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The coverage problem for loitering Dubins vehicles

Ketan Savla Francesco Bullo Emilio Frazzoli

Abstract— In this paper we study a facility location problem
for groups of Dubins vehicles, i.e., nonholonomic vehicles
that are constrained to move along planar paths of bounded
curvature, without reversing direction. Given a compact region
and a group of Dubins vehicles, the coverage problem is to
minimize the worst-case traveling time from any vehicle to any
point in the region. Since the vehicles cannot hover, we assume
that they fly along static closed curves calledloitering curves.
The paper presents circular loitering patterns for a Dubins
vehicle and for a group of Dubins vehicles that minimize the
worst-case traveling time in sufficiently large regions. We do
this by establishing an analogy to the disk covering problem.

I. I NTRODUCTION

One of the prototypical missions for Uninhabited Aerial
Vehicles, e.g., in environmental monitoring, security, ormil-
itary setting, is wide-area surveillance. A low-altitude UAV
in such a mission must provide coverage of a certain region
and investigate events of interest (“targets”) as they manifest
themselves. In particular, we are interested in cases in which
close-range information is required on targets detected by
high-altitude aircraft, spacecraft, or ground spotters, and the
UAVs must proceed to the location of the detected targets to
gather on-site information.

Variations of problems falling in this class have been
studied in a number of papers in the recent past, e.g., see
[1], [2], [3], [4]. In these papers, the problem is set up in
such a way that the location of targets is known a priori
and a strategy is computed that attempts to optimize the
coverage cost of servicing the known targets. Coordination
algorithms for distributed sensing task were proposed and
analyzed in [5]. A limitation of the results presented in [5]is
the fact that omni-directional or locally controllable vehicles
were considered in the problem formulation. Because of this
assumption, the results are not applicable to many vehicles
of interest, such as aircraft and car-like robots.

In [6] we presented the results of our work for design-
ing closed tours through a set of given points for a non-
holonomic vehicle that is constrained to move along planar
paths of bounded curvature, without reversing direction. This
model is also known as the Dubins vehicle in literature [7].
Path planning for groups of Dubins vehicles has gained
considerable interest in recent past [8], [9].

In contrast tosimpler vehicles [5] which can wait at a
single location while they are idle, Dubins vehicles have
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to loiter while they are waiting for targets to appear in
the region. As a consequence, we need to characterize the
configuration of the vehicles at the appearance of new targets
in terms of Dubins paths, that we will callloitering patterns.

The main contributions of this paper are as follows. First,
we study the reachable set of Dubins vehicle and characterize
some of its properties that are particularly useful for the
problem at hand. Most importantly, we introduce a certain
“covering problem” where a circle or a sector with given
parameters is to be contained in the Dubins reachable set of
minimal time. Second, we characterize optimal circular loi-
tering for a single Dubins vehicle by exploiting the rotational
symmetry of the problem and the simple-connectedness of
the Dubins reachable set. Third, we design efficient circular
loitering patterns for a single team of multiple Dubins vehicle
and provide a bound on the achievable performance for
sufficiently large environments. Finally, we consider the case
of multiple teams composed of the same number of vehicles.
We propose a computational approach to computing loiter-
ing patterns based on (1) partitioning the environment into
Voronoi partitions generated by virtual centers, (2) moving
the virtual centers in such a way as to solve a minimum-
radius disk-covering problem, and (3) designing efficient
loitering patterns for each team in its corresponding Voronoi
cell.

The paper is organized as follows. In Section II, we setup
the problem and introduce notations that will be used in
the rest of the paper. Section III carries a discussion on the
reachable set of the Dubins vehicle. The single vehicle and
the single team case are considered in Sections IV and V,
respectively. In Section VI, we consider the multiple uniform
team case. Finally, we conclude with a few remarks about
future work in Section VII. Due to lack of space, the proofs
are omitted are in this paper; they can found in [10].

II. PROBLEM SETUP AND NOTATIONS

In this section we setup the main problem of the paper
and review some basic required notation.

