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Target assignment for robotic networks:
Worst-case and stochastic performance in dense environments

Stephen L. Smith  Francesco Bullo

Abstract— Consider an equal number of mobile robotic is known as thesum assignmenfrespectively,bottleneck
agents and distinct target Iocations_dispersed in an environment. assignmentproblem. There exist efficient polynomial time
Each agent has a limited communication range and knowledge algorithms for the solution of all these problems [1], [&].]

of every target's position. We study the following target assign- . . .
ment problem: design a distributed algorithm with which the ~Additionally, the sum assignment problem can be solved in a

agents divide the targets among themselves and, simultaneously, Parallel fashion via thauction algorithm4]. However, these
move to their unique target. This paper focuses on “dense” solutions do not directly apply to our problem where, due to

environments, where the sum of the communication footprints  the agents’ limited communication range, the communieatio

is larger than the area of the environment. We introduce the topology is time-varying, and possibly disconnected
class of monotonic algorithms, whose worst-case completion ' ’

time is lower bounded by the area of the environment. We b) Target/task assignment in robotic networkbhere
propose a monotonic algorithm called Qib AssemT and has been a significant amount of work on decentralized
characterize its asymptotic performance: First, the algorithm is  task assignment for UAVs (or UGVSs), see for example [5],
ar]t.alsymp(ttht.icallySc’)ptimacljl rponotpfnic ?Igoritgm florc;,'votrsg-ctaze [6], [7], [8]. The goal is generally to assign vehicles to
initial conditions. Second, for uniformly randomly distribute ; i ; - .‘ ,
agents and targets the completion time is upper bounded by Spatla_lly.d|5trlbUt6d tasks while maximizing the S.CO.ref 0
the diameter of the environment with high probability. Third, =~ the mission. These works develop advanced heuristic meth-
if the number of agents exceeds the number of targets by a ods, and demonstrate their effectiveness through detailed
logarithmic factor, then the completion time is constant with  simulation or real world implementation. In [9] the auction
high PrObatt’i”ty-bcl)Uf a'gr?”thm a'S? Sr?'VeS a S?r_‘folrl?aseld target. algorithm is adapted to solve a task allocation problem én th
assignment problem where agents have no initial knowledge o o ;
targgt positigns, but acquire t%em Jia limited range sensingg. presence of communication delays. There has also been prior
work on target assignment problems [10], [11]. In [10] the

I. INTRODUCTION authors formulate a target assignment problem as a multi-

Considern. mobile robotic agents, equipped with wirelessP'ayer game and seek to optimize a global utility. In [11] an
transceivers for limited range communication, disperseshi  2/90rithm based on hybrid systems tools is developed and its
environment C R2. Suppose the environment also contain®erformance is characterized by a bound on the number of
n target locations, and each agent is given a list of thefWwitches of the hybrid system.
positions (the positions may be GPS coordinates). The task!n [12] we began an investigation into the scalability prop-
is for the agents to divide the targets among themselves §gies of the minimum-time target assignment problem for
that in minimum time, each target location is occupied by afgents with limited communication capabilities. We foalise
agent. Since na priori target-agent assignment is given, the®n characterizing the completion time as the number of
agents must solve the problem through communication arf@entsy, grows, and the environme&tn) grows to accom-
motion. Thistarget assignment problenould arise in several Modate them. We introduced the ETSB#GMT algorithm
applications, such as UAV’s on a surveillance mission, wheMith worst-case completion time i@(,/|€(n)[n).*
the targets are the centers of their desired loitering pate c) Contribution: In this paper we introduce a broad
Alternatively, one could imagine a mobile sensor networklass algorithms callednonotonic algorithms We show
roughly deployed in a remote or hostile environment; théhat in “sparse” environments where communication is in-
sensors must solve a target assignment problem to reach ffeguent, i.e., when&(n)|/n — +oo, every monotonic
desired (target) configuration. algorithm has worst-case completion timeS¥/|€(n)|n).

