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Synchronization of Beads on a Ring

Sara Susca Francesco Bullo Sonia Martı́nez

Abstract— This paper analyzes a discrete-time algorithm
to synchronize an even number of agents moving clockwise
and counterclockwise on a boundary. Each agent or “bead”
changes direction upon encountering another bead moving in
the opposite direction. Communication is sporadic: only when
two beads come sufficiently close they are able to exchange
information. We propose a novel algorithm based on the
distributed computation of dominance regions and common
speed, as well as, on a careful balancing of accelerate/decelerate
strategies outside of dominance regions. Our theoretical analysis
relies upon consensus algorithms tools and upon the assumption
that initially half of all agents move clockwise and the other
half move counterclockwise.

I. I NTRODUCTION

This work is motivated by applications of sensor networks
that require the observation of certain spatial regions and,
in particular, by surveillance tasks that can be simplified
by the monitoring of the boundary of those regions. For
example, this strategy can be employed for the monitoring of
perimeters and of delimited areas and the tracking of targets
within those areas. Coordination algorithms on boundaries
can also be used for the tracking of evolving environmental
phenomena such as spreading fires or chemical spills.

In devising such algorithms, several limitations arise. An
important constraint is that of scalability. Each agent should
be able to operate with limited information from others so
that the performance of the algorithm is not compromised
by an increased number of agents in the network. Due to the
overheads in radio transmissions, frequent communications,
even if the packets are small, is energy inefficient, see [1].
Therefore, it is preferable that agents communicate sporadi-
cally (perhaps, with longer messages) than frequently. Moti-
vated by these issues, we propose and analyze a distributed
algorithm that allows a mobile sensor network to monitor
boundaries. The algorithm synchronizes a collection ofn
agents or beads, moving on a ring, so that each bead patrols
a sector of the ring. An agent will meet, or impact, with
the neighboring agents always at boundaries of its sector.
The algorithm requires only occasional communication – two
agents exchange information only when they impact.

Several cooperative algorithms have been proposed in
boundary tracking problems. The paper [2] presents an
algorithm to optimize the shape of a multi-vehicle formation
to track level sets of environmental fields. The algorithm
proposed in [3] for boundary tracking makes use of “elastic
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snakes” from the image processing literature. More relevant
to this paper is the reference [4], which presents a synchro-
nization algorithm for cooperative surveillance of a forest fire
using a team of unmanned aerial vehicles. Other references
on boundary tracking include [5], [6].

The dynamics ofN -beads sliding on a frictionless ring
has been subject of numerous papers; see for instance [7]
and references therein. In particular in [7], the authors study
extensively the case ofN = 3 and prove the existence of
periodic as well as chaotic orbits. The authors also describe
how to use the three-bead system dynamics for a random
number generator algorithm which is computationally effi-
cient. In this paper we show that synchronization (a particular
periodic orbit) can be achieved by modifying the impact law
and making use of the theory of discrete-time consensus
algorithms.

Consensus algorithms have been extensively studied;
see [8], [9], [10] and references therein. Attractive proper-
ties of these algorithms are convergence under delays and
communication failure, and robustness to communication
noise. In particular we make use of discrete-time consensus
algorithms and the analysis provided in [10] that guarantees
convergence under mild assumptions on connectivity and
general stochastic matrices. Other related papers to con-
sensus algorithms and synchronization are those based on
Kuramoto oscillators and cyclic pursuit; see [11], [12], [13]
defined in both continuous and discrete time. A problem
similar to the one we consider here is discussed in [14].

The contributions of this paper can be summarized as
follows. We design a distributed algorithm to patrol a circular
boundary by an even number of agents. The agents can be
deployed with arbitrary initial positions and speeds. At the
desired steady state, every agent patrols a sector of equal
length, all agents move at the same speed, and neighboring
agents meet always at the same point. Two agents exchange
information only when they impact. We prove a local conver-
gence result – the agents will reach the desired synchronized
steady state – under the assumption that initially half of the
agents move in the clockwise direction and the rest move in
the counterclockwise direction. Extensive simulations show
that synchronization is reached in general.