A. Dubins vehicle and feasible path

A Dubins vehicleis a planar vehicle that is constrained to
move along paths of bounded curvature, without reversing
direction and maintaining a constant speed. We will design
loitering patterns forn Dubins vehicle in a compact region
Q ⊂ R

2, where R is the set of real numbers. Designing
loitering patterns encompasses deciding the distributionof
vehicles into teams, specifying the loitering curves for each
team and the motion of vehicles along their respective
loitering curves. Given a durationT > 0, let γ : [0, T ] → R

2

be aclosed feasible curve for the Dubins vehicleor aclosed



Dubins path, i.e., γ is a curve that is twice differentiable
almost anywhere,‖γ′(t)‖ = 1 for all t ∈ [0, T ], and the
magnitude of the curvature ofγ is bounded above by1/ρ,
whereρ > 0 is the minimum turning radius andγ(0) = γ(1).
The configuration of the Dubins vehicle traversing the curve
γ(t) will be denoted bygγ(t) ∈ SE(2), where SE(2) is
the special Euclidean group of dimension 2, i.e.,gγ(t) =
(γ(t),ArcTan(γ′(t))). Let the symbolI ∈ SE(2) represent
the identity element of theSE(2) group. Specifically,I will
correspond to that state of the Dubins vehicle where it is
positioned at the origin and its heading is aligned with the
positive X axis. LetΓρ = {γ | γ is a closed Dubins path}.
The loitering curves that are designed in this paper belong
to Γρ.

B. The coverage problem

Given n vehicles, ateam compositioncan be represented
as{m1, . . . ,mn}, wheremi ∈ N ∪ {0} and

∑n
i=1 mi = n.

Here N represents the set of natural numbers. In particular,
if there areℓ ≤ n teams, then the team composition will be
given by{m1, . . . ,mℓ, 0, . . . , 0}. LetM(n) denote the set of
all such possible team compositions. The idea is to partition
Q into ℓ sub-regions such that each team is responsible for
one sub-region. Givenℓ teams, letΛ = (γ1, . . . , γℓ) ∈ Γℓ

ρ

be a set of closed Dubins path for the teams. These curves
will represent theloitering curvesfor the Dubins vehicle.
In this paper we will be concerned with minimizing the
worst case traveling time to any arbitrary (unknown) target
point inQ by theclosestDubins vehicle. Since we constrain
the vehicles to move at constant (unit) speed along the
curves, one can prove by symmetry that the vehicles that
are part of the same team are equally spaced along their
common loitering curve and move in the same direction
(i.e., clockwise/counter-clockwise). Therefore, given aregion
Q and a team compositionM = (m1, . . . ,mℓ, 0, . . . , 0), Λ
completely specifies the loiteringpattern.

We now define the coverage cost associated with a given
loitering pattern. LetLρ : SE(2) × R

2 → R≥0 be the
length of the shortest Dubins path from initial position and
orientation, described by an element ofSE(2), to a point
q ∈ R

2, whereR is the set of real numbers andR≥0 is the set
of non-negative real numbers. Recall thatLρ is continuous
almost everywhere [11].

Definition 2.1 (Coverage cost):Given a regionQ, a team
compositionM , and a loitering patternΛ = (γ1, . . . , γℓ)
with durations(T1, . . . , Tℓ), define thecoverage costassoci-
ated with the loitering pattern by

TQ,M (Λ) := sup
q∈Q

min
i∈{1,...,ℓ}

sup
s∈[0,

Ti
mi

)

min
j∈{1,...,mi}

Lρ

(
gγi

(
s +

(j − 1)Ti

mi

)
, q

)
.

The coverage cost gives the worst-case traveling time from
any vehicle to any point in the region. In the rest of the
paper, we will usecoverage costand cost interchangeably.
The minimum cost associated with the given regionQ and

team compositionM is defined by

T ∗
Q,M := inf

Λ∈Γℓ
ρ

TQ,M (Λ).

In general, the optimal loitering patterns will have to be
computed based on the shape of the regionQ. However, we
will concentrate oncircular loitering patterns; the rationale
for doing so is that it (simplifies the problem and) allows
us to provide algorithms and bounds that are independent
of the particular shape of the environment. Furthermore, it
seems unlikely that UAVs in the field will be able to compute
optimal loitering patterns as their assigned regions change in
real time; on the other hand, determining the location of the
center, and the radius of a circular loitering patterns are much
easier tasks.

