulation or real world implementation. In [9]
the auction algorithm was adapted to solve a task allocation problem in the
presence of communication delays. There has also been prior work on the tar-
get assignment problem [10, 11, 12, 13, 14]. For example, an algorithm based
on hybrid systems tools is developed in [10]. The algorithm performance is
characterized by a bound on the number of switches of the hybrid system;
however, no analysis of the time complexity is provided.

In this chapter we summarize our recent investigations [12, 13] into the
minimum-time task assignment problem and its scalability properties. We
are interested in characterizing the completion time as the number of agents,
n, grows, and the environment, £(n) = [0,¢(n)]?, grows to accommodate
them. In Section 4 we describe the ETSP AssGMT algorithm with worst-
case completion time in O(y/nf(n)). In addition, in “sparse” environments,
i.e., when ¢(n)/\/n — +o0o, the ETSP AssaMT algorithm is asymptotically
optimal among a broad class of algorithms in terms of its worst-case comple-
tion time. Then, in Section 5 we describe the GRID ASSGMT algorithm with
worst-case completion time in O(£(n)?). We also characterize the stochastic
properties of the GRID ASSGMT algorithm in “dense” environments, i.e., when
£(n)/y/n — 0. If the agents and targets are uniformly randomly distributed,
then the completion time belongs to O(£(n)) with high probability. Also, if
there are n agents and only n/logn targets, then the completion time belongs
to O(1) with high probability.

The two algorithms are complementary: ETSP AssGMT has better perfor-
mance in sparse environments, while GRID ASSGMT has better performance
in dense environments.

A Geometric Assignment Problem for Robotic Networks 3
2 Geometric and stochastic preliminaries

In this section we review a few useful results on the Euclidean traveling sales-
person problem, occupancy problems, and random geometric graphs. To do
this, we must first briefly review some notation. We let R denote the set of real
numbers, R+ denote the set of positive real numbers, and N denote the set of
positive integers. Given a finite set A, we let | A| denote its cardinality. For two
functions f, g : N — R, we write f(n) € O(g) (respectively, f(n) € 2(g)) if
there exist N € N and ¢ € Rxq such that f(n) < cg(n) for all n > N (respec-
tively, f(n) > cg(n) for all n > N). If f(n) € O(g) and f(n) € 2(g) we say
f(n) € ©(g). We say that event A(n) occurs with high probability (w.h.p.) if
the probability of A(n) occurring tends to one as n — +oo.

2.1 The Euclidean traveling salesperson problem

For a set of n points, @ € R?, we let ETSP(Q) denote the length of the
shortest closed path through all points in Q. The following result characterizes
the length of this path when Q C [0, £(n)]?.

Theorem 1 (ETSP tour length, [15]). For every set of n points Q C
[0,4(n)]?, we have ETSP(Q) € O(y/nt(n)).

The problem of computing an optimal ETSP tour is known to be NP-
complete. However, there exist many efficient approximation algorithms. For
example, the Christofides’ algorithm [16], computes a tour that is no longer
than 3/2 times the optimal in O(n3) computation time.

2.2 Bins and balls

Occupancy problems, or bins and balls problems, are concerned with randomly
distributing m balls into n equally sized bins. The two results we present here
will be useful in our analysis.

Theorem 2 (Bins and balls properties, [17, 18]). Consider uniformly
randomly distributing m balls into n bins and let v, be any function such that
Yn — +00 as n — 4oo. The following statements hold:

1. if m = n, then w.h.p. each bin contains O (101/;{%;“) balls;

2.if m = nlogn + y,n, then w.h.p. there are no empty bins, and each bin
contains O(logn) balls;

3. if m =nlogn — y,n, then w.h.p. there exists an empty bin;

4.4f m = Knlogn, where K > 1/log(4/e), then w.h.p. every bin contains
O(logn) balls.

We will be interested in dividing a square environment into equally sized
and openly disjoint square bins, such that the side length ¢(B), of each bin is
small in some sense. To do this, we require the following simple fact.

4 Stephen L. Smith and Francesco Bullo

Lemma 1 (Dividing the environment). Given n € N and r > 0, consider
an environment €(n) := [0,4(n)]?. If £(n) is partitioned into b* equally sized
and openly disjoint square bins, where

b= [V5l(n)/r], (1)

then £(B) < r/\/5. Moreover, if x,y € £(n) are in the same bin or in adjacent
bins, then ||z —y| <.

