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Abstract—We present decentralized algorithms for a class of
stochastic and dynamic vehicle routing problems, known as the
multiple-vehicle Dynamic Traveling Repairperson Problem (m-
DTRP), in which demands arrive randomly over time and their
locations have an arbitrary distribution, and the objective is
to minimize the average waiting time between the appearance
of a demand and the time it is visited by a vehicle. The
best previously known control algorithms rely on centralized, a-
priori task assignment, and are therefore of limited applicability
in scenarios involving large ad-hoc networks of autonomous
vehicles. By combining results from geometric probability and
locational optimization, we provide a policy that solves, providing
a constant-factor approximation to the optimal achievable perfor-
mance, the decentralized version of the m-DTRP; such policy (i)
does not rely on centralized and a priori task assignment, (ii) is
spatially distributed, scalable to large networks, and adaptive to
network changes. Simulation results are presented and discussed.

I. INTRODUCTION
Dynamic vehicle routing problems occur when it is desired

that one or more vehicles visit customers (demands) that arrive
sequentially over a period of time. The objective is to schedule
these visits in a way that aims at optimizing the quality of
service, as perceived by the customers (e.g., minimize the
wait for delivery/service) [1]. As a canonical example of an
application with these characteristics, consider surveillance
missions with Unmanned Aerial Vehicles (UAVs). In these
missions, the UAVs must ensure continued coverage of a
certain area; as events occur, i.e., as new targets are detected
by on-board sensors or other assets (e.g., intelligence, high-
altitude or orbiting platforms, etc.), UAVs must proceed to the
location of the new event and provide close-range information.
Variations of problems falling in this class have been studied
in a number of papers in the recent past, e.g., [2]–[4]. In most
of these papers, the problem is set up in such a way that the
location of demands is fixed and known a priori; a strategy is
computed that attempts to optimize the cost of servicing the
known demands. In the present work, we wish to address the
case in which new demands are generated continuously by a
stochastic process: we will provide algorithms for minimizing
the expected waiting time between the appearance of a demand
and the time it is serviced by one of the vehicles.
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In [5], restricting the attention to the case in which demands’
locations are uniformly distributed in the workspace, we intro-
duced and partially studied a decentralized receding horizon
policy for the m-DTRP problem that is spatially distributed,
scalable to large networks, and adaptive to network changes.
The contribution of this paper is threefold. First, we focus
on the single-agent case, and we characterize the behavior
of the aforementioned receding horizon policy in the general
setting in which demands’ locations follow a general distri-
bution. Second, using concepts from locational optimization,
we derive algorithms that allow a team of agent to reach, in
a decentralized way, an equitable partition of a convex set on
the plane. Finally, combining the results of the first part of
the paper with those of the second part, we provide a policy
that solves, providing a constant-factor approximation to the
optimal achievable performance, the decentralized version of
the m-DTRP.

We believe that our decentralized algorithms for computing
equitable partitions of planar convex sets could find application
in many other coverage problems. Simulation results are
presented and discussed.

II. PRELIMINARIES

In this section, we briefly describe some known concepts
from probability and locational optimization, on which we will
rely extensively later in the paper.

A. Variation of an Integral Function due to a Domain Change.

The following result is related to classic divergence theo-
rems. Let Ω = Ω(y) ⊂ Rd be a region that depends smoothly
on a real parameter y ∈ R and that has a well-defined
boundary ∂Ω(y) for all y. Let h be a density function over
Rd. Then

d

dy

∫
Ω(y)

h(x) dx =
∫

∂Ω(y)

(dx

dy
· n(x)

)
h(x) dx, (1)

where v ·w denotes the scalar product between vectors v and
w, n is the unit outward normal to ∂Ω(y), and dx/dy denotes
the derivative of the boundary points with respect to y.