a) Centralized and parallel assignmenffhere is a In “dense” environments, i.e., whe@(n)|/n — 0F, every
wealth of literature on solving centralized versions of thénonotonic algorithm has worst-case completion time in
target assignment problem. The problem of assigning ori&(|(n)|). We then develop a novel distributed monotonic
agent to each target is known as theximum matching prob- algorithm called &ID AssGMT. In this algorithm, the agents
lem The problem of finding a complete assignment/matchingartition the environment into cells, and determine local
which minimizes the sum of distances (respectively, thgyaximum assignments in the cell which they occupy. A

maximum distance) from each agent to its assigned targégader is elected in each cell, and through communication
between leaders of adjacent cells, local assignments are
This material is based upon work supported in part by ARO MUR&A merged into a complete global assignment. We show that the
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worst-case completion time of therR@® AssGmMmTalgorithm  we present here will be useful in our analysis.

belongs toO(|€(n)]). Thus, in “dense” environments KD Theorem 2.1 (Occupancy properties, [14], [15]):
AsSsGMT s an asymptotically optimal monotonic algorithm Consider uniformly randomly distributing: balls into n
for worst-case initial conditions. Hence, our two algarith bins and lety be any function such thai(n) — +oco as
are complementary: ETSPS&AGMT has better performance n — +oo. The following statements hold:

in sparse environments, while RB> ASSGMT has better i) if m = n, then w.h.p. each bin contair@( logn )
performance in dense environments. We also characterize balls: loglogn
the GRID ASSGMT algorithms’ stochastic performance in (i) if m’
“dense” environments. First, if the agents and targets are

= nlogn + y(n)n, then w.h.p. there exist no

uniformly randomly distributed, then the completion tine b (i) i?mnst{blr?ls(i n — ~y(n)n, then wh.p. there exists an
longs toO(/|€(n)|) with high probability. Second, if there empty_bin' & K ' NP

aren agents and only:/logn targets, then the completion
time belongs toO(1) with high probability. Due to space
constraints all proofs are omitted, and can be found in [13]. We

(iv) if m = Knlogn, whereK > 1/log(4/e), then w.h.p.
every bin contain®(logn) balls.

will be interested in partitioning a square environment
[I. COMBINATORIC AND STOCHASTIC PRELIMINARIES into equally sized and openly disjoint square bins such that

In this section we review a few useful results on the cerfh® area of each bin is “small.” To do this, we require the
tralized matching problem, occupancy problems, and randof@llowing simple fact.
geometric graphs. We |ék, R., and N denote the set of ~Lemma 2.2 (Dividing the environmentBiven n € N
real numbers, the set of positive real numbers, and the set@td7comm > 0, consider a square environmefitn). If £(n)
positive integers, respectively. Given a finite detwe let|A| i partitioned intd” equally sized and openly disjoint square
denote its cardinality, and given an infinite sétc R2 we bins, whereb := [/5€(n)|/rcomm|, then the area of each
let | A| denote its area. For two functiorfsg : N — R, we Din is no more than,,/5. Moreover, ifz,y € £(n) are
write f(n) € O(g) (respectively,f(n) € (g)) if there exist in the same bin or in adjacent bins, thin — y|| < rcomm
N € N andc € Ry such thatf(n) < cg(n) foralln > N
(respectively,f(n) > cg(n) for all n > N). If f(n) € O(g) )
and f(n) € Q(g), then we sayf(n) € ©(g). We say Forn € N anqrcomm € R>O_, a pllanargeometrlc.graph
that eventA(n) occurswith high probability (w.h.p.) if the ~ G(7,7comm) cOnsists ofn vertices in R?, and undirected

C. Random geometric graphs

probability of A(n) occurring tends to one as — +oco. edges connecting all vertex paifs;, y} with [l — y|| <
) ) reomm We also refer to this as thge,mnrgeometric graph. If
A. Centralized matching the vertices are randomly distributed in some subsek%f