For a given centerc ∈ R
2, radius r > 0, let O(c, r) :

[0, T ] → R
2 represent a circle of radiusr with center

c. A complete specification of a circular loitering curve
would also involve specifying the direction of motion (i.e.,
clockwise or counter-clockwise) for the vehicles along the
circle. However, in our problem setup, the coverage cost
is not affected by the direction of motion as long as all
the vehicles along the same circular loitering curve have
the same direction of motion. Hence, we shall useO(c, r)
along with an implicit and arbitrary assignment of direction
of motion to it to also denote the corresponding circular
loitering curve.

Since we will be concentrating only on circular curves,
with a slight abuse of notation, we shall useΓρ to denote
the set the circular curves with radii greater than or equal to
ρ, i.e.,

Γρ = {O(c, r) | r ≥ ρ}.

Accordingly, define asub-minimumcost associated with
the given regionQ and team compositionM as:

T̃ ∗
Q,M := inf

Λ∈Γℓ
ρ

TQ,M (Λ), (1)

where the set of loitering curves is now a set of circular
curves with centers atc1, . . . , cℓ and radiir1, . . . , rℓ.

We are now ready to formulate the problem.
Problem 2.2 (Loitering problem):Given n Dubins vehi-

cles with known team composition for a regionQ, design
circular loitering patterns that minimize the cost function
given by equation (1).

C. Geometric notions

We need to define a few more notations and concepts.
Consider a pointc ∈ R

2 and r > 0. For a regionU ⊂
R

2, let Ann(c, U) be the smallest annulus centered atc
and containingU , i.e., Ann(c, U) = ∪q∈UO(c, ‖q − c‖).
Let B(c, r) be the closed ball of radiusr and centered
at c. Let EB(c, U) be the smallest closed ball enclosing
U centered atc, i.e., EB(c, U) = B(c, supq∈U ‖q − c‖),
where ‖.‖ represents the Euclidean norm. LetCR(U) be
the circumradius andCC(U) be the circumcenter of U.
Finally, given a set of anglesθ ∈ [0, 2π), △θ ∈ [0, 2π],
let S(c, r, θ,△θ) be the sector traced by a segment of length
r and fixed atc as it rotates from the angleθ to the angle



Fig. 1. Reachable setsRI (t) for the Dubins vehicle fort = 3ρ, 5ρ and
7ρ.

θ+△θ in the counter-clockwise direction. With this notation,
B(c, r) = S(c, r, 0, 2π).

III. A D UBINS REACHABLE SET COVERING PROBLEM

In this section we state some properties of the Dubins
reachable setwhich shall be useful in the due course of the
paper. Then, we introduce a “set covering problem” that will
play a key role in the design of efficient loitering patterns.

A. Dubins reachable set

Given t ≥ 0 and a Dubins stateh ∈ SE(2), let Rh(t)
denote the reachable set of the Dubins vehicle in timet
starting from stateh, i.e.,

Rh(t) = {q ∈ R
2 | Lρ(h, q) ≤ t}.

Reachable sets for the Dubins vehicle are shown in Fig. 1.
The boundary of the reachable sets consist of arcs of circle
involutes and arcs of epicycloids (for further details on these
families of curves see, e.g., [12]). We shall also use a
slightly truncated version ofRh(t) for sufficiently larget.
We will denote this set bỹRh(t). For the sake of clarity we
explain the construction of̃RI (t) from RI (t) with the help of
Fig. 2 as follows: Consider the axis that is perpendicular to
the heading of the Dubins vehicle. Let this axis intersect
the boundary ofRI (t) at PL(t) and PR(t). Let PB(t)
be the furthest point that lies exactlybehind the Dubins
vehicle. LetHL(t) be the half-plane generated by the line
passing throughPL(t) and PB(t) that does not contain the
origin. Similarly, let HR(t) be the half-plane generated by
the line passing throughPR(t) and PB(t) that does not
contain the origin. TheñRI (t) = RI (t) \ (HL(t)∩HR(t)).
It follows from the above construction that̃Rh(t) is an inner
approximation ofRI (t). Moreover, as observed in Figure 2,
the approximation is fairly tight.

Using the definition of the reachable sets and planar
geometry, one can prove that the following properties hold
true for anyh ∈ SE(2).

PB(t)

PL(t) PR(t)

Fig. 2. Truncation ofRh(t) to form eRh(t).