2.3 Random geometric graphs

For n € Nand r € Rx, a planar geometric graph G(n,r) consists of n vertices
in R?, and undirected edges connecting all vertex pairs {z,y} with ||z —yl|| < r.
If the vertices are randomly distributed in some subset of R2, we call the graph
a random geometric graph.

Theorem 3 (Connectivity of random geometric graphs, [19]). Con-
sider the random geometric graph G(n,r) obtained by uniformly randomly
distributing n points in [0,€(n)]?. If

(r)2 logn + ¢(n)
m [=)

n

then G(n,r) is connected w.h.p. if and only if ¢(n) — +00 as n — +oo.

This theorem will be important for understanding some of our results. If we
randomly deploy n agents with communication range r» > 0 in an environment
[0,4(n)]?, then the communication graph is connected if £(n) < ry/n/logn.

3 Network model and problem statement

In this section we formalize our agent and target models and define the sparse
and dense environments.

3.1 Robotic network model

Consider n agents in an environment &(n) := [0,4(n)]?> C R?, where ¢(n) > 0
(that is, £(n) is a square with side length ¢(n)). The environment &(n) is
compact for each n but its size depends on n. A robotic agent, Al i € T :=
{1,...,n}, is described by the tuple

Al = fumli), plil . ull A,

where the quantities are as follows: Its unique identifier (UID) is upll, taken
from the set I;;, C N. Note that, each agent does not know the set of UIDs

A Geometric Assignment Problem for Robotic Networks 5

being used and thus does not know the order. Its position is pll € £(n). Its
communication range is 7 > 0, i.e., two agents, Al and A¥l i k € Z, can
communicate if and only if ||pl —pl¥l|| < r. Its continuous time velocity input
is ul’l| corresponding to the kinematic model pl!! = ul!l, where |[ul?| < vyax
for some vpma > 0. Finally, its memory is M1 and is of size \M[i]\. From
now on, we simply refer to agent Al as agent i. We assume the agents move
in continuous time and communicate according to a discrete time schedule
{ti}ren. We assume |tr1 — tg| < tmax, for all & € N, where tpax € R, At
each communication round, agents can exchange messages of length O(logn).!

3.2 The target assignment problem

Let Q :={q1,...,q,} be a set of distinct target locations, q,; € £(n) for each
j € Z. Agent #’s memory, M1, contains a copy of Q, which we denote Ql. To
store Q] we must assume the size of each agents’ memory, |M], is in 2(n).
We refer to the assumption that each agent knows all target positions as the
full knowledge assumption (for a more detailed discussion of this assumption
see [12]). Our goal is to solve the (full knowledge) target assignment problem:

Determine an algorithm for n € N agents, with attributes as described
above, satisfying the following requirement. There exists a time 7" > 0
such that for each target q; € Q, there is a unique agent ¢ € Z, with
pli(t) = q; for all t > T.

3.3 Sparse and dense environments

We wish to study the scalability of a particular approach to the target as-
signment problem; that is, how the completion time increases as we increase
the number of agents, n. The velocity vmax and communication range r of
each agent are independent of n. However, we assume that the size of the
environment increases with n in order to accommodate an increase in agents.
Borrowing terms from the random geometric graph literature [19], we say the
environment is sparse if, as we increase the number of agents, the environment
grows quickly enough that the density of agents (as measured by the sum of
their communication footprints) decreases; we say the environment is critical,
if the density is constant, and we say the environment is dense if the density
increases. Formally, we have the following definition.

Definition 1 (Dense, critical and sparse environments). The environ-
ment E(n) = [0,£(n)]? is sparse if £(n)/\/n — 400 as n — +oo, critical if
l(n)/y/n — C €Rsg as n — +oo, and dense if £(n)/\/n — 0, as n — +oo.
It should be emphasized that a dense environment does not imply that
the communication graph between agents is dense. On the contrary, from

Theorem 3 we see that the communication graph at random agent positions
in a dense environment may not even be connected.

L 2(n) bits are required to represent an ID, unique among n agents.