A similar problem is considered in [4], where pairs of
agents have to be released at the same point, sequentially, and
with the same speed. In contrast, in our algorithm the agents
can be released at arbitrary positions, with arbitrary speeds
and directions, as long as half of the agents move clockwise
direction and the rest move in the counterclockwise direction.

The paper is organized as follows. Section II introduces
notation employed and describes in detail what is meant



by agent or bead synchronization on a circular boundary.
The discrete-time Synchronization Algorithm is presentedin
Section III. The main results that allow to analyze the algo-
rithm are included in IV. After this we present simulations
in Section V showing that convergence of the algorithm is
indeed possible in more general cases. Finally, we summarize
the results in Section VI.

Notation

On the unit circleS
1, by convention, let us define posi-

tions as angles measured counterclockwise from the positive
horizontal axis. Thecounterclockwise distance between two
anglesdistcc : S

1 × S
1 → [0, 2π) is the path length from an

angle to the other traveling counterclockwise. Specifically,
if x, y ∈ S

1, then distcc(x, y) = (y − x) mod 2π, where
x mod 2π is the remainder of the division ofx by 2π. We
denote by1 ∈ R

n×1 the column vector with entries all equal
to 1.

II. M ODEL AND PROBLEM STATEMENT

In this section we describe a synchronized collection of
beads moving on a circle and our model of robotic agents.

Definition 1 (Synchronization):Consider a collection of
n beads moving, with no friction, on a ring and suppose
impacts among them are elastic. The collection of beads is
synchronizedif any two beads impact always at the same
point, the time interval between two consecutive impacts has
the same length, and all the beads impacts simultaneously.
In other words, in a synchronized collection, each bead
moves back and forth between the same two points whose
counterclockwise distance is2π/n.

An example of a collection of four beads in sync is shown
in Figure 1.

impact time= t0, t0 + 2T, . . . , t0 + 2mT, . . . impact time= t0 + T, . . . , t0 + (2m + 1)T, . . .

Fig. 1. The figure shows a collection of four beads which are synchronized.

In this paper we propose and analyze a distributed algo-
rithm that will steer a collection of “intelligent beads,” i.e.,
mobile robots, to be synchronized according to Definition 1.

The model of agent we consider is described as follows.
We assume a collection ofn agents moves on the unit
circle S

1. Let pi(t) ∈ [0, 2π), i ∈ {1, . . . , n} be the
agents’ positions at timet ≥ 0, ordered in counterclockwise
direction. Each agent knows its position on the circle. Each
agent is equipped with a short-range communication device –
we call a communication instant an “impact” because of the
bead analogy. We use the identification0 ≡ n andn+1 ≡ 1.

To achieve the synchrony as given in Definition 1, a
necessary condition is that the number of beads in the
collection is even.

III. SYNCHRONIZATION ALGORITHM

In this section we describe an algorithm that allows the
collection of agents to achieve synchronization. We begin by
defining all variables that each agent maintains in memory
and we later state how these are updated as time evolves and
“communication impacts” take place.

Let us definedi(t) ∈ {−1,+1} to be the direction of mo-
tion of the i-th bead, and let the counterclockwise direction
of motion be positive. Letνi(t) be thei-th bead’s nominal
speed and letvi(t) ∈ {di(t)νi(t), di(t)fνi(t), di(t)hνi(t)}
be the actual velocity at which thei-th bead is moving at
time t, with f ∈ ]0.5, 1[ and h = f

2f−1 > 1. The agents
move in such as a way that their order never changes.

Definition 2 (Dominance region):Let Di(t) be the domi-
nance region of beadi at timet ≥ 0, with Li(t) andUi(t) as
its clockwise and counterclockwise boundary, thenDi(t) =
{θ ∈ S

1 | distcc(Li(t), θ) ≤ distcc(Li(t), Ui(t))}. Let
Ci(t) be the center of the dominance region,Ci(t) =
Li(t) + 1

2 distcc(Li(t), Ui(t)).