Considern persons and the problem of dividing themthen we call the graph mndom geometric graph
amongn tasks. For each personthere is a nonempty set Theorem 2.3 (Connectivity of geometric graphs, [16]):
QUi of tasks to whichi can be assigned. Aassignmenbr  Consider the random geometric gra@ffn, 7comm) oObtained
matching M is a set of person-task paifg,j) such that by uniformly randomly distributingz points in the square
j € QU for all (i,j) € M, and such that for each persén environment(n) with 772, /|E(n)| = (logn 4+ v(n))/n.
(likewise, taskj) there is at most one pait,j) € M. The Then G(n,7comm) is connected w.h.p. if and only if
matchingM is a maximummatching if for every matching ~(n) — +oo asn — +oc.
M, we have|M| < |M]|. If [M| = n, then the matching  This theorem will be important for understanding some
is complete The matchingM is maximalif there does not of our results, as it provides a bound on the environment
exist a matchingy/, such thatd/ is a strict superset a#/. size necessary for the communication grapmatndomly
Let us present a simple algorithm for computing a maximaleployed agents to be asymptotically connected.
matching. In this algorithm we choose the target-agent pair
with lowest cost, add it to our matching, remove that target
and agent from the problem, and repeat. If each personin this section we formalize our agent and target models
can be assigned to any of thetasks, then this algorithm and define the sparse and dense environments.
determines a complete, and thus maximum, matching.

IIl. NETWORK MODEL AND PROBLEM STATEMENT

A. Robotic network model

MAXIMAL MATCH, outputs a maximal matchingy/ Considem agents in an environme#t(n) := [0, £(n)]? C
1 Initialize M := 0, andZ; := {1,...,n}. R?, where {(n) > 0 (that is, £&(n) is a square with
2 while there exists ani € Z; with [Ql*)| # 0 do side length/(n)). The environment€(n) is compact for

3 | Sethr e MU Gin 1) 7, e I_\{i*}zeazﬁ-aj%gr[g;é?ief eachn but its size depends on. A robotic agent,Al",

ol i gl (=1 ’ v i € Z:={l,...,n}, is described by the tupledl’l :=
{uipll, plil reomm, ul?, MY, where the quantities are as
follows: Its unique identifier (UID) isuip!’, taken from

B. Occupancy problems the setl,, C N. Note that, each agent does not know

Occupancy problems are concerned with randomly dighe set of UIDs being used and thus does not initially
tributing m balls inton equally sized bins. The two results know the magnitude of its UID relative to those of other

3 L Compute the indicei*, j*) := arg min,




agents. Its position ipl!l € £(n). Its communication range (i) denseif |£(n)|/n — 0T, asn — +oo.
iS reomm > 0, i.e., two agents, Al and A, ik e T, Note that a dense environment does not imply the com-
can communicate if and only ifp! — p*!|| < 7¢omm Its  munication graph between agents is dense; from Theorem
continuous time velocity input isil”), corresponding to the 2.3 we see that the communication graph at random agent
kinematic modelpl? = ull, where||ul”!|| < vmax for some positions in a dense environment may not even be connected.
Umax > 0. Finally, its memory isMl1 and is of cardinality D. Monotonic algorithms andETSP ASSGMT
(size)|M11]. From now on, we refer to agent!” as agent. _ , , _

The agents move in continuous time and communicate We introduce a class of algorithms which provides an
according to a synchronous discrete time schedule camgistiiNtuitive approach to target assignment.

of an increasing sequendey, } ey of time instants with no Definition 3.2 (Monotonic algorithms)A  deterministic
accumulation points. We assuné,si — tx| < tmax fOr algorithm for target assignment isonotonicif, for a subset

all k& € N, wheretmax € Rso. At each communication ofmagentsj C 7, a targetq,, and timet; > 0, we have

round, agents can exchange messages of lefgiben)2 P (1) = a forHeachz € J, then there exists an agent
. . . y g j— .

Communication round: occurs at time,, and all messages ¢ € J such thap(t) = g, “for all ¢ > b ,

are sent and received instantaneouslyt;at Motion then We call these algorithms “monotonic” since occupied tar-

occurs fromt, until ¢,.1. In this setup we are emphasizing9€tS remain occupied for all time, and thus the number
the time complexity due to the motion of the agents. of occupied targets monotonically increases throughoet th
execution. We now lower bound the completion time of the

B. The target assignment problem target assignment problem for any monotonic algorithm.
Let Q :={qi,...,q.} C £(n) be a set of distinct target Theorem 3.3 (Time complexity of target assignment):

locations. In this paper we assume that each agent knofg®nsidern agents, with communication ranggomm > 0,

the position of every target. Thus, ageist memory, M/l1}, and n targets in&(n). For all monotonic algorithms the

contains a copy 08, which we denote&[’l. To storeQ!’) we worst-case completion timéd.. of the target assignment

must assume the size of each agents’ memad|, is in  problem is lower bounded as follows:

Q(n). We refer to the assumption that each agent knows all (i) if £(n) is sparse, thef, € Q(\/n|E(n)]);

target positions as thtill knowledgeassumption. Our goal (i) if £(n) is critical, thenT. € Q(n);

is to solve the(full knowledge) target assignment problem (iii) if £(n) is dense, thefT, € Q(|€(n)|).