(P1) Rh(t) is a monotonic function int, i.e., Rh(t′) ⊆
Rh(t) for t′ ≤ t.

There exist constantsκ1 ∈ [5.7, 5.8] andκ2 ∈ [6.5, 6.6] such
that
(P2) Rh(t) is a simply connected set for allt ∈ R≥0 \

[κ1ρ, κ2ρ], and
(P3) For allt ≥ κ2ρ, R̃h(t) is star-shaped1 and the kernel2

of R̃h(t) is the set of points that lie on the axis which
is perpendicular to the heading direction of the vehicle
at h.

B. A set covering problem

In this section, we formulate a set covering problem for the
Dubins reachable set in the form of an optimization problem.
The idea is to find the smallest reachable set that contains a
given subsetof the environment under some constraints on
the relative position between the reachable set and the subset
of the environment. The motivation for this will become
clearer in subsequent sections, where we assign subsets of
the environment to each vehicle and then use the set covering
problem to design circular loitering patterns. For the purpose
of the optimization problem, we will tacitly replaceRh(t)
by its tight inner approximatioñRh(t) for t ≥ κ2ρ.

For a given positive integerm and t > 0, we state the
following optimization problem with variablesr, λ andθ.

maximize r,

subj. to r > 0,

λ > ρ,

0 6 θ 6 2π,

S
(
(0, λ), r, θ,

2π

m

)
⊆ RI (t).

For a fixed m, we associate the solution of this
optimization problem with functionsRm,Λm,Θm :

1A region U is called star-shaped if there is a pointa ∈ U such that the
line segmentāb is contained inU for all b ∈ U . Here āb = {ta + (1 −
t)b | t ∈ [0, 1]}. We then say thatU is star-shaped with respect toa.

2The kernel of a star-shaped regionU is the set of points from which the
entire setU is visible.



R≥0 → R≥0, m = 1, 2, . . ., which are defined so that(
Rm(t),Λm(t),Θm(t)

)
is the value of(r, λ, θ) at optimality

for the above optimization problem.
Geometrically, for a fixedm and t, a solution to the

optimization problem gives the specifications of the largest
sector extending an angle2π

m
at the origin such that it is

contained insideRI (t) and its center lies on theY axis and
at least at a distance ofρ from the origin. Specifically, the
radius of such a sector is given byRm(t), its center is at
Λm(t) and it is contained between the rays making angles
Θm(t) andΘm(t)+ 2π

m
with theX axis. In particular,R1(t)

denotes the radius of the largest disk contained insideRI (t)
and whose center lies on theY axis and at leastρ distance
from the origin.

Fig. 3. Finding the valueR1(5ρ).

Fig. 4. Finding the valueR1(7ρ).

Fig. 5. Finding the valueR4(7ρ).

One can show that, at fixedm, the functiont 7→ Rm(t) is
a strictly increasing function int. This is also illustrated in
Figs. 6 and 7, where we have plottedR1(t) vs. t andR2(t)
vs. t respectively forρ = 1. Hence, the inverse functionR−1

m

is also well defined
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Fig. 6. Plot ofR1(t) vs. t for ρ = 1.
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Fig. 7. Plot ofR2(t) vs. t for ρ = 1.

IV. T HE SINGLE VEHICLE CASE

In this section we concentrate our attention on the case
whenM = (1), i.e., only one vehicle is assigned the task to
service the regionQ. For brevity in notation for this section,
we shall drop1 from the subscript of the notations for the
various cost functions:T , T ∗ and T̃ ∗.

Theorem 4.1 (Equivalence by rotation):For a regionQ,
ρ > 0, c ∈ R

2 andr ≥ ρ,

(i) TQ(O(c, r)) = TAnn(c,Q)(O(c, r)),
(ii) TQ(O(c, r)) is the minimumt > 0 such thatRI (t) ⊇

∪q∈QO((0, r), ‖c − q‖).

In addition, if TQ(O(c, r)) ∈ R≥0 \ [κ1ρ, κ2ρ], then

TQ(O(c, r)) = TEB(c,Q)(O(c, r)).

