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Control algorithms along relative equilibria
of underactuated Lagrangian systems on Lie groups

Nikolaj Nordkvist and Francesco Bullo

Abstract— We present novel algorithms to control underac- framework developed in [6] which focused on velocities
tuated mechanical systems. For a class of invariant systems close to zero. The main advantage of the proposed ap-
on Lie groups, we design iterative small-amplitude control o450k s jts applicability to systems that are not linearly

forces to accelerate along, decelerate along, and stabilize reladiv trollable: th in limitati is that t of th It
equilibria. The technical approach is based upon a perturbation controfiable; the main fimitation IS that part or the resu

analysis and the design of inversion primitives and composition are applicable only ta-dimensional systems witfy — 1)
methods. We illustrate the algorithms on an underactuated controls.
planar rigid body and on a satellite with two thrusters. This paper is organized as follows. First, in Section II,
we review the mathematical model of simple mechanical
control systems on Lie groups, as described in [5], and
In this paper we study control of underactuated mechanicaerform perturbation analysis for small amplitude forcing
systems on Lie groups. We concentrate on the constructi@md initial velocity close to a relative equilibrium. Based
of small-amplitude control forces that, when used itesdgiv  on this analysis Section Il presents the design of two local
result in a given change of the velocity in the directiorinversion maps. Section IV presents methods to compose
of a relative equilibrium, while the configuration changeghe inversion maps into a motion primitive and give the
as if the system had moved along the relative equilibriunonstruction of control algorithms based on this motion
Perturbation analysis and Lie group theory play a crucial ro primitive. In Section V we illustrate the approach by apptyi
in the analysis. Example systems to which the theory appli¢ge algorithms numerically to an underactuated planad rigi
are an underactuated planar rigid body and a satellite wittody and the satellite with two thrusters, and we end the
two thrusters. The motivation for studying underactuatedote by summarizing the results in a conclusion.
systems is twofold; it gives rise to other design possibait
than a fully actuated system and it is appropriate in the |l. M ATHEMATICAL MODEL AND PERTURBATION
situation of an actuator failure, meaning that such an aimly ANALYSIS NEAR A RELATIVE EQUILIBRIUM
improves robustness to actuator failures. _ . _ .
A vast literature is available on mechanical control sys- A Simple mechanical control system on a Lie group is
tems. Extensive research has focused on underactuated el€chanical system which has as configuration manifold
chanical systems, especially in the context of controlled L @ 7 dimensional Lie group, with Lie algebrag, and
grangians and Hamiltonians, e.g., see [2], [3] and Submquéagr_anglan equal to the kinetic energy wh|ph is defmed_by an
works. Somehow less research is available for controllintjertia tensofl : g — g*. We assume that is a matrix Lie
systems along relative equilibria; a related spin-up pobl 9roup with identity elemeniid and adjoint map\d, : g — g
is considered in [4], the theory of kinematic reductions i@SSociated to eaghe G Such a system has dynamics given
exposed in [5]. Since this document builds directly upon thBY
work in [6] we refer the reader to that document for a litera-

I. INTRODUCTION

ture survey relevant for control algorithms for underatgda 9=9-% (1)
Lagrangian systems on Lie groups. A generalization of the S - .

theory in [6] to a larger class of mechanical systems can be 16 = adgle + Z; fiui(®), 2)
found in [7]. .

As main contribution of this paper, we propose algorithmsvhere g € G is the configuration{ € g is the body-
to compute small amplitude control forces that speed ufixed velocity, ade : g — g is the adjoint operator and
slow down, or stabilize, an underactuated system alongaalg :g* — g*its dual, f; € g* defines theith body-
relative equilibrium. This task is not accounted for in theixed force, andu : R — R™ is bounded and measurable
and gives the resultant force on the system according to
A revised version of this document has been submitted as aitathn eril fiui(t). In what follows, ¥ = (G,L{f1,.--,fm})
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tion (2) can be written as Proof: Since the input is analytic ia so is the solution