Determine an algorithm for, € N agents, with The idea behind the prqof is to place the targetﬂn) _
attributes as described above, satisfying the fol- ~ such that thecommrgeometric graph generated by their posi-
lowing requirement; there exists a tirfie> 0 such tions has a maximum number of disconnected components.
that for each targeij €0, there is a unique agent In [12] we introduced the ETSP #sGMT algorithm,

i € T, with plil(t) = q; forall t > T. which is a monotonic algorithm. In this algorithm, each

agent computes a Euclidean traveling salesperson tour of
the n targets, turning the cloud of target points into an
ordered ring. Agents move along the ring looking for the next

If the task begins at time = 0, then thecompletion time
T. of target assignment is the minimuf > 0, such that
for each targety; € Q, there is a unique agefite Z, with

plil(t) = q; forall ¢ > T f'slvailabltnT target, and whep they communigate, they exchange
- _ information on how far it is to the next available target @on
C. Sparse, dense, and critical environments the ring. Combining Theorem 3.3 with the worst-case bound

We wish to study the scalability of a particular approactin [12] we obtain the following.
to the target assignment problem; that is, how the completio Theorem 3.4ETSP AsseMT): For any initial positions
time increases as we increase the number of agenfShe Of n agents and: targets inc(n), ETSP AssGmTsolves the
velocity umax and communication rangeomm of each agent target assignment problem @(/n|E(n)|) time. If £(n) is
are independent af. However, we assume that the size ofsparse or critical, then ETSPs&GMTis an asymptotically
the environment increases within order to accommodate optimal monotonic algorithm for worst-case initial posits.
an increase in agents. Borrowing terms from the random
geometric graph literature [16], we say that the environmen
is sparseif, as we increase the number of agents, th
environment grows quickly enough that the density of agen(é
(as measured by the sum of their communication footprint
decreases; we say the environmertdritical, if the density is
constant, and we say the environmentlénsef the density
increases. Formally, we have the following definition.

Definition 3.1 (Environment sizeEnvironmentE(n) is

() sparseif |E(n)|/n — 400 asn — +oo;

(i) critical if |£(n)|/n — conste Ry asn — +oo;

IV. THE GRID ASSGMT ALGORITHM

In this section we introduce a monotonic algorithm called
RID ASSGMT. In this algorithm, the agents partition the en-
ronment into cells. Agents then determine local maximum
ssignments, and elect a leader in the cell which they occupy
Through communication between leaders of adjacent cells,
each leader obtains estimates of the location of free ®rget
and uses this information to guide unassigned agents to free
targets. We show that in critical or dense environments,poG
AsSsGMTis an asymptotically optimal monotonic algorithm
for worst-case initial conditions. In addition, by utilig

2The number of bits required to represent an ID, unique amoagents, e results of Section II-B, we characterize the stochastic
is directly proportional to the logarithm of. performance of @ID ASSGMT.
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Fig. 2. Unassigned agent motion. Left: The nominal order incivran
| ithm d . agent (blue square) searches the cells in the absence of cocatim
A. Algorithm description Right: The shortened path due to the non-positive estimates feaderi

We assume that each agent knows the target positioffsC(3;3). leader; of C(1,3) and leadetk of C(1,2).
Q (i.e., Q" := Q) and the environmeng(n). With this

Fig. 1. Partitioning the environmewt(n) into b2 = 9 cells.