6 Stephen L. Smith and Francesco Bullo

4 Sparse environments

We begin by studying the case when the environment is sparse, and thus
there is very little communication between agents. We introduce a natural ap-
proach to the problem in the form of a class of distributed algorithms, called
assignment-based motion. We give a worst-case lower bound performance of
the assignment-based motion class. Next, we introduce a control and com-
munication algorithm, called ETSP AssaMT. In this algorithm, each agent
precomputes an optimal tour through the n targets, turning the cloud of tar-
get points into an ordered ring. Agents then move along the ring, looking for
the next available target. When agents communicate, they exchange infor-
mation on the next available target along the ring. We show that in sparse
or critical environments, the ETSP AssaMT algorithm is an asymptotically
optimal among all algorithms in the assignment-based motion class.

4.1 Assignment-based algorithms with lower bound analysis

Here we introduce and analyze a class of deterministic algorithms for the tar-
get assignment problem. The assignment-based motion class can be described
as follows.

Outline of assignment-based motion class

Initialization: In this class of algorithms agent ¢ initially selects the
closest target in Q). and sets the variable currl’] (agent i’s current
target), to the index of that target.

Motion: Agent i moves toward the target currl! at speed vmax.

Communication: If agent i communicates with an agent k that is
moving toward currl® = currl!l, and if agent k is closer to currl]
than agent 7, then agent i “removes” currl’ from Q) and selects
a new target.

For this class of algorithms it is convenient to adopt the following conventions:
we say that agent ¢ € 7 is assigned to target q; € Q, when currl = j. We
say that agent i € T enters a conflict over the target currl”, when agent i
receives a message, msgl®l, with currl! = curr*l. Agent i loses the conflict if
agent i is farther from currl’ than agent k, and wins the conflict if agent i is
closer to currl’ than agent k, where ties are broken by comparing UIDs. Note
that if an agent is assigned to the same target as another agent, it will enter
a conflict in finite time.

Theorem 4 (Time complexity lower bound for target assignment).
Consider n agents, with communication range r > 0, in an environment
[0,6(n)]%. If £(n) > r/n, then for all algorithms in the assignment-based
motion class, the time complexity of the target assignment problem is in

2(vnt(n)).

A Geometric Assignment Problem for Robotic Networks 7

In other words, the target assignment time complexity is lower bounded
when the environment grows faster than some critical value, that is, when the
environment is sparse or critical.

4.2 The ETSP Assgmt algorithm with upper bound analysis

In this section we introduce the ETSP AsscaMT algorithm—an algorithm
within the assignment-based motion class. We will show that when the en-
vironment is sparse or critical, this algorithm is asymptotically optimal. In
the following description of ETSP AssaMT it will be convenient to assume
that the target positions are stored in each agents memory as an array, rather
than as an unordered set. That is, we replace the target set Q with the target
n-tuple q := (qu,-..,q,), and the local target set Ol with the n-tuple gl?.
The algorithm can be described as follows.

For each ¢ € 7, agent ¢ computes a constant factor approximation of the
optimal ETSP tour of the n targets in ql¥l, denoted tour(q!). We can think of
tour as a map which reorders the indices of ql); tour(q/?) = (q([;](l)7 . ,qg}(n)),
where o : 7 — T is a bijection. This map is independent of 7 since all agents
use the same method. An example is shown in Fig. 1(a). Agent ¢ then replaces

o

tour

°7
(a) The map tour orders the given targets (b) Initialization of agent 4

Fig. 1. Initialization of ETSP AssGMT

its n-tuple g with tour(qm). Next, agent ¢ computes the index of the closest
target in g/, and calls it currl’l. Agent i also maintains the index of the next
target in the tour which may be available, next!, and first target in the tour
before currl’ which may be available, prevl’. Thus, next!” is initialized to
currl’) 4-1 (mod n) and prevl” to currl — 1 (mod n). In order to “remove” as-
signed targets from the tuple ql”, agent i also maintains the n-tuple, statusl?.
Letting status!’(j) denote the jth entry in the n-tuple, the entries are given
by

[d]

0, if agent ¢ knows q;

;* is assigned to another agent,

statusl’l (j) = { (2)

1, otherwise.

8 Stephen L. Smith and Francesco Bullo

Thus, statusl? is initialized as the n-tuple (1,...,1). The initialization is de-
picted in Fig. 1(b).

Finally, at each communication round agent i executes the algorithm
COMM-RD described below.

