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Synchronization of Beads on a Ring

Sara Susca Francesco Bullo Sonia Mwat

Abstract— This paper analyzes a discrete-time algorithm snakes” from the image processing literature. More relfevan
to synchronize an even number of agents moving clockwise to this paper is the reference [4], which presents a synchro-
and counterclockwise on a boundary. Each agent or “bead” 7 41i0n algorithm for cooperative surveillance of a faree

changes direction upon encountering another bead moving in . ¢ f d ial vehicl oth f
the opposite direction. Communication is sporadic: only when Using a team or unmanned aerial venicies. ELTEIEIENCES

two beads come sufficiently close they are able to exchange ON boundary tracking include [5], [6].

information. We propose a novel algorithm based on the The dynamics ofN-beads sliding on a frictionless ring
distributed computation of dominance regions and common has been subject of numerous papers; see for instance [7]
speed, as well as, on a careful balancing of accelerate/decelerateand references therein. In particular in [7], the authousiyst

strategies outside of dominance regions. Our theoretical analysis tensively th of — 3 and th it f
relies upon consensus algorithms tools and upon the assumption exiensively the case = 9 and prove e existence o

that initially half of all agents move clockwise and the other ~Periodic as well as chaotic orbits. The authors also describ

half move counterclockwise. how to use the three-bead system dynamics for a random
number generator algorithm which is computationally effi-
|. INTRODUCTION cient. In this paper we show that synchronization (a palicu

This work is motivated by applications of sensor network§eriodic orbit) can be achieved by modifying the impact law
that require the observation of certain spatial regions, an@"d making use of the theory of discrete-time consensus
in particular, by surveillance tasks that can be simplifie@/gorithms.
by the monitoring of the boundary of those regions. For Consensus algorithms have been extensively studied;
example, this strategy can be employed for the monitoring §€€ [8]. [9], [10] and references therein. Attractive prepe
perimeters and of delimited areas and the tracking of targdies of these algorithms are convergence under delays and
within those areas. Coordination algorithms on boundarigg®mmunication failure, and robustness to communication
can also be used for the tracking of evolving environmentdaloise. In particular we make use of discrete-time consensus
phenomena such as spreading fires or chemical spills.  algorithms and the analysis provided in [10] that guarantee

In devising such algorithms, several limitations arise. Alfonvergence under mild assumptions on connectivity and
important constraint is that of scalability. Each agentustio 9eneral stochastic matrices. Other related papers to con-
be able to operate with limited information from others s€nsus algorithms and synchronization are those based on
that the performance of the algorithm is not compromisetfuramoto oscillators and cyclic pursuit; see [11], [12]3]1
by an increased number of agents in the network. Due to ti§€fined in both continuous and discrete time. A problem
overheads in radio transmissions, frequent communicgtiorsimilar to the one we consider here is discussed in [14].
even if the packets are small, is energy inefficient, see [1]. The contributions of this paper can be summarized as
Therefore, it is preferable that agents communicate sporadollows. We design a distributed algorithm to patrol a clecu
cally (perhaps, with longer messages) than frequentlyi-Motooundary by an even number of agents. The agents can be
vated by these issues, we propose and analyze a distribufi@ployed with arbitrary initial positions and speeds. At th
algorithm that allows a mobile sensor network to monitoflesired steady state, every agent patrols a sector of equal
boundaries. The algorithm synchronizes a collectionnof length, all agents move at the same speed, and neighboring
agents or beads, moving on a ring, so that each bead patr8@ents meet always at the same point. Two agents exchange
a sector of the ring. An agent will meet, or impact, withinformation only when they impact. We prove a local conver-
the neighboring agents always at boundaries of its sect@€nce result — the agents will reach the desired synchmbnize
The algorithm requires only occasional communication — twteady state — under the assumption that initially half ef th
agents exchange information only when they impact. agents move in the clockwise direction and the rest move in

Several cooperative algorithms have been proposed the counterclockwise direction. Extensive simulationevsh
boundary tracking problems. The paper [2] presents dhat synchronization is reached in general.
algorithm to optimize the shape of a multi-vehicle formatio A Similar problem is considered in [4], where pairs of
to track level sets of environmental fields. The algorithngents have to be released at the same point, sequentially, a

proposed in [3] for boundary tracking makes use of «“alastiwith the same speed. In contrast, in our algorithm the agents
can be released at arbitrary positions, with arbitrary dpee
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by agent or bead synchronization on a circular boundary. To achieve the synchrony as given in Definition 1, a