Definition 3 (Admissible initial conditions):The set of
admissible initial conditionAic is defined as follows:

•
∑n

i=1 di(0) = 0; in other words, at timet = 0,
n/2 beads are moving clockwise andn/2 are moving
counterclockwise,

• νi(0) > 0, for all i ∈ {1, . . . , n}, and
• pi(0) 6= pj(0), for all i 6= j ∈ {1, . . . , n}.

Definition 4 (Impacts classification):If at time t, pi(t) =
pi+1(t) then an impact has occurred between beadsi and
i+1. If di(t) = di+1(t) then the impact is called “type head-
tail impact” otherwise is called “type head-head impact.”

We assume that each bead knows its position on the circle
and is enabled with a short-range communication device.

It is convenient to denote byxi(t) the logic state that bead
i maintains in its memory:

xi(t) := {pi(t), νi(t), di(t), Ui(t), Li(t)},

where pi(t) is the current position,νi(t) is the nominal
speed,di(t) is the direction of motion, andUi(t) andLi(t)
are clockwise and counterclockwise boundaries of the domi-
nance region. Furthermore, while the initial conditionspi(0),
νi(0), anddi(0) belong to the setAic as in Definition 3, for
the dominance region and its boundary we haveDi(0) =
Li(0) = Ui(0) = pi(0).

If at time t an impact occurs involving beadsi and i + 1,
for somei ∈ {1, . . . , n}, then the two beads first calculate
the center of their dominance region:

Cj(t) = Lj(t) +
distcc(Lj(t), Uj(t))

2
, j ∈ {i, i + 1}.



Then, the beads involved in the impact update their logic
states as follows:

Ui(t
+) = Li+1(t

+) = Ci(t) +
distcc(Ci(t), Ci+1(t))

2
, (1)

νi(t
+) = νi+1(t

+) =
νi(t) + νi+1(t)

2
; (2)

if the impact is of “type head-head,” then

dj(t
+) = −dj(t), j ∈ {i, i + 1}, (3)

where the upper-script+ indicates the value of the state
variables right after the impact. At all timet ≥ 0 the actual
velocity vi is calculated as a function of the logic statexi(t):

vi(xi(t)) =































di(t)νi(t), if pi(t) ∈ Di(t),

di(t)fνi(t), if pi(t) /∈ Di(t) and i

is moving away from it,

di(t)hνi(t), if pi(t) /∈ Di(t) and i

is moving towards it,

(4)

where, we recall,f ∈ ]0.5, 1[ and h = f
2f−1 > 1. For

simplicity of notation we will often usevi(t) instead of
vi(xi(t)). At time t = 0 the actual velocity isvi(0) =
di(0)νi(0) and its absolute value will not change until the
first impact occurs.

IV. CONVERGENCE ANALYSIS

Let us now construct an undirected graphG(t) with vertex
set {1, . . . , n} and edge fromi to i + 1 if the beadsi
and i + 1 collide at time t. To prove the correctness of
the SYNCHRONIZATION ALGORITHM we need to show the
following result.

Proposition 5 (Uniform connectivity):Along the trajecto-
ries of the closed loop system induced by the SYNCHRO-
NIZATION ALGORITHM, with (x1(0), . . . , xn(0)) ∈ Aic,
for all t0 ≥ 0 the graph

⋃

t ∈ [t0, t0 + 2π/(fνmin)]
G(t) is

connected.

The proof of Proposition 5 builds up on the following
facts.

Lemma 6 (Properties):Along the trajectories of the SYN-
CHRONIZATION ALGORITHM, with (x1(0), . . . , xn(0)) ∈
Aic:

(i)
∑n

i=1 di(t) = 0, that is, at any instant of timen/2
beads are moving clockwise andn/2 are moving
counterclockwise,

(ii) any two dominance regions are disjoint sets or at most
share a boundary point, furthermore their label index
increases in the counterclockwise direction,

(iii) the order of the beads is preserved, i.e., for all
i ∈ {1, . . . , n}, t ≥ 0, and for j 6= i,
distcc((pi−1(t), pi(t)) ≤ distcc(pi−1(t), pi+1(t)) and
distcc((pi−1(t), pj(t)) ≥ distcc(pi−1(t), pi+1(t)).
Therefore, a beadi can be involved only in impacts
with its immediate neighborsi − 1 and i + 1.