Outline of comm-rd algorithm for agent i

1: Broadcast msgl’, consisting of the targets, prevl, currl!, and
nextl’ the distance to the current target dl¥l, and vipll.
. for all messages, msgl*!, received do
3. Set statusl’!(j) to assigned (‘0’) for each target j from prev(® +
1 (mod n) to next!®! — 1 (mod n) not equal to currl’.
4: if prevl® = next!®! = curr # currl?, then set the status of
curr*! to 0 because it was missed in the previous step.
5. if currld = currl® but agent i is farther from currl’ than agent k
(ties broken with UIDs) then
Set the status of currl’) to assigned (‘0’).
if currl! = curr*! and agent i is closer than agent k then
Set the status of next!’ and next!*! to assigned (‘0’).
. Update currl! to the next target in the tour with status available
(‘1’), nextl’) to the next available target in the tour after currl’,
and prevl to the first available target in the tour before currl?.

[\V]

© XN

In summary, the ETSP AssaMT algorithm is the triplet consisting of
the initialization of each agent, the motion law (move toward currl! at speed
Umax), and the COMM-RD algorithm executed at each communication round.

Fig. 2 gives an example of COMM-RD resolving a conflict between agents
i and k, over currl! = curr*]. The proposed algorithm enjoys plenty of useful

next® = nextl! = 1 currll = 1
currl = currl! = 7) currll = 7
pli E((pll IZ(’ 2 = next™ = nextl
prevl! = 6 6
prev[’"] =5 . prev[k] = prev il =5 .
(a) Setup prior to a conflict. (b) Setup after resolution of the conflict.

Fig. 2. The resolution of a conflict between agents ¢ and k over target 7. Agent 4
wins the conflict since it is closer to target 7 than agent k.

properties, which are valid for any communication graph which contains the
geometric graph with parameter r as a subgraph. A complete discussion is

A Geometric Assignment Problem for Robotic Networks 9

contained in [12]. Based on a careful application of Theorem 1, one can derive
the following key result.

Theorem 5 (Correctness and time complexity for ETSP Assgmt).
For any n € N, ETSP ASSGMT solves the target assignment problem. Fur-
thermore, consider an environment [0,£(n)]. If tmax < 7/Umax, then ETSP
AssaMT solves the target assignment problem in O(y/nf(n) +n) time. If, in
addition, {(n) > r/n, then the time complexity is in ©(y/nl(n)), and ETSP
ASSGMT is asymptotically optimal among algorithms in the assignment-based
motion class.

The above theorem gives a complexity bound for the case when r and vy ax
are fixed constants, and ¢(n) grows with n. An equivalent setup is to consider
¢ fixed and allow the robots’ attributes, r and vy, to vary inversely with the
n, specifically, r and v proportional to y/n.

Corollary 1 (Complexity with congestion). Consider n agents moving
with speed Umax(n) = n~Y2 and communication radius 7(n) = ron~'/2, with
ro < 1, in the environment [0,1]%. Then ETSP ASSGMT solves the target
assignment problem with time complezity in O(n).

For simplicity we have presented our time complexity results in the planar
environment [0, £(n)?]. However, in [12] we derive bounds for the more general
environment [0, 4(n)]?, d > 1. A simulation in [0,100]* C R? with r = 15 and
v = 1 is shown in Fig. 3. To compute the ETSP tour we have used the
concorde TSP solver.? The initial configuration shown in Fig. 3(a) consists
of uniformly randomly generated target and agent positions.

(a) Initial configuration (b) Positions at time 30 (c) Complete assignment

Fig. 3. Simulation for 15 agents, vmax = 1, 7 =15 in & = [0, 100]3. The targets are
spheres. The agents are cubes. An edge is drawn when two agents are communicating.

2 The concorde TSP solver is available for research use at http://www.tsp.
gatech.edu/concorde/index.html

10 Stephen L. Smith and Francesco Bullo
5 Dense environments

In the previous section we presented the ETSP AssaMT algorithm which
has provably good performance in sparse environments. In this section we
introduce the GRID ASSGMT algorithm for dense environments in which com-
munication is more prevalent. We will show that it has better worst-case per-
formance than ETSP ASSGMT in dense environments, and that it possesses
very good stochastic performance.

