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The coverage problem for loitering Dubins vehicles

Ketan Savla Francesco Bullo Emilio Frazzoli

Abstract— In this paper we study a facility location problem  to loiter while they are waiting for targets to appear in
for groups of Dubins vehicles, i.e., nonholonomic vehicles the region. As a consequence, we need to characterize the
that are constrained to move along planar paths of bounded qntiguration of the vehicles at the appearance of new rget

curvature, without reversing direction. Given a compact region . . . o
and a group of Dubins vehicles, the coverage problem is to " terms of Dubins paths, that we will caditering patterns

minimize the worst-case traveling time from any vehicle to any ~ The main contributions of this paper are as follows. First,
point in the region. Since the vehicles cannot hover, we assume we study the reachable set of Dubins vehicle and charaeteriz
that they fly along static closed curves calledoitering curves.  some of its properties that are particularly useful for the
The paper presentscircular loitering patterns for a Dubins . p1em gt hand. Most importantly, we introduce a certain
vehicle and for a group of Dubins vehicles that minimize the . N . . .
worst-case traveling time in sufficiently large regions. We do  COVering problem” where a circle or a sector with given
this by establishing an analogy to the disk covering problem. Pparameters is to be contained in the Dubins reachable set of
minimal time. Second, we characterize optimal circular loi
l. INTRODUCTION tering for a single Dubins vehicle by exploiting the rotatib

One of the prototypical missions for Uninhabited Aerialsymmetry of the problem and the simple-connectedness of
Vehicles, e.g., in environmental monitoring, securitynait-  the Dubins reachable set. Third, we design efficient circula
itary setting, is wide-area surveillance. A low-altitudé\J loitering patterns for a single team of multiple Dubins i
in such a mission must provide coverage of a certain regicand provide a bound on the achievable performance for
and investigate events of interest (“targets”) as they feani sufficiently large environments. Finally, we consider thee
themselves. In particular, we are interested in cases iatwhiof multiple teams composed of the same number of vehicles.
close-range information is required on targets detected Bye propose a computational approach to computing loiter-
high-altitude aircraft, spacecraft, or ground spotters] the ing patterns based on (1) partitioning the environment into
UAVs must proceed to the location of the detected targets Moronoi partitions generated by virtual centers, (2) mavin
gather on-site information. the virtual centers in such a way as to solve a minimum-

Variations of problems falling in this class have beerfadius disk-covering problem, and (3) designing efficient
studied in a number of papers in the recent past, e.g., skdering patterns for each team in its corresponding Voron
[1], [2], [3], [4]. In these papers, the problem is set up ircell.
such a way that the location of targets is known a priori The paper is organized as follows. In Section II, we setup
and a strategy is computed that attempts to optimize ttibe problem and introduce notations that will be used in
coverage cost of servicing the known targets. Coordinatiathe rest of the paper. Section Ill carries a discussion on the
algorithms for distributed sensing task were proposed aridachable set of the Dubins vehicle. The single vehicle and
analyzed in [5]. A limitation of the results presented in §&] the single team case are considered in Sections IV and V,
the fact that omni-directional or locally controllable veles  respectively. In Section VI, we consider the multiple unifio
were considered in the problem formulation. Because of thieam case. Finally, we conclude with a few remarks about
assumption, the results are not applicable to many vehiclégture work in Section VII. Due to lack of space, the proofs
of interest, such as aircraft and car-like robots. are omitted are in this paper; they can found in [10].

In [6] we presented the results of our work for design-
ing closed tours through a set of given points for a non-
holonomic vehicle that is constrained to move along planar In this section we setup the main problem of the paper
paths of bounded curvature, without reversing directidrisT and review some basic required notation.
model is also known as the Dubins vehicle in literature [7]. . . .

Path planning for groups of Dubins vehicles has gaineé' Dubins vehicle and feasible path
considerable interest in recent past [8], [9]. A Dubins vehicles a planar vehicle that is constrained to

In contrast tosimpler vehicles [5] which can wait at a move along paths of bounded curvature, without reversing
single location while they are idle, Dubins vehicles havelirection and maintaining a constant speed. We will design

loitering patterns fom Dubins vehicle in a compact region
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II. PROBLEM SETUP AND NOTATIONS



Dubins path i.e., v is a curve that is twice differentiable team compositionV/ is defined by
almost anywhere||y/(¢)|| = 1 for all ¢ € [0,7], and the Tt o inf To (A

magnitude of the curvature of is bounded above by/p, oM = ML o.m(A).
wherep > 0 is the minimum turning radius and0) = ~(1). ’

