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Target assignment for robotic networks:
Worst-case and stochastic performance in dense environments

Stephen L. Smith Francesco Bullo

Abstract— Consider an equal number of mobile robotic
agents and distinct target locations dispersed in an environment.
Each agent has a limited communication range and knowledge
of every target’s position. We study the following target assign-
ment problem: design a distributed algorithm with which the
agents divide the targets among themselves and, simultaneously,
move to their unique target. This paper focuses on “dense”
environments, where the sum of the communication footprints
is larger than the area of the environment. We introduce the
class of monotonic algorithms, whose worst-case completion
time is lower bounded by the area of the environment. We
propose a monotonic algorithm called GRID ASSGMT and
characterize its asymptotic performance: First, the algorithm is
an asymptotically optimal monotonic algorithm for worst-case
initial conditions. Second, for uniformly randomly distributed
agents and targets the completion time is upper bounded by
the diameter of the environment with high probability. Third,
if the number of agents exceeds the number of targets by a
logarithmic factor, then the completion time is constant with
high probability. Our algorithm also solves a sensor based target
assignment problem where agents have no initial knowledge of
target positions, but acquire them via limited range sensing.

I. I NTRODUCTION

Considern mobile robotic agents, equipped with wireless
transceivers for limited range communication, dispersed in an
environmentE ⊂ R

2. Suppose the environment also contains
n target locations, and each agent is given a list of their
positions (the positions may be GPS coordinates). The task
is for the agents to divide the targets among themselves so
that in minimum time, each target location is occupied by an
agent. Since noa priori target-agent assignment is given, the
agents must solve the problem through communication and
motion. Thistarget assignment problemcould arise in several
applications, such as UAV’s on a surveillance mission, where
the targets are the centers of their desired loitering patterns.
Alternatively, one could imagine a mobile sensor network
roughly deployed in a remote or hostile environment; the
sensors must solve a target assignment problem to reach the
desired (target) configuration.

a) Centralized and parallel assignment:There is a
wealth of literature on solving centralized versions of the
target assignment problem. The problem of assigning one
agent to each target is known as themaximum matching prob-
lem. The problem of finding a complete assignment/matching
which minimizes the sum of distances (respectively, the
maximum distance) from each agent to its assigned target,

This material is based upon work supported in part by ARO MURI Award
W911NF-05-1-0219 and NSF SENSORS Award IIS-0330008.

S. L. Smith and F. Bullo are with the Center for Control, Dynamical
Systems and Computation, University of California, Santa Barbara, CA
93106, USA,{stephen,bullo}@engineering.ucsb.edu

is known as thesum assignment(respectively,bottleneck
assignment) problem. There exist efficient polynomial time
algorithms for the solution of all these problems [1], [2], [3].
Additionally, the sum assignment problem can be solved in a
parallel fashion via theauction algorithm[4]. However, these
solutions do not directly apply to our problem where, due to
the agents’ limited communication range, the communication
topology is time-varying, and possibly disconnected.

b) Target/task assignment in robotic networks:There
has been a significant amount of work on decentralized
task assignment for UAVs (or UGVs), see for example [5],
[6], [7], [8]. The goal is generally to assign vehicles to
spatially distributed tasks while maximizing the “score” of
the mission. These works develop advanced heuristic meth-
ods, and demonstrate their effectiveness through detailed
simulation or real world implementation. In [9] the auction
algorithm is adapted to solve a task allocation problem in the
presence of communication delays. There has also been prior
work on target assignment problems [10], [11]. In [10] the
authors formulate a target assignment problem as a multi-
player game and seek to optimize a global utility. In [11] an
algorithm based on hybrid systems tools is developed and its
performance is characterized by a bound on the number of
switches of the hybrid system.

