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Abstract

The subjects of this paper are descent algorithms to optimally approximate a strictly convex contour with a polygon. This
classic geometric problem is relevant in interpolation theory and data compression, and has potential applications in robotic
sensor networks. We design gradient descent laws for intuitive performance metrics such as the area of the inner, outer, and
“outer minus inner” approximating polygons. The algorithms position the polygon vertices based on simple feedback ideas
and on limited nearest-neighbor interaction.
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1 Introduction

In this paper we investigate algorithms to compute an
approximating polygon for strictly convex planar con-
tours. We require that the approximating polygon mini-
mizes a certain meaningful error metric. In applications
such as monitoring of environmental processes it is im-
portant to be able to approximate the contour of the
region of interest. Finding efficient or optimal approx-
imating polygons is also relevant in other applications
like solving interpolation problems or data compression.
Constructing an optimal polygonal approximation of a
contour has been a research subject for mathematicians
and engineers across the last three centuries. Still inter-
esting problems continue to remain unsolved especially
for the general setting of non-convex bodies. Bound-
ary estimation and tracking is also a relevant problem
in computer vision [8]. Some references on the bound-
ary estimation problem for robotic sensor networks in-
clude [11,3,2,14]. A final motivation for this work is the
interest in dynamical systems that solve optimization
problems, as described for example in [6]; discrete-time
gradient systems and discrete-time balancing algorithms
for networks of agents are discussed in [9,1] and in [12].

Email addresses: sara@ece.ucsb.edu (Sara Susca),
bullo@engineering.ucsb.edu (Francesco Bullo),
soniamd@ucsd.edu (Sonia Mart́ınez).

As pointed out by the authors in [7], in the 19th cen-
tury it was known how to geometrically characterize the
polygon enclosed in a convex body that minimizes the
area difference between itself and the enclosing convex
body. On the other hand, the geometric characterization
of a polygon, enclosing a given strictly convex body, that
again minimizes the difference of the areas is more com-
plex and less intuitive. To the best of our knowledge, the
earliest reference on this matter appeared only in 1949
by Trost, see [13]. In the 20th century it was also proved
that for a convex planar body the approximation error,
for various useful metrics, goes to zero as 1/N2, where
N is the number of vertices of the interpolating polygon.
For a detailed list of references we refer to the survey [5].

Given N points (ordered in a counter-clockwise fash-
ion) on a strictly convex contour, it is natural to define
an enclosed (i.e., inscribed) polygon and an enclosing
(i.e., circumscribed) polygon to the contour. Here the
faces of the enclosing polygon are subsets of the tan-
gent lines to the strictly convex contour. We adopt three
geometrically-motivated error metrics that the approx-
imating polygon can minimize. They are described as
follows. The first two metrics we consider are the differ-
ence between the area enclosed in the contour and the
following areas: the inner polygon area and the outer
polygon area. The third metric is the difference between
the area of the outer polygon and the area of the inner
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polygon. We derive the expressions, two of which are
novel contributions of this paper, of the error metrics
as functions of the vertex positions of the approximat-
ing polygon. We propose three gradient descent vector
fields for N points to dynamically construct the opti-
mal approximating polygon. The vector fields rely only
on local information about the contour and about the
immediate clockwise and counter-clockwise neighboring
vertices. This property allows the vector fields to be im-
plemented by a network of robots. The robots, placed
around the boundary of a convex set, have to be able to
sense the tangent of the set, to communicate with each
other, and to move. We analyze the dynamical system
behavior of these vector fields and present simulation re-
sults. We also present discrete-time versions that allows
the nodes to reach locally optimal configurations for two
of the metrics introduced.

The paper is organized as follows. In Section 2 we de-
fine some notation and the three performance metrics.
In Sections 3 and 4 we present the continuous time gra-
dient descent algorithms and their respective discrete-
time algorithms to compute the best inner and outer
approximating polygon, while in Section 5 we present
an algorithm to construct the polygon minimizing the
“outer minus inner” area. In Section 6 we present some
simulation results.