. &) = +°° 5 €¢I (t). Inserting the expansions fa into
&= % E:6)+ Zb u; (t (3) equation (3) and collecting terms of same order we compute
0 1/60 . ¢0 ‘1 0. ¢1 1
Remark 1 (Simplifying convenuon)t is well known that &=, &=—(:8)+b (),

g is ann-dimensional vector space. In what follows, we make &2 = —(¢0: £%) — L(¢! . ') + b2(0).
no distinction betweery and R™. This we do in order to ) o -~ )
express a vector ig as a column vector iR” and representa 'Nserting the initial condition then gives
linear map ory as a matrix. This choice is not to be confused 0/ _ 1y _ 71°
. . . . PP € (t> - U§f€7 5 ( ) - b (t)a
with an irrelevance of the Lie algebra structure since this i - Y
far from being the case. . E(t) = e7eteg — 3(E1 1) (1) + b2 (1)
A relative equilibriumfor X is a curvet — gg exp(t&e) € oAt 2 17*" 739
G, for go € G and &e € R, that is a solutio(n to) the —° So— 0" 0T () +6% (8).
dynamics (1), (2) for zero input. It is easy to see that Sinceg is a solution to the kinematic equation (1), it follows
t — goexp(t&e) is a relative equilibrium if and only if that
(&re : &e) = 0. 1t is convenient to call relative equilibrium
both the curvet — gg exp(t&e) and the vectotre. Given a  h = g - exp(—toe) — g - exp(—toére) - 0&re

relative equilibriumé,, we define the linear mag,e : R — =g-&- exp(—toke) — h- e
R™ by Aren) := —(&re : 7). =h- t €. —t _

We are interested in control signalse C°([0, 2], R™) (exp(todre) - & - exp(~totre) = o&re)
of the form = h (Adexp(ioge) (§) — 0&re)

= h - (Adexp(tote) (0&re + el + 8 + O(€)) — o&re)
=h- Adexp(ta{,e)(efl + 6252 + 0(63))

If we define((t) := Adexp(oge) (€6 + €262 + O(€?)), then
we have, according to [8], that

x<t>=<<>—%[< CJ(t) + O(e?). (4)

u(t) = eu' (t) + €u?(t), 0<ex 1,
where ui € CO([O, 2r],R™). Accordingly, we define
Zb ul(t), j € {1,2}. In the perturbation analysis

it will be convenlent to define, fof € C°([0,2x],R™) and
o €R,

s Lo (t—s) _ 0 Usingz = ex! + €2 O(e*) we achieve the result on!
@) ZZ/O e f(s)ds, f) = f(1). and z2 by msertmg the expression far into equation (4).

. . . . ]
In what follows, s andr will be used as integration variables

only. _ _ I1l. DESIGN: LOCAL INVERSION PRIMITIVES
Proposition 2 (Perturbation analysis).et ¥ be a me-
chanical control system on a Lie group with a relative FOramechanical control system= (G,L {fi,..., fm})
equilibrium&.e and corresponding matrid... For0 < e < 1 With relative equilibriuméee and corresponding matritre,
ando > 0, let [0,27] 3 ¢t — (g(t),£(t)) be the solution to We present the following assumptions. First, we make the
(1) and (3) witht — > b;u, (t) = eb* (t)+€2b*(¢) and from standing assumption thgf ¢ span{bi, ..., b, }, otherwise
initial velocity £(0) = o&e+€2£3, for €2 = O(1), and initial the theory of kinematic reductions [5] is readily appli@bl
configurationg(0) = id. Let h(t) := g(t) - exp(—to&) and and the control problems we consider below are trivial.

let z(t) := log(h(t)) be the exponential coordinates bf ~ Assumption 1 (Lack of linear controllability)The

Then, fort € [0,2x], it holds thate(t, €) = £°(t) + €€ (t) + subspacespan{by,...,b,} is invariant under the linear

2€2(t) 4+ O(e3) with map Are, that is, (§e : b;) € span{bi,...,by}, for
o ie{l,...,m}.
€ (t) = 0&e, Assumption 2 (Nonlinear controllability)The subspace
eN(t) = b (b), span{b;, (b; : b;) | i,5 € {1,...,m}} is full rank and

(b; : b;) € span{by,..., by}, fori e {1,...,m}.