B. Voronoi Diagrams

Let G = (g1, · · · , gm) be a vector of m points in a metric
space Q. Let the Voronoi region Vi = Vi(G) be the set of all
points q ∈ Q such that ‖q− gi‖ 6 ‖q− gj‖ for all i 6= j. If Q
is a finite-dimensional Euclidean space, the boundary of each
Vi is a convex polygon. The set of regions {V1, · · · , Vm} is
called the Voronoi diagram for the generators (g1, · · · , gm).
When the two Voronoi regions Vi and Vj are adjacent (i.e.,
they share an edge), gi is called a Voronoi neighbor of gj (and



vice-versa). We also define the (i, j)-face as ∆ij = Vi

⋂
Vj .

We will shortly refer to the vertices of a face ∆ij as the set
{ul}, without any additional subscript: the hidden subscripts
will be clear from the context.

Voronoi diagrams enjoy the Perpendicular Bisector Prop-
erty: for any set of {λl}, λl > 0 with

∑
l λl = 1, such that∑

l λlul ∈ ∆ij , we have(∑
l

λlul −
gi + gj

2

)
· (gj − gi) = 0, (2)

in words, the face ∆ij bisects the line segment joining gj and
gi and that line segment is perpendicular to the face.

We introduce the following notation (for Voronoi regions in
R2): Og

ij = (gj + gi)/2; Ou
ij = (u1 + u2)/2; γij = ‖gj − gi‖;

δij = ‖u2 − u1‖.
Finally, we define a Voronoi diagram equitable with respect

to an integrable density function g : Q → R+, if the integral
weighted by g over a Voronoi cell is identical for all cells.

C. Asymptotic and Worst-Case Properties of the Traveling
Salesperson Problem in the Euclidean Plane

The Euclidean Traveling Salesperson Problem (TSP) is
formulated as follows: given a set D of n points in Rd,
find the minimum-length tour (i.e., closed path) through all
points in D. Let TSP(D) denote the minimum length of a
tour through all the points in D; by convention, TSP(∅) = 0.
Assume that the locations of the n points are random variables
independently and identically distributed in a compact set Q;
in [6] it is shown that there exists a constant βTSP,d such that,
almost surely,

lim
n→+∞

TSP(D)
n1−1/d

= βTSP,d

∫
Q

f̄(q)1−1/d dq , (3)

where f̄ is the density of the absolutely continuous part of
the distribution of the points; the current best estimate of the
constant in Eq. (3) for the case d = 2 is βTSP,2 ' 0.7120 [7].
According to [8], if Q is a “fairly compact and fairly convex”
set in the plane, then Eq. (3) provides an adequate estimate of
the optimal TSP tour length for values of n as low as 15.

III. NOTATION AND PROBLEM FORMULATION

The basic version of the problem we wish to study in
this paper is known as the Dynamic Traveling Repairperson
Problem (DTRP), and was studied by Bertsimas and van Ryzin
in [9]; in the basic setting, a single vehicle and a uniform
demand distribution are considered. The same authors later
extended the problem to the multiple vehicle case [10], and to
the general demand and interarrival time distribution case [1].
In this section, we define the DTRP problem and its necessary
elements.

Let the workspace Q ⊂ Rd be a convex polygon, and let
‖ · ‖ denote the Euclidean norm in Rd. For simplicity, we will
consider the planar case, i.e., d = 2, with the understanding
that extensions to higher dimensions are possible; we will use
the shorthand β = βTSP,2. Consider m holonomic vehicles,
modeled as point masses. The vehicles are free to move,

with bounded velocity, within the environment Q; without
loss of generality, we will assume that the maximum velocity
magnitude is unitary. The vehicles are identical, and have
unlimited fuel and demand servicing capacity.

Demands are generated according to a homogeneous (i.e.,
time-invariant) spatio-temporal Poisson process, with time
intensity λ, and spatial density f(x) supported on Q. Demand
locations {Xj ; j > 1} are i.i.d. (i.e., independent and
identically distributed) and distributed according to density
f . They become known (are realized) at a demand’s arrival
epoch. Thus, at time t we know with certainty the locations
of demands that arrived prior to time t, but future demand
locations form an i.i.d. sequence. The notation f(x) is short
for f(x1, x2). The density f(x) satisfies:

P [Xj ∈ S] =
∫

S

f(x) dx ∀S ⊆ Q, and
∫

Q

f(x) dx = 1.