2 Problem setup

We review some basic notions on the differential ge-
ometry of curves from [4]. Let Q ⊆ R

2 be a com-
pact, strictly convex body with a twice differen-
tiable boundary ∂Q. Let γ : [0, length(∂Q)] → ∂Q
be the counter-clockwise arclength parametrization of
∂Q. For s ∈ [0, length(∂Q)], define the tangent vec-
tor t(s) = γ′(s) and the unit inward normal vector
n(s) at γ(s) ∈ ∂Q. We then define the curvature
κ : [0, length(∂Q)] → R>0 by requiring that it satisfies

dt(s)

ds
= κ(s)n(s),

dn(s)

ds
= −κ(s)t(s). (1)

With these conventions, the curvature is strictly positive
since Q is strictly convex. For p ∈ ∂Q, define the half-
plane H(p) = {z ∈ R

2 | (p − z) · n(p) ≥ 0}. Given
two points A and B, we let AB denote the segment
between them. In what follows, whenever we consider N
points p1, . . . , pN on ∂Q, we shall (i) assume that they
are ordered counter-clockwise, (ii) assume that N ≥ 3,
and (iii) use the identification 0 ≡ N and N + 1 ≡ 1.
With a slight abuse of notation, we sometimes refer to
tangent and normal vectors at p ∈ ∂Q as t(p) and n(p),
and at pi as ti and ni.

Definition 2.1 (Inner and outer polygons) Let
p1, . . . , pN be the positions of N points on ∂Q and let
P(R2) denote the parts of R

2. Let us define PI : (∂Q)N →

P(R2) by PI(p1, . . . , pN ) = co(p1, . . . , pN ), the inner
polygon generated by the vertices {p1, . . . , pN}. With
a slight abuse of notation, let us define the possibly
unbounded outer polygon PO : (∂Q)N → P(R2) by
PO(p1, . . . , pN ) = H(p1) ∩ · · · ∩ H(pN ).

Definition 2.2 (Tangent lines and tangent connections)
Define the rays ℓ+ : ∂Q → P(R2) and ℓ− : ∂Q → P(R2)
by ℓ+(p) = {p + λt(p) | λ ≥ 0} and ℓ−(p) =
{p + λt(p) | λ ≤ 0}, respectively. Also, let ℓ(p) =
ℓ+(p) ∪ ℓ−(p). A pair (p, q) of points in ∂Q is counter-
clockwise tangent-connected (abbreviated cc-tangent-
connected) if ℓ+(p) ∩ ℓ−(q) 6= ∅.

Lemma 2.3 (Bounded outer polygon) The poly-
gon PO(p1 . . . , pN ) is bounded if and only if all pairs
(pi, pi+1), i ∈ {1, . . . , N}, are cc-tangent-connected.

ni

pi

ℓ−(pi)

ℓ+(pi)∂Q

Q

ti

H(pi)

ℓ+(p2) ∩ ℓ−(p3)

ℓ+(p2) ∩ ℓ−(p3) ℓ+(p1) ∩ ℓ−(p2)
t2

p3

p3

Qp2

p1t2

ℓ+(p1) ∩ ℓ−(p2)

t3

p2

p1

ℓ+(p3) ∩ ℓ−(p1)

Q

t1

t3

t1

Fig. 1. Basic notation. Three points defining a bounded outer
polygon. Three points defining an unbounded outer polygon.

This result is illustrated in Figure 1. Next, we quantify
the approximation error via three different metrics.

Definition 2.4 (Error metrics) Define the inner set
approximation error EI , the outer set approximating er-
ror EO, and the symmetric difference error ES as func-
tions from (∂Q)N to R≥0∪{+∞} defined by, respectively,

EI(p1, . . . , pN ) = Area(Q \ PI(p1, . . . , pN )),

EO(p1, . . . , pN ) = Area(PO(p1, . . . , pN ) \ Q),

ES(p1, . . . , pN ) = Area(PO(p1, . . . , pN ) \ PI(p1, . . . , pN )).

