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A Cooperative Homicidal Chauffeur Game

Shaunak D. Bopardikar Francesco Bullo João Hespanha

Abstract— We address a pursuit-evasion problem involving
an unbounded planar environment, a single evader, and mul-
tiple pursuers moving along curves of bounded curvature.
The problem amounts to a multi-agent version of the classic
homicidal chauffeur problem; we focus on parameter ranges in
which a single pursuer is not sufficient to capture the evader.
We propose a novel cooperative strategy in which the pursuers
move in a daisy-chain formation and confine the evader to a
bounded region. The proposed policy is inspired by certain
hunting and foraging behaviors of various fish species. We
characterize the required number of pursuers and the required
value of the evader/pursuers speed ratio for which our strategy
is guaranteed to lead to confinement.

I. I NTRODUCTION

The homicidal chauffeur game has been studied in great
detail. Proposed originally by Isaacs [1], this problem in-
volves a single pursuer who wants to overrun an evader, both
moving with fixed speeds. The pursuer has greater speed
but has constraints on its turning radius while the evader
can make arbitrarily sharp turns. The evader is said to be
capturedwhen the distance between the pursuer and evader
becomes less than a specifiedcapture radius. We present a
multi-agent homicidal chauffeur problem in which a single
pursuer is not sufficient to capture the evader. We present
a bio-inspired, cooperative strategy for multiple pursuers to
confine the evader in a bounded region which the evader
cannot leave without being captured.

A. Related Work

The classical homicidal chauffeur problem was proposed
and solved by Isaacs [1]. This solution gives a condition
on the game parameters, i.e., the speed ratio of the players,
the capture radius and the minimum turning radius of the
pursuer such that the evader can evade indefinitely. Glizer [2]
has considered a generalized capture criterion of forcing the
evader within a capture radius and within a prescribed angle
with respect to pursuer’s direction of motion. Pachteret
al. [3] have studied a stochastic version of this game, i.e.,
the effect of noise in the measurements of the evader by
the pursuer on the optimal capture strategy. Getzet al. [4]
have analyzed a two-target version of the homicidal chauffeur
problem, i.e., the roles of pursuer and evader are not defined
a priori.
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In recent past, lot of attention has been received by coop-
erative control strategies for detection of targets. McLain et
al. [5] have addressed the problem of cooperative rendezvous
in which multiple UAVs are to arrive simultaneously at their
targets. Polycarpouet al. [6] have presented a cooperative
target search using online learning and computing guidance
trajectories for the agents. Recently, Tanget al. [7], [8] have
presented cooperative motion planning methods for multiple
UAVs to traverse through slow moving targets and for first-
order mobile sensing agents to detect a moving target that
lies in a known initial region respectively. Also, McGeeet
al. [9] have proposed guaranteed strategies to search for
mobile evaders in a plane.

B. Contributions

We consider the case when the condition for evasion in the
classical homicidal chauffeur game is satisfied. This means
that one pursuer is not sufficient to capture the evader. We
propose a multiple pursuer formation and a novel four-phase,
cooperative strategy for the pursuers. In the first two phases
of the strategy, we show that the problem is equivalent to
having a single pursuer and the task being getting the evader
along its direction of motion and at a specified distance,
given any set of initial conditions. Once this is achieved, we
show that in the last two phases, the pursuers confine the
evader within a bounded region, through which there exists
no evader trajectory that avoids capture. We characterize
the required number of pursuers and the required value of
the evader/pursuers speed ratio for which our strategy is
guaranteed to lead to confinement. Finally, we characterize
a class of confinement strategies and determine a minimum
number of pursuers required for any strategy in this class to
achieve confinement.

Fig. 1. Daisy-chaining among tarpon fish (source: Florida Tarpon Fishing
at http://www.gianttarpon.com/tarpon1.htm)



C. Biological Motivation

The inspirations for the strategies proposed in this paper
have been derived from certain aspects of fish behavior.
It has been recently reported by Gazdaet al. [10] that
in Cedar Key, Florida, USA, individual dolphins herding
slower, more agile prey fish specialize in the roles of driver
and barrier. The driver dolphin herds the prey fishes in circles
as well as towards the tightly-grouped barrier dolphins. These
barrier dolphins are less than one body-length apart and
often touching. Pitmanet al. [11] have reported a herd
of killer whales imposing a confinement on pantropical
spotted dolphins. The whales cut out up to three dolphins
from a school and proceeded to take turns chasing a single
dolphin and keeping it within a confined area. A study
of American white pelicans by McMahonet al. [12] also
showed the use a coordinated strategy by a group of birds
that maintained position usually in semi-circles and using
synchronized bill-dipping to capture fish. These facts giveus
some hints towards selecting favorable predator formations.
The formation that has inspired this work is the daisy-
chain, observed among tarpon fish during spawning, shown
in Figure 1.