information, each agent partitions the environment itito o s All(1,¢)| —2 —2 2 2
equally sized square cells, whete € N. It then labels . Al (1L0)| 411 o 6 "
the cells like entries in a matrix, so cell(r,c) resides . A2, 0| 21 |1 |1 |1
in the rth row andcth column, as shown in Fig. 1. Since s o NP . 0 o
the agents start with the same information, they all create il 4 L — — —
the same partition. The quantity is chosen so that an e f%ﬁ'f} FL| comin | LY comin | L) comin | AL
agent in cellC(r,c) is within communication range of any " e Al 30| +4 - | -
agent in cellsC(r,¢), C(r — 1,¢), C(r+1,¢), C(r,c — 1), D_ D'D | A0 -1 = = =
and C(r,c + 1). In light of Lemma 2.2, we see that this .oe Affy(.0)| 0 A Ea 0
is satisfied wherb = [+/5|€(n)|/rcomm|. With this, we  Example column ¢ Initialization Fixed point

now outline the @ID ASSGMT algorithm. A complete a3 Lead cation. Col @ ts (o |
S ig. 3. Leader communication. Columncontains agents (blue squares
description is given [13]. and targets (black disks). The figure shows leadefs"' (1, ¢), j of C(2, ¢),
Outline of the GRID ASSGMT algorithm k of C(3,c), andl of C(4, c) initializing and updating their estimates of
L . . A and Aypyy. Estimates converge to true values in three iterations.
Initialization and role assignment: Each agent partitions
&(n) as described above. In each cell, agents useM

;MAe;tg/l ';Tn%H t?r fg,:g icrESXInumtr?(:S:?er:lm (:: dbztsvl?en é# of target$— (# of agentsin C(r,¢). In addition, leadei
9 9 Pying ' g alntamsAle(r ¢), which is an estimate df# of target$—

agents elect a leader among them. Accordingly, agenzé of agents in cells C(r + 1, ¢) to C(b, ). This quantity

are labeled leader, unassigned, or assigned non-lead
Assigned non-leader agents. Each assigned non- Ieadermust be estimated because aMes not initially know the
number of agents in cell§(r+1, c) to C(b, ). The variable

agent moves to its assigned target and goes silent. A .
Cell leaders: Each cell leader assigns free targets in its ceﬁkblw r,c) is initialized to the number of targets in cells

to unassigned agents that enter the cell. In addition, eafH” + 1-¢) 10 C(b, ), which is necessarily no smaller than

cell leader estimates the number of available targets fi€ actual value. Then, at each communication round agent
all cells below it in its column (denoted (r,c) for 1 updates its estimate by communicating with the leaders in
blw

leaderi of cell C(r, c)). To maintain the estimates, cell cells C(r —1,¢) andC(r + 1 c)

leaders communicate to the cell leader in the cell di- 1 Send msg' := AL (r, ¢)+A (r, c) to leader inC(r—1, c)

rectly above. Cell leaders in the top row communicate to ~ and receive msf from leaderk of C(r + 1 C)

the cell leader directly to the right to obtain an estimate 2 SetAp,(r,c) := msg" = Al (r+1,¢) + A (r +1,¢).

of the number of available targets in all columns to th&his update procedure is depicted in Fig. 3. A leaglef

right (denOtEdA%]m(l c) for leaderj of cell C(1,¢)). cell C(1,¢) in the top row uses a similar method to maintain
Unassigned agents: Each unassigned agent seeks a frethe estlmatesi ]ht( ¢). It should be noted that as unassigned

target by entering cells and querying their respectivagents enter and exit cells, the actual valueAgf, and A g

leaders. The motion of unassigned agents is illustratezhange. Thus, there is a procedure (which is fully detailed

in Fig. 2. Assuming no communication with the leadersin [13]) whereby agents seneint er andexi t messages

the nominal order in which an unassigned agent visit® cell leaders, so that they can maintain their estimates.

all cells of the grid is shown in the left-hand figure. The Remark 4.2 (Unassigned agent motiofae motion of

way in which this path is shortened as the unassignashassigned agents can be described as follows. First, each

agent receives available target estimates from cell leadnassigned agent seeks a free target in its column. It querie

ers is shown on the right-hand figure. the leader of its current cell about free targets in its colum

