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A Cooperative Homicidal Chauffeur Game

Shaunak D. Bopardikar Francesco Bullo adaHespanha

Abstract—We address a pursuit-evasion problem involving In recent past, lot of attention has been received by coop-
an unbounded planar environment, a single evader, and mul- erative control strategies for detection of targets. Moleti
tiple pursuers moving along curves of bounded cumvature. 4 5] have addressed the problem of cooperative rendezvous

The problem amounts to a multi-agent version of the classic . . . . . .
homicidal chauffeur problem:; we focus on parameter ranges in " which multiple UAVs are to arrive simultaneously at their

which a single pursuer is not sufficient to capture the evader. targets. Polycarpoet al. [6] have presented a cooperative
We propose a novel cooperative strategy in which the pursuers target search using online learning and computing guidance
move in a daisy-chain formation and confine the evader to a trajectories for the agents. Recently, Tazial. [7], [8] have
bounded region. The proposed policy is inspired by certain resented cooperative motion planning methods for meltipl

hunting and foraging behaviors of various fish species. We . .
characterize the required number of pursuers and the required UAVs to traverse through slow moving targets and for first-

value of the evader/pursuers speed ratio for which our strategy Order mobile sensing agents to detect a moving target that

is guaranteed to lead to confinement. lies in a known initial region respectively. Also, McGe¢
al. [9] have proposed guaranteed strategies to search for
I. INTRODUCTION mobile evaders in a plane.

The homicidal chauffeur game has been studied in greBt Contributions
detail. Proposed originally by Isaacs [1], this problem in- \ye consider the case when the condition for evasion in the

moving with f|xe_d Spee‘?'s- The_ pursuer has_greater sPegtht one pursuer is not sufficient to capture the evader. We
but has constraints on its turning radius while the evadey,n,qe a multiple pursuer formation and a novel four-phase
can make arbitrarily sharp turns. The evader is said 10 B&,,herative strategy for the pursuers. In the first two phase
capturedwhen the d|stance_ petween the_ pursuer and evad@Ir the strategy, we show that the problem is equivalent to
becomes less than a specifiepture radius We present a p,,ing 5 single pursuer and the task being getting the evader
multl-aggnt hom'c"?'é' chauffeur problem in which a Slnglealong its direction of motion and at a specified distance,
pursuer is not sufficient to capture the evader. We presegf,an any set of initial conditions. Once this is achieved, w
a bio-inspired, cooperative strategy for multiple purSuer g,y that in the last two phases, the pursuers confine the
confine the evader in a bounded region which the evadg(,qer within a bounded region, through which there exists
cannot leave without being captured. no evader trajectory that avoids capture. We characterize
the required number of pursuers and the required value of
A. Related Work the evader/pursuers speed ratio for which our strategy is
The classical homicidal chauffeur problem was proposeguaranteed to lead to confinement. Finally, we characterize
and solved by Isaacs [1]. This solution gives a conditiom class of confinement strategies and determine a minimum
on the game parameters, i.e., the speed ratio of the playensimber of pursuers required for any strategy in this class to
the capture radius and the minimum turning radius of thachieve confinement.
pursuer such that the evader can evade indefinitely. G2er [
has considered a generalized capture criterion of fordieg t
evader within a capture radius and within a prescribed angle
with respect to pursuer’s direction of motion. Pachetr
al. [3] have studied a stochastic version of this game, i.e.,
the effect of noise in the measurements of the evader by
the pursuer on the optimal capture strategy. Gatal. [4]
have analyzed a two-target version of the homicidal chauffe
problem, i.e., the roles of pursuer and evader are not defined
a priori.
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el?ig. 1. Daisy-chaining among tarpon fish (source: Floridgp@arFishing
at http://www.gianttarpon.com/tarponl.htm)