We are now ready to state the main result of this section.
Theorem 4.2 (An optimal circular loitering curve):

Given a region Q for which CR(Q) ∈ R≥0 \
[R1(κ1ρ),R1(κ2ρ)], the circle of radiusΛ1

(
R−1

1 (CR(Q))
)

with center atCC(Q) is an optimal circular loitering curve
overQ, and the corresponding coverage cost is given by

T̃ ∗
Q = R−1

1

(
CR(Q)

)
.

Remark 4.3 (Circular loitering patterns are optimal):
Although we have been restricting our attention on circular
loitering curves, one can prove that, for the single vehicle
case, an optimal circular loitering curve is also an optimal
loitering curve, i.e.,

T ∗
Q = T̃ ∗

Q = R−1
1 (CR(Q)).

V. THE SINGLE TEAM CASE

In this section we design a loitering circle for a team
of n Dubins vehicles servicing the regionQ, i.e., M =
(n, 0, . . . , 0). For brevity in notation, we shall denote this
team composition byM = (n). By symmetry, then vehicles
will be placed at an angular distance of2π

n
from each other.

We now introduce the concept ofDubins Voronoi Partition
for vehicles moving along a circular loitering curveO(c, r).



Let g = {g1, . . . , gn} ∈ SE(2)n be a state of then equally
spaced Dubins vehicles loitering along the curveO(c, r).
We note here that, due to the symmetrical placement of the
vehicles along the loitering curve, the setg is completely
defined by specifying any one of its elements. We define the
Dubins Voronoi cellgenerated bygi by

V (gi, c, r, n)

= {q ∈ R
2 | Lρ(gi, q) ≤ Lρ(gj , q) for all j ∈ {1, . . . , n}}.

Theorem 5.1 (Equivalence by rotation):For a regionQ,
ρ > 0, c ∈ R

2, r ≥ ρ andn > 1,

(i) TQ,n(O(c, r)) = TAnn(c,Q),n(O(c, r)),
(ii) Pick any h ∈ SE(2) along the circular loitering curve

O(c, r). Then,TQ,n(O(c, r)) is the minimumt > 0
such thatRh(t) ⊇ V (h, c, r, n) ∩ Ann(c,Q).

Theorem 5.1 suggests how to compute the optimal circular
trajectory for a team of Dubins vehicles by converting it
into an optimization problem for a single vehicle. However,
solving this optimization problem requires the knowledge of
the shape of Dubins Voronoi partitions. Even though there
is an element of rotational symmetry in our case, the shapes
of the Dubins Voronoi partition (e.g., see Figure 8) are not
easy enough to lend themselves to analysis. Hence, we shall
approximate the Voronoi partitions by sectors as shown in
Figure 9. This approximation helps in deriving upper bounds
on the cost function.

Fig. 8. Dubins Voronoi partition for 4 vehicles loitering symmetrically
along a common circular curve.

Fig. 9. Approximation of Dubins Voronoi partition by sectors.

We are now ready to state the main result of the section.

Theorem 5.2: (An upper bound on the coverage cost
for a single team in large environments)Given a region
Q for which CR(Q) ≥ Rn(κ2ρ), the circle of radius
Λn

(
R−1

n (CR(Q))
)

with center atCC(Q) is an approxima-
tion to the optimal circular loitering curve overQ, and the
corresponding upper bound on the coverage cost is given by

T̃ ∗
Q,n ≤ R−1

n (CR(Q)).

Remark 5.3:The bound obtained in Theorem 5.2 is tight-
est among the bounds possible by approximations of Dubins
Voronoi partitions for vehicles moving along circular curves
by sectors of circles.

VI. T HE MULTIPLE UNIFORM TEAM CASE

In this section we consider the multiple team case, concen-
trating on the case when the teams haveuniformcomposition.
A group ofn vehicles comprising ofℓ teams is said to have
uniform team composition ifn is a multiple of ℓ and the
team composition is of the form(n

l
, . . . , n

l
, 0, . . . , 0). We

shall show that, for asufficiently large and convexregion
Q, an upper bound on the cost of coverage by thel team
of loitering Dubins vehicles can be obtained by solving a
related disk covering problem.