5.1 The Grid Assgmt algorithm with complexity analysis

In the GRID AssGMT algorithm we assume that each agent knows the target
positions, Q, and the quantity ¢(n) which describes the size of the environ-
ment. With this information, each agent partitions the environment into b?
equally sized square cells, where b € N. It then labels the cells like entries
in a matrix, so cell C(w,c) resides in the wth row and cth column. This is
shown in Fig. 4(b). Since the agents started with the same information, they
all create the same partition.

c@,1) c(1,2) C(1,3)
Cc(2,1) C('Q«, 2) C(2,3)
0(3,1) 0(3,2) 0(3,3)

(a) 35 targets in £(n). (b) £(n) divided into b* = 9 cells.

Fig. 4. Dividing the environment into 9 cells.

In light of Lemma 1, we see that when b is given by [v/5f(n)/r], as in
equation (1), the communication graph between agents in a cell is complete,
and communication between agents in adjacent cells is also possible. With
this in mind, an outline of the GRID ASSGMT algorithm is as follows.

Outline of the Grid Assgmt algorithm

Initialization: Each agent partitions the environment into b? equally
sized square cells, where b is given in Lemma 1, and the cells are
labeled as in Fig. 4(b).

A Geometric Assignment Problem for Robotic Networks 11

All agents: In each cell, all agents in the cell find a maximum match-
ing between agents and targets occupying the cell. Accordingly,
agents are labeled assigned or unassigned.

Assigned agents: In each cell, all assigned agents elect a leader among
them. All assigned agents, except the leaders, send their assign-
ment information to their respective leader and then go silent.

Cell leaders: The leader in each cell communicates to leader in the
cell directly above. As a result, each leader obtains an estimate of
the number of available targets in all cells below it, in its column.

Unassigned agents: First, each unassigned agent seeks a free target

in its column by entering cells and querying the corresponding
leader.
Second, if all targets in the unassigned agent’s column are as-
signed, then the agent moves to the top of its column and along
the top row. The agent gathers from each leader in the top row
the number of available targets in the leader’s column. When the
agent finds a column with available targets, it travels down that
column to find the free target.

To implement this algorithm agent ¢ maintains the following variables in its
memory. The variable currcelll’ keeps track of the cell which agent i currently
occupies. The set QU (w,¢) which contains the targets in cell C(w,c). The
variable leader(!! which is set to C(w, ¢) if agent i is the leader of C(w, ¢), and
null otherwise. The array colstatusl’, where colstatus!” (c) is set to full if
column ¢ contains no available targets, and notfull if agent ¢ thinks column
¢ may contain an available target. The variable dircol” € {down,up} which
contains the direction of travel in a column and dirrow” € {left,right}
which contains the direction in the first row. Finally, the variable curr! which
contains agent ¢’s assigned target, or the entry null.

After initializing these variables, each agent runs an algorithm which allows
the agents to compute a local maximum matching, and elect a leader, in each
cell. Since the communication graph in each cell is complete, this can be
done in one communication round by receiving the UIDs of each agent in the
cell [13].

After the maximum matching and leader election the agents have been
separated into three roles; assigned leader agents, assigned non-leader agents,
and unassigned agents. The unassigned agents run an algorithm in which they
try to find a free target. The leader of each cell runs an algorithm in which
they update their estimates of available targets in various parts of the grid,
and assigns unassigned targets in its cell. The leader of cell C(w,c), agent 4,
maintains the following quantities to assign targets in its cell, and estimate
the number of available targets in cells below. Agent i maintains: diffl” (w, ¢),
which records the difference between the number of targets and agents in cell
C(w, ¢); diffbelow!” (w, ¢) which records agent i’s estimate of the difference
between the number of agents and targets in cells C(w + 1,¢),...,C(b,c);

12 Stephen L. Smith and Francesco Bullo

and taravaill’l (w, ¢) which contains the available targets in C(w, c). Finally, if
agent i is the leader of C(1, ¢) in the first row, it maintains diffright” (¢) which
is agent 7’s estimate of the number of available targets in columns ¢+1,...,b.
In summary, The GRID ASSGMT algorithm is the 4-tuple consisting of
the initialization, the maximum matching and leader election algorithm, the
unassigned agent algorithm, and the leader algorithm.
We can now state the main results on the GRID ASSGMT algorithm.

Theorem 6 (Correctness and worst-case upper bound). For any initial
positions of n targets and n agents in [0,(n)]?>, GRID ASSGMT solves the
target assignment problem in O((£(n))?) time.