Proof: For the interest of brevity we omit the proof of
this result.

Lemma 7 (Impacts in bounded interval):Let νmin =
min{νi(0)| i ∈ {1, . . . , n}}. Along the trajectories of the
closed-loop system induced by the SYNCHRONIZATION

ALGORITHM, with (x1(0), . . . , xn(0)) ∈ Aic, for all
i ∈ {1, . . . , n} and for all t0 > 0, beadi will impact at
least once with both its neighborsi− 1 and i + 1 across the
interval [t0, t0 + 2π

fνmin
].

Proof: Note that mini∈{1,...,n} νi(t) ≥
mini∈{1,...,n} νi(0) = νmin because of equation (2).
Therefore for anyt > 0 the lowest possible speed at which
a bead can travel isfνmin. We first show that at most after

π
fνmin

any bead will have a “type head-head” impact with
one of its neighbors.

First, any beadi can only impact with neighborsi+1 and
i− 1 because of Lemma 6, part (iii). The necessary time for
two beadsi, i + 1 to impact depends on their positions, the
directions of motion and the speeds they are traveling with.

In the worst possible case at a timet = t0 all the beads are
clustered in a small arc ofS1 of lengthǫ, with i andi+1 at
the opposite ends of the arc (i.e.,distcc(pi+1(t0), pi(t0)) =
ǫ), di(t0) = di+1(t0), and the speeds have the smallest
possible value|vi(t0)| = |vi+1(t0)| = fνmin.

Let us supposedi(t0) = di+1(t0) = +1. That is,
i + 1 is moving towards the cluster of beads andi is
moving away from it. Because of Lemma 6, part (i), we
have that

∑n
i=1 di(t0) = 0 and this implies thati + 1

can travel at most for ǫ
2fνmin

before having a “type head-
head” impact. So att1 ≤ t0 + ǫ

2fνmin
, di+1(t1) = −1,

and distcc(pi+1(t1), pi(t1)) ≥ ǫ. This is true because by
assumption|vi(t0)| = |vi+1(t0)| and i could have had a
“type head-tail” impact withi − 1 so that|vi(t1)| ≥ fνmin.
Now, suppose that even after the impact|vi+1(t1)| = fνmin,
then beadsi and i + 1 are moving towards each other and
distcc(pi(t1), pi+1(t1)) ≤ 2π − ǫ. They will then meet at
time t2 ≤ t1 + 2π−ǫ

2fνmin
≤ t0 + ǫ

2fνmin
+ 2π−ǫ

2fνmin
= t0 + π

fνmin
.

After the impact withi + 1, di(t2) = −1 and, therefore,
in its next “type head-head” impact beadi will meet i − 1.
Following the same reasoning, we have that at most after

π
fνmin

the two beadsi and i − 1 will meet. Hence across the
interval [t0, t0 + 2π

fνmin
] any bead will impact at least once

with both its neighbors.
Proof: [of Proposition 5] Because of Lemma 7, for alli

and for allt0 there existt1 andt2 ∈ [t0, t0 + 2π
fνmin

] such that
G(t1) andG(t2) have respectively an edge between vertices
i and i + 1 and between verticesi and i − 1. Then, clearly
the graph

⋃

t ∈ [t0, t0 + 2π/(fν(0))]

G(t)

is connected.
Lemma 8 (Velocity convergence):Let ν(t) =

[ν1(t), . . . , νn(t)]T ∈ R
n×1. Along the trajectories of

the closed-loop system induced by the SYNCHRONIZATION

ALGORITHM, with (x1(0), . . . , xn(0)) ∈ Aic:

lim
t→+∞

∥

∥ν(t) −
1

T ν(0)

n
1

∥

∥ = 0 .