D. Organization

The problem assumptions and its mathematical model are
presented in Section II. Pursuer formation, the CONFINE

strategy and the main results are presented in Section III.
The proofs of the main results along with intermediate results
required are presented in Section IV. Conclusions and future
directions for this work are summarized in Section V.

II. PROBLEM SET-UP

Our cooperative homicidal chauffeur game is played in
an unbounded, planar environment between a single evader
and multiple pursuers. We assume that all the players have
unlimited sensing capabilities. The pursuers have identical
motion abilities and possess greater speed than that of
the evader. However, the evader can make arbitrarily sharp
turns while the pursuers cannot turn more than a minimum
turning radius. We assume that the instantaneous position
and velocity of the evader is available to all pursuers.

Let e(t) and pk(t), for k ∈ {1, . . . , N}, denote the
positions of the evader and thekth pursuer inR

2 at time
t, as shown in Figure 2. Letve andvp denote the speeds of
the evader and all the pursuers, respectively. Letve andvp,k

denote the velocity vectors of the evader and thekth pursuer,
respectively. Given aminimum turning radiusR > 0, the
mathematical model for this problem can be described as
follows [1].

For evader:ėx(t) = ve cos θe(t),

ėy(t) = ve sin θe(t).

For pursuers:̇pk,x(t) = vp cos θp,k(t),

ṗk,y(t) = vp sin θp,k(t),

θ̇p,k =
vp

R
up,k,

(1)

whereθe(t) andθp,k(t) are respectively the angles made by
the velocity vectors of the evader and of thekth pursuer with
reference to a globalX axis. up,k is the control applied by
the kth pursuer and satisfies the constraint

‖up,k‖ ≤ 1.

We define theevader/pursuer speed ratioγ := ve/vp and
assumeγ < 1. Given acapture radiusc > 0, the evader is
said to becapturedif, at some timet and for somek,

‖pk(t) − e(t)‖ ≤ c.

In what follows, without loss of generality, we set the capture
radius c and the pursuers speedve to 1. In summary, our
cooperative homicidal chauffeur game is described by the
number of pursuersN ∈ N, the minimum curvature radius
R ∈ R>0, and the evader/pursuers speed ratioγ ∈ ]0, 1[.

Next, we introduce the notion of confinement as follows.

Definition II.1 (Confinement) The evader is said to be
confinedto a bounded regionG ⊂ R

2 at timet∗ if e(t∗) ∈ G
and there exist pursuer trajectoriespk : [t∗,+∞[ → R

2

satisfying equation(1) such that the evader cannot leaveG
without being captured.

A set of functions{up,k}, for k ∈ {1, . . . , N}, leading to
evader confinement is termed as aconfinement strategy. In
the case of a single pursuer and single evader, Isaacs [1] has
shown that there exists an evasion policy ifR > 2/(π − 2)
and if the evader/pursuer speed ratioγ ≥ γmin(R), where
γmin : ]2/(π − 2),+∞[ → ]0, 1[ is the unique solution to

1

x
=
√

1 − γmin(x)2 + γmin(x) arcsin(γmin(x)) − 1. (2)

We seek cooperative, deterministic multiple-pursuer strate-
gies which guarantee a confinement of the evader when
γ ∈ [γmin(R), 1[ for R > 2/(π − 2).

pk(t)

c

vp

θe(t)

θp,k(t)

Y

X

ve

e(t)

Fig. 2. Variables in the homicidal chauffeur game. The shaded region
around the pursuer indicates its capture disc.

III. T HE CONFINE STRATEGY

In this section, we describe our proposed CONFINE strat-
egy for the pursuers to confine the evader and the correspond-
ing main results. We first propose the following arrangement
for the pursuers.