We first briefly describe the disk-covering problem or,
more precisely, the version of the disk covering problem that
is relevant for our purposes here. In our context, the disk
covering problem can be stated as follows: given a convex
region Q and an integerℓ, find the smallest real number
RDCQ(ℓ) and a set of locations{c1, . . . , cℓ} such that theℓ
disks, each of radiusRDCQ(ℓ) and centered at{c1, . . . , cℓ}
coverQ, that is,Q ⊂ ∪i∈{1,...,ℓ} B(ci,RDCQ(ℓ)). We shall
refer to

(
RDCQ(ℓ), {c1, . . . , cℓ}

)
as the solution to the disk

covering problem forQ.
Disk covering problems have a long and beautiful his-

tory [14]. Many variants of the problem (e.g., geometric
minimum disk cover problem) find their applications in nu-
merous engineering applications (e.g., localization in sensor
networks).

In [13] distributed algorithms were designed to solve the
disk covering problem via a dynamical systems approach.
Specifically, the paper proposes themove toward the furthest
andmove toward the circumcenteralgorithms for a group of
ℓ mobile robots. In themove toward the furthestalgorithm,
each “disk center” moves towards the furthest vertex of
its Voronoi cell (inside the Voronoi partition generated by
all “disk centers”). In the ’move toward the circumcenter’
algorithm, each disk-center moves toward the circumcenter
of its Voronoi cell. In both algorithms the Voronoi partition
is continuously updated as the disk centers move. Asymptoti-
cally, an execution of one of these two algorithms computes
a locally optimal solution to the disk covering problem in
the sense that the location of these robots correspond to
the centersc1, . . . , cℓ and the largest of the circumradii of
the Voronoi partitions corresponds toRDCQ(ℓ). Moreover,
these distributed control laws can be implemented as local
interactions between the disk centers. In our setting, this
would imply that this would require interaction only between



Fig. 10. “Move-toward-the-circumcenter” algorithm for16 disks in a convex polygonal domain. The left (respectively, right) figure illustrates the initial
(respectively, final) locations and Voronoi partition. Thecentral figure illustrates the network evolution. After20 sec., the disk radius is approximately
0.43273 m. Simulations taken from [13].

neighboring teams of vehicles, i.e., teams whose center of
rotations are Voronoi neighbors. An execution of themove
toward the circumcenteralgorithm is illustrated in Figure 10.

We now state the following result which gives an upper
bound on the coverage cost for multiple uniform teams of
loitering Dubins vehicles.

Theorem 6.1:Consider a group ofn Dubins vehicles
divided into ℓ teams of uniform composition loitering in
a convex regionQ. Let

(
RDCQ(ℓ), {c1, . . . , cℓ}

)
be the

solution to the disk covering problem forQ. If Area(Q) ≥
ℓπ R2

n
ℓ
(κ2ρ), then

T̃ ∗
Q,( n

ℓ
,..., n

ℓ
,0,...,0) ≤ R−1

n
ℓ

(
RDCQ(ℓ)

)
.

Moreover, the loitering pattern which achieves this up-
per bound is the set of circular curves, each of radius
Λn

ℓ

(
R−1

n
ℓ

(
RDCQ(ℓ)

))
, and with centers at{c1, . . . , cℓ}.

Using the control algorithms from [13], one can design a
computational approach to computing loitering patterns as
follows:

(i) Partition the environment into Voronoi partitions gen-
erated by virtual centers.

(ii) Move the virtual centers in such a way as to solve a
minimum-radius disk-covering problem

(iii) Designing efficient loitering patterns for each team in
its corresponding Voronoi cell.

VII. C ONCLUSION

In this paper, we considered the coverage problem for
loitering Dubins vehicles. We have characterized the con-
figuration of the vehicles at the appearance of new targets
in terms of Dubins paths, that we callloitering patterns. We
defined the coverage cost to be the worst-case traveling time
from any vehicle to any point in the region. Optimal circular
loitering for a single vehicle and efficient circular loitering
for a single team of vehicles were characterized. Finally, by
establishing an analogy to the disk-covering problem, we
proposed a computational approach to characterize efficient
loitering patterns for multiple uniform teams.

This paper leaves numerous important extensions open
for further research. One needs to study the functionsR−1

n

to derive closed form expression for the bounds derived in

this paper. It would be interesting to consider the coverage
problem for other meaningful cost functions. The problem
of multi non-uniform team of vehicles is also important.
Determining the ideal team composition for a given region
provides an exciting challenge too.
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