Remark 2.5 (Implementation by group of robots)
In what follows we present descent algorithms for the
minimization of these error metrics. The algorithms can
be implemented by group of robots where we regard pi

as a robot that can sense a portion of ∂Q, communicate
with some robots and move to improve the approxima-
tion of ∂Q. For all the algorithms that follow we establish
how much sensing and communication are required. •
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3 Inner-polygon approximation algorithms

The algorithms of this section are based on the in-
terpolation error EI . Observe that EI(p1, . . . , pN ) =
Area(Q) − Area(PI(p1, . . . , pN )). Recalling that the
points p1, . . . , pN are ordered counter-clockwise, if
(xi, yi) are coordinates of pi, then one can show

Area(PI(p1, . . . , pN )) =
1

2

N
∑

i=1

(xiyi+1 − xi+1yi) .

We now define a dynamical system by projecting the ith
component of the gradient of EI on the tangent ti:

ṗi =

(

ti ·
∂ Area(PI(p1, . . . , pN ))

∂pi

)

ti (2)

=

(

1

2
ti ·

(

yi+1 − yi−1

xi−1 − xi+1

))

ti , i ∈ {1, . . . , N} .

Lemma 3.1 (Gradient flow for EI) If t 7→ η(t) =
(p1(t), . . . , pN (t)) denotes a trajectory of the dynamical
system (2), then EI ◦η is monotonic non-increasing and
η converges asymptotically to the set of critical configu-
rations of EI . A configuration p1, . . . , pN is critical for
EI if and only if, for all i ∈ {1, . . . , N},

ti ⊥

(

yi+1 − yi−1

xi−1 − xi+1

)

, (3)

that is, ni ⊥ (pi+1 − pi−1). Furthermore, if the bound-
ary ∂Q is analytic, then η converges asymptotically to a
critical configuration.

PROOF. By design the dynamical system (2) is a gra-
dient system. As a consequence, EI is monotonic non-
increasing:

d

dt
EI(p1(t), . . . , pN (t))

= −
d

dt
Area(PI(p1(t), . . . , pN (t)))

= −
N
∑

i=1

(

ti ·
∂ Area(PI(p1, . . . , pN ))

∂pi

)2

≤ 0,

and the pi’s asymptotically converge to the set of criti-
cal configurations of EI . If the boundary ∂Q is analytic,
then EI is analytic (because it is a composition of ana-
lytic functions) and, by [10], we can conclude that every
trajectory has finite length and tends to a single point
belonging to the set of critical configurations. 2

Not every critical point of EI is an extremum of EI :
Figure 2 illustrates a saddle point of EI .

Fig. 2. From left to right: saddle point configuration, nearby
configuration that increases the error EI , bear by configura-
tion that decreases the error EI , configuration corresponding
to a minimum error configuration.

Remark 3.2 (Historical notes) According to [7], the
characterization (3) of the critical configurations was al-
ready obtained in the 19th century and the critical point
configurations have the property that the point density
is higher in regions of higher mean curvature. It is be-
lieved [5] that as the number of nodes increases, the
type of configurations that satisfy (3) correspond only
to global error minima. •

Remark 3.3 (Implementation by group of robots)
In the dynamical system (2), the velocity ṗi depends
only on pi−1, pi+1, and ti. Therefore, to implement this
velocity control, every robot has to receive informa-
tion about the positions of its immediate clockwise and
counter-clockwise neighbors and sense the gradient of
the contour at its position. Clearly, the communication
graph is a ring graph. •

3.1 Discrete-time inner-polygon approximation algo-
rithms

Here we present two discrete-time versions of the vec-
tor field in equation (2). Given a strictly convex set Q,
define qmax : (∂Q)2 → ∂Q as follows: qmax(q1, q2) is the
point of the counter-clockwise arc from q1 to q2 whose
tangent to ∂Q is parallel to the segment q1q2. Since Q is
strictly convex, the tangent point is unique and qmax is
well defined.

Algorithm 1. At each discrete time instant k ∈ N and for
each node i ∈ {1, . . . , N} define:

pi(k+1) =

{

qmax(pi−1(k), pi+1(k)), if i ≡ k mod N,

pi(k), if i 6= k mod N .
(4)

Theorem 3.4 (Convergence of Algorithm 1) If
k 7→ η(k) = (p1(k), . . . , pN (k)) denotes a trajectory of
the dynamical system (4), then EI ◦η is monotonic non-
increasing and η converges asymptotically to the set of
critical configurations of EI .