Definition III.1 (Pursuers daisy-chain formation)
Given an inter-pursuer separationsip > 0, the set
{p1, . . . , pN , vp,1, . . . , vp,N} is said to be in adaisy-chain
formation if, for every k ∈ {2, . . . , N}, there exists a
solutionη : [0, sip] → R

2 of equation(1) satisfying

η(0) = pk, η̇(0) = vp,k,

η(sip) = pk−1, η̇(sip) = vp,k−1.

A daisy-chain formation has the following property.

Proposition III.2 (A Daisy-chain property) Assume the
pursuers are in a daisy-chain formation with separationsip.
Any feasible path taken by the first pursuer can be exactly
traversed by thekth pursuer, for k ∈ {2, . . . , N}, in the
daisy-chain after a time delay of(k − 1)sip.

Figure 3 shows an example of a daisy-chain formation.

sip

p4

vp,2vp,4

p3
vp,3

p1

vp,1
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Fig. 3. A daisy-chain formation

Given{pk−1, pk, vp,k − 1, vp,k} in a daisy-chain formation
with inter-pursuer separationsip, let C1 and C2 be curves
which are tangent toB1(η(t)) for every t ∈ ]0, sip[, where
for a ∈ R

2, B1(a) ⊂ R
2 denotes a circle of radius1, centered

at a. Here,η is a curve described in Definition III.1. Then,
the evader is said tomove betweenpk−1 and pk if there is
an evader trajectory fromC1 to C2 (or vice-versa).

Given the pursuers’ minimum turning radiusR, for the
evader/pursuers speed ratioγ ≤ 1 − 1

R
, we definecritical

inter-pursuer separations∗ip(γ,R) as follows: if r21 := (1 +

R2) + 2R
√

1 − γ2, r22 := (1 +R2) − 2R
√

1 − γ2, and

∆θ := arctan

(

1 −R
√

1 − γ2

γR

)

− arctan

(

1 +R
√

1 − γ2

γR

)

+
2
√

1 − γ2

γ
,

then

s∗ip(γ,R) := R
(

∆θ + arcsin
γ

r1
+ arcsin

γ

r2

)

. (3)

This s∗ip(γ,R) has the following property, whose proof is
presented in Section IV.

Lemma III.3 (Property of s∗ip(γ,R)) Given
{pk−1, pk, vp,k − 1, vp,k} in a daisy-chain formation
and the evader/pursuers speed ratio satisfyingγ ≤ 1 − 1

R
,

to prevent an evader from moving betweenpk−1 and pk

without being captured, the inter-pursuer separation must
not exceeds∗ip(γ,R).

Given a point p and a unit vectorx ∈ R
2, we define

the region of confinementGc(p, x) ⊂ R
2 for the CONFINE

strategy as follows: choosea, b, c ∈ R
2 such that

(i) x rotated counter-clockwise aboutp by π
2 becomes

parallel to(a− p), (p− c) ‖ x and,
(ii) a, b, c, p are vertices of a rectangle such that‖a−b‖ =

‖p − c‖ = 2πγR
1−γ

and‖a − p‖ = ‖b − c‖ = R + 1, as
shown in Figure 4.

Let Rect (a, b, c, p) ⊂ R
2 denote the rectangular region

formed by the four pointsa, b, c andp. Then,Gc(p, x) ⊂ R
2

is defined as interior of the union ofBR+1(
a+p
2 ), BR+1(

b+c
2 )

andRect (a, b, c, p).
We define a pointa ∈ R

2 to be aligned with the kth

pursuer ifvp,k ‖ (a− pk).

xc

a+d
2

R + 1 R + 1

b+c
2

2πγR
1−γb a

p

Fig. 4. Defining the region of confinement,Gc for the CONFINE strategy

We now describe the CONFINE strategy. Let the
evader be located ate(0), as shown in Figure 5. Let
{p1, . . . , pN , vp,1, . . . , vp,N} be a daisy-chain formation with
sip = s∗ip(γ,R) and the first pursuer atp1(0). Let the angle
betweenvp,1(0) and (e(0) − p1(0)) be φ0 and ‖p1(0) −
e(0)‖ = L0. Due to Proposition III.2, it suffices to specify
the strategy forp1. The CONFINE strategy is as follows.