We assume that the number of initial outstanding demands is
a random variable with finite first moment.

A demand is considered serviced when one of the agents
reaches its location. For simplicity, agents are not required to
stop or to loiter in proximity of demands: the extension to
the case with additional on-site servicing time is straightfor-
ward, but the notation is more cumbersome. Information on
outstanding demands at time t is summarized as a finite set of
demand positions D(t). Demands are inserted in D as soon
as they are generated, while they are removed from D upon
servicing.

Denote by T j the time elapsed from the time the jth demand
is generated to the time it is serviced. The steady-state system
time is defined by T , limj→∞ E

[
T j

]
. The objective of the

m-DTRP is to find a causal policy for servicing demands that
minimizes T ; the infimum of the system time over all causal
stabilizing policies is denoted by T ∗.

Finally, we need two definitions; in these definitions, X is
the location of a randomly chosen demand and T is its waiting
time.

Definition 3.1: A policy π is called spatially unbiased if:
E [T |X ∈ S] = E [T ], ∀S ⊆ Q; a policy π is called
spatially biased if there exist sets S1, S2 ⊆ Q such that:
E [T |X ∈ S1] > E [T |X ∈ S2].

In the following, we are interested in designing control
policies that provide constant-factor approximations of the
optimal achievable performance. A policy π, yielding a steady-
state system time Tπ , is said to provide a constant-factor ap-
proximation if there exist a factor θ > 1 such that Tπ ≤ θT ∗.
Moreover, we are interested in decentralized, scalable, adaptive
control policies, that rely only on the local exchange of
information between neighboring vehicles, and do not require
explicit knowledge of the global structure of the network.

IV. EXISTING RESULTS FOR THE m-DTRP

As mentioned before, the main reference on dynamic ve-
hicle routing problems to date is the work of Bertsimas and
van Ryzin [1], [9], [10]. In these works, lower bounds for
the optimal system time are derived in the light load case



(i.e., λ → 0+), and in the heavy load case (i.e., λ → +∞).
Subsequently, policies are designed for the two cases, and their
performance is compared to the lower bounds. These results
are obtained through techniques drawn from combinatorial
optimization, queueing theory, and geometric probability.

A. Lower Bounds on the Optimal System Time in Light and
Heavy Load

For the light-load case, a tight lower bound on the system
time is derived in [10]. This lower bound is strongly related
to the optimization of the continuous m-median function (or
Weber function) Hm. (See [11] and references therein for an
introduction to the optimization of the Weber function.) Let
H∗

m be the global minimum of Hm, then

T ∗ ≥ H∗
m , min

P∈Qm

∫
Q

f(x)
(

min
i∈{1,··· ,m}

‖pi − x‖
)

dx, (4)

where P = (p1, · · · , pm) is a vector of m distinct points in Q.
This bound actually holds in every load condition, but becomes
tight as λ → 0+. Notice that, for m > 1, the optimization of
Hm is a non-convex optimization problem.

In heavy load, we have the following lower bound [1]

lim
λ→+∞

T ∗

λ
>

κ2

m2

[∫
Q

fα(x)dx

] 1
1−α

, (5)

where κ > 2
3
√

π
, and α = 1/2 within the class of spatially

unbiased policies, while α = 2/3 within the class of spatially
biased policies. It is shown in [1] that the lower bound for
biased policies (i.e., with α = 2/3) is always lower than or
equal to the lower bound for unbiased policies (α = 1/2)
for all densities f . These bounds are not known to be tight;
moreover, they differ from the previous light load bound in
that they are asymptotic bounds (i.e., valid for λ → +∞). It
is possible to show that allowing biased service will result in
a strict reduction of the optimal mean system time for any
nonuniform density f .

B. Available Policies for the Light and Heavy Load Case

For the light-load case, an optimal policy, presented in
[10], is the “m-Stochastic Queue Median Policy.” This policy,
although optimal, has several drawbacks: (i) it does not
stabilize the system as the load increases, (ii) it relies on the
solution of the continuous m-median problem that is NP-hard
for m > 1, (iii) it relies on a priori computation and, thus,
is not adaptive to changes in the environment. Moreover, it
requires a centralized assignment for the agent locations.