PROOF. First, note that qmax(q1, q2) is the unique
global maximum of the strictly concave function q 7→
Area(PI(q1, q, q2)). Next, let i = k mod N and let Ak =
Area(PI(p1(k), . . . , pN (k)). We have that Ak = Tk +Āk,
where Tk = Area(PI(pi−1(k), pi(k), pi+1(k)) and
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Āk = Area(PI(pi−1(k), pi+1(k), . . . , pi−2(k)). Because
of the global maximum property of qmax(q1, q2), we have
that Tk = Area(PI(pi−1(k), pi(k), pi+1(k)) ≤ T̄k+1,
where T̄k+1 = Area(PI(pi−1(k), pi(k + 1), pi+1(k)).
Therefore, Ak = Tk + Āk ≤ T̄k+1 + Āk = Ak+1,
i.e., each point moves in order to not decrease
the area of the inner polygon. Furthermore, unless
pi(k) = qmax(pi−1(k), pi+1(k)), we have Tk < T̄k+1 and
Ak < Ak+1 because of the strict global maximum prop-
erty of qmax. Therefore, by the LaSalle Invariance Princi-
ple, the trajectories of Algorithm 1 converge to the set of
configurations such {(p1(k), . . . , pN (k)) ∈ (∂Q)N | pi =
qmax(pi−1, pi+1) i ∈ {1, . . . , N}}. By equation (3) this
set is the set of critical configurations of EI . 2

At this point, a natural question of interest is whether
one may modify Algorithm 1 to allow multiple nodes
to move simultaneously while preserving its convergence
properties. In what follows we partially answer this ques-
tion by introducing an “admissible quintuplet” of points.
Precisely speaking, the quintuplet (p−2, p−1, p0, p1, p2)
is admissible if the following three inequalities hold:

Area(PI(qmax(p−2, p0), p0, qmax(p0, p2)))

≤ Area(PI(qmax(p−2, p0), qmax(p−1, p1), qmax(p0, p2))),

Area(PI(p−1, p0, qmax(p0, p2)))

≤ Area(PI(p−1, qmax(p−1, p1), qmax(p0, p2))),

Area(PI(qmax(p−2, p0), p0, p1))

≤ Area(PI(qmax(p−2, p0), qmax(p−1, p1), p1)).

Algorithm 2. At each discrete time instant k ∈ N and for
each node i ∈ {1, . . . , N} define:

pi(k + 1) = qmax(pi−1(k), pi+1(k)), (5)

if (pi−2(k), pi−1(k), pi(k), pi+1(k), pi+2(k)) is admissi-
ble, and pi(k + 1) = pi(k) otherwise.

Theorem 3.5 (Convergence of Algorithm 2) EI

is monotonic non-increasing along all trajectories of (5).

PROOF. The proof consists of two parts. As first
fact (i), we prove inductively that the area of any poly-
gon of N vertices increases by leaving any two consecu-
tive nodes fixed and by moving the other N − 2 vertices
according to (5). As second fact (ii), building on the
previous result, we show that the area of any polygon
of N vertices increases by moving the all the N vertices
according to (5).

Let us prove first (i) by induction on the number of ver-
tices of a polygon. Let us consider N = 3. Clearly, if
two of the three vertices are fixed and the other one
moves according to (5), the area of the triangle formed

by the three nodes increases, just as seen for Algorithm
1. Assume now that, given a polygon PI(p1, . . . , pN−1)
with N − 1 vertices, its area can be increased by leaving
any two consecutive nodes fixed and moving the other
N−1−2 vertices according to (5). Let us now prove that
the same property holds for the polygon PI(p1, . . . , pN )
with N vertices. Clearly, we have that:

Area(PI(p1, . . . , pN )) = Area(PI(p1, . . . , pN−1))

+ Area(PI(pN−1, pN , p1)),

where for simplicity of notation we dropped the time
index k. By assumption, the area of a polygon with N−1
vertices increases if any two consecutive points are fixed
and the rest moves according to (5). Therefore, we have

Area(PI(p1, p2 . . . , pN−2, pN−1))

≤ Area(PI(p1, p
+
2 . . . , p+

N−2, pN−1)),

where for simplicity of notation the superscript + indi-
cates that the node has updated its position according
to (5). This implies:

Area(PI(p1, . . . , pN ))

≤ Area(PI(p1, p
+
2 . . . , p+

N−2, pN−1)) + Area(PI(pN−1, pN , p1))

= Area(PI(p
+
2 . . . , p+

N−2, pN−1, pN )) + Area(PI(pN , p1, p
+
2 ))

≤ Area(PI(p
+
2 . . . , p+

N−2, pN−1, pN )) + Area(PI(pN , p+
1 , p+

2 ))

= Area(PI(p
+
1 , p+

2 , . . . , p+
N−2, pN−1, pN )).