The configuration of the Dubins vehicle traversing the curve In g(ingrgl, th; opilr:nal rl}onenn&gatterns”i'/vlll have to be
+(t) will be denoted byg, () € SE(2), where SE(2) is cOmPuted based on the shape of the regibrHowever, we

the special Euclidean group of dimension 2, i,(t) = will concentrate orcircular loitering patterns the rationale

for doing so is that it (simplifies the problem and) allows
(v(t), ArcTan(+/(t))). Let the symboll € SE(2) represent . . )
the identity element of th&E(2) group. Specifically) wil us to provide algorithms and bounds that are independent

correspond to that state of the Dubins vehicle where it igf the paﬁ?:(cﬂla{hs?%%of tTﬁ i.migon.:rsm' tl)zlurtthermoret, It
positioned at the origin and its heading is aligned with thgS€MS unlikely tha s In the Tield will be able fo compute

" . : . optimal loitering patterns as their assigned regions chamg
ositive X axis. Letl', = is a closed Dubins path . 2 .
P o =171 pa} al time; on the other hand, determining the location of the

;[)hg I.0|ter|ng curves that are designed in this paper belor{inter, and the radius of a circular loitering patterns anelm
r easier tasks.

For a given center € R?, radiusr > 0, let O(c,r) :
[0,7] — R? represent a circle of radius with center

Givenn vehicles, ateam compositioran be represented .. A complete specification of a circular loitering curve
as{mi,...,mn}, wherem; € NU {0} and}"" , m; =n. would also involve specifying the direction of motion (j.e.
Here N represents the set of natural numbers. In particulagiockwise or counter-clockwise) for the vehicles along the
if there are¢ < n teams, then the team composition will becircle. However, in our problem setup, the coverage cost
given by{my,...,m,0,...,0}. Let M(n) denote the set of is not affected by the direction of motion as long as all
all such possible team compositions. The idea is to pattitiodhe vehicles along the same circular loitering curve have
Q into £ sub-regions such that each team is responsible fgfie same direction of motion. Hence, we shall @g:, )
one sub-region. Giveri teams, letA = (v1,...,7%) € Ty along with an implicit and arbitrary assignment of direntio
be a set of closed Dubins path for the teams. These curvgs motion to it to also denote the corresponding circular
will represent theloitering curvesfor the Dubins vehicle. |ojtering curve.
In this paper we will be concerned with minimizing the Since we will be concentrating only on circular curves,
worst case traveling time to any arbitrary (unknown) targefith a slight abuse of notation, we shall uEg to denote

point in Q by theclosestDubins vehicle. Since we constrain the set the circular curves with radii greater than or equal t
the vehicles to move at constant (unit) speed along thg je.,

curves, one can prove by symmetry that the vehicles that L, ={0(c,r)|r>p}.
are part of the same team are equally spaced along their ) ] o ) )
common loitering curve and move in the same direction Accordingly, define asub-minimumcost associated with
(i.e., clockwise/counter-clockwise). Therefore, giveregion ~ the given regionQ and team composition/ as:
Q and a team c_o_mpositioM = (my,...,mg0,...,0), A ’fg* v = inf Tor(A), 1)
completely specifies the loiteringattern ' Aery

We now define the coverage cost associated with & giVgfhere the set of loitering curves is now a set of circular

B. The coverage problem

loitering pattern. LetZ, : SE(2) x R? — Rxg be the cynes with centers aty, ..., ¢, and radiiry, ..., 7.
length of the shortest Dubins path from initial position and \ye are now ready to formulate the problem.
orientation, described by an element $¥(2), to @ point  proplem 2.2 (Loitering problem)Given n Dubins vehi-

q € R*, whereR is the set of real numbers aiid is the set  ¢jes with known team composition for a regiad, design
of non-negative real numbers. Recall thaf is continuous  jrcylar loitering patterns that minimize the cost funatio