C. Biological Motivation wherefq(t) andd,(t) are respectively the angles made by

The inspirations for the strategies proposed in this pap&€ Velocity vectors of the evader and of #ié pursuer with
have been derived from certain aspects of fish behaviJﬁfer?hnce to a globak axis. upk 1S the cqntrol applied by
It has been recently reported by Gazdg al. [10] that the k™ pursuer and satisfies the constraint
in Cedar Key, Florida, USA, individual dolphins herding upi]l < 1.
slower, more agile prey fish specialize in the roles of driver
and barrier. The driver dolphin herds the prey fishes inesrcl We define theevader/pursuer speed rati9 := ve/vp and
as well as towards the tightly-grouped barrier dolphinesgn assumey < 1. Given acapture radiusc > 0, the evader is
barrier dolphins are less than one body-length apart adid to becapturedif, at some timef and for somek,
ofter} touching. Eltmargt al. [11] have reported a herd Ips(8) — e(t)]| < .
of killer whales imposing a confinement on pantropical
spotted dolphins. The whales cut out up to three dolphirs what follows, without loss of generality, we set the captu
from a school and proceeded to take turns chasing a singkdius ¢ and the pursuers speed to 1. In summary, our
dolphin and keeping it within a confined area. A studycooperative homicidal chauffeur game is described by the
of American white pelicans by McMahoet al. [12] also number of pursuersV € N, the minimum curvature radius
showed the use a coordinated strategy by a group of birds€ R+, and the evader/pursuers speed ratie |0, 1].
that maintained position usually in semi-circles and using Next, we introduce the notion of confinement as follows.
synchronized bill-dipping to capture fish. These facts gise
some hints towards selecting favorable predator formationDefinition 11.1 (Confinement) The evader is said to be
The formation that has inspired this work is the daisyeonfinedto a bounded regiog C R? at timet* if e(t*) € G
chain, observed among tarpon fish during spawning, shovemd there exist pursuer trajectorigs, : [t*, +oo[ — R2
in Figure 1. satisfying equatior{1) such that the evader cannot leage

without being captured.
D. Organization

The problem assumptions and its mathematical model a'rA‘eset of funcuons{up,k}, for k € {1, . IV}, leading to
. i : evader confinement is termed ag@nfinement strategyn
presented in Section Il. Pursuer formation, theNEINE

strategy and the main results are presented in Section IW.e case of a single pursuer and single evader, Isaacs [1] has

The proofs of the main results along with intermediate rtesulz:g\’\?? ttr?stet\?aeerr/extljsrtsi:P Sevjeséo?agglcﬂ?( % (Ww;ezr)e
required are presented in Section IV. Conclusions and dutur P b = “mini b))

directions for this work are summarized in Section V. Ymin + |2/ (7 = 2), +00[ — 0, 1[ is the unique solution to
1 .
Il. PROBLEM SET-UP z Vv 1 — Ymin(2)? + Ymin(z) arcsin(ymin(z)) — 1. (2)

Our Cooperative homicidal chauffeur game is p|ayed |NVe seek COOperative, deterministic multiple-pursuertstra
an unbounded, planar environment between a single evadigs which guarantee a confinement of the evader when
and multiple pursuers. We assume that all the players have€ [Ymin(R), 1[ for R > 2/(m — 2).
unlimited sensing capabilities. The pursuers have idehtic
motion abilities and possess greater speed than that of
the evader. However, the evader can make arbitrarily sharp |
turns while the pursuers cannot turn more than a minimum
turning radius. We assume that the instantaneous position
and velocity of the evader is available to all pursuers.

Let e(t) and py(t), for &k € {1,...,N}, denote the
positions of the evader and thé" pursuer inR? at time
t, as shown in Figure 2. Lete andv, denote the speeds of
the evader and all the pursuers, respectively.d.eandvp
denote the velocity vectors of the evader anditepursuer,
respectively. Given aminimum turning radiuskR > 0, the X
mathematical model for this problem can be described ilsg. 2. \Variables in the homicidal chauffeur game. The shadsgion
follows [1]. around the pursuer indicates its capture disc.

For evadere,
IIl. THE CONFINE STRATEGY

)
= vpcos Op(t), 1) In this section, we describe our proposedNFINE strat-

Py (t) = vpsin Op (), egy for_the pursuers to confine the evader aqd the correspond-
. p ing main results. We first propose the following arrangement
Opr = R Pk for the pursuers.