204) = oo Awte2 _ LT L o0 (1) + 52
&) = S0 = z(bl 1) (1) +6% (1), Assumption 3:(§re = (b; : b;)) € span{by,..., by}, for

andz(t,e) = ex'(t) + 222(t) + O(e3) with i,7€{1,...,m} with i # j.
Lo —5 Assumption 4:The subspacepan{by,...,b,,} is invari-
@ (t) = Adexp(soge) (b (5))(1), ant under the linear magd,.
2% (t) = Adexp(soge) (€745E2) (1) Assumption 2 is the same controllability assumption adibpte
) ——— in [6]. If we define the matrixB := [by -+ by,] € R™*™,
— 3 Adexp(sog) (01 201 ) (8))(2) then Assumption 1 is equivalent to the existence of a matrix
+ Adexp(sotn) B2 (5))(t) Q € R™ ™ such thatA,.B = BQ, and in turneteB =

— — Be®. Similarly, Assumption 4 is equivalent to the existence
— F[Adexp(sote) (b1 (5)), Adexp(roge) (b1 (7))(s)](t). of a matrix M/ € R™*™ such thatade, B = BM.




Given Q € R™*™, defineFg, : C°([0,27],R™) — {f € &e and corresponding matrix.. and satisfying Assump-

C1([0,2x],R™) | £(0) =0} by tions 1, 2 and 3. Let) € R™*™ satisfy 4B = BQ. Let
¢ n € R™, o € R, and computez € R”™ and Z € R™*"™ as
Folu)(t) == / @)y (s)ds. the pseudoinverse solution to
0

Lemma 3 (Transformation of controlsfhe map F is = Zzzb B Z Z Z,(b; ), Zjy =0 forj>k.

invertible and its inverse is given as follows: b =
Folu], then u(t) = —Quw(t) + w(t). Additionally, as in
Assumption 1, letA,, B and @ satisfy AB = BQ. If  Givenr, «, A, andg as in Definition 4, let
u € C°([0,27],R™) andw = F,q[u], o € R, then

Jj=1 k=j+1

Bu’ (t) = Bw(t). ZAJ,C )ysin(Bjxt), j€{l,...,m},
Proof: One-to-one correspondence between
antd w is readily checked.t We compute3u (t) = andlety = (711, Ymts- s Yirs -+ ) b€ the unique
/ e 4et=5) By(s)ds = B/ Q=3 (5)ds = Buw(r). solution to
0 0
u -Ao,o[y = _Adexp(sofre) (BZ/(S))(QW)7
Definition 4 (Convenient forcing frequencies)ake » = Yin =0 if iy, =0 for (i,h)e{l,...,mx{1,...,r}
[]. For (i,h) € {1,...,m} x {1,...,r}, select num- (5)
bers o, in the set{0,...,rm + im(m — 1)} as fol-
lows: Additionally, if we take
LV:=0;T:={1,...,rm+ sm(m—1)} r
2. for he {1,...,r} andfc2)7rT ie{l,...,m} do w]l(t) =y,(t) + ZW sin(ajt), je{l,...,m},
3 w:=min(Z); v:= Adexp(soge)bi sin(ws)ds . =1
re t :F—l e 2 $) = L oQ(t—2m) +
4. if v € span(V) thenoaih =0 elseq;, ;= w; T := w(?) "Q[w 1), wi(t) = 5re (x+2),
Z\{w}; V:=VU{v} end if wherey € R™ is the unique solution to
5. end for
Define A, . to be then x rm matrix with jth row
o =Sy / A=) _ [yl (s) b ()l : b
[Ag7a:|j = Adexp(safre) (bk sin(akhs))ds, J=tk=j+1
0 O'Are 27— s) .n.
wherej =k + (h—1)m, k € {1,...,m}, h € {1,...,r}. 22/ 0 (5))%ds {bi: ), (6)
Next, for (i,5) € {1,...,m}? select numberss;; as

follows: for i < j take B3;; € {1,...,rm+ sm(m —1)}\  thenb!(¢) = Bu'(t) andb?(t) = Bu?(t) satisfy

{arn}k,nyeft,...mix{1,...,ry all having distinct values, for ., o

i > j take B;; = B3;;, and fori = j take 3;; = 0. =11 1) (2m) + b2 (27) =, (7)
Remark 5:In other words, the numbers;; are selected =0

sequentially in such a way as to maximize the rank4gf,,. Adexp(soge) (01 (5))(27) = 0. ®)