almost everywhere [11]. given by equation (1).
Definition 2.1 (Coverage cost)Given a regionQ, a team _ .
composition M, and a loitering patterm\ = (v,...,v,) C. Geometric notions
with durations(71, . .., Ty), define thecoverage cosassoci- We need to define a few more notations and concepts.
ated with the loitering pattern by Consider a pointc € R? andr > 0. For a regionU C
R?, let Ann(c,U) be the smallest annulus centered cat
To,m(A) :==sup min and containingU, i.e., Ann(c,U) = Uz O(c, |lg — ¢|).
q€Qic{l.t} ‘ Let B(c,r) be the closed ball of radius and centered
sup  min L, (9%: <S+ (- 1)Ti)7q). at c. Let EB(c,U) be the smallest closed ball enclosing
sefo, L) € {Lmmi} m; U centered at, i.e., EB(c,U) = B(c,sup,ep llg — cll),

where ||.|| represents the Euclidean norm. LE@R(U) be
The coverage cost gives the worst-case traveling time frothe circumradius and”C(U) be the circumcenter of U.
any vehicle to any point in the region. In the rest of therinally, given a set of angle8 < [0,2x), A8 € [0,2x7],
paper, we will usecoverage costand costinterchangeably. let S(c,r, 6, /0) be the sector traced by a segment of length
The minimum cost associated with the given regi@rand » and fixed atc as it rotates from the angke to the angle



Pp(t)

Fig. 2. Truncation ofR;, (t) to form Ry, (t).

Fig. 1. Reachable se®(t) for the Dubins vehicle fot = 3p, 5p and
p. (P1) Rn(t) is a monotonic function ir, i.e., Ry(t') C
Rn(t) for ¢’ <t.
) ) . ) ) . There exist constants, € [5.7,5.8] andks € [6.5,6.6] such
0-+/\0 in the counter-clockwise direction. With this notation,y, 1€l } 2 €l ]

B(e,r) =S(e,r,0,2m). (P2) Ry(t) is a simply connected set for afl € R \

[1l. A D UBINS REACHABLE SET COVERING PROBLEM [k1p, K2p], and

gP3) For allt > rap, Ry (t) is star-shapedand the kernél

of R, (t) is the set of points that lie on the axis which
is perpendicular to the heading direction of the vehicle
at h.

In this section we state some properties of the Dubin
reachable setvhich shall be useful in the due course of the
paper. Then, we introduce a “set covering problem” that will
play a key role in the design of efficient loitering patterns.

B. A set covering problem

In this section, we formulate a set covering problem for the
Givent > 0 and a Dubins staté € SE(2), let Rn(f)  pubins reachable set in the form of an optimization problem.
denote the reachable set of the Dubins vehicle in time The jdea is to find the smallest reachable set that contains a
starting from state, i.e., given subsetof the environment under some constraints on
2 the relative position between the reachable set and thesubs
Ri(t) =g € BT [ Ly(h,q) < t}. of the envirponment. The motivation for this will become
Reachable sets for the Dubins vehicle are shown in Fig. tlearer in subsequent sections, where we assign subsets of
The boundary of the reachable sets consist of arcs of cirdlee environment to each vehicle and then use the set covering
involutes and arcs of epicycloids (for further details oaséa  problem to design circular loitering patterns. For the jogp
families of curves see, e.g., [12]). We shall also use af the optimization problem, we will tacitly replac®;, (t)
slightly truncated version ofR;,(t) for sufficiently larget. by its tight inner approximatioky (t) for ¢t > k2p.
We will denote this set bR, (t). For the sake of clarity we ~ For a given positive integem and¢ > 0, we state the
explain the construction &®, (¢) from R, (t) with the help of following optimization problem with variables, A\ and 6.
Fig. 2 as follows: Consider the axis that is perpendicular to
the heading of the Dubins vehicle. Let this axis intersect maximize r,
the boundary ofR,(t) at Pr(t) and Pg(t). Let Pg(t)

A. Dubins reachable set

. : \ : subj. to r >0,
be the furthest point that lies exactlehind the Dubins
vehicle. LetH (t) be the half-plane generated by the line AZp,
passing throughP(t) and Pp(¢) that does not contain the 0<0<2m,
origin. Similarly, let Hz(t) be the half-plane generated by 2m
the line passing througtPr(t) and Pp(t) that does not S <(0’/\)’r’9’ E) S Ri(t)-

contain the origin. TherR;(¢) = Ri(¢) \ (HL(t) VHg(1)). For a fixed m, we associate the solution of this
It follows from the above construction th&, (¢) is an inner  gptimization problem with  functionsR,,, Ay, O,
approximation ofR, (t). Moreover, as observed in Figure 2, ’

the approximation is fairly tight. LA region U is called star-shaped if there is a poing U such that the

; St ine segmentb is contained inU for all b € U. Hereab = {ta + (1 —
Using the definition of the reachable sets and plané bl [0.1]}. We then say thal is star-shaped with respect o

geometry, one can prove that the following properties hold 21y emel of a star-shaped regibhis the set of points from which the
true for anyh € SE(2). entire setU is visible.