Definition 1.1 (Pursuers daisy-chain formation)
Given an inter-pursuer separatiorsi; > 0, the set
{p1,...,PN,Tp1,...,Upn} Iis said to be in adaisy-chain
formation if, for every k € {2,...,N}, there exists a
solutionn : [0, sip] — R? of equation(1) satisfying

n(0)
n(sip)

A daisy-chain formation has the following property.

17(0) = vk,
1(Sip) = Vpk—1-

= Dk,
= Pk—1,

Proposition 1.2 (A Daisy-chain property) Assume the
pursuers are in a daisy-chain formation with separatign

Any feasible path taken by the first pursuer can be exactly b

traversed by thek*" pursuer, fork € {2,...
daisy-chain after a time delay @k — 1)sip.

,N}, in the

Figure 3 shows an example of a daisy-chain formation.

Up,4 Sip T

Up,2

Fig. 3. A daisy-chain formation

Given {pr_1, Pk, Tpj — 1, Upx } IN & daisy-chain formation
with inter-pursuer separatiosy, let C; and C, be curves
which are tangent tdB1(n(t)) for everyt € |0, sip[, where
for a € R?, Bi(a) C R? denotes a circle of radius centered

at a. Here,n is a curve described in Definition Ill.1. Then,

the evader is said tmove betweep,_; and p; if there is
an evader trajectory frord; to C, (or vice-versa).

Given the pursuers’ minimum turning radiug, for the
evader/pursuers speed ratjo< 1 — %, we definecritical
inter-pursuer separatiomlp(y,R) as follows: ifr := (1 +

R%) +2R\/1—12, 72 := (1 + R?) — 2R\/1 — 12, and
_p./1_~2
A6 := arctan <1RR1’Y>
v

<1+R\/1 —72> RENISEE
YR

)
Y

— arctan

then

sip(7, R) = R(AH + arcsin - + arcsin l)

T1 T2

©)

This s (v,
presented in Section IV.

Lemma 1.3 (Property of si,(v, R)) Given

{Pk—1,Dk,Vpr —1,Tpr} N a daisy-chain formation
and the evader/pursuers speed ratio satisfyingt 1 — +,
to prevent an evader from moving betwegn ; and py

without being captured, the inter-pursuer separation must

not exceeds;, (v, R).

Given a pointp and a unit vectorz € R?, we define
the region of confinemeng.(p,z) C R? for the CONFINE
strategy as follows: choose b, c € R? such that

R) has the following property, whose proof is (1

(i) = rotated counter-clockwise abowt by 7 becomes
parallel to(a — p), (p —¢) || = and,

(i) a,b,c,p are vertices of a rectangle such thjat—b|| =
Ip—cll = ¥t andla—pl| = [b—c| = R+1, as
shown in Flgure 4.

Let Rect (a,b,¢,p) C R? denote the rectangular region
formed by the four pointa, b, c andp. Then ,.Ge(p,z) C R?

is defined as interior of the union &1 (“32), Bri1(4€)
andRect (a, b, ¢, p).

We define a pointa € R? to be aligned with the k"

pursuer ifop g || (¢ — pr).

2myR
1—y a

R+1 R+1

c P T

Fig. 4. Defining the region of confinemert¢ for the CONFINE strategy

We now describe the GNFINE strategy. Let the
evader be located at(0), as shown in Figure 5. Let
{p1,...,PN,Tp1,...,Upn} be adaisy-chain formation with
sip = sip(7, i) and the first pursuer at; (0). Let the angle
betweenw, ;(0) and (e(0) — p1(0)) be ¢o and ||p:(0) —
e(0)|| = Lo. Due to Proposition 1.2, it suffices to specify
the strategy fomp;. The GONFINE strategy is as follows.

(i) Pre-Align phase: This phase is needed #(0) is

not aligned withp, (0) or if Lo < (1 + 7)ls, where
It 2 2”_"’53. Let I, be the minimum of the roots of the
guadratic equation:

(Y(lp + 27R) + (1 + 7)lst + R)?
= (lp — Lgcos d)o)z + (R — Lpsin 1/}0)2. (4)

p1 Moves on a straight line path of lengihand then
moves on a circle of radiu® and center on the side
not containing:(0) of the line alongp, 1 (Ip). If ¢o =0

or 7, then the center of the circle of radiug can be
chosen to be on either side of the line alang (Ip).
Lemma IV.2 shows that this phase terminates in finite
time with the evader aligned with, and at a distance
greater thar(1 + )l

Align phase: p; moves with the following control law:

Ry
[p1 — el

until |lp1 —e|| = (1 + ¥)lst. Lemma V.3 shows that
this happens in finite time.