Note that’ fori, j. k.1 € {1,.. 7m} a”,‘,jh €{l,...,r} we We call this mapspeed_inversion(a,n) = (b'(t), b2(t)).

have: (i) all nonzeray;;, are distinct, (ii) all nonzeray;;, are ) ] ) )

distinct from all nonzefcﬁgk, and (iii) 3;; = B if and only Proof: Existence and uniqueness of the solution to (6) is

if (i,7) = (k,1) or (i,5) = (I, k). a consequence of Assumptions 3 and 2. Regarding existence
Remark 6:The computations required by Deflnmon 4and uniqueness of the solution to (5), Definition 4 ensures

include checking that a vector belongs to a subspace. fAat

practical numerical implementations it is sufficient toifser

this condition up to a specified tolerance. It is convenient t Adexp(sate) (BY(5))(2m) € Image(As.a).

choose this tolerance comparable with the accuracy of thg,ce every nonzero column i, contributes to the rank

control algorgfxlrﬂs _ o o ®* of A,,, the entries ofy corresponding to these will be
ForZ eR define) : R —R by unique. The remaining-values are defined to be O.
sign(Z)V/1Z50] j <k, Regarding the proof of equation (8), direct calculations
Nr(Z) =14 0 : j=k, show that
1
L /1Z] Ik b
V121 Adocp(soen) (01 () (27) =Adexp(uoge (B (5)) (27)

We are now able to obtain the following result.
Proposition 7 gpeed_inversion): LetY be a mechani-
cal control system on a Lie group with a relative equilibrium

:Aa,a7+Adexp(SU€re) (By(S)) (27T)
=0.



Regarding the proof of equation (7), from Lemma 3 weMe denote this magonfiguration_inversion(o,u) =

compute

m

Zwk bk-
=2 Z w )(bj : br)

j=1 k=j+1

+Z( w; (4))*(bi « by).-

Since all nonzerax-values are distinct and are distinct from

the g-values we have foj < k

27T 21
/ t)wp (t)dt = Z Ni(Z)Aeg(Z / sin(3;;t) sin(Byqt)dt
0

lql

72&1 Yq(2)5 7

l,g=1
= )\jk(Z))\kj(Z)ﬂ' = ij.
By straightforward calculations we then obtain
—1017 1% (27) + 027 (27)
27
/ 7 A=) (H17 . BT7) (5)ds
0

2w
B/ ocQ(2m—s) 2(8)(15

m-— m 27
Z > (/ wj (s)wy(s)ds(b; : br)
j=1 k=j+1 7O

N|—=

+

+

\

27
Z/ e Ar(2m=3) ( ( ))2ds(b; : b;)

(xi + 2i)b;

> Zig(by bi) + Z ibi = 1.
=7+1 =1

+

iiMs

1k

J

Proposition 8 tonfiguration_inversion): LetY be a
mechanical control system on a Lie group with a relativ
equilibrium & and corresponding matriX,e and satisfying
Assumptions 1 and 4. LeD, M € R™*"™ gatisfy AeB =

BQ andad¢, B =BM. If 4 € R™, 0 € R and
ut(t) =0,
u?(t) = FUQ

thenb!(t) = Bul(t) andb?(t) = Bu?(t) satisfy

—1 b (2m) + B (2m) = 0,
Adexp(sot) (P (5))(27) = By,

(et D (opud(e)asts b))

[w?)(t),  w?(t) = zem "M psin®(1),

(b1(1), b*()) = (0, b%(t)).
Proof: For b'(t) = 0 we have, using Lemma 3 and
w?(t) = Le=Mtysin®(t) |, that
—L17 %) (2m) + 027 (2m) = b2 (21) = Bw?(27) = 0.
Using Assumption 4 and Lemma 3 we compute
Adexp(soee) (7 (8))(2m) = exp(soade,) (Bu(s)) (2m)
= BeMsqy2(s)(27)
= %Businz(s)(%r) = Bp.

IV. DESIGN: GLOBAL MOTION ALGORITHMS

The algorithm presented in this section requires the fol-
lowing additional assumption.