Remark 1 (GRID AssaMT wvs. ETSP AssaMmT). The worst-case bound for
ETSP AssaMT in Theorem 5 was O(y/nf(n)). Thus, in sparse environments,
when /(n) grows faster than /n, ETSP ASSGMT performs better, and in
dense environments GRID ASSGMT performs better. In critical environments,
the bounds are equal. Thus, the two algorithms are complementary. In prac-
tice, if n, £(n) and r are known, each robot in the network can determine
which algorithm to run based on the following test: ETSP ASsGMT is run if
£(n)/y/n > 17 and GRID ASSGMT is run if £(n)/\/n <. o

In the following theorem we will see that for randomly placed targets and
agents, the performance of GRID ASSGMT is considerably better than in the
worst-case. The proofs of the following theorems utilize the results on bins
and balls problems in Section 2.

Theorem 7 (Stochastic time complexity). Consider n agents and n tar-
gets, uniformly randomly distributed in [0, £(n)]?. If€(n) < r/v/5/(n/K logn),
where K > 1, then GRID ASSGMT solves the target assignment problem in
O(4(n)) time with high probability.

Remark 2 (Generalization of Theorem 7). The bound in Theorem 7 holds for
any initial positions such that every cell contains at least one target and at
least one agent. °

Theorem 8 (Stochastic time complexity: More agents than targets).
Consider n agents and n/logn targets, uniformly randomly distributed in
[0,4(n)]2. If £(n) < r/V5+/(n/Klogn), where K > 1/log(4/e), then w.h.p.,

GRID ASSGMT solves the target assignment problem in O(1) time.

A representative of simulation of GRID ASSGMT for 65 agents and targets
uniformly randomly distributed in a dense environment is shown in Fig. 5(a)—
(¢). In Fig. 5(c) a dashed blue trail shows the trajectory for the final agent
as it is about to reach its target in cell C'(1,1). Fig. 5.1 contains a Monte
Carlo simulation for uniformly randomly generated agents and targets. The
side length ¢(n) satisfies the bound in Theorem 7, and the agents move at unit
speed. Each data point is the mean completion time of 30 trials, where each

A Geometric Assignment Problem for Robotic Networks 13

trial was performed at randomly generated agent and target positions. Error
bars show plus/minus one standard deviation. The mean completion time lies
between 2¢(n) and 3¢(n). This agrees with the O(¢(n)) bound in Theorem 7
and gives some idea as to the constant in front of this bound.

u] " = TH O
o o 1 0o
I O .o °*0 4., o
. d] [} o [
i
"o e Do
oo I
77777777 e D -
O e 1 o I h=
o . I [
i o =2
o . I o
I \ e
S0 I o
o - B o i g
,,,,,,,, o S
- I e
‘o T o T T
\ I I
. a ' a i
h I
. e B .o
o g 0o
boeaame- R = Learo--
I I
g e I to o
I I I
DD\DD- I 2.
ho L% Po 1o ©
g cio =l
. |

(a) Initial agent and target (b) Maximum assignment (c) Final agent reaching
positions, and grid. and leader election. target.

Fig. 5. A simulation of 65 agents in a dense environment. Targets are black disks and
agents are blue squares. Red lines are drawn when two agents are communicating.

40

Time

—e— Mean completion time
5 ---31(n) 1
- = 21Imn)

0 200 400 600 800 1000
Number of agents

Fig. 6. A Monte Carlo simulation. Each data point is the mean of 30 trials.

5.2 A sensor based version

In describing the GRID ASSGMT algorithm, we assumed that each agent knows
the position of all targets. The algorithm also works when each agent does not

14 Stephen L. Smith and Francesco Bullo

know the position of any targets, but has a sensing range rsense, with which
it can sense the positions of targets in range. If each agent can partition the
environment as in Fig. 4, and if rgense > 1/2/57 so that each agent can sense
the position of all targets in its current cell, then GRID ASSGMT (with minor
modifications) solves the target assignment problem, and the completion time

results still hold.

5.3 Congestion issues

Since wireless communication is a shared medium, simultaneous messages
sent in close proximity will collide, resulting in dropped packets. In fact, clear
reception of a signal requires that no other signals are present at the same
point in time and space. As the density of agents increases (as measured by
their communication footprints), so does wireless communication congestion.
Thus, in dense environments, one would ideally account for the effects of
congestion. In the design of GRID ASSGMT we have tried to limit the amount
of simultaneous communication. To this end we introduced a leader in each
cell, who sent messages (of size O(logn)) only to its adjacent cells, and all
other assigned agents were silent. However, to fully take wireless congestion
into account, we would require a more sophisticated communication model
than the geometric graph.