In [12] we began an investigation into the scalability prop-
erties of the minimum-time target assignment problem for
agents with limited communication capabilities. We focused
on characterizing the completion time as the number of
agents,n, grows, and the environmentE(n) grows to accom-
modate them. We introduced the ETSP ASSGMT algorithm
with worst-case completion time inO(

√

|E(n)|n).1

c) Contribution: In this paper we introduce a broad
class algorithms calledmonotonic algorithms. We show
that in “sparse” environments where communication is in-
frequent, i.e., when|E(n)|/n → +∞, every monotonic
algorithm has worst-case completion time inΩ(

√

|E(n)|n).
In “dense” environments, i.e., when|E(n)|/n → 0+, every
monotonic algorithm has worst-case completion time in
Ω(|E(n)|). We then develop a novel distributed monotonic
algorithm called GRID ASSGMT. In this algorithm, the agents
partition the environment into cells, and determine local
maximum assignments in the cell which they occupy. A
leader is elected in each cell, and through communication
between leaders of adjacent cells, local assignments are
merged into a complete global assignment. We show that the

1|E(n)| denotes the area ofE(n), and,O(·) andΩ(·) are the asymptotic
notations for upper and lower bounds, respectively (see Section II).



worst-case completion time of the GRID ASSGMT algorithm
belongs toO(|E(n)|). Thus, in “dense” environments GRID

ASSGMT is an asymptotically optimal monotonic algorithm
for worst-case initial conditions. Hence, our two algorithms
are complementary: ETSP ASSGMT has better performance
in sparse environments, while GRID ASSGMT has better
performance in dense environments. We also characterize
the GRID ASSGMT algorithms’ stochastic performance in
“dense” environments. First, if the agents and targets are
uniformly randomly distributed, then the completion time be-
longs toO(

√

|E(n)|) with high probability. Second, if there
aren agents and onlyn/ log n targets, then the completion
time belongs toO(1) with high probability. Due to space
constraints all proofs are omitted, and can be found in [13].

II. COMBINATORIC AND STOCHASTIC PRELIMINARIES

In this section we review a few useful results on the cen-
tralized matching problem, occupancy problems, and random
geometric graphs. We letR, R>0 and N denote the set of
real numbers, the set of positive real numbers, and the set of
positive integers, respectively. Given a finite setA, we let|A|
denote its cardinality, and given an infinite setA ⊂ R

2 we
let |A| denote its area. For two functionsf, g : N → R>0, we
write f(n) ∈ O(g) (respectively,f(n) ∈ Ω(g)) if there exist
N ∈ N andc ∈ R>0 such thatf(n) ≤ cg(n) for all n ≥ N
(respectively,f(n) ≥ cg(n) for all n ≥ N ). If f(n) ∈ O(g)
and f(n) ∈ Ω(g), then we sayf(n) ∈ Θ(g). We say
that eventA(n) occurswith high probability(w.h.p.) if the
probability of A(n) occurring tends to one asn → +∞.

A. Centralized matching

Considern persons and the problem of dividing them
amongn tasks. For each personi, there is a nonempty set
Q[i] of tasks to whichi can be assigned. Anassignmentor
matchingM is a set of person-task pairs(i, j) such that
j ∈ Q[i] for all (i, j) ∈ M , and such that for each personi
(likewise, taskj) there is at most one pair(i, j) ∈ M . The
matchingM is a maximummatching if for every matching
M̃ , we have|M̃ | ≤ |M |. If |M | = n, then the matching
is complete. The matchingM is maximal if there does not
exist a matchingM̃ , such thatM̃ is a strict superset ofM .
Let us present a simple algorithm for computing a maximal
matching. In this algorithm we choose the target-agent pair
with lowest cost, add it to our matching, remove that target
and agent from the problem, and repeat. If each person
can be assigned to any of then tasks, then this algorithm
determines a complete, and thus maximum, matching.

MAXIMAL MATCH, outputs a maximal matchingM

Initialize M := ∅, andIi := {1, . . . , n}.1
while there exists ani ∈ Ii with |Q[i]| 6= 0 do2

Compute the indices(i∗, j∗) := arg mini∈Ii,j∈Q[i] cij3
SetM := M ∪ (i∗, j∗), Ii := Ii \ {i∗}, and for eachi ∈ Ii,4
Q[i] := Q[i] \ {j∗}

B. Occupancy problems

Occupancy problems are concerned with randomly dis-
tributing m balls inton equally sized bins. The two results

we present here will be useful in our analysis.
Theorem 2.1 (Occupancy properties, [14], [15]):

Consider uniformly randomly distributingm balls into n
bins and letγ be any function such thatγ(n) → +∞ as
n → +∞. The following statements hold:

(i) if m = n, then w.h.p. each bin containsO
(

log n

log log n

)

balls;
(ii) if m = n log n + γ(n)n, then w.h.p. there exist no

empty bins;
(iii) if m = n log n − γ(n)n, then w.h.p. there exists an

empty bin;
(iv) if m = Kn log n, whereK > 1/ log(4/e), then w.h.p.

every bin containsΘ(log n) balls.
We will be interested in partitioning a square environment

into equally sized and openly disjoint square bins such that
the area of each bin is “small.” To do this, we require the
following simple fact.