The discrete-time Synchronization Algorithm is presenited necessary condition is that the number of beads in the
Section Ill. The main results that allow to analyze the algoeollection is even.

rithm are included in IV. After this we present simulations

in Section V showing that convergence of the algorithm is
indeed possible in more general cases. Finally, we sumenariz

the results in Section VI. In this section we describe an algorithm that allows the
Notation collection of agents to achieve synchronization. We begin b

On the unit circleS!, by convention, let us define posi- defining all variables that each agent maintains in memory

tions as angles measured counterclockwise from the pe’siti?nd we later state how these are updated as time evolves and

horizontal axis. Theeounterclockwise distance between twocommunlcayon impacts” take place. L
anglesdistec : S' x S' — [0, 27) is the path length from an Let us definei;(t) € {—1,+1} to be the direction of mo-

angle to the other traveling counterclockwise. Specificall tion of thei-th bead, and let the coun.terclockwise direction
if 2,y € S', thendistec(z,y) = (y — «) mod 27, where of motion be positive. Lev;(t) be thei-th bead’s nominal
) H b) H

= mod 2 is the remainder of the division of by 2. We ~SPe€d and let;(t) € {di(t)vi(t), di(t) fri(t), d;(t)hvi(t)}
denote byl € R"*! the column vector with entries all equal pe the agtual velocity at which theth bead is moving at
to 1. time ¢, with f € ]0.5,1] andh = /5 > 1. The agents
move in such as a way that their order never changes.
Il. MODEL AND PROBLEM STATEMENT Definition 2 (Dominance region)Let D, (t) be the domi-
In this section we describe a synchronized collection afiance region of beadat timet > 0, with L;(t) andU;(t) as
beads moving on a circle and our model of robotic agentsits clockwise and counterclockwise boundary, thesft) =
Definition 1 (Synchronization)Consider a collection of {§ e S! | distec(Li(t),0) < distec(Li(t), Us(2))}. Let
n beads moving, with no friction, on a ring and suppos&’;(¢t) be the center of the dominance regiofi;(t) =
impacts among them are elastic. The collection of beads Is (¢) + 3 distec (Li(t), Us(t)).
synchronizedf any two beads impact always at the same - o -
point, the time interval between two consecutive impacts ha Definition 3 (Admissible initial conditionsjThe set of

the same length, and all the beads impacts simultaneous%gmlss"ble initial conditionA is defined as follows:

I[Il. SYNCHRONIZATION ALGORITHM

In other words, in a synchronized collection, each bead « > ., d;(0) = 0; in other words, at timet = 0,
moves back and forth between the same two points whose n/2 beads are moving clockwise amd2 are moving
counterclockwise distance i&r/n. counterclockwise,
An example of a collection of four beads in sync is shown * ¥i(0) >0, foralli c {1,...,n}, and
in Figure 1. e pi(0) #p,(0), foralli#je{l,...,n}.
) ) ) ) Definition 4 (Impacts classification)if at time ¢, p;(t) =
MPACLEME 0 21ty eont MPACLtime=r 1. ...+enetl ) (#) then an impact has occurred between beadsid

i+1. If d;(t) = d;+1(t) then the impact is called “type head-
tail impact” otherwise is called “type head-head impact.”

/ \ We assume that each bead knows its position on the circle
and is enabled with a short-range communication device.
\ / It is convenient to denote hy;(¢) the logic state that bead

7 maintains in its memory:
= zi(t) == {pi(t), vi(t), di(t), Ui(t), Li(1) },

Fig. 1. The figure shows a collection of four beads which arekyonized. where pz’(t) is the current position;/i(t) is the nominal
. o speedd;(t) is the direction of motion, and;(¢) and L;(t)

In this paper we propose and analyze a distributed alggye clockwise and counterclockwise boundaries of the domi-
rithm that will steer a collection of “intelligent beads,®i,  pance region. Furthermore, while the initial conditign&)),
mobile robots, to be synchronized according to Definition 1’71'(0): andd, (0) belong to the se#d;. as in Definition 3, for