For the heavy-load case, optimal policies are not known. In
[1], provably good policies, both in the unbiased and biased
classes, are provided. Although these policies are provably
good, they share two major requirements, namely: (i) a cen-
tralized data structure, (ii) intensive off-line computation.

V. THE SINGLE-AGENT RECEDING HORIZON POLICY

As discussed in the above section, the policies presented in
[1], [10] are not well suited for the decentralized version of the
m-DTRP. The following conjecture, presented in [1], suggests

a strategy for the task of finding a provably good decentralized
policy: let µ∗ denote an optimal single-agent DTRP policy in
heavy load; then, dividing the region Q into m subregions of
equal size, assigning one vehicle to each subregion, and having
vehicles follow the single-agent policy µ∗ in each subregion is
an optimal m-agent policy in heavy load. With this conjecture
in mind, we consider the following strategy: (i) we first design,
for the single agent case, a policy that does not require off-
line computation; (ii) we then extend the single agent policy
to the multi agent case via the concept of virtual generators:
the virtual generators are a means to achieve in a decentralized
way an equitable partition of Q.

For the single agent case, we propose the following receding
horizon policy (a similar version was first proposed by the
authors in [5] in the setting of uniform demand distribution).
In what follows, given a tour T of D, a fragment of T is a
connected subset of T . Moreover, let P ∗

1 be the median of Q
(i.e., P ∗

1 = argmin H1), and p be the current agent’s position.
Single-Vehicle Receding Horizon (sRH) policy —
Given η ∈ (0, 1]:
• while the set of demands D is empty, move at

unit speed toward P ∗
1 if p 6= P ∗

1 , otherwise stop;
• while D is not empty, do the following: (i)

compute the TSP tour through all demands in
D, (ii) find the fragment of length η TSP(D)
that maximizes the number of reached demands,
(iii) service the optimal fragment starting from
the endpoint closest to the current position (if
the entire tour is selected, start from the closest
demand). Repeat.

In other words, if D 6= ∅, the vehicle looks for a maximum-
reward TSP fragment.

A. Analysis of the sRH
We first consider the light-load case (i.e., λ → 0+) and

present a result whose proof follows the treatment in [5].
Theorem 5.1: The sRH policy is asymptotically optimal in

the light-load case, that is, TsRH → T ∗ as λ → 0+.
The following result characterizes the behavior of the sRH

policy in heavy load. Its derivation is based on ideas outlined
in [5]. For lack of space, its proof is omitted and will be added
in a forthcoming paper.

Theorem 5.2: An upper bound on the cost of the sRH policy
in heavy load is:

lim
λ→∞

TsRH

λ
6

β2

2− η

(∫
Q

f1/2(x)dx

)2

. (6)

Comparing this upper bound with the lower bound in Eq.
(5) with α = 1/2, we obtain:

TsRH ≤
β2

TSP,2

(2− η)κ2
T ∗, as λ → +∞.

As η → 0+ we obtain the same factor (i.e., 80%) as the best
known unbiased policy [1]. We conclude that, in heavy load,
the performance of the sRH policy has the same performance
guarantee as the best known unbiased policy.



VI. SIMULATION RESULTS FOR THE HEAVY LOAD CASE

In this section, through simulations, we check the cor-
rectness of the upper bound for the sRH policy in heavy-
load and we investigate in-depth its distributional behav-
ior. The algorithms described in the paper were imple-
mented in Matlab R©6.1, with external calls to the program
linkern (freely available for academic research use at
www.math.princeton.edu/tsp/concorde.html).

Roughly speaking, the sRH policy is increasingly more
biased as the horizon η decreases. Thus, we expect the upper
bound in Eq. (6) (showing a dependency on f peculiar to
unbiased policies) to be increasingly less tight as η decreases.

In the simulation experiments, we consider a square region
A2 with area 1 − ε, and inside A2 a significantly smaller
square region A1 with area ε. Region A1 will represent a peak
of demand concentration. Within each region demands are
uniformly distributed. Points fall in region A1 with probability
1 − δ and in region A2 with probability δ. Thus, the density
is piecewise uniform with:

f(x) =
{

1−δ
ε x ∈ A1
δ

1−ε x ∈ A2

In all simulations, we have considered, as the initial condition,
a number of outstanding demands 20% higher than the steady
state expected value.