Proof: For all i ∈ {1, . . . , n}, defineAi ∈ R
n×n by:

[Ai]lm =











1
2 , if l = m = i or l = m = i + 1,
1
2 , if (l,m) ∈ {(i, i + 1), (i + 1, i)},

δlm, otherwise.

Because of equation (2), if at timet an impact betweeni
and i + 1 occurs:

ν(t+) = Aiν(t).

Therefore the dynamics ofν(t) is just the average consensus
dynamics with matricesAi and, because of Proposition 5,
the consensus is asymptotically reached (see [10]). Clearly,
becauseAi, i ∈ {1, . . . , n}, are doubly stochastic, the
consensus value is1n

∑n
i=1 νi(0).

Lemma 9 (Dominance region convergence):Let ℓi(t) =
distcc(Li(t), Ui(t)) be the length of the dominance region
Di(t) for i ∈ {1, . . . , n}, and ℓ(t) = [ℓ1(t), . . . , ℓn(t)]T ∈
R

n×1. Along the trajectories of the closed-loop system
induced by the SYNCHRONIZATION ALGORITHM, with
(x1(0), . . . , xn(0)) ∈ Aic:

lim
t→+∞

∥

∥ℓ(t) −
1

T ℓ(t)

n
1

∥

∥ = 0 .

Proof: From equation (1) we have that after the impact
betweeni and i + 1:

ℓi(t
+) =

3

4
ℓi(t) +

1

4
ℓi+1(t),

ℓi+1(t
+) =

1

4
ℓi(t) +

3

4
ℓi+1(t).

Now, for i ∈ {1, . . . , n}, defineBi ∈ R
n×n by:

[Bi]lm =











3
4 , if l = m = i or l = m = i + 1,
1
4 , if (l,m) ∈ {(i, i + 1), (i + 1, i)},

δlm, otherwise.

Then, if at timet an impact betweeni and i + 1 occurs, the
dynamics forℓ(t) is simply:

ℓ(t+) = Biℓ(t).

Once again, the dynamics ofℓ(t) is just the weighted
average consensus dynamics with matricesBi and, because
of Proposition 5, the consensus is asymptotically reached
(see [10]). Since

∑n
i=1 ℓi(t) = 2π, or equivalently because

Bi, i ∈ {1, . . . , n}, are doubly stochastic, we have that
ℓi(t) →

2π
n asymptotically.

We have then proved that asymptotically the nominal ve-
locities νi(t) will be equal to the average of the initial
nominal velocities and the lengths of the dominance regions
Di(t) will asymptotically be equal to2π/n. We will now
prove that the SYNCHRONIZATION ALGORITHM will steer
the collection of beads to be in sync for a set of initial
conditions smaller thanAic.

Theorem 10 (Convergence to Synchrony):For all i ∈
{1, . . . , n}, let νi(0) = ν > 0, let distcc(Li(0), Li+1(0)) =
2π
n , and let di(0) = −dj(0) for j ∈ {i − 1, i + 1}. Let
γi = distcc(Ci(0), pi(0)), let δi = min{γi, 2π−γi}, and let
δ = [δ1, . . . , δn]T ∈ R

n×1. Let T k
i be the instant in which

beadi passed by the center of its dominance region for the
k-th time andT k = [T k

1 , . . . , T k
n ]T ∈ R

n×1. If ‖δ − 1
T δ
n 1‖

is sufficiently small, then:

lim
k→+∞

∥

∥T k −
1

T T k

n
1

∥

∥ = 0 .

Proof: Before tackling the proof it is useful to see
that both the quantities‖δ − 1

T δ
n 1‖ and ‖T k − 1

T T k

n 1‖
are measures of the asynchrony of the collection of beads.
However, due to the switching nature of the dynamics of
the beads, the asymptotic behavior ofT k is more simple to
analyze. On the other handδ is a more suitable quantity to
describe the asynchrony at time0.