Lemma 2.2 (Dividing the environment):Given n ∈ N

andrcomm > 0, consider a square environmentE(n). If E(n)
is partitioned intob2 equally sized and openly disjoint square
bins, whereb := ⌈

√

5|E(n)|/rcomm⌉, then the area of each
bin is no more thanr2

comm/5. Moreover, if x, y ∈ E(n) are
in the same bin or in adjacent bins, then‖x − y‖ ≤ rcomm.

C. Random geometric graphs

For n ∈ N and rcomm ∈ R>0, a planargeometric graph
G(n, rcomm) consists ofn vertices in R

2, and undirected
edges connecting all vertex pairs{x, y} with ‖x − y‖ ≤
rcomm. We also refer to this as thercomm-geometric graph. If
the vertices are randomly distributed in some subset ofR

2,
then we call the graph arandom geometric graph.

Theorem 2.3 (Connectivity of geometric graphs, [16]):
Consider the random geometric graphG(n, rcomm) obtained
by uniformly randomly distributingn points in the square
environmentE(n) with πr2

comm/|E(n)| = (log n + γ(n))/n.
Then G(n, rcomm) is connected w.h.p. if and only if
γ(n) → +∞ asn → +∞.

This theorem will be important for understanding some
of our results, as it provides a bound on the environment
size necessary for the communication graph ofn randomly
deployed agents to be asymptotically connected.

III. N ETWORK MODEL AND PROBLEM STATEMENT

In this section we formalize our agent and target models
and define the sparse and dense environments.

A. Robotic network model

Considern agents in an environmentE(n) := [0, ℓ(n)]2 ⊂
R

2, where ℓ(n) > 0 (that is, E(n) is a square with
side lengthℓ(n)). The environmentE(n) is compact for
each n but its size depends onn. A robotic agent,A[i],
i ∈ I := {1, . . . , n}, is described by the tupleA[i] :=
{UID[i],p[i], rcomm,u[i],M [i]}, where the quantities are as
follows: Its unique identifier (UID) isUID[i], taken from
the set IUID ⊂ N. Note that, each agent does not know
the set of UIDs being used and thus does not initially
know the magnitude of its UID relative to those of other



agents. Its position isp[i] ∈ E(n). Its communication range
is rcomm > 0, i.e., two agents,A[i] and A[k], i, k ∈ I,
can communicate if and only if‖p[i] − p

[k]‖ ≤ rcomm. Its
continuous time velocity input isu[i], corresponding to the
kinematic modelṗ[i] = u

[i], where‖u[i]‖ ≤ vmax for some
vmax > 0. Finally, its memory isM [i] and is of cardinality
(size)|M [i]|. From now on, we refer to agentA[i] as agenti.

The agents move in continuous time and communicate
according to a synchronous discrete time schedule consisting
of an increasing sequence{tk}k∈N of time instants with no
accumulation points. We assume|tk+1 − tk| ≤ tmax, for
all k ∈ N, where tmax ∈ R>0. At each communication
round, agents can exchange messages of lengthO(log n).2

Communication roundk occurs at timetk, and all messages
are sent and received instantaneously attk. Motion then
occurs fromtk until tk+1. In this setup we are emphasizing
the time complexity due to the motion of the agents.

B. The target assignment problem

Let Q := {q1, . . . ,qn} ⊂ E(n) be a set of distinct target
locations. In this paper we assume that each agent knows
the position of every target. Thus, agenti’s memory,M [i],
contains a copy ofQ, which we denoteQ[i]. To storeQ[i] we
must assume the size of each agents’ memory,|M [i]|, is in
Ω(n). We refer to the assumption that each agent knows all
target positions as thefull knowledgeassumption. Our goal
is to solve the(full knowledge) target assignment problem:

Determine an algorithm forn ∈ N agents, with
attributes as described above, satisfying the fol-
lowing requirement; there exists a timeT ≥ 0 such
that for each targetqj ∈ Q, there is a unique agent
i ∈ I, with p

[i](t) = qj for all t ≥ T .
If the task begins at timet = 0, then thecompletion time
Tc of target assignment is the minimumT ≥ 0, such that
for each targetqj ∈ Q, there is a unique agenti ∈ I, with
p

[i](t) = qj for all t ≥ T .