The upper bound for the heavy load case has been success-
fully tested for various values of δ and λ. In all simulations,
we set ε = 10−4. Clearly, the greater λ, the more accurate the
bound is. The simulation results reported in Fig. 1 refer to the
case δ = 0.19 and λ = 200. As suggested by the dependence
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Fig. 1. Dependence of the system time over η (δ = 0.19).

of the upper bound over η, the system time decreases as η is
decreased. Moreover, the upper bound is less and less tight as
η decreases.

To estimate the actual dependence of the system time of the
the sRH policy on f(x) (i.e., the distributional behavior), we
use the approach outlined in [1]. We consider the following
representation of the dependence of the system time on the
density f(x) for a particular policy µ:

Tµ = γµΞ(α), Ξ(α) =
(∫

Q

fα(x)dx

) 1
1−α

, γµ constant.

As seen before, in the unbiased case α = 1/2 and in the
optimal biased case α = 2/3. For the particular density f(x)
given before and for ε small it is possible to show that:
log(Tµ) = α

1−α log(δ) + cµ, where cµ depends on the policy
and the system parameters. Thus, by plotting log(Tµ) (or
log(Nµ)) against log(δ) and performing a linear regression,
one can estimate α and hence the distributional dependence
of the policy µ. Note that since log(·) is increasing and
log(δ) < 0, higher values of α imply lower system times.

We set ε = 10−4 and λ = 200. Then, a different simulation
run is performed for eleven values of δ in the range 0.05
to 0.9999 (this last value corresponds to a uniform demand
distribution) and eight values of η in the range 0.01 to 1. The
observed system time is then recorded for each δ and η.

We would expect a value of α equal to 0.5 for η = 1
(when all the TSP is serviced at each epoch); moreover, we
would expect a lower system time as η is decreased, since
the policy becomes more reactive. Fig. 2 shows the functional
dependence of α over η. As expected, when η = 1, α '
0.5. Moreover, α increases as η is decreased; therefore, we
conclude that decreasing η improves both the scaling factor
in the system time (i.e., the factor 1

2−η ), and its distributional
behavior.
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Fig. 2. Functional dependence of α over η.

VII. THE MULTI-AGENT RECEDING HORIZON POLICY

Here we design a decentralized policy for the DTRP prob-
lem applicable to multiple-vehicle systems. The basic proce-
dure to extend the single-vehicle policy to the multiple-vehicle
case consists in partitioning Q into regions of dominance and
in letting each agent to execute the sRH policy within its own
region of dominance. In order to achieve an efficient partition
of Q in a decentralized way, we introduce certain points, that
we call virtual generators, associated to each agent; we denote
the virtual generators as G = (g1, g2, . . . , gm) ∈ R2m. We
denote the ith Voronoi cell in the Voronoi partition induced
by G as Vi , Vi(G). We define the region of dominance
for agent i as the convex polygon Di = Vi

⋂
Q; we call the

partition into regions of dominance induced by G as D(G).
Notice that the virtual generators are not physical points, but
are rather artificial variables, in general not coinciding with
the vehicles’ positions.

We shall assume that each vehicle has sufficient information
available to determine: (1) its Voronoi cell, and (2) the
locations of all outstanding events in its region of dominance.



A control policy that relies on information (1) and (2) is
Voronoi-distributed, in the sense that the behavior of each
vehicle depends only on the location of the other agents with
contiguous Voronoi cells. In [12, Section 2.3], it is shown
that the number of Voronoi neighbors of each generator is
on average less than or equal to 6. Accordingly, Voronoi-
distributed policies are spatially distributed and scalable in
the number of agents. A spatially distributed algorithm for
the local computation and maintenance of Voronoi cells is
provided in [13].