(i) Pre-Align phase: This phase is needed ife(0) is
not aligned withp1(0) or if L0 < (1 + γ)lst, where
lst ,

2πγR
1−γ

. Let lp be the minimum of the roots of the
quadratic equation:

(γ(lp + 2πR) + (1 + γ)lst +R)2

= (lp − L0 cosψ0)
2 + (R− L0 sinψ0)

2. (4)

p1 moves on a straight line path of lengthlp and then
moves on a circle of radiusR and center on the side
not containinge(0) of the line alongvp,1(lp). If φ0 = 0
or π, then the center of the circle of radiusR can be
chosen to be on either side of the line alongvp,1(lp).
Lemma IV.2 shows that this phase terminates in finite
time with the evader aligned withp1 and at a distance
greater than(1 + γ)lst.

(ii) Align phase:p1 moves with the following control law:

up,1(θe, e, θp,1, p1) =
Rγ

‖p1 − e‖ sin(θe − θp,1),

until ‖p1 − e‖ = (1 + γ)lst. Lemma IV.3 shows that
this happens in finite time.

(iii) Chase phase:p1 moves on a straight line path until
either it captures the evader orvp,1 ⊥ (e− p1), where
the symbol⊥ denotes perpendicularity. This is shown
in Figure 6. Lettchasedenote the time at the end of the
Chase phase.

(iv) Close phase:First, p1 moves on a circle of radiusR
and centerO located on the evader side of the line
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Fig. 5. The Pre-Align phase: the bold line shows the trajectory followed
by p1.

p1p3

vp,1vp,2vp,3

e

e′

sip

p2

Fig. 6. The Chase phase

along vp,1, until it covers a distanceπR. Second,p1

moves on a straight line path of lengthlst. Third, p1

moves on a circle of radiusR and centerO′ located
on the evader side of the line alongvp,1, until it covers
a distanceπR. This motion is shown in Figure 7.
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Fig. 7. The Close phase

(v) Final phase: p1 moves on the boundary of
Gc(p1(tchase), vp,1(tchase)).

For everyk ∈ {2, . . . , N}, pk moves on curveη described
in Definition III.1 for time t ≤ sip. For t > sip, up,k(t) =
up,k − 1(t− sip).

This strategy gives us the following result.

Theorem III.4 (Confinement) Consider a cooperative
homicidal chauffeur game with parametersN ∈ N,
R > 2

π−2 , and γ ∈ ]0, 1[. Let tchase denote the time
at the end of the Chase phase. TheCONFINE strategy
guarantees confinement of the evader inside the region
Gc(p1(tchase), vp,1(tchase)) at time tchase if

N ≥ Nmin :=

⌈

2πR(1 + γ)

s∗ip(γ,R)(1 − γ)

⌉

,

and if
γ ∈ [γmin(R), γmax(R)],

whereγmax(R) is the smallest root in the interval]0, 1[ of

(1 − γ2)

(

2 − 2πγ2

(1 − γ)

√

1 + γ

1 − γ
+

1

R

)2

= π2γ2. (5)

Moreover, ifγ > γmax(R) or if N < Nmin, then the evader
can escape the regionGc(p1(tchase), vp,1(tchase)).

Remark III.5 Because

lim
R→+∞

γmin(R) = 0+, lim
R→+∞

γmax(R) ≈ .293,

for sufficiently large values of R, the interval
[γmin(R), γmax(R)] is non-empty.

Remark III.6 (From confinement to capture) If a suffi-
ciently large number of pursuers is available, then capture
can be achieved in a final maneuver as follows:Nmin

pursuers confine the evader, while some additional pursuers
arrange themselves in a line as shown in Figure 8 and move
simultaneously throughGc(p1(tchase), vp,1(tchase)).

p1(tchase)

e

vp,1(tchase)

Fig. 8. Achieving capture with a sufficiently large number of pursuers

We now define a class of confinement strategies as follows.

Definition III.7 (Daisy chain-based strategy) A confine-
ment strategy is termed asdaisy chain-basedif, using that
strategy,

(i) the evader is confined to a regionG at time t∗,
(ii) the set{p1(t

∗), . . . , pN (t∗), vp,1(t
∗), . . . , vp,N (t∗)} is

a daisy-chain formation with inter-pursuer separation
sip ≤ s∗ip(γ,R) and,

(iii) the pursuer trajectoriespk : [t∗,+∞[ → R
2, k ∈

{2, . . . , N} satisfy

up,k(t) = up,k−1(t− sip), for t ≥ t∗.