The model of agent we consider is described as followgne gominance region and its boundary we havg0) =
We assume a collection of agents moves on the unit Li(0) = U;(0) = p;(0).
circle S'. Let pi(t) € [0,2m), i € {l,....n} be the o iney an impact occurs involving beadsandi + 1,

agents’ positions at time> 0, ordered in counterclockwise or somei € {1 n}, then the two beads first calculate
direction. Each agent knows its position on the circle. Eac&he center of their dominance region:

agent is equipped with a short-range communication device —
we call a communication instant an “impact” because of the distee (L; (), U;(t))
bead analogy. We use the identificatiors n andn+1 = 1. Cj(t) = Ly(t) + —= 32 s je{i i+ 1)




Then, the beads involved in the impact update their logic Lemma 7 (Impacts in bounded intervabet vmin =

states as follows: min{v;(0)| ¢ € {1,...,n}}. Along the trajectories of the
distee (Ci(t), Cipn (t closed-loop system induced by theyMECHRONIZATION
Us(tT) = Liy1 (t7) = Ci(t) + oel (2) +1( ))7 (1) ALGORITHM, with (z1(0),...,2,(0)) € Ag, for all
vi(t) + vig (t) i € {1,...,n} and for allt, > 0, bead: will impact at

vi(tt) = vipa (t%) = (2)  least once with both its neighbois- 1 andi + 1 across the

2 bl
. . . interval [to, to + -2=].
if the impact is of “type head-head,” then [to, t0 + f"mi"}
Proof: Note that minjeq,. ny vi(?) >
di(t*) = —d;(t), j € {i,i+ 1}, (3 minjepy, ay(0) = vmn because of equation (2).

L Therefore for anyt > 0 the lowest possible speed at which
where the upper-script- indicates the value of the statea bead can travel igvmin. We first show that at most after

variables right after the impact. At all time> 0 the actual any bead will have a “type head-head” impact with

velocity v; is calculated as a function of the logic statgt): (J;ﬁng of its neighbors

di(t)(t), if pi(t) € Di(t), First, any bead can only impact with neighborst 1 and
: , i — 1 because of Lemma 6, part (iii). The necessary time for
d;(t) fri(t), if pi(t) ¢ Dy(t) and ! _ NSNSt
(B)fvilt), 1 pilt) ¢ Di(t) andi two beadsi, i + 1 to impact depends on their positions, the

vi(2i(t)) = is moYing away from it, . ) directions of motion and the speeds they are traveling with.
di(t)hvi(t), if pi(t) & Di(t) andi In the worst possible case at a tite: ¢, all the beads are
is moving towards it, clustered in a small arc ¢f* of lengthe, with i andi+ 1 at

/ the opposite ends of the arc (i.€istcc (pit1(to), pi(to)) =
where, we recall,f € ]0.5,1[ andh = 57— > L For ) g,(1)) = d;1(t;), and the speeds have the smallest
simplicity of notation we will often usev;(t) instead of possible valugv;(to)| = |vis1(to)] = Frmin.

vi(z;(t)). At time t = 0 the actua_l velocity isv;(0) = Let us supposed;(to) = dii1(ty) = +1. That is,
d;(0)v;(0) and its absolute value will not change until the; 1 is moving towards the cluster of beads ands
first impact occurs. moving away from it. Because of Lemma 6, part (i), we

IV. CONVERGENCE ANALYSIS have that) . , d;(top) = 0 and this implies that + 1

_ _ can travel at most for; f,imm before having a “type head-
Let us now construct an undirected grapft) with vertex head” impact. So at; < to + s, dipi(t) = —1,
set{l,...,n} and edge fromi to i + 1 if the beadsi  and distec (pisq(t1), pi(t1)) > e This is true because by
and i + 1 collide at timet. To prove the correctness of gssumption|v; (ty)| = |vis1(to)| and i could have had a
the SYNCHRONIZATION ALGORITHM we need to show the «type head-tail” impact withi — 1 so that|v; (1) > fvmin.
following result. Now, suppose that even after the imp@gt.(t1)| = fVmin,

. Proposition 5 (Uniform connegtivity)AIong the trajecto- then beads andi + 1 are moving towards each other and
ries of the closed loop system induced by theNSHRO- distec (ps (1), pit1(t1)) < 27 — e. They will then meet at