R>o — Rsg, m = 1,2,..., which are defined so that

(R (1), Am(t), 0 (1)) is the value of r, A, #) at optimality
for the above optimization problem.
Geometrically, for a fixedm and ¢, a solution to the

optimization problem gives the specifications of the larges
sector extending an angl%n71 at the origin such that it is

contained insidér, (¢) and its center lies on th¥ axis and

at least at a distance ¢f from the origin. Specifically, the

radius of such a sector is given W, (¢), its center is at

A, (t) and it is contained between the rays making angles

O, (t) and©,, (t) + 2= with the X axis. In particularR ()
denotes the radius of the largest disk contained in&lde)
and whose center lies on thé axis and at leasp distance
from the origin.

Fig. 3. Finding the valu&(5p).

Fig. 4. Finding the valu&(7p).

Fig. 5. Finding the valu®4(7p).

One can show that, at fixed, the functiont — R, () is
a strictly increasing function im. This is also illustrated in
Figs. 6 and 7, where we have plott€d(¢) vs.t andRa(t)
vs. t respectively fop = 1. Hence, the inverse functidr,,'
is also well defined

Fig. 6. Plot ofRy(t) vs.t for p = 1.

Ra(t)
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Fig. 7. Plot ofRa(t) vs.t for p = 1.

IV. THE SINGLE VEHICLE CASE

In this section we concentrate our attention on the case
whenM = (1), i.e., only one vehicle is assigned the task to
service the regior®. For brevity in notation for this section,
we shall dropl from the subscript of the notations for the
various cost functions7, 7* and 7 *.

Theorem 4.1 (Equivalence by rotationffor a regionQ,
p>0,cecR?andr > p,

(i) TQ(O(Cv 7”)) = TAnn(C,Q)(O(Cv T))!

(i) Z7o(O(e,r)) is the minimumt > 0 such thatR, (t) D
UgeO((0,7), [[e — qll).
In addition, if 7o(O(c,r)) € R>o \ [k1p, k2p], then

TQ(O(C7 T)) = IZEEB(C,Q) (0(67 ’I”))

We are now ready to state the main result of this section.
Theorem 4.2 (An optimal circular loitering curve):
Given a region @ for which CR(Q) € Rx¢ \
[R1(k1p), Ri(k2p)], the circle of radius\; (R;'(CR(Q)))
with center atCC(Q) is an optimal circular loitering curve
over @, and the corresponding coverage cost is given by

75 =Ry (CR(Q)).

Remark 4.3 (Circular loitering patterns are optimal):
Although we have been restricting our attention on circular
loitering curves, one can prove that, for the single vehicle
case, an optimal circular loitering curve is also an optimal
loitering curve, i.e.,

75 =75 = Ry (CR(Q)).
V. THE SINGLE TEAM CASE

In this section we design a loitering circle for a team
of n Dubins vehicles servicing the regio@, i.e., M =
(n,0,...,0). For brevity in notation, we shall denote this
team composition b}/ = (n). By symmetry, the: vehicles
will be placed at an angular distance%;;f from each other.
We now introduce the concept @fubins Voronoi Partition
for vehicles moving along a circular loitering cur@(c, r).



Let g = {g1,...,9.} € SE(2)" be a state of the. equally Theorem 5.2: (An upper bound on the coverage cost
spaced Dubins vehicles loitering along the cu®éc,r). for a single team in large environment§iven a region
We note here that, due to the symmetrical placement of th¢ for which CR(Q) > R,(k2p), the circle of radius
vehicles along the loitering curve, the setis completely An(Rgl(CR(Q))) with center atCC(Q) is an approxima-
defined by specifying any one of its elements. We define tht@n to the optimal circular loitering curve ove&?, and the

Dubins Voronoi cellgenerated by; by corresponding upper bound on the coverage cost is given by
V(gi,c,r,m) 75, < R, ' (CR(Q)).
— 2 . . y
={a € R [ Lp(gi,q) < L,(g;,q) for all j € {L,...,n}}. Remark 5.3:The bound obtained in Theorem 5.2 is tight-
Theorem 5.1 (Equivalence by rotationffor a regionQ, €St among the bounds possible by approximations of Dubins
p>0,ceR2 r>pandn > 1, Voronoi partitions for vehicles moving along circular casv
() Ton(O(e.r)) = Tam(e.01m (O(c:1)), by sectors of circles.
(i) Pick any h € SE(2) along the circular loitering curve V1. THE MULTIPLE UNIFORM TEAM CASE

gj(sﬁrt)ﬁa-{]g:?g)%”‘;(g(? ;)L;sﬂtginrzng;umt >0 In this section we consider the multiple team case, concen-
= L P = trating on the case when the teams hamgormcomposition.