Clearly, the CONFINE strategy is a daisy chain-based
strategy. We now have the following result.

Theorem III.8 (Minimum number of pursuers) Let R >
2

π−2 and the evader/pursuers speed ratioγ ≥ γmin(R),
where γmin(R) is the solution to equation(2). Then, to
achieve confinement using any daisy chain-based strategy,
the number of pursuers must be at leastN∗ = d 2πR

s∗ip(γ,R)e.



IV. PROOFS OF THEMAIN RESULTS

In this section, we prove the main results from Section III.
We begin with certain intermediate results which would be
used to prove the main results. We first define the following
terminology.

We say that a daisy-chain with separationsip is closedif
for somepk (k 6= 1), there exists atk ≤ sip and a solution
η : [0, tk] → R

2 of equation (1) satisfying

η(0) = p1, η̇(0) = vp,1,

η(tk) = pk, η̇(tk) = vp,k,

such that the evader cannot move betweenp1 andpk without
being captured. We first prove Lemma III.3.
Proof of Lemma III.3:We show that the separationsip ≤
s∗ip(γ,R) is necessary so that there does not exist any evader
escape trajectory from arcsUW to PQ, without entering
any capture ball when pursuerspk−1 andpk are placed on a
circle of radiusR as shown in Figure 9. Letαe(t) ∈ [−π

2 ,
π
2 ]

denote the angle made by the evader’s velocity in the ground
frame witheN , such that(e−O) ‖ (N−e). Consider evader
motion in a reference frame attached to the centerO of the
circle of radiusR through pursuerspk−1 andpk and rotating
with angular speed1

R
in the direction of pursuer motion.

Let r(t), θ(t) denote the evader’s polar coordinates.θ(t) is
measured with respect toOpk−1. The equations of motion
for the evader are,

ṙ(t) = γ cosαe(t),

θ̇(t) =
γ sinαe(t)

r(t)
+

1

R
.

The optimal evader motion in this case is given byα∗

e(t) =

θ(t) − θ(0)

M

O U

W

Q

P

e

pk-1

pk

αe(t)

γ

r(t)

vres

vt

R

N

Fig. 9. Illustrating proof of Lemma IV.1. The shaded regions are the
capture discs ofpk−1 andpk.

− arcsin γR
r(t) [9]. This is well-defined sinceγ ≤ 1 − 1

R
.

Substituting in the differential equation forr(t), we have

ṙ(t) = γ

√

1 − γ2R2

r2(t)
,

and, integrating,

r2 = (γt+ c)2 + γ2R2, (6)

wherec =
√

(R− 1)2 − γ2R2, which can be verified to be
well-defined. Upon solving fort,

t =

√

r2 − γ2R2 −
√

(R− 1)2 − γ2R2

γ
. (7)

Substituting the expression forr in the equation forθ(t),

θ̇(t) = −γ
2R

r2
+

1

R
.

Integrating, we obtain

θ(t) = −
∫

γ2Rdt

(γt+ c)2 + γ2R2
+

t

R

= − arctan

(

γt+
√

(R− 1)2 − γ2R2

γR

)

+
t

γR
, (8)

with

θ(0) = − arctan

(

√

(R− 1)2 − γ2R2

γR

)

.

γ

r(t)O

δ1

β

S(r(t), θ(t))

Z
α∗

e(t1)

R

r(t1)

r(t1)
R

vres
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Fig. 10. Computing an expression fors∗ip(γ, R)

We now determine the analytic expression fors∗ip(γ,R).
Let S(r(t), θ(t)) denote the trajectory defined by equa-
tions (6) and (8). Let it touch the capture ball ofpk at Z,
as shown in Figure 10. Letδ1 , ∠pkOZ andβ , ∠pkZO.
Due to tangency ofS(r(t), θ(t)) and capture ball ofpk, angle
betweenvres and lineOZ is π

2 − β. From geometry,

tanβ =
γ cosα∗

e(t1)
r(t1)

R
− γ sinα∗

e(t1)
,

where t1 is the value of parametert such that
S(r(t1), θ(t1)) = Z and α∗

e(t1) is the optimal choice of
evader motion at timet1. On simplifying,

sinβ =
γR

r(t1)
, cosβ =

√

1 − γ2R2

r2(t1)
.