Chase phase;p; moves on a straight line path until
either it captures the evader 0§, L (e — p:1), where
the symbol L denotes perpendicularity. This is shown
in Figure 6. Lettchasedenote the time at the end of the
Chase phase.

Close phase:First, p; moves on a circle of radiug®
and centerO located on the evader side of the line

up1(Pes €,0p1,p1) = sin(fe — Op,1),

(iii)

(iv)



Fig. 5. The Pre-Align phase: the bold line shows the trajgctollowed
by p1.

Fig. 6. The Chase phase

alongvp 1, until it covers a distanca R. Second,p;
moves on a straight line path of length. Third, p;
moves on a circle of radiu® and centerO’ located
on the evader side of the line alomg, until it covers
a distancer R. This motion is shown in Figure 7.

Pa b3 P2

Fig. 7. The Close phase

(v) Final phase: p;
Ge (p1 (tchasé ; Ep,l (tchasé ) .

For everyk € {2,..., N}, pr moves on curve; described

in Definition 1.1 for time ¢ < sjp. FOrt > sip, upi(t) =
UPJQ — 1(t - Sip).
This strategy gives us the following result.

Theorem Ill.4 (Confinement) Consider a
homicidal chauffeur game with parametel® € N,
R > 2%,

at the end of the Chase phase. TR®NFINE strategy

Ge (pl (tchasé , Up,1 (tchase)) at time tchase if

2 R(1 + ) w

N > Nnjin := ’Vsl*p(’y,R)(l—’y)

moves on the boundary of

cooperative

and v € ]0,1[. Let tchase denote the time

and if
O AS [’Ymin(R)v ’Ymax(R)]a

whereymax(R) is the smallest root in the intervad, 1] of

1+~ 1 ?
2,2
+ = . 5
1—7x R) 7 ®)

T 2
(=% (2 N (12 —77)

Moreover, ify > ymax(R) or if N < Nnin, then the evader
can escape the regiofc(p1 (tchasd, Up,1 (tchasd)-

Remark 111.5 Because

REIEOO ’Ymin(R) = 0+a REIEOO ’Ymax(R) ~ 293,

for sufficiently large values the interval

[Ymin(R), ymax(R)] is non-empty.

of R,

Remark 111.6 (From confinement to capture) If a suffi-
ciently large number of pursuers is available, then capture
can be achieved in a final maneuver as follow$xin
pursuers confine the evader, while some additional pursuers
arrange themselves in a line as shown in Figure 8 and move
simultaneously througlc(pi (tchasd, Tp,1(tchasd)-

Fig. 8. Achieving capture with a sufficiently large number ofguers

We now define a class of confinement strategies as follows.

Definition 111.7 (Daisy chain-based strategy) A confine-
ment strategy is termed ataisy chain-based, using that
strategy,
(i) the evader is confined to a regighat timet*,
(i) the set{p:(t*),...,pn(t"),Up1(t*),..., Tpn(t")} IS
a daisy-chain formation with inter-pursuer separation
Sip < S?;)(’}/, R) and,
(i) the pursuer trajectoriepy :
{2,..., N} satisfy

[t*, +oo] — R2, k €

up,k(t) = Up,k—l(t — Sip), for t > t*.