NIZATION ALGORITHM, with (z1(0),...,2,(0)) € Aic,  timety <ty + iﬂz;; < to+ gy + 22};5 =t + 7.
for all zo > 0 the graphlUy ¢ (1) 1, + 270 /(frmn)] 90 18 After the impact withi + 1, d;(t,) = —1 and, therefore,
connected. in its next “type head-head” impact beadvill meet i — 1.
The proof of Proposition 5 builds up on the following Following the same reasoning, we have that at most after
facts. 7 the two beads and: — 1 will meet. Hence across the
Lemma 6 (Properties)Along the trajectories of thexdi- interval [to, to + %} any bead will impact at least once
CHRONIZATION ALGORITHM, with (x1(0),...,2,(0)) € with both its neighbors. ]
Aic: Proof: [of Proposition 5] Because of Lemma 7, for all

(i) Y7, d;(t) = 0, that is, at any instant of time,/2 and for allt, there exist; and_tg € [to,to+ %} such that_
beads are moving clockwise and/2 are moving ¢(t1) andg(t2) have respectively an edge between vertices

counterclockwise, i andi + 1 and between verticesand: — 1. Then, clearly
(i) any two dominance regions are disjoint sets or at moshe graph

share a boundary point, furthermore their label index U g(t)

increases in the counterclockwise direction, t € [to, to + 27/ (f7(0))]

(i) the order of the beads is preserved, i.e., for all

J ; : ted. -
i € {1,...,n}, t > 0, and for j # i, IS connec _ -
distee ((pi—1(t), pi(t)) < distec (pi—1(t), pit1(t)) and Limma 8 (\t/elTOCIty Ccﬂ)ervxelrgeEICd)Bt " Vt(t)' ories of
distee (pi1 (£),p;(£) = distes (pio1(8), pisa(£)). A € . Along the trajectories o

the closed-loop system induced by theN& HRONIZATION

Therefore, a bead can be involved only in impacts ALGORITHM, With (z1(0), . ., 2 (0)) € Ag:

with its immediate neighbors— 1 andi + 1.

Proof: For the interest of brevity we omit the proof of lim Hy(t) _ 17v(0) 1” —0.
this result. [ ] t—+o00 n




Proof: For alli € {1,...,n}, defineA4; € R"*" by: beadi passed by the center of its dominance regi(%n for the
k-th time andT* = [TF, ..., THT e R™<LIf ||§ — 121
is sufficiently small, then:

%, fl=m=iorl=m=1i+1,
[Adim = 5, if (I,m) € {60+ 1), (i + 1,4)},
. 1TTk
dim, Otherwise lim HTk _ 1” _
n

Because of equation (2), if at timean impact between

. Proof: Before tackling the proof it is useful to see
andi + 1 occurs:

that both the quantitiegs — 91| and ||T% — XI5
v(tt) = Av(t). are measures of the asynchrony of the collection of beads.
However, due to the switching nature of the dynamics of

Therefore the dynamics of(t) is just the average CONSeNSUS o haads. the asymptotic behavior®f is more simple to

dynamics with matricesd; and, because of Proposition 5, nalyze. On the other handis a more suitable quantity to
the consensus is asymptotically reached (see [10]). Qleargescribe the asynchrony at tire

becauseA;, i € {1,...,n}, are doubly stochastic, the

. Let us suppose that at timethe beads andi + 1, with
consensus value i§ > | v;(0). pp L

Lemma 9 (Dominance region convergencegt /;(t) = E'reCtlohnSdi;gt) :d_czfiﬂf(t) —tl ae abﬁm to CO”'de'hWE
distec (Li(t), Ui(t)) be the length of the dominance region now that; andT7%,, for somek, are the times at whic
cer A T they passed by the centers of their dominance regions. If

Di(t) for i € {1,...,n}, and (1) = (1), L (D] € Tk < TF |, that is beadi is early with respect to bead
R™*! Along the trajectories of the closed-loop system ® h”.l’ i ; h S
induced by the $NCHRONIZATION ALGORITHM, with ¢ + 1, the impact will occur inD;+, as shown in Figure 2,

, - otherwise it will occur inD;. Without loss of generality we
(21(0),.., 2 (0)) € Ap: suppose that the impact will occur B, ;.