Again, from geometry,

sin δ1 =
sinβ

R
=
γ

R
=⇒ cos δ1 =

√

1 − γ2

r2(t1)
.

Also, at the point of tangency,

r(t1) = R cos δ1 + cosβ,



Thus,r(t1) := r1 is a root of

x4 − 2(1 +R2)x2 + (R2 − 1)2 + 4γ2R2 = 0.

The other positive root, r(t2) := r2 corresponds toZ2,
which is the point of tangency ofS with the capture ball of
pk−1. Thus, we obtain

{r21, r22} = (1 +R2) ± 2R
√

1 − γ2.

Substituting in equation (8),

∆θ := θ(t1) − θ(t2) = arctan

(

√

r2(t2) − γ2R2

γR

)

− arctan

(

√

r2(t1) − γ2R2

γR

)

+

√

r2(t1) − γ2R2 −
√

r2(t2) − γ2R2

γR
.

The anglesδ1 and analogouslyδ2 (which is the angle
between linesOpk−1 andOZ2), are given by

δ1 = arcsin
γ

r(t1)
, δ2 = arcsin

γ

r(t2)
.

Thus, we get equation (3)

s∗ip(γ,R) = R(θ(t1) − θ(t2) + δ1 + δ2).

For any value of inter-pursuer separation exceedings∗ip(γ,R),
there exists a trajectory between two consecutive pursuerspk

andpk−1 placed on a circle of radiusR, such that the evader
does not enter the capture balls of those two pursuers. This
completes the proof.

We have the following result for the CONFINE strategy.

Lemma IV.1 (A C ONFINE strategy property) For the
CONFINE strategy, the evader cannot move without
being captured between pursuerspk and pk−1, for all
k ∈ {2, . . . , N} and between any two consecutive pursuers
if the daisy-chain is closed.

Proof: We show that the inter-pursuer spacing,sip =
s∗ip(γ,R) is actually necessary in the CONFINE strategy to
prevent the evader from escaping between any two pursuers
pk−1 andpk and between any two pursuers when the daisy-
chain is closed. It is known from [9] that whenpk−1

is aligned with pk, the inter-pursuer separationsip = 2
γ

necessary and sufficient so that the evader cannot move
between them without being captured.

Using equation (3), it can be easily verified that for a given
γ, s∗ip(γ,R) increases monotonically withR and asR→ ∞,
s∗ip(γ,R) → 2

γ
. Thus, the necessary spacing for the CONFINE

strategy iss∗ip(γ,R).

We now prove the following property of the Pre-Align phase.

Lemma IV.2 (Pre-Align phase) The Pre-Align phase ter-
minates in finite time with the evader aligned withp1 at
a distance greater than(1 + γ)lst.

Proof: The total time taken byp1 to cover a distance
lp followed by distance of2πR is (lp + 2πR). In that time,
the evader’s reachability set is the dotted circle of radius
γ(lp + 2πR), centered ate(0), as shown in Figure 5. Thus,
to computelp, we impose the condition that the minimum
distance between the evader’s reachability set and the circular
portion of the path ofp1 must be(1+γ)lst. Using elementary
geometry, the equation (4) forlp follows.
We now prove the following property of the Align phase.

Lemma IV.3 (Align phase) The Align phase ofCONFINE

strategy terminates after finite time with the evader aligned
with p1 and ‖p1 − e‖ = (1 + γ)lst.

Proof: Consider the system as shown in Figure 2 with
k = 1. Let α be the angle between the globalX axis and
the vectore(t) − p1(t) and L = ‖e(t) − p1(t)‖. In the
reference frame of the pursuer, the equations of motion are
as follows [2].

L̇ = ve cos(θe − α) − vp cos(θp,1 − α),

α̇ =
1

L
[ve sin(θe − α) − vp sin(θp,1 − α)],

θ̇p,1 =
vpup,1

R
.

Defineφ , α− θp,1. Thus, we have,

φ̇ =
1

R

(

R

L
(γ sin(θe − θp,1 − φ) + sinφ) − up,1

)

.