C. Sparse, dense, and critical environments

We wish to study the scalability of a particular approach
to the target assignment problem; that is, how the completion
time increases as we increase the number of agents,n. The
velocity vmax and communication rangercomm of each agent
are independent ofn. However, we assume that the size of
the environment increases withn in order to accommodate
an increase in agents. Borrowing terms from the random
geometric graph literature [16], we say that the environment
is sparse if, as we increase the number of agents, the
environment grows quickly enough that the density of agents
(as measured by the sum of their communication footprints)
decreases; we say the environment iscritical, if the density is
constant, and we say the environment isdenseif the density
increases. Formally, we have the following definition.

Definition 3.1 (Environment size):EnvironmentE(n) is
(i) sparseif |E(n)|/n → +∞ asn → +∞;

(ii) critical if |E(n)|/n → const∈ R>0 asn → +∞;

2The number of bits required to represent an ID, unique amongn agents,
is directly proportional to the logarithm ofn.

(iii) denseif |E(n)|/n → 0+, asn → +∞.
Note that a dense environment does not imply the com-

munication graph between agents is dense; from Theorem
2.3 we see that the communication graph at random agent
positions in a dense environment may not even be connected.

D. Monotonic algorithms andETSP ASSGMT

We introduce a class of algorithms which provides an
intuitive approach to target assignment.

Definition 3.2 (Monotonic algorithms):A deterministic
algorithm for target assignment ismonotonicif, for a subset
of agentsJ ⊂ I, a targetqj , and timet1 > 0, we have
p

[i](t1) = qj for each i ∈ J , then there exists an agent
i ∈ J such thatp[i](t) = qj for all t > t1.
We call these algorithms “monotonic” since occupied tar-
gets remain occupied for all time, and thus the number
of occupied targets monotonically increases throughout the
execution. We now lower bound the completion time of the
target assignment problem for any monotonic algorithm.

Theorem 3.3 (Time complexity of target assignment):
Considern agents, with communication rangercomm > 0,
and n targets inE(n). For all monotonic algorithms the
worst-case completion timeTc of the target assignment
problem is lower bounded as follows:

(i) if E(n) is sparse, thenTc ∈ Ω(
√

n|E(n)|);
(ii) if E(n) is critical, thenTc ∈ Ω(n);
(iii) if E(n) is dense, thenTc ∈ Ω(|E(n)|).

The idea behind the proof is to place the targets inE(n)
such that thercomm-geometric graph generated by their posi-
tions has a maximum number of disconnected components.

In [12] we introduced the ETSP ASSGMT algorithm,
which is a monotonic algorithm. In this algorithm, each
agent computes a Euclidean traveling salesperson tour of
the n targets, turning the cloud of target points into an
ordered ring. Agents move along the ring looking for the next
available target, and when they communicate, they exchange
information on how far it is to the next available target along
the ring. Combining Theorem 3.3 with the worst-case bound
in [12] we obtain the following.

Theorem 3.4 (ETSP ASSGMT): For any initial positions
of n agents andn targets inE(n), ETSP ASSGMTsolves the
target assignment problem inO(

√

n|E(n)|) time. If E(n) is
sparse or critical, then ETSP ASSGMT is an asymptotically
optimal monotonic algorithm for worst-case initial positions.

IV. T HE GRID ASSGMT ALGORITHM

In this section we introduce a monotonic algorithm called
GRID ASSGMT. In this algorithm, the agents partition the en-
vironment into cells. Agents then determine local maximum
assignments, and elect a leader in the cell which they occupy.
Through communication between leaders of adjacent cells,
each leader obtains estimates of the location of free targets,
and uses this information to guide unassigned agents to free
targets. We show that in critical or dense environments, GRID

ASSGMT is an asymptotically optimal monotonic algorithm
for worst-case initial conditions. In addition, by utilizing
the results of Section II-B, we characterize the stochastic
performance of GRID ASSGMT.
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Fig. 1. Partitioning the environmentE(n) into b2 = 9 cells.