lim[(t) - 170(t) 1 =0 Letn = (T}, —Tf)7. Atto =T} +.%”). bead: rfaches
t—+o0 n the boundary of its dominance region (i.@,(to) = U.),
Proof: From equation (1) we have that after the impactind distc. (p; (to), pit1(to)) = 1. This is true because when
between: andi + 1: traveling inside its dominance regien(t) = d;(t)v;(t), and
n 3 1 by assumption;(0) = 7 for all ¢ and, therefore, for all
L) = Zéi(t) + Zei“(t)’ t > 0. Lett; be the time at which the two beads collide and

1 3 let = distec (Us, pi(t1)). Then we have that:
liya(th) = Eei(t) + Z€i+1(t)- p = disteo (U pi(h1))

Now, fori € {1,...,n}, defineB; € R"*" by: n+ visi(h —to) = vi(t — o),

on = Ui(tl — t()).
%, fl=m=i0orl=m=1i+1,
[Bilim =14 L, if (I,m) € {(5,i+1),( +1,9)}, Note that _the spet_ed for bead_s fr becguse it is m_owing
Sim,  Otherwise away from its dominance region , while far+ 1 is 7,
therefore:
Then, if at timet an impact between andi + 1 occurs, the
dynamics foré(¢) is simply: n—7v(ty —to) = fU(t1 — o),
(t+) = Bil(t). p=frlt —to)-

Once again, the dynamics of(t) is just the weighted Solving for; we have:
average consensus dynamics with matriBgsand, because ¥
of Proposition 5, the consensus is asymptotically reached p=nyg = (Ti’il — Ti’“)vl—. (5)
(see [10]). Sincey_"_, ¢;(t) = 2m, or equivalently because +f +f
B;, i € {1,...,n}, are doubly stochastic, we have thatAfter the impact the directions of both beads change because
(;(t) — 2= asymptotically. B the impact is of “type head-head,” hence beaid rushing

We have then proved that asymptotically the nominal vepack to its cell with speedw. Let t, be the time in which
locities v;(t) will be equal to the average of the initial beadi crosses the boundary of its cell, i.@(t2) = Us,
nominal velocities and the lengths of the dominance regiongen:
D;(t) will asymptotically be equal t@x/n. We will now

prove that the 8SNCHRONIZATION ALGORITHM will steer lo—to=1t2—l1+t1 —to= % + % = 2%7

the collection of beads to be in sync for a set of initial

conditions smaller thadc. becauser = /. Let us calculatel}*" and T}
Theorem 10 (Convergence to Synchronyr all ¢ €

{1, L. ,n}, let 1/1(0) =7 > 0, let distec (LZ(O), LH_l(O)) = k+1 ok g m

2r and letd;(0) = —d;(0) for j € {i — 1,i + 1}. Let n =T +*(n +h), ©)

vi = distec (C;(0), pi(0)), let §; = min{~;, 2m —;}, and let TRL _ ok 2. 7

§ = [01,...,6,]T € R™*1 Let TF be the instant in which s i1 v(n - "



Fig. 2. The figure shown positions, black circles, and véiesj of beads andi + 1 at timet = TF, t = tq andt = ¢; as described in Theorem 10.
The squares are the cent&rs and C;; of the dominance region®; andD; ;.

Substituting (5) in (6) and in (7):

, 1—f 2f o

Tkt — Tk k il
’ 1+f’+1+f“1+nv’
2f 1—f o

THAL — TF TF  + =
o 1J_}HJFHJHHJF —

Note that0 < 174 < 1/3 and2/3 < 5 < 1 sincef €
10.5,1[. Now, let us define the matriceS®¥e" and C°%¢ ¢

L ifl=m
[Ceverﬂl — )i+ )
m 2L, it (I,m) € {(i,i+ 1), (i +1,4)}, i even
and by
[Codd} _ %, if l:m,
tm 2L, it (,m) € {(G,i+ 1), (i+1,1)}, i odd

Then, if the first impact aftet = 0 is between andi + 1,
andi is odd the vectofl* evolves as follows:
hL _ codrk 4 253 if k odd, ®)
ceverrk 4+ 281 if k even
If the first impact is between andi + 1, andi is even,
equation (8) is still valid as long as the definitions @f
andC®"are exchanged. In any case, the dynamic#’ofs

just the weighted average consensus dynamics with matrice
C°4 andCve", and, because of Proposition 5, the consensys

is asymptotically reached (see [10]).