Once evader is aligned with the pursuer, i.e.,φ = 0, we
would like to ensure thaṫφ = 0, for all subsequentt. This
is possible if

up,1 =
Rγ

L
sin(θe − θp,1).

But the constraint on‖up,1‖ implies that this is possible if
L(t) ≥ Rγ. It can be easily verified that the quantity(1 +
γ)lst satisfies this condition. Further, observe that onceφ = 0
and φ̇ = 0, L̇ ≤ −(1 − γ). Thus,L is reduced to(1 + γ)lst

in finite time.
We now obtain an upper-bound for the distance between the
first pursuer and evader at the end of the Chase phase.

Lemma IV.4 (Upper bound on d) Let d denote the dis-
tance‖p1 − e‖ at the end of the Chase phase. Then,

d ≤ γ

√

1 + γ

1 − γ
lst,

or, equivalently, forµ , d−1
R

and lst =
2πγR
1−γ

,

µ ≤ 2πγ2

(1 − γ)

√

1 + γ

1 − γ
− 1

R
. (9)

Proof: We have the evader aligned with the pursuer at
a distance(1 + γ)lst as shown in Figure 11. Let the evader



strike out at an angleψ as shown. So at the end of the Chase
phase, it follows from trigonometry that

d =
(1 + γ)lst sinψ
(

1
γ
− cosψ

) .

Thus, d is a maximum whencosψ = γ and the result
follows.

ψ

p1 p′1
e

e′

d

Fig. 11. Illustrating proof of Lemma IV.4

We would like to point out that the right hand side of
equation (9) is positive and monotonic increasing withγ
for γ ≥ γmin(R). We now establish an upper bound for the
speed ratioγ so that the evader always remains on the same
side of the line along velocity vector ofp1.

Lemma IV.5 (Upper bound on γ) For theCONFINE strat-
egy to succeed, the evader/pursuers speed ratioγ must
satisfy,

γ ≤ 2 − µ
√

π2 + (2 − µ)2
, whereµ =

d− 1

R
. (10)

Proof: We first show that for any angleω ∈ [0, π
2 ],

as shown in Figure 12, equation (10) holds. Letp1B
′ be a

path taken by the pursuer. To guarantee escape against the
pursuer strategy, the evader needs to cover a distance of at
leasteB as shown in Figure 12. Thus, we obtain

πR+ (2R− d+ 1) tanω

1
≤ (2R− d+ 1) secω

γ

=⇒ γ(πR cosω + (2R− d+ 1) sinω) ≤ (2R− d+ 1).

Now,

max
ω∈[0, π

2
]
(πR cosω+(2R−d+1) sinω) = R

√

π2 + (2 − µ)2.

Thus, working backwards, we get that satisfying equa-
tion (10) satisfiesγ(πR cosω + (2R − d + 1) sinω) ≤
(2R−d+1) for all ω ∈ [0, π

2 ]. Note that this upper bound is
achieved forω = arctan(2−µ

π
). It can be shown that for this

choice ofω and forγ = 2−µ√
π2+(2−µ)2

, the evader trajectory

does not enter the capture ball ofp1. We skip this detail of
the proof due to space constraints.

Finally, we need to show that the same bound holds if
ω ∈ [−π, 0[. Let eC be a path taken by the evader, as shown
in Figure 13. We need to ensure that for any pointC, p1

reachesC ′ sooner thane reachesC. Applying the cosine
rule to triangle OeC, this is achieved if, forα ∈ [0, π],

αR ≤
√

(R+ 1)2 + (R− d)2 − 2(R+ 1)(R− d) cosα

γ
.

Upon simplifying, it suffices to show that, forα ∈ [0, π] and
d > 1,

(1 +
1

R
)2 + (1 − d

R
)2 − 2(1 +

1

R
)(1 − d

R
) cosα

− (2 − (d−1)
R

)2

π2 + (2 − (d−1)
R

)2
α2 ≥ 0.

It can be easily verified that it is indeed the case and the
proof is complete.