Clearly, the NFINE strategy is a daisy chain-based
strategy. We now have the following result.

guarantees confinement of the evader inside the regiJrEeorem 1.8 (Minimum number of pursuers) Let & >

— and the evader/pursuers speed ratio > ymin(R),

where ymin(R) is the solution to equatior(2). Then, to

achieve confinement using any daisy chain-based strategy,

the number of pursuers must be at least = [ 2727,

sip (7, R)



V. PROOFS OF THEMAIN RESULTS wherec = /(R — 1)?2 — 42 R?, which can be verified to be
In this section, we prove the main results from Section l11Well-defined. Upon solving fot,

We begin with certain intermediate results which would be 5 2RE— JR_—12 —2R2
used to prove the main results. We first define the following t= Vrt -y VI ikt . @)
terminology. v

We say that a daisy-chain with separatignis closedif — Substituting the expression ferin the equation fod(t),
for somep;, (k # 1), there exists &, < sj, and a solution

2
n:[0,tx] — R? of equation (1) satisfying o(t) = _g + %
/A
n(0) =p1, .77(0) =l Integrating, we obtain
n(tk) =pes  10(tk) = Vpks 2 by .
such that the evader cannot move betwgeandp;, without o(t) = —/ 4 s 2 T B
) ) (vt+c¢)2+~2R?> R
being captured. We first prove Lemma 111.3.
Proof of Lemma I11.3:We show that the separation, < _ T+ V((R-1)2 R\t
) ¢ = — arctan + , (8)
si’;)(% R) is necessary so that there does not exist any evader y YR

escape trajectory from ardSW to P(), without entering
any capture ball when pursuess_, andp;, are placed on a With
circle of radiusR as shown in Figure 9. Lete(t) € [~ 7, 7] <

denote the angle made by the evader's velocity in the groung ) — — arctan
frame witheN, such thafe—O) || (N —e). Consider evader
motion in a reference frame attached to the cettesf the
circle of radiusRk through pursuerg,_; andp; and rotating
with angular speec% in the direction of pursuer motion.
Let r(t),0(t) denote the evader's polar coordinaté§:) is
measured with respect tOp,_1. The equations of motion
for the evader are,

YR

N —ma)

7(t) = v cos ae(t),

ysinae(t) 1 0
r(t) R’
The optimal evader motion in this case is givendjy(t) =

(t) =

—.Q Fig. 10. Computing an expression fgl’()(fy, R)

We now determine the analytic expression gy, R).

L Let S(r(t),0(t)) denote the trajectory defined by equa-
A tions (6) and (8). Let it touch the capture ball @f at Z,

as shown in Figure 10. Le%, £ /p,0Z andf £ /p, ZO.

Due to tangency of (r(t), 6(t)) and capture ball of, angle

betweenvres and lineOZ is 5 — 3. From geometry,

_ ycosag(t)
tan g = D - ,
—g= —sinag(t)

: ,ﬁp where t; is the value of parametert such that
: S(r(t1),0(t1)) = Z and of(t1) is the optimal choice of
evader motion at time,. On simplifying,

Fig. 9. lllustrating proof of Lemma IV.1. The shaded regions &ne

capture discs opy 1 andpg. R 2 2
sinﬁ:L, cos 3 = 1—72 :
—arcsin 22 [9]. This is well-defined sincey < 1 — L. r(t1) r¥(t1)
Substituting in the differential equation feft), we have  Again, from geometry,
] ’Y2R2 . 2
t) = 1— . sin@ v ~y
T() v ,r2(t)7 sind, = iz :E = cosd; = 1—%

and, integrating, Also, at the point of tangency,

2 2 22
re=(vt+c)” +7°R7, (6) r(t1) = Rcosdy + cos 3,



Thus,r(t1) := r; is a root of Proof: The total time taken by, to cover a distance
I, followed by distance o2z R is (I, + 27 R). In that time
4 2\ 2 2 2 2p2 _ p p '

2" = 2(1+ R%)a” + (R~ 1)" + 49" R" = 0. the evader’s reachability set is the dotted circle of radius
The other positive 00 r(t;) := ro corresponds tdZ,, 7(lp+ 27R), centered at(0), as shown in Figure 5. Thus,
which is the point of tangency & with the capture ball of t0 computel,, we impose the condition that the minimum

pr_1. Thus, we obtain distance between the evader’s reachability set and thelairc
portion of the path op; must be(1++)ls. Using elementary
{ri,r3} = 1+ R?) £2R\/1 — 12 geometry, the equation (4) fdg follows. [
Substituting in equation (8) We now prove the following property of the Align phase.
AG = 0(t1) — O(t>) = arctan r2(ty) — v2R? Lemma IV.3 (Align phase) The Align phase ofCONFINE
R 2= R strategy terminates after finite time with the evader al@jne
t T with p; and [|p1 —e]| = (1 + v)lst.
arctatt R Proof: Consider the system as shown in Figure 2 with

k = 1. Let o be the angle between the gloh&l axis and
+ Vrit) = PRE - r(ts) —0PRE vectore(t) — p1(t) and L = |e(t) — p1(t)||. In the