Let us suppose that at timet the beadsi and i + 1, with
directionsdi(t) = −di+1(t) = +1, are about to collide. We
know thatT k

i andT k
i+1, for somek, are the times at which

they passed by the centers of their dominance regions. If
T k

i < T k
i+1, that is beadi is early with respect to bead

i + 1, the impact will occur inDi+1 as shown in Figure 2,
otherwise it will occur inDi. Without loss of generality we
suppose that the impact will occur inDi+1.

Let η = (T k
i+1−T k

i )ν. At t0 = T k
i + (π/n)

ν beadi reaches
the boundary of its dominance region (i.e.,pi(t0) = Ui),
anddistcc(pi(t0), pi+1(t0)) = η. This is true because when
traveling inside its dominance regionvi(t) = di(t)νi(t), and
by assumptionνi(0) = ν for all i and, therefore, for all
t ≥ 0. Let t1 be the time at which the two beads collide and
let µ = distcc(Ui, pi(t1)). Then we have that:

η + vi+1(t1 − t0) = vi(t1 − t0),

µ = vi(t1 − t0).

Note that the speed for beadi is fν because it is mowing
away from its dominance region , while fori + 1 is ν,
therefore:

η − ν(t1 − t0) = fν(t1 − t0),

µ = fν(t1 − t0).

Solving for µ we have:

µ = η
f

1 + f
= (T k

i+1 − T k
i )ν

f

1 + f
. (5)

After the impact the directions of both beads change because
the impact is of “type head-head,” hence beadi is rushing
back to its cell with speedhν. Let t2 be the time in which
bead i crosses the boundary of its cell, i.e.,pi(t2) = Ui,
then:

t2 − t0 = t2 − t1 + t1 − t0 =
µ

hν
+

µ

fν
= 2

µ

ν
,

becauseh = f
2f−1 . Let us calculateT k+1

i andT k+1
i+1 :

T k+1
i = T k

i +
2

ν
(
π

n
+ µ), (6)

T k+1
i+1 = T k

i+1 +
2

ν
(
π

n
− µ). (7)



η

time t = T k
i

Di+1 Di

v1 = ν
vi+1 = −ν

η

time t = t0
DiDi+1

vi+1 = −ν vi = fν

η

µ

time t = t1
DiDi+1

vi+1 = ν vi = −hν

Fig. 2. The figure shown positions, black circles, and velocities, of beadsi and i + 1 at time t = T k
i , t = t0 and t = t1 as described in Theorem 10.

The squares are the centersCi andCi+1 of the dominance regionsDi andDi+1.

Substituting (5) in (6) and in (7):

T k+1
i =

1 − f

1 + f
T k

i +
2f

1 + f
T k

i+1 +
2π

nν
,

T k+1
i+1 =

2f

1 + f
T k

i +
1 − f

1 + f
T k

i+1 +
2π

nν
.

Note that0 < 1−f
1+f < 1/3 and 2/3 < 2f

1+f < 1 sincef ∈

]0.5, 1[. Now, let us define the matricesCeven and Codd ∈
R

n×n by

[Ceven]lm =

{

1−f

1+f
, if l = m,

2f

1+f
, if (l, m) ∈ {(i, i + 1), (i + 1, i)}, i even,

and by

[Codd]lm =

{

1−f

1+f
, if l = m,

2f

1+f
, if (l, m) ∈ {(i, i + 1), (i + 1, i)}, i odd.

Then, if the first impact aftert = 0 is betweeni and i + 1,
and i is odd the vectorT k evolves as follows:

T k+1 =

{

CoddT k + 2π
nν 1, if k odd,

CevenT k + 2π
nν 1, if k even.

(8)

If the first impact is betweeni and i + 1, and i is even,
equation (8) is still valid as long as the definitions ofCodd

andCeven are exchanged. In any case, the dynamics ofT k is
just the weighted average consensus dynamics with matrices
Codd andCeven, and, because of Proposition 5, the consensus
is asymptotically reached (see [10]).
Although Theorem 10 proves convergence to synchronization
only locally, simulations show that indeed the set of initial
conditions for which the SYNCHRONIZATION ALGORITHM

allows a collection of beads to reach synchronization is quite
large. In the next remark we give some insight.