Remark 4.1 (Cell leader computationd): agent: is the below its current cell. If the leader’s est|mam([)] (r,c) is

leader of cell C(r,c), it computes All(r ¢), which is positive, then the agent moves down the column. Otherwise,



the agent moves up the column. While moving down, upoproblem inO(+/|€(n)|) time with high probability if

entering a new cell the agent first queries the cell leader on 9

free targets in the cell, and then on free targets in cellsvbel |E(n)| < Tcomm n ,

If the agent starts moving up the column, then it only queries 5 logn+1(n)

cell leaders on free targets in its current cell (since afjées  where is any function such that(n) — +oco asn — +cc.

below are taken). Remark 4.7 (Generalization of Theorem 4.8he bound
Second, if the agent reaches the top cell of its columiin Theorem 4.6 holds not only for uniformly randomly

then the column contains no free targets. To transfer to a nalistributed initial positions, but for any initial positis such

column, the agent queries the leader of the top cell aboet fré¢hat every cell contains at least one target and at least one

targets in all columns to the right. If the leader’s estimatagent.

A%ht(l,c) is positive, then the agent moves to the right; Theorem 4.8 (Stochastic time complexity, cont'd):

otherwise, the agent moves to the left. Upon reaching tHeonsidern agents andi/logn targets, uniformly randomly

cell to the left or right, the agent recommences the columdistributed in&(n). Then GRID ASSGMT solves the target

procedure. e assignment problem i®(1) time with high probability if
Remark 4.3 (Comments @RID AssGMT): (1) Agents there existsK > 1/log(4/e), such that

move at speedmax and to transfer between cells agents 2

T n
move toward the center of the new cell. (2) If an agent |E(n)| < Cgmmm.

or target lies on the boundary between cells, a simple tie Remark 4.9 (Wireless congestiorSince wireless com-
breaking scheme is used assign it to a cell. (3) In oyhynication is a shared medium, simultaneous messages sent
presentation, we implicitly assumed that every cell ifiitia in close proximity will collide, resulting in dropped padke
contains at least one agent and one target. If a cell has agegy reception of a signal requires that no other signas ar
targets, then any agents initially in the cell leave, and thSresent at the same point in time and space. As the density
empty cell is then ignored. If a cell initially contains tatg  of agents increases (as measured by their communication
but no agents, then the first agents to enter the cell run ﬂF@otprintS), so does wireless communication congestion. |
MAXIMAL MATCH algorithm and a leader is elected. (4) Inthe design of ®ID ASSGMT we have tried to limit the

our description, agents use the top row to transfer to a néjmount of simultaneous communication. To this end we
column. This choice of “transfer column” is arbitrary an@ th jntroduced a leader in each cell, who sent messages (of size
top row was chosen for5|mpl|(;|ty of presentation. Intuatqu. O(logn)) only to its adjacent cells, and all other assigned
one could argue that the middle row is a more efficienjgents were silent. However, to fully take wireless conges-
choice. In the upcoming analysis we show that such a choiggn into account, we would require a more sophisticated
does not affect the algorithm’s asymptotic performance. communication model than theommrgeometric graph. e

B. Correctness and time complexity GRID ASSGMT C. Ideas behind maiGRID ASSGMT results
We now present our main results orR(® ASSGMT. In this section we give some intuition into the proofs of
Theorem 4.4 GRID ASSGMT correctness and worst-case)the theorems in Section V-B. - .
For any initial positions ofn agents anch targets in€(n), First, the proof of Theorem 4.4 utilizes the fact that in

GRID AssGMT solves the target assignment problem irfhe worst-case an agent will have to visit every cell once.
O(|&(n)|) time. In addition, if £(n) is dense or critical, Second, the proof of Theorem 4.6 requires that the estimates

then GRID AsSGMTIs an asymptotically optimal monotonic maintained by the leaders of each cell converge to the true
algorithm for worst-case initial positions. values. To discuss convergence, &{r c¢)(t) denote the