A. Algorithm description

We assume that each agent knows the target positions
Q (i.e., Q[i] := Q) and the environmentE(n). With this
information, each agent partitions the environment intob2

equally sized square cells, whereb ∈ N. It then labels
the cells like entries in a matrix, so cellC(r, c) resides
in the rth row andcth column, as shown in Fig. 1. Since
the agents start with the same information, they all create
the same partition. The quantityb is chosen so that an
agent in cellC(r, c) is within communication range of any
agent in cellsC(r, c), C(r − 1, c), C(r + 1, c), C(r, c − 1),
and C(r, c + 1). In light of Lemma 2.2, we see that this
is satisfied whenb = ⌈

√

5|E(n)|/rcomm⌉. With this, we
now outline the GRID ASSGMT algorithm. A complete
description is given [13].

Outline of the GRID ASSGMT algorithm
Initialization and role assignment: Each agent partitions

E(n) as described above. In each cell, agents use MAX -
IMAL MATCH to find a maximum assignment between
agents and targets occupying the cell, and assigned
agents elect a leader among them. Accordingly, agents
are labeled leader, unassigned, or assigned non-leader.

Assigned non-leader agents: Each assigned non-leader
agent moves to its assigned target and goes silent.

Cell leaders: Each cell leader assigns free targets in its cell
to unassigned agents that enter the cell. In addition, each
cell leader estimates the number of available targets in
all cells below it in its column (denoted∆[i]

blw(r, c) for
leaderi of cell C(r, c)). To maintain the estimates, cell
leaders communicate to the cell leader in the cell di-
rectly above. Cell leaders in the top row communicate to
the cell leader directly to the right to obtain an estimate
of the number of available targets in all columns to the
right (denoted∆[j]

rght(1, c) for leaderj of cell C(1, c)).
Unassigned agents: Each unassigned agent seeks a free

target by entering cells and querying their respective
leaders. The motion of unassigned agents is illustrated
in Fig. 2. Assuming no communication with the leaders,
the nominal order in which an unassigned agent visits
all cells of the grid is shown in the left-hand figure. The
way in which this path is shortened as the unassigned
agent receives available target estimates from cell lead-
ers is shown on the right-hand figure.

Remark 4.1 (Cell leader computations):If agent i is the
leader of cell C(r, c), it computes ∆[i](r, c), which is

∆
[j]
rght(1, 3) ≤ 0

∆
[i]
blw(3, 3) ≤ 0

∆
[k]
blw(1, 2) ≤ 0

Fig. 2. Unassigned agent motion. Left: The nominal order in which an
agent (blue square) searches the cells in the absence of communication.
Right: The shortened path due to the non-positive estimates from leaderi
of C(3, 3), leaderj of C(1, 3) and leaderk of C(1, 2).
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Fig. 3. Leader communication. Columnc contains agents (blue squares)
and targets (black disks). The figure shows leadersi of C(1, c), j of C(2, c),
k of C(3, c), and l of C(4, c) initializing and updating their estimates of
∆ and∆blw. Estimates converge to true values in three iterations.

(# of targets)−(# of agents) in C(r, c). In addition, leaderi
maintains∆[i]

blw(r, c), which is an estimate of(# of targets)−
(# of agents) in cells C(r + 1, c) to C(b, c). This quantity
must be estimated because agenti does not initially know the
number of agents in cellsC(r+1, c) to C(b, c). The variable
∆

[i]
blw(r, c) is initialized to the number of targets in cells

C(r + 1, c) to C(b, c), which is necessarily no smaller than
the actual value. Then, at each communication round agent
i updates its estimate by communicating with the leaders in
cells C(r − 1, c) andC(r + 1, c):

1 Send msg[i] := ∆
[i]
blw(r, c)+∆[i](r, c) to leader inC(r−1, c)

and receive msg[k] from leaderk of C(r + 1, c).
2 Set∆[i]

blw(r, c) := msg[k] = ∆
[k]
blw(r +1, c)+∆[k](r +1, c).

This update procedure is depicted in Fig. 3. A leaderj of
cell C(1, c) in the top row uses a similar method to maintain
the estimate∆[j]

rght(1, c). It should be noted that as unassigned
agents enter and exit cells, the actual values of∆blw and∆rght

change. Thus, there is a procedure (which is fully detailed
in [13]) whereby agents sendenter and exit messages
to cell leaders, so that they can maintain their estimates.•

Remark 4.2 (Unassigned agent motion):The motion of
unassigned agents can be described as follows. First, each
unassigned agent seeks a free target in its column. It queries
the leader of its current cell about free targets in its column,
below its current cell. If the leader’s estimate∆[i]

blw(r, c) is
positive, then the agent moves down the column. Otherwise,



the agent moves up the column. While moving down, upon
entering a new cell the agent first queries the cell leader on
free targets in the cell, and then on free targets in cells below.
If the agent starts moving up the column, then it only queries
cell leaders on free targets in its current cell (since all targets
below are taken).