Assumption 5:The n dimensional systent hasn — 1
control forces, that isspm = n — 1.

Remark 9: Assumption 5 together with the standing
assumption {e ¢  span{by,...,b,} implies R" =
span{by, ..., by, &e}. Additionally, one can verify that As-
sumptions 5 and 1 together imply Assumption 3. °
Define the projection operatoBz : R" — R™ and P, :

R™ — R™ by

Pee(v) = (V- &e)bre,  Pp = 1d — P,

where - is the dot product inR™ defined by requiring
{b1,...,bm,&e} to be an orthonormal basis. Notice that,
under Assumption 4, these projection operators commute
with adg,. This allows us to construct the following motion
primitive.

Proposition 10 ¢hange speed motion primitive): Let
be a mechanical control system on a Lie group with a relative
equilibrium &, and corresponding matriX,e and satisfying
Assumptions 1, 2, 4, and 5. For< e < 1, assume that

9(0) = 9o eXP(GQVerror)y
5(0) = 0ére + 625&“’0[’7

for somegy € G, 0 € R, Verror, Cerror € R™ With veror = O(1)
and &eror = O(1). If we takep € R,

(b (1), b%(1)) =

e{ speed_inversion(o, p&e — eQ“JA'eferror) , t €10,2m]

configuration_inversion(o, /1) , t € [2m 4n]
and

— Bu =
Adesp(armotaP(verort —5108(9(0) g(2mexp(~2m0tie).

then we obtain

9(477) = gg eXp(EQVSrmr),
£(4m) = (o + 62P)§re + 62€;rrorv



Note thatp > 0 speeds up the system along the relative
£ equilibrium, p < 0 slows down the system, and = 0
stabilizes the system’s motion along the relative equilitor
We may selectN = O(Z%) in Proposition 11 so that the
absolute change in velocity along the relative equilibrium

y \ is of orderO(1). Thus, it is possible to use the algorithm
speed_control to change the velocity along the relative
S h equilibrium from a given value to another independent.of
" V. EXAMPLES
Y

The usefulness of the theory is illustrated in the following

‘ - . . . examples.
Fig. 1.  The planar rigid body with two forces applied at a pain . . ..
distanceh from the center of mass CMLs denotes an inertial reference Example 12 (Planar I’Igld bOdy)Cons'der a “g|d bOdy

frame. (6, z,y) are coordinates for the configuration of the body. The bodymoving in the plane as described in [6]. The configuration
reference frame (not depicted) is aligned with the direcbbrapplication  manifold is G = SE(Z) with coordinates(0 T y) Let m
) ) .

of 1 and f2. denote the mass of the body,its moment of inertia and
the distance from the center of mass to the control forces.
for SOMe Viyon Eimer € R With P, () = O(1), For (w,v1,v2)T € R® we have that the adjoint operator is
7)B(V;rror) = O(e), Earror = O(E) and for given by
* 2 2 0 0 0
9o = go &Xp <(47TU +2me p)fre te ’P&e(Verror))~ ad(w,vl,vz)T = V2 0 —w
—v1 w 0

We denote this control map by + €2p, g5, Viron Earror) =
change_speed(¢, 7, p, 9o, Verror, Serror)- The inertia tensor has the representafioa diag(J, m, m).

The proof of Proposition 10 is omitted but can be foundVith controls as in Figure 1 we havg = ;-e, andb, =
in [9]. The proof uses Propositions 2, 7, 8 and the Baker="e1 + s, Which gives(b; : by) =0, (b : by) = ey,
Campbell-Hausdorff formula. and (b : ba) = —,h—meg. Assumption 2 is immediately seen

With this motion primitive we are able to construct theto be satisfied. Choosing the relative equilibrigr = e;
following algorithm that speeds up, slows down, or stabgiz we have

a system along a relative equilibrium. 0 00
Proposition 11 §épeed_control algorithm): Let ¥ be a Are = adg, = (1) 8 8 ’

mechanical control system on a Lie group with a relative
equilibrium & and corresponding matrixl.. AssumeX so Assumptions 3 and 4 are met. It is straightforward to
satisfies Assumptions 1, 2, 4, and 5 and téke ¢ < 1. calculate thatd,.B = BQ, with