Remark 4.5 GRID ASSGMTVs. ETSP AsseM1): The difference between the number of target<ifr, ¢) and the
worst-case bound for ETSP s&GMT in Theorem 3.4 humber of agents i€'(r, c) at timet > 0 (recall that leader
was O(y/|[€(n)[n). Thus, in sparse environments ETSPi's estimate ofA(r, ¢)(t) is denotedAl)(r, c)). In our model,
AssGMT performs better, where as in dense environmengPmmunication round occurs instantaneously at ting so
GRID ASSGMT performs better. In critical environments, thet;, denotes start of the round, ang, its completion. With
bounds are equal. In practice, a robot can determine whidhis notation, the convergence of the estimates can bedstate
algorithm to run by comparing the area of the environmerits follows. If agenti € 7 is the leader of celC(r, c), then
|€(n)] to the area of. disks of radiug-comm That is, a robot for each communication time,, k& € N:

could use a rule such as the following:|&(n)| > 7rZ ., () All(r,e)(t) = A(r, ) (tr);
then execute ETSP #sGMmT, else if |£(n)| < mrmmis i) . b . _
then execute GID ASSGMT. o () Agy(roty) 2 T*:ZTHA(T e)(t);
In the following theorem we will see that for randomly (iii) if & > b and each cell in columa contains a leader,
placed targets and agents, the performancerIb@ SSGMT then Al ) — b N
is considerably better than in the worst-case. ow (7€) (1) S (", ) (t,)-

Theorem 4.6 (Stochastic time complexit@onsider n  Thus, theAy, estimates are never underestimates, and if
agents andn targets, uniformly randomly distributed in there is a leader in every cell, the estimates converge after
E(n). Then RID ASSGMT solves the target assignmentb := [\/5|€(n)|/rcomm] COMmMunication rounds. We have an



(a) Initial agent-target positions.

(b) Role assignment in each cell.

of any targets, but has a sensing ramgg, ;., with which it

can sense the positions of targets in range. If each agent can
partition the environment as in Fig. 1, and-if,,s. > +/2/57

so that each agent can sense the position of all targets in its
current cell, then @D AssGMT (with minor modifications)
solves the target assignment problem, and the completion
time results still hold.

B. Conclusions

We have developed the RED AssGMT algorithm for
solving the target assignment problem in dense environ-
ments. We showed that in the worst-case the time com-
plexity is proportional to the area of the environment, and
for uniformly randomly distributed agents and targets the
complexity is proportional to diameter of the environment.
There are many future research directions such as extension
to nonholonomic vehicles, to the case when targets are
dynamically appearing and disappearing, or to dealing with
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Fig. 4. A simulation of 65 agents (blue squares) and targéasKldisks)
in a dense environment is shown in (a-c). Red lines are dranenviivo

agents are communicating. A Monte Carlo simulation is showrd)n ( (1
(2]
analogous result for the convergence m}é}ht(r, ¢). These [3]

two results, combined with Theorem 2.1(ii), are used to4
prove Theorem 4.6. Finally, Theorem 4.8 is proved using[]
the occupancy result in Theorem 2.1(iv). [5]

V. SIMULATIONS

6
Fig. 4 contains a representative simulation of theits R

AssGMT algorithm for 65 agents and targets uniformly
randomly distributed in a dense environment. Fig. 4(c) show 7]
the communication between the leaders of each cell (solid
red lines), and the trajectory of the final agent (dashed blué8]
line) as it approaches its target in céll(1,1). Fig. 4(d)
contains the numerical outcomes of Monte Carlo simulationsig
In the simulationsrcomm = 10, vmax = 1, [E(n)] =
r2mmt/(6log n), and each data point is the mean completior[llo]
time of 30 trials, where each trial was performed at ran-
domly generated agent and target positions. For simplicit
of implementation we discard trials in which there exist
cell without targets. This is justified by the fact that w.h.p
every cell contains at least one target, and thus the nuniber(®2]
discarded trails tends to zero msncreases. Error bars show
plus/minus one standard deviation. The simulation suggesis;
that asymptotically, the expected completion time is baahd

below by 1.5,/|€(n)| and above by.5./|E(n)|.
VI. DISCUSSION AND EXTENSIONS
A. A sensor based version

In describing the @ID ASsSGMT algorithm, we assumed
that each agent knows the position of all targets. The alg&-e]
rithm also works when each agent does not know the position

[14]

[15]

collisions between agents. Another area of future research

to develop a communication framework which adequately
models congestion and media access problems that are
inherently present in wireless communications.
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