The key idea is to enable the virtual generators to move
along the gradient of a suitable locational optimization func-
tion in such a way that an effective partition D(G∗) is
achieved. Following the arguments provided in [14], such
partition should guarantee the same workload for each agent.
Here, we restrict our attention to the heavy load case; the
light load case is significantly simpler and has been already
discussed in [5]. In the following, we first find a suitable
locational optimization function and then we compute its
gradient.

A. The Relevant Locational Optimization Function

As discussed before, each agent executes the sRH policy in
its own region of dominance Di. We want now to find an upper
bound on the system time when a particular partition D(G) is
adopted. The conditional demand density in any given region
Di is f(x)/

∫
Di

f(x) dx. Moreover, the arrival rate in each
region Di is λ

∫
Di

f(x) dx. Therefore, the system time for
a demand X that lands in region Di is asymptotically upper

bounded by: E (T |X ⊆ Di) 6 λβ2
(∫

Di
f1/2(x)dx

)2 /
(2 −

η). Since the probability that a demand lands in the region
Di is

∫
Di

f(x) dx, an asymptotic upper bound for the system
time in the multi agent case is:

T 6
λβ2

2− η

m∑
i=1

(∫
Di

f(x) dx
)(∫

Di

f1/2(x) dx
)2

6

λβ2

2− η

m∑
i=1

(∫
Vi

f1/2(x) dx
)2

,
λβ2

2− η
Lm(G).

(7)

In the second inequality, recall that the support of f is Q.
As it will be clearer later, Lm(G) is an appropriate locational
optimization function; it is fairly easy to show that Lm(G) is
non-convex.

B. The Differential of the Locational Optimization Function

The differential of the locational optimization function Lm

is presented in the following theorem. We point out that
this gradient can be computed in a distributed way, since
it depends only on the location of the other agents with
contiguous Voronoi cells. In the following, let be Ak ,∫

Vk
f1/2(x) dx k = 1, 2, · · · ,m.

Theorem 7.1: The partial derivative of the locational opti-

mization function is:

∂Lm(G)
∂gi

=2
∑

j∈N(i)

δij

(
Ai −Aj

)[1
2

∫ 1

0

f1/2(x(λ)) dλ nij+

+
1

γij

∫ 1

0

(
f1/2(x(λ)) (x(λ)−Og

ij)
)

dλ
]
,

(8)

Proof: Since the motion of a generator gi affects the
Voronoi region Vi and its neighboring regions Vj for j ∈
{j1, · · · , jki

} , N(i), we have

∂Lm(G)
∂gi

= 2Ai
∂Ai

∂gi
+ 2

∑
j∈N(i)

Aj
∂Aj

∂gi
(9)

Now, the result in Eq. (1) provides the means to analyze the
variation of an integral function due to a domain change. Since
the boundary of Vi satisfies ∂Vi = ∪j∆ij , where ∆ij = ∆ji

is the edge between Vi and Vj , we have

∂

∂gk
i

∫
Vi

f1/2(x) dx =
∑

j∈N(i)

∫
∆ij

( dx

dgk
i

· nij(x)
)

f1/2(x) dx

∂

∂gk
i

∫
Vj

f1/2(x) dx =
∫

∆ij

( dx

dgk
i

· nji(x)
)

f1/2(x) dx,

(10)

where gk
j is the kth coordinate of generator gj (k ∈ {1, 2})

and we define nij as the unit normal to ∆ij outward of Vi

(therefore we have nji = −nij).
The first step to compute the derivative of the boundary

points in Eq. (10) is to introduce a parametrization for the
boundary segment ∆ij . Let u1 and u2 (as discussed in Section
II we avoid any further subscript) be the endpoints of segment
∆ij . Recall that the workspace is assumed to be bounded,
therefore both vertices are finite. We introduce the natural
parametrization: x(λ) = u1λ + u2(1 − λ), with λ ∈ [0, 1].
Let δij be the length of border ∆ij . Clearly, we have that
‖x′(λ)‖ = ‖u1 − u2‖ = δij .