Let g(0), go, Verron T, Eerror, p b€ @s in Proposition 10 and let A
m [0 1
N eN. Q=—— { ] ,
Define the algorithm (o + €2Np, g5, Virror Earror) J 100
speed_control(e, o, p, N, go, Verror, Eerror) DY so Assumption 1 is satisfied.
1 go.1 := 9o, Verror1 = Verror, 01 := 0 Eemor1 := Eerror; The ~-values can be calculated using Definition 4 to be
2: for k€ {1,...,N} do app = iz = g = 0, a0 = Ly = vz = Ye2 =
3: (0k+1790,k+17Verror,k--f-hferror,k-&-l) = 0, and Y21 = 70‘21)‘21(2)/5' where 3 € {2737475}-
change_speed(e, 0k, p, Jo.k, Verrork> Serror k) Finally, the components ofy are found to bey; =
4: end for / Th(A21(Z)? +73,)/J andxa = 0.

5 g5 = Jo.N+1] Viwor i= VerrorN+1; Error 1= Eeror N1 Assumption 5 is immediately seen to be satisfied, so all
The final configuration and velocity after the execution of'€ @ssumptions are met, and therefore we can apply the
this algorithm are speed_control algorithm to speed up the system alang

The result of thespeed _control algorithm applied to the

g(N4) = g5 exp( Vo), planar rigid body can be seen in Figure 2.
E(N4T) = (0 + ENp)ére + €€ on Example 13 (Satellite with two thrustersonsider
a satellite with two thrusters aligned with the first
where V5o Serror € R™, Pee(Varo) = O(1), Pe(Vena) = and second principal axes. The configuration manifold
O(€), &ror = O(e), and is G = SO(3) and the equations of motion are of

N the form (1) and (3) where the symmetric product is
90 = 9o eXp<<UTﬁna|+%pGQNTfinau)fre+GQZpgre(Verror,k)> . given by (€ : n) = I7'(¢ x (In) + 7 x (IE)), where
k=1 I = diag(J1, J2, J3), J; being the moment of inertia along
The proof of this Proposition is omitted but can be foundhe ith principal axis, andx is the cross product. We have
in [9]. It builds on Proposition 2 and 10. that (e3 : e3) = 0, soes is a relative equilibrium, and since
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Fig. 2. speed_control applied to the planar rigid body withe = e3, ¢ = 0.1, andp = 2 and with initial conditiong6, =, y)(0) = 0, go = g(0), and

(w,v1,v2)(0) = 0. The dotted curve in the left figure corresponds to the
time equidistant instances.
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Fig. 3. speed_control applied to the satellite with two thrusters with
&e = e3, € = 0.1, andp = 1 and with initial conditionst(0) = (0, 0, 0.2)
andgo = g(0).

100

by = -e; andby = ey it is not possible to directly

control the motion in thees direction. With e = e3 we
compute

0 ai2 0
Are = | a1 0 01,
0 0 O
wherea;y = "2_*1‘]3 andas; = %1 1t is straightforward
to calculate thatd,eB = BQ, with
0 Jo—J3
Q = | J3s—J1 {)2 )

J1

so Assumption 1 is satisfied. Froth; : b1) = (by : bo)
0 and (by : by) = ;]]12;2‘(’;3 es we see that Assumption 2 is
fulfilled if J, # J,. Assumption 3 is satisfied becaugs :

(b1 : b)) = (es : e3) = 0. Sinceaden = & x 7

Jo—Jy
J1J2J3

we see that also Assumption 4 is satisfied. Assumption 5 is

immediately seen to be met. Thus,Jf # Js, the theory

motiothe center of mass and the ellipses corresponds to the phaaigrat

groups. Using small-amplitude control forces the algonith
solves the tasks of accelerating along, decelerating along
and stabilizing relative equilibria. The algorithm has mee
applied numerically to two example systems to illustrag th
theory.
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presented in this paper can be used to speed up the satellite

with two thrusters along the unactuated principal asgs
This is illustrated in Figure 3.

VI. CONCLUSION

In this note we have designed a motion control algorithm
suitable for a class of invariant mechanical systems on Lie