Although Theorem 10 proves convergence to synchronization
only locally, simulations show that indeed the set of imitiaboundaries for bead

conditions for which the 8NCHRONIZATION ALGORITHM

allows a collection of beads to reach synchronization isequi

large. In the next remark we give some insight.
Remark 11:The SYNCHRONIZATION ALGORITHM leads

to a dynamical system that can be seen as a cascade of three

in A — the consensus of the nominal speeds and of the
lengths of the dominance regions is guaranteed. Furthesmor
since the convergence is uniform and the dynamics are linear
the convergence is exponential. For the same reasons the
convergence of| T* — 1TnTk1|| is exponential. Next, if the

inputs||v(t) — %1” and ||¢(t) — %1” enters linearly
in the dynamics off’*, then the local stability properties of
the equilibrium||T% — %1\\ = 0 are not destroyed. This
follows from Input-to-State Stability of exponentiallyakte
systems [15]. If this holds, then the restrictive assunmstio
for Theorem 10 are thafd — %1” is sufficiently small
and thatd;(0) = —d,(0) for j € {i — 1,i + 1}, while the
assumptions that;(0), i € {1,...,n}, have the same value
and thatdistec (L;(0), Li+1(0)) = 27/n are not restrictive.

V. SIMULATIONS

In this section we presents simulation results obtained
by implementing the 8NCHRONIZATION ALGORITHM with
n = 8 beads. We assume that, for i € {1,...,n},
are randomly positioned of!, and thatv;(0), for i €
{1,...,n}, are uniformly distributed ir0,1]. Finally, we
setd; (0) = d2(0) = d4(0) = dg(0) = +1 and f = 0.7.

Figure 3 shows the positions of the eight beads vs time.
Clearly, asymptotically each bead meets its neighbor at the
same location on the circle, reaching synchrony.
ﬁzigure 4 showsnax; v;(t)—min; v;(t), which is a measure
disagreement of the nominal speeds. As expected the
disagreement goes to zero asymptotically.

Figure 5 shows the positions and the dominance region
= 5. The solid line representss(¢),

the dash-dot line represents(t), and the thicker solid line
representd’;(¢). The distancedistcc (L;(t), U;(t)) asymp-
totically approache860/n = 45 degrees.

VI. CONCLUSIONS

dynamical systems: the dynamical systems of the nominal \y hresented and analyzed an algorithm that synchronizes
velocities ;(¢) , the dynamical systems of the dominance, qq|iection ofn agents or beads, moving on a ring, so that

regionsD;(t¢), and the dynamical system of the synchron
TF. The dynamical systems of the nominal velocities angd
of the dominance regions are independent from each ot

and independent from the dynamics of the synchrony,

thermore they act as disturbances on the latter. As prov

in Lemma 8 and Lemma 9im;_, ;. ||[v(t) — %1\\ =0
T
andlim;_. 4 [[4(t) — 1Te(t)1H = 0 for all initial conditions

Yeach bead patrols only a sector of the ring. The algorithm is

istributed and requires that two agents exchange inféomat
ly when they meet. We proved that the proposed algorithm

fUBllows the agents to reach the desired steady state for
%Qrtain initial conditions. Simulations show convergence

the desired steady state for a larger set of initial conaltio
Motivated by the implementation results, we plan to look
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This figure shows; vs time, obtained by implementing the Fig. 5. This figure showps(¢) (solid line), Us(¢) (ticker solid line), and

SYNCHRONIZATION ALGORITHM with n = 8 beads. The positions of the Ls(¢) (dash-dot line), obtained by implementing th&N& HRONIZATION
beads2, 4, 6,8 are represented by solid lines, while the dash line, dashALGORITHM with n = 8 beads.
dot line, point line, and thicker dash line represent theitrs of beads

1,3,5,7.
, [3]
max; v; — min; v;
0.9 T T T T T
0.8 5
0.7F a
P [4]
c 0.6 a
o
©
N | 5)
%2}
Goa .
K [6]
Sos j
0.2 4
(7]
0.1 a
[8]
0O é 1‘0 15 26 2‘5 3“0 ?:5 4‘0 4‘5 50
seconds
[9]
Fig. 4.  This figure showsnax;v; — min; v; vs time, obtained by
implementing the $NCHRONIZATION ALGORITHM with n = 8 beads. [10]

for a different measure of the asynchrony which may bgij

more suitable to prove convergence for a larger set of Initia
conditions.
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