TR reference frame of the pursuer, the equations of motion are
The anglesd; and analogouslys, (which is the angle as follows [2].
between linep,_1 and0Z5), are given by

L = vecos(fe — a) — vpcos(fp1 — a),

01 = arcsin L, 0o = arcsin L. 1
r(t1) r(t2) &= Z[Uesin(ﬁe — ) — vpsin(fp1 — )],
Thus, we get equation (3) . UpUp,1
Op1 = 7

sip(v, ) = R(0(t1) — O(t2) + 01 + b2).

. _ Define ¢ £ a — 6. Thus, we have,
For any value of inter-pursuer separation exceedjig, 12), ¢ == bp

there exists a trajectory between two consecutive purgyers . 1 /R, . )
andpy._; placed on a circle of radiug, such that the evader ) <L(7 sin(fe — fp1 — ¢) +sing) — “PJ) :
does not enter the capture balls of those two pursuers. This
completes the proof. m Once evader is aligned with the pursuer, i¢.= 0, we
We have the following result for the @FINE strategy. ~ Would like to ensure thap = 0, for all subsequent. This
is possible if
Lemma IV.1 (A CONFINE strategy property) For the Ry .
CONFINE strategy, the evader cannot move without upy = 7~ sin(fe — ).
being captured between pursuefs and p;_, for all
k € {2,...,N} and between any two consecutive pursuerBut the constraint onjup, || implies that this is possible if
if the daisy-chain is closed. L(t) > Rn. It can be easily verified that the quantity +
~v)lst satisfies this condition. Further, observe that opice 0
Proof: We show that the inter-pursuer spacing, = and¢ =0, L < —(1 —~). Thus, L is reduced td1 + v)ls
sip(7, R) is actually necessary in thedBIFINE strategy to in finite time. |

prevent the evader from escaping between any two pursuéfg now obtain an upper-bound for the distance between the

pr—1 andp,, and between any two pursuers when the daisyfirst pursuer and evader at the end of the Chase phase.
chain is closed. It is known from [9] that whepm,_;

is aligned withpg, the inter-pursuer separatioff, = =
necessary and sufficient so that the evader cannot m
between them without being captured.

=20

Lemma V.4 (Upper bound on d) Let d denote the dis-
Ol}/a%ceﬂpl — el| at the end of the Chase phase. Then,

Using equation (3), it can be easily verified that for a given I+~

7, sip(7; R) increases monotonically witR and asik — oo, d<r 1— Vlstv
sip(v, R) — % Thus, the necessary spacing for theN&INE
strategy issj, (v, R). or, equivalently, fory £ 91 and sy = 37%,

|
We now prove the following property of the Pre-Align phase. 97y Tty 1

n< Jie -7 ©)
(I-=-7)V1i-v R

Lemma V.2 (Pre-Align phase) The Pre-Align phase ter-
minates in finite time with the evader aligned with at Proof: We have the evader aligned with the pursuer at
a distance greater thaql + ~)l. a distance(1 + v)lst as shown in Figure 11. Let the evader



strike out at an angle as shown. So at the end of the Chas&Jpon simplifying, it suffices to show that, fer € [0, 7] and

phase, it follows from trigonometry that d>1,
i 1 d 1 d
g Lt lssing I+ +(1=52 20+ 2)1-Z)cosa
1 cost R R R R
ot 2 _ (d=1)\2
__e-uye

Thus, d is a maximum whencosy) = ~ and the result w24 (2 -y~
follows.