Second, if the agent reaches the top cell of its column,
then the column contains no free targets. To transfer to a new
column, the agent queries the leader of the top cell about free
targets in all columns to the right. If the leader’s estimate
∆

[j]
rght(1, c) is positive, then the agent moves to the right;

otherwise, the agent moves to the left. Upon reaching the
cell to the left or right, the agent recommences the column
procedure. •

Remark 4.3 (Comments onGRID ASSGMT): (1) Agents
move at speedvmax, and to transfer between cells agents
move toward the center of the new cell. (2) If an agent
or target lies on the boundary between cells, a simple tie
breaking scheme is used assign it to a cell. (3) In our
presentation, we implicitly assumed that every cell initially
contains at least one agent and one target. If a cell has no
targets, then any agents initially in the cell leave, and the
empty cell is then ignored. If a cell initially contains targets
but no agents, then the first agents to enter the cell run the
MAXIMAL MATCH algorithm and a leader is elected. (4) In
our description, agents use the top row to transfer to a new
column. This choice of “transfer column” is arbitrary and the
top row was chosen for simplicity of presentation. Intuitively,
one could argue that the middle row is a more efficient
choice. In the upcoming analysis we show that such a choice
does not affect the algorithm’s asymptotic performance.•

B. Correctness and time complexity ofGRID ASSGMT

We now present our main results on GRID ASSGMT.
Theorem 4.4 (GRID ASSGMT correctness and worst-case):

For any initial positions ofn agents andn targets inE(n),
GRID ASSGMT solves the target assignment problem in
O(|E(n)|) time. In addition, if E(n) is dense or critical,
then GRID ASSGMT is an asymptotically optimal monotonic
algorithm for worst-case initial positions.

Remark 4.5 (GRID ASSGMT vs. ETSP ASSGMT): The
worst-case bound for ETSP ASSGMT in Theorem 3.4
was O(

√

|E(n)|n). Thus, in sparse environments ETSP
ASSGMT performs better, where as in dense environments
GRID ASSGMT performs better. In critical environments, the
bounds are equal. In practice, a robot can determine which
algorithm to run by comparing the area of the environment
|E(n)| to the area ofn disks of radiusrcomm. That is, a robot
could use a rule such as the following: if|E(n)| > πr2

commn,
then execute ETSP ASSGMT, else if |E(n)| < πr2

commn,
then execute GRID ASSGMT. •

In the following theorem we will see that for randomly
placed targets and agents, the performance of GRID ASSGMT

is considerably better than in the worst-case.
Theorem 4.6 (Stochastic time complexity):Consider n

agents andn targets, uniformly randomly distributed in
E(n). Then GRID ASSGMT solves the target assignment

problem inO(
√

|E(n)|) time with high probability if

|E(n)| ≤
r2

comm

5

n

log n + γ(n)
,

whereγ is any function such thatγ(n) → +∞ asn → +∞.
Remark 4.7 (Generalization of Theorem 4.6):The bound

in Theorem 4.6 holds not only for uniformly randomly
distributed initial positions, but for any initial positions such
that every cell contains at least one target and at least one
agent.

Theorem 4.8 (Stochastic time complexity, cont’d):
Considern agents andn/ log n targets, uniformly randomly
distributed inE(n). Then GRID ASSGMT solves the target
assignment problem inO(1) time with high probability if
there existsK > 1/ log(4/e), such that

|E(n)| ≤
r2

comm

5

n

K log n
.

Remark 4.9 (Wireless congestion):Since wireless com-
munication is a shared medium, simultaneous messages sent
in close proximity will collide, resulting in dropped packets.
Clear reception of a signal requires that no other signals are
present at the same point in time and space. As the density
of agents increases (as measured by their communication
footprints), so does wireless communication congestion. In
the design of GRID ASSGMT we have tried to limit the
amount of simultaneous communication. To this end we
introduced a leader in each cell, who sent messages (of size
O(log n)) only to its adjacent cells, and all other assigned
agents were silent. However, to fully take wireless conges-
tion into account, we would require a more sophisticated
communication model than thercomm-geometric graph. •

C. Ideas behind mainGRID ASSGMT results

In this section we give some intuition into the proofs of
the theorems in Section IV-B.