6 Conclusion and extensions

In this chapter we have discussed two complementary algorithms for the tar-
get assignment problem, ETSP AssGMT and GRID AssaMT. We have shown
that ETSP AssGMT has better performance in sparse environments, where
as, GRID ASSGMT has better performance in dense environments. There are
many future research directions such as extensions to vehicles with motion
constraints, or to the case when targets are dynamically appearing and dis-
appearing. Another area of future research is to develop a communication
framework which adequately models congestion and media access problems
that are inherently present in wireless communications.

Acknowledgments: In Giorgio’s honor

The second author dedicates this work to Giorgio Picci. I am honored to have
had him as my Laurea advisor where he introduced me to the exciting world
of scientific research. His passion for control theory, applied mathematics and
geometry was highly contagious and continues to be a part of my life today. I
am honored to be able to dedicate this work to a man I consider an inspiration.
Grazie di cuore!

A Geometric Assignment Problem for Robotic Networks 15

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms.
New York: Springer Verlag, 3 ed., 2005.

J. E. Hopcroft and R. M. Karp, “An n°/? algorithm for maximum matchings in
bipartite graphs,” SIAM Journal on Computing, vol. 2, no. 4, pp. 225-231, 1973.

. H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Re-

search Logistics, vol. 2, pp. 83-97, 1955.

. R. Burkard, “Selected topics on assignment problems,” Discrete Applied Math-

ematics, vol. 123, pp. 257-302, 2002.

. D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Nu-

merical Methods. Belmont, MA: Athena Scientific, 1997.

. M. F. Godwin, S. Spry, and J. K. Hedrick, “Distributed collaboration with lim-

ited communication using mission state estimates,” in American Control Con-
ference, (Minneapolis, MN), pp. 2040-2046, June 2006.

. M. Alighanbari and J. P. How, “Robust decentralized task assignment for coop-

erative UAVs,” in AIAA Conf. on Guidance, Navigation and Control, (Keystone,
CO), Aug. 2006.

. C. Schumacher, P. R. Chandler, S. J. Rasmussen, and D. Walker, “Task allo-

cation for wide area search munitions with variable path length,” in American
Control Conference, (Denver, CO), pp. 3472-3477, 2003.

. B. J. Moore and K. M. Passino, “Distributed task assignment for mobile agents,”

IEEE Transactions on Automatic Control, 2006. to appear.

M. Zavlanos and G. Pappas, “Dynamic assignment in distributed motion plan-
ning with local information,” in American Control Conference, (New York), July
2007. To appear.

G. Arslan and J. S. Shamma, “Autonomous vehicle-target assignment: a game
theoretic formulation,” IEEE Transactions on Automatic Control, Feb. 2006.
Submitted.

S. L. Smith and F. Bullo, “Target assignment for robotic networks: Asymptotic
performance under limited communication,” in American Control Conference,
(New York), July 2007. To appear.

S. L. Smith and F. Bullo, “Target assignment for robotic networks: Worst-case
and stochastic performance in dense environments,” in IEEE Conf. on Decision
and Control, (New Orleans, LA), Dec. 2007. Submitted.

D. A. Castanén and C. Wu, “Distributed algorithms for dynamic reassignment,”
in IEEE Conf. on Decision and Control, (Maui, HI), pp. 13-18, Dec. 2003.

K. J. Supowit, E. M. Reingold, and D. A. Plaisted, “The traveling salesman
problem and minimum mathcing in the unit square,” SIAM Journal on Com-
puting, vol. 12, pp. 144-156, 1983.

N. Christofides, “Worst-case analysis of a new heuristic for the traveling sales-
man problem,” Tech. Rep. 388, Carnegie-Mellon University, Apr. 1976.

R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge, UK: Cam-
bridge University Press, 1995.

F. Xue and P. R. Kumar, “The number of neighbors needed for connectivity of
wireless networks,” Wireless Networks, vol. 10, no. 2, pp. 169-181, 2004.

M. Penrose, Random Geometric Graphs. Oxford Studies in Probability, Oxford,
UK: Oxford University Press, 2003.