It can be easily verified that it is indeed the case and the
¢ proof is complete. |

- g

e

. e m e e .
1 NN Tl

Fig. 11. [lllustrating proof of Lemma V.4

(2R —d+ 1) secw

We would like to point out that the right hand side of
equation (9) is positive and monotonic increasing with
for v > ymin(R). We now establish an upper bound for the
speed ratioy so that the evader always remains on the same | g
side of the line along velocity vector gf;. woomoom BT

Fig. 12. lllustrating proof of Lemma IV.5. The shaded regiomw@thB’
Lemma IV.5 (Upper bound on ~) For the CONFINE strat-  indicates capture region gfi when it reachess’
egy to succeed, the evader/pursuers speed ratimust
satisfy,

< 2_—/”L, where y = a-1 (10)
T+ (2 — p)? R

Proof: We first show that for any angle < [0, 7],
as shown in Figure 12, equation (10) holds. peB’ be a
path taken by the pursuer. To guarantee escape against the
pursuer strategy, the evader needs to cover a distance of at

leasteB as shown in Figure 12. Thus, we obtain

TR+ (2R —d+1)tanw < (2R —d+1)secw Fig. 13. |lllustrating proof of Lemma IV.5. The shaded regiomathC’
1 = ~ indicates capture region ¢f; when it reache€”

=  vy(rRcosw+ (2R —d+ 1)sinw) < (2R —d + 1).

We are now ready to prove Theorem ll1.4.

Now, Proof of Theorem lIl.4:

The Align and Chase phases of the strategy ensure the
wg}gﬁ](ﬂRCOSWJF(?R—dJrl)Siﬂw) = R\/m®+(2—p)%  property that immaterial of the orientations of the other

e following pursuers, a certain portion of the chain, equaval

Thus, working backwards, we get that satisfying equdao a length ofat leastis, will be a straight segment. For
tion (10) satisfiesy(rRcosw + (2R — d + 1)sinw) < the Close phase to guarantee evader confinement, it suffices
(2R—d+1) for all w € [0, 5. Note that this upper bound is that the daisy chain is closed at the end of the Close phase.
achieved forw = arctan(2=£). It can be shown that for this This final configuration is illustrated in Figure 14. Thus, by

s

choice ofw and fory = \/% the evader trajectory
does not enter the capture ball pf. We skip this detail of 7 RN NN
the proof due to space constraints.

Finally, we need to show that the same bound holds if
w € [—m,0[. LeteC be a path taken by the evader, as shown
in Figure 13. We need to ensure that for any pdihtp; B SN TP N
reachesC’ sooner thare reachesC. Applying the cosine T
rule to triangle OeC, this is achieved if, farc [0, 7],

Fig. 14. Closing of the daisy-chain

VR+1)2+(R—-d)?—2(R+1)(R—d)cosa
Y ' the time the evader covers at most a distaiyci® the Close

aR <




phasep; must cover a total length &= R+ I, which gives V. CONCLUSIONS ANDFUTURE DIRECTIONS

us the following condition ords: We addressed a cooperative homicidal chauffeur game
st 297vR in which a single pursuer is unable to capture an evader,
5 >2rR+Ilsy = g2 = given an arbitrary initial condition. We proposed a bio-

inspired cooperative multiple pursuer strategy that gutaes
So we letly = 217ij_ This justifies our definition of the confinement of an evader to a bounded region, from any
quantity ls; throughout the strategy. Using Lemma IV.5, weinitial condition. We characterized the required number of
seek to determine theninimumover the set of ally that pursuers and the required value of the evader/pursuers spee

satisfy equation (9) . This gives us a uniform upper-bountgtio for which our @NFINE strategy is guaranteed to lead to

Vmax. THus, confinement. We also characterized a class of confinement
strategies and determined a minimum number of pursuers

Ymax = min 2_—”. needed for any strategy in that class to achieve confinement.

meoy/m (2 p)? Future research will consider how to determine alternate

But the function on the right-hand side is monotonic de§trateg|es possibly involving multiple maneuvers to aohie

creasing withu. The maximum value of: is achieved when fgzmeﬁ:&er goulgrslljse?sb?emltjiree;tl% gr tgnkn(():\gn:‘?:enr:lenr;t

equality holds in equation (9), since the right-hand side P q Y
. . o . . Strategy.

of equation (9) is a monotonic increasing function pf

Thus, the upper bound on speed ratfig.(R) is obtained ACKNOWLEDGMENTS
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. (1—7)
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