First, the proof of Theorem 4.4 utilizes the fact that in
the worst-case an agent will have to visit every cell once.
Second, the proof of Theorem 4.6 requires that the estimates
maintained by the leaders of each cell converge to the true
values. To discuss convergence, let∆(r, c)(t) denote the
difference between the number of targets inC(r, c) and the
number of agents inC(r, c) at timet > 0 (recall that leader
i’s estimate of∆(r, c)(t) is denoted∆[i](r, c)). In our model,
communication roundk occurs instantaneously at timetk so
t−k denotes start of the round, andt+k , its completion. With
this notation, the convergence of the estimates can be stated
as follows. If agenti ∈ I is the leader of cellC(r, c), then
for each communication timetk, k ∈ N:

(i) ∆[i](r, c)(t+k ) = ∆(r, c)(tk);

(ii) ∆
[i]
blw(r, c)(t+k ) ≥

b
∑

r∗=r+1
∆(r∗, c)(tk);

(iii) if k > b and each cell in columnc contains a leader,

then∆
[i]
blw(r, c)(t+k ) =

b
∑

r∗=r+1
∆(r∗, c)(tk).

Thus, the∆blw estimates are never underestimates, and if
there is a leader in every cell, the estimates converge after
b := ⌈

√

5|E(n)|/rcomm⌉ communication rounds. We have an



(a) Initial agent-target positions. (b) Role assignment in each cell.

(c) Final agent reaching target.
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(d) Monte Carlo simulations.

Fig. 4. A simulation of 65 agents (blue squares) and targets (black disks)
in a dense environment is shown in (a-c). Red lines are drawn when two
agents are communicating. A Monte Carlo simulation is shown in (d).

analogous result for the convergence of∆
[i]
rght(r, c). These

two results, combined with Theorem 2.1(ii), are used to
prove Theorem 4.6. Finally, Theorem 4.8 is proved using
the occupancy result in Theorem 2.1(iv).

V. SIMULATIONS

Fig. 4 contains a representative simulation of the GRID

ASSGMT algorithm for 65 agents and targets uniformly
randomly distributed in a dense environment. Fig. 4(c) shows
the communication between the leaders of each cell (solid
red lines), and the trajectory of the final agent (dashed blue
line) as it approaches its target in cellC(1, 1). Fig. 4(d)
contains the numerical outcomes of Monte Carlo simulations.
In the simulationsrcomm = 10, vmax = 1, |E(n)| =
r2

commn/(6 log n), and each data point is the mean completion
time of 30 trials, where each trial was performed at ran-
domly generated agent and target positions. For simplicity
of implementation we discard trials in which there exist a
cell without targets. This is justified by the fact that w.h.p.
every cell contains at least one target, and thus the number of
discarded trails tends to zero asn increases. Error bars show
plus/minus one standard deviation. The simulation suggests
that asymptotically, the expected completion time is bounded
below by1.5

√

|E(n)| and above by2.5
√

|E(n)|.

VI. D ISCUSSION AND EXTENSIONS

A. A sensor based version

In describing the GRID ASSGMT algorithm, we assumed
that each agent knows the position of all targets. The algo-
rithm also works when each agent does not know the position

of any targets, but has a sensing rangersense, with which it
can sense the positions of targets in range. If each agent can
partition the environment as in Fig. 1, and ifrsense ≥

√

2/5r
so that each agent can sense the position of all targets in its
current cell, then GRID ASSGMT (with minor modifications)
solves the target assignment problem, and the completion
time results still hold.

B. Conclusions

We have developed the GRID ASSGMT algorithm for
solving the target assignment problem in dense environ-
ments. We showed that in the worst-case the time com-
plexity is proportional to the area of the environment, and
for uniformly randomly distributed agents and targets the
complexity is proportional to diameter of the environment.
There are many future research directions such as extensions
to nonholonomic vehicles, to the case when targets are
dynamically appearing and disappearing, or to dealing with
collisions between agents. Another area of future researchis
to develop a communication framework which adequately
models congestion and media access problems that are
inherently present in wireless communications.
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