To evaluate the scalar product between the boundary points
and the unit outward normal to the border in Eq. (10), we
differentiate the Perpendicular Bisector Property (Eq. (2)) with
respect to gk

i for any point x(λ) ∈ ∆ij ; we get

∂x(λ)
∂gk

i

·(gj−gi) =
1
2
ek ·(gj−gi)+ek ·

(
x(λ)−gi + gj

2

)
, (11)

where ek is the kth canonical vector (k ∈ {1, 2}) in
R2. By the Perpendicular Bisector Property, we have that
nij = (gj − gi) /‖gj − gi‖ and the desired explicit expres-
sions for the scalar products in Eq. (10) follow immediately
(recalling that nji = −nij). In what follows, let γij , Og

ij and
Ou

ij be defined as in Section II. By using the definition of line
integral, it is now easy to show (in compact form):

∂

∂gi

∫
Vi

f1/2(x) dx =
∑

j∈N(i)

[δij

2

∫ 1

0

f1/2(x(λ)) dλ nij+

+
δij

γij

∫ 1

0

(
f1/2(x(λ)) (x(λ)−Og

ij)
)

dλ
]
,



∂

∂gi

∫
Vj

f1/2(x) dx =− δij

2

∫ 1

0

f1/2(x(λ)) dλ nij+

− δij

γij

∫ 1

0

(
f1/2(x(λ)) (x(λ)−Og

ij)
)

dλ.

Collecting these results, we get the theorem.
The expression in Eq. (8) simplifies considerably when the

demands follow a uniform distribution (i.e., f(x) = 1/A,
where A is the area of the workspace). In such case

∂Lm(G)
∂gi

= 2
∑

j∈N(i)

δij

A1/2

(
Ai−Aj

)[1
2
nij +

1
γij

(Ou
ij−Og

ij)
]
,

(12)
Assuming that there exists a Voronoi diagram equitable with

respect to f1/2(x) (henceforth we assume this condition holds,
unless otherwise stated), from the expression of the gradient
of Lm(G) we see that one of the critical point of Lm(G) will
satisfy Ai = Aj ∀i, j. This point correspond to the global
minimum of Lm(G), as it can be easily verified by Lagrange
multiplier arguments.

C. A Gradient Descent Law for the Virtual Generators

Assume the virtual generators obey a first order dynami-
cal behavior described by ġi = −∂Lm(G)

∂gi
. For the closed-

loop system induced by such gradient descent law, the vir-
tual generators converge asymptotically to the set of critical
points of Lm(G). If the the virtual generators converge to
the global minimum of Lm(G), we have

∫
Vi

f1/2(x) dx =∫
Q

f1/2(x) dx/m. Therefore, the system time (Eq. (7)) re-
duces to

T 6
λβ2

(∫
Q

f1/2(x)dx
)2

m2(2− η)
. (13)

Some remarks are in order. First, in this section we have
postulated that there exists a Voronoi diagram equitable with
respect to the function f1/2(x). Although this assumption is
reasonable in most cases, to date it is not possible to state
that for every density function g(x) there always exists a cor-
responding equitable Voronoi diagram. Second, the proposed
gradient descent law is clearly not guaranteed to find a global
minimum of Lm(G). Therefore, the result in Eq. (13) holds
only locally. On the other hand, local optimality is the common
price to pay in change of decentralization.

In Fig. (3) we test the dependence of the system time over
m. We consider λ = 130, a uniform demand distribution and
5 values for m, namely m = 2, 4, 6, 8, 10. We notice that
the system time decreases quadratically in m, as expected.
Remember that the upper bound on the system time holds
asymptotically in λ.

VIII. CONCLUSION

In this paper we discuss decentralized algorithms for vehicle
routing in a stochastic time-varying environment with general
demand distribution. Our control policy is spatially distributed
in the sense that the behavior of each vehicle depends only
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Fig. 3. Dependence of the system time over m.

on the location of all other vehicles with contiguous Voronoi
cells. We conclude by mentioning some limitations of our
approach. We considered omni-directional vehicles with first
order dynamics: non-holonomic constraints will have to be
taken into account for application to UAVs or other systems.
In this paper, all demands are removed from the demand
queue only upon service; in some scenarios, demands might
disappear before being serviced. These issues are under current
study; first results for the latter problem can be found in [15].
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