Remark 11:The SYNCHRONIZATION ALGORITHM leads
to a dynamical system that can be seen as a cascade of three
dynamical systems: the dynamical systems of the nominal
velocities νi(t) , the dynamical systems of the dominance
regionsDi(t), and the dynamical system of the synchrony
T k

i . The dynamical systems of the nominal velocities and
of the dominance regions are independent from each other
and independent from the dynamics of the synchrony, fur-
thermore they act as disturbances on the latter. As proved
in Lemma 8 and Lemma 9,limt→+∞ ‖ν(t)− 1

T ν(t)
n 1‖ = 0

and limt→+∞ ‖ℓ(t)− 1
T ℓ(t)
n 1‖ = 0 for all initial conditions

in Aic – the consensus of the nominal speeds and of the
lengths of the dominance regions is guaranteed. Furthermore,
since the convergence is uniform and the dynamics are linear
the convergence is exponential. For the same reasons the
convergence of‖T k − 1

T T k

n 1‖ is exponential. Next, if the

inputs‖ν(t)− 1
T ν(t)

n 1‖ and‖ℓ(t)− 1
T ℓ(t)
n 1‖ enters linearly

in the dynamics ofT k
i , then the local stability properties of

the equilibrium‖T k − 1
T T k

n 1‖ = 0 are not destroyed. This
follows from Input-to-State Stability of exponentially stable
systems [15]. If this holds, then the restrictive assumptions
for Theorem 10 are that‖δ − 1

T δ
n 1‖ is sufficiently small

and thatdi(0) = −dj(0) for j ∈ {i − 1, i + 1}, while the
assumptions thatνi(0), i ∈ {1, . . . , n}, have the same value
and thatdistcc(Li(0), Li+1(0)) = 2π/n are not restrictive.•

V. SIMULATIONS

In this section we presents simulation results obtained
by implementing the SYNCHRONIZATION ALGORITHM with
n = 8 beads. We assume thatpi, for i ∈ {1, . . . , n},
are randomly positioned onS1, and thatνi(0), for i ∈
{1, . . . , n}, are uniformly distributed in]0, 1]. Finally, we
setd1(0) = d2(0) = d4(0) = d6(0) = +1 andf = 0.7.

Figure 3 shows the positions of the eight beads vs time.
Clearly, asymptotically each bead meets its neighbor at the
same location on the circle, reaching synchrony.

Figure 4 showsmaxi νi(t)−mini νi(t), which is a measure
of disagreement of the nominal speeds. As expected the
disagreement goes to zero asymptotically.

Figure 5 shows the positions and the dominance region
boundaries for beadi = 5. The solid line representsp5(t),
the dash-dot line representsLi(t), and the thicker solid line
representsUi(t). The distancedistcc(Li(t), Ui(t)) asymp-
totically approaches360/n = 45 degrees.

VI. CONCLUSIONS

We presented and analyzed an algorithm that synchronizes
a collection ofn agents or beads, moving on a ring, so that
each bead patrols only a sector of the ring. The algorithm is
distributed and requires that two agents exchange information
only when they meet. We proved that the proposed algorithm
allows the agents to reach the desired steady state for
certain initial conditions. Simulations show convergenceto
the desired steady state for a larger set of initial conditions.
Motivated by the implementation results, we plan to look



0 5 10 15 20 25 30 35 40 45 50
50

100

150

200

250

300

350

400

450

Positions of the beads vs time

seconds

de
gr

ee
s

Fig. 3. This figure showspi vs time, obtained by implementing the
SYNCHRONIZATION ALGORITHM with n = 8 beads. The positions of the
beads2, 4, 6, 8 are represented by solid lines, while the dash line, dash-
dot line, point line, and thicker dash line represent the positions of beads
1, 3, 5, 7.
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Fig. 4. This figure showsmaxi νi − mini νi vs time, obtained by
implementing the SYNCHRONIZATION ALGORITHM with n = 8 beads.

for a different measure of the asynchrony which may be
more suitable to prove convergence for a larger set of initial
conditions.
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