(2R− d+ 1) secω

d

(2R− d+ 1)

p2p3p4
p1

B

B′

A

ω

e

Fig. 12. Illustrating proof of Lemma IV.5. The shaded region about B′

indicates capture region ofp1 when it reachesB′

e

α

A

O

(R− d)

p1

C

R + 1

ω

C ′

Fig. 13. Illustrating proof of Lemma IV.5. The shaded region about C′

indicates capture region ofp1 when it reachesC′

We are now ready to prove Theorem III.4.
Proof of Theorem III.4:

The Align and Chase phases of the strategy ensure the
property that immaterial of the orientations of the other
following pursuers, a certain portion of the chain, equivalent
to a length ofat least lst, will be a straight segment. For
the Close phase to guarantee evader confinement, it suffices
that the daisy chain is closed at the end of the Close phase.
This final configuration is illustrated in Figure 14. Thus, by

e

d

e′

p′1

lst

p1(tchase)

Fig. 14. Closing of the daisy-chain

the time the evader covers at most a distancelst in the Close



phase,p1 must cover a total length of2πR+ lst, which gives
us the following condition onlst:

lst

γ
≥ 2πR+ lst =⇒ lst ≥

2πγR

1 − γ
.

So we let lst = 2πγR
1−γ

. This justifies our definition of the
quantity lst throughout the strategy. Using Lemma IV.5, we
seek to determine theminimumover the set of allµ that
satisfy equation (9) . This gives us a uniform upper-bound
γmax. Thus,

γmax = min
µ

2 − µ
√

π2 + (2 − µ)2
.

But the function on the right-hand side is monotonic de-
creasing withµ. The maximum value ofµ is achieved when
equality holds in equation (9), since the right-hand side
of equation (9) is a monotonic increasing function ofγ.
Thus, the upper bound on speed ratioγmax(R) is obtained
by solving equation (5) which upon simplification gives a
polynomial equation inγ andγmax(R) is its smallest root in
the interval]0, 1[.

A sufficient number of pursuers for the strategy CONFINE

to succeed is obtained by ensuring that the daisy-chain is
closed at the end of Close phase. The total distance covered
by p1 in the Close phase added tolst gives the total length
of the closed daisy-chain as2(lst + πR) = 2π(1+γ)R

(1−γ) . Thus,
the number of pursuers needed is at least

Nmin :=

⌈

2π(1 + γ)R

(1 − γ)s∗ip(γ,R)

⌉

.

Since the daisy-chain is closed at the end of Close phase
and there is no escape trajectory between any two con-
secutive pursuers, it is clear that the evader is confined to
Gc(p1(tchase), vp,1(tchase)).

Moreover, if γ > γmax(R), then there exists an evader
trajectory that leavesGc(p1(tchase), vp,1(tchase)) as seen in
the proof of Lemma IV.5. Also, if the number of pursuers
N < Nmin, then the daisy chain is not closed at the end
of the Close phase. Thus, there exists an initial condition
and a corresponding evader strategy so that it can leave
Gc(p1(tchase), vp,1(tchase)) by moving betweenp1 and pN .
This completes the proof.
Proof of Theorem III.8:

Let the evader be confined to a regionG at time t∗.
Due to part (iii) of Definition III.7, daisy chain formation
is maintained at all timest ≥ t∗ and the boundary of region
G must be a continuous, closed curve with radius of curvature
bounded below byR. To minimize the number of pursuers,
the pursuers need to be placed on the smallest possible
region having this property, which is a circle of radiusR.
From Lemma IV.1, we deduce that the inter-pursuer spacing
sip = s∗ip(γ,R) is necessary to ensure that the evader cannot
move between any two successive pursuers in the daisy-
chain formation, without being captured. Thus, the number
of pursuers must be at leastN∗ = d 2πR

s∗ip(γ,R)e.

V. CONCLUSIONS ANDFUTURE DIRECTIONS

We addressed a cooperative homicidal chauffeur game
in which a single pursuer is unable to capture an evader,
given an arbitrary initial condition. We proposed a bio-
inspired cooperative multiple pursuer strategy that guarantees
confinement of an evader to a bounded region, from any
initial condition. We characterized the required number of
pursuers and the required value of the evader/pursuers speed
ratio for which our CONFINE strategy is guaranteed to lead to
confinement. We also characterized a class of confinement
strategies and determined a minimum number of pursuers
needed for any strategy in that class to achieve confinement.

Future research will consider how to determine alternate
strategies possibly involving multiple maneuvers to achieve
confinement. It would also be interesting to know the min-
imum number of pursuers required for any confinement
strategy.
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