Theorem 5.1 suggests how to compute the optimal circuldy group ofn vehicles comprising of teams is said to have
trajectory for a team of Dubins vehicles by converting ituniform team composition if. is a multiple of ¢ and the
into an optimization problem for a single vehicle. Howeverfeam composition is of the form?%,..., %,0,...,0). We
solving this optimization problem requires the knowledde oshall show that, for aufficiently large and convesegion
the shape of Dubins Voronoi partitions. Even though ther€, an upper bound on the cost of coverage by lttteam
is an element of rotational symmetry in our case, the shapes loitering Dubins vehicles can be obtained by solving a
of the Dubins Voronoi partition (e.g., see Figure 8) are notelated disk covering problem.
easy enough to lend themselves to analysis. Hence, we shalWe first briefly describe the disk-covering problem or,
approximate the Voronoi partitions by sectors as shown imore precisely, the version of the disk covering problent tha
Figure 9. This approximation helps in deriving upper boundis relevant for our purposes here. In our context, the disk
on the cost function. covering problem can be stated as follows: given a convex
region @ and an integer, find the smallest real number
RDCg(¢) and a set of locationécy, . .., ¢,} such that the/
disks, each of radiuRDCg(¢) and centered afcy, ..., cs}
cover Q, that is,Q C Ujeqi,....ey B(ci, RDCg(£)). We shalll
refer to(RDCq(¢), {c1,...,c/}) as the solution to the disk
covering problem forQ.

Disk covering problems have a long and beautiful his-
tory [14]. Many variants of the problem (e.g., geometric
minimum disk cover problem) find their applications in nu-
merous engineering applications (e.g., localization imsse
networks).

In [13] distributed algorithms were designed to solve the
Fig. 8. Dubins Voronoi partition for 4 vehicles loitering raynetrically ~ disk covering problem via a dynamical systems approach.
along a common circular curve. Specifically, the paper proposes tmeve toward the furthest
andmove toward the circumcenteatgorithms for a group of
¢ mobile robots. In thenove toward the furthestlgorithm,
each “disk center” moves towards the furthest vertex of
its Voronoi cell (inside the Voronoi partition generated by
all “disk centers”). In the move toward the circumcenter
algorithm, each disk-center moves toward the circumcenter
of its Voronoi cell. In both algorithms the Voronoi partitio
is continuously updated as the disk centers move. Asymptoti
cally, an execution of one of these two algorithms computes
a locally optimal solution to the disk covering problem in
the sense that the location of these robots correspond to
the centersy,...,c, and the largest of the circumradii of
the Voronoi partitions corresponds RDCg(¢). Moreover,

Fig. 9. Approximation of Dubins Voronoi partition by sectors these distributed control laws can be implemented as local

interactions between the disk centers. In our setting, this
We are now ready to state the main result of the sectiomvould imply that this would require interaction only betwee




Fig. 10. “Move-toward-the-circumcenter” algorithm fa6 disks in a convex polygonal domain. The left (respectivabht) figure illustrates the initial
(respectively, final) locations and Voronoi partition. Teentral figure illustrates the network evolution. Afted sec., the disk radius is approximately
0.43273 m. Simulations taken from [13].

neighboringteams of vehicles, i.e., teams whose center dhis paper. It would be interesting to consider the coverage
rotations are Voronoi neighbors. An execution of theve problem for other meaningful cost functions. The problem
toward the circumcentealgorithm is illustrated in Figure 10. of multi non-uniformteam of vehicles is also important.
We now state the following result which gives an uppebDetermining the ideal team composition for a given region
bound on the coverage cost for multiple uniform teams gfrovides an exciting challenge too.
loitering Dubins vehicles.
Theorem 6.1:Consider a group ofn Dubins vehicles

divided into ¢ teams of uniform composition loitering in [ C. Schumacher, P.R. Chandler, S. J. Rasmussen, and D. Wellsk
allocation for wide area search munitions with variable gettgth,
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