The second inequality holds because along the tra-
jectories of (5) we have that Area(PI(pN , p1, p

+
2 )) ≤

Area(PI(pN , p+
1 , p+

2 )). This concludes the proof of (i).
To prove (ii), note that

Area(PI(p
+
1 , p+

2 , . . . , p+
N−2, pN−1, pN ))

= Area(PI(p
+
1 , . . . , p+

N−2, pN−1)) + Area(PI(pN−1, pN , p+
1 ))

≤ Area(PI(p
+
1 , . . . , p+

N−2, pN−1)) + Area(PI(pN−1, p
+
N , p+

1 ))

= Area(PI(p
+
N , p+

1 , . . . , p+
N−2)) + Area(PI(p

+
N−2, pN−1, p

+
N ))

≤ Area(PI(p
+
N , p+

1 , . . . , p+
N−2)) + Area(PI(p

+
N−2, p

+
N−1, p

+
N ))

= Area(PI(p
+
1 , . . . , p+

N )). 2

Remark 3.6 As established in Theorem 3.4 for Algo-
rithm 1, every time a node moves according to Algo-
rithm 2 the area increases strictly. On the other hand,
stationary configurations of (5) are not necessarily crit-
ical points of EI , i.e., at an equilibrium configuration
for (5) there could exist a node for which condition (3)
is not satisfied. A set of nodes could be “unlocked” by
running some iterations of Algorithm 1. •

Remark 3.7 (Implementation by group of robots)
To implement Algorithm 1, each robot pi needs to have
knowledge about its own label number i ∈ {1, . . . , N}
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and about the position of its one-hop neighbors. Al-
gorithm 2, does not require a labeling of robots, but
requires each robot to have knowledge about part of
the contour and knowledge about the position of its
two-hop neighbors. •

4 Outer-polygon approximation algorithms

The algorithms of this section are based on the interpo-
lation error EO. We begin with a geometric characteri-
zation of the partial derivative of EO and of the critical
configurations for EO. Assuming the pairs (pi−1, pi) and
(pi, pi+1) are cc-tangent-connected, as depicted in Fig-
ure 4, we define the points Ai = ℓ−(pi) ∩ ℓ+(pi−1) and
Bi = ℓ−(pi+1) ∩ ℓ+(pi) and the nonnegative segment
lengths d−i = length(piAi) and d+

i = length(piBi). By

pi

pi−1

d−i
d+

i
Bi

pi+1

Ai

Fig. 3. The points Ai, Bi and the lengths d
−

i
, d

+

i

continuity we define d+
i (p, p) = d−i (p, p) = 0, for all p.

Instead, if (pi, pi+1) is not cc-tangent-connected, then
we set d+

i = +∞; and if (pi−1, pi) is not cc-tangent-
connected, then d−i = +∞. For pi distinct from pi−1 and
pi+1, some trigonometric arguments show that

d−i (pi, pi−1) =







+∞ , if ti · ni−1 ≤ 0 ,
(pi − pi−1) · ni−1

ti · ni−1
, otherwise ,

d+
i (pi, pi+1) =







+∞ , if ti · ni+1 ≥ 0 ,
(pi+1 − pi) · ni+1

ti · ni+1
, otherwise .

Proposition 4.1 (Partial derivative of EO) If all
pairs (pi, pi+1) are cc-tangent-connected, then

∂EO(p1, . . . , γ(si), . . . , pN )

∂si

=
1

2

(

(d−i )2 − (d+
i )2
)

κ(si).

PROOF. Pick δsi > 0 sufficiently small so that γ(si +
δsi) is a point on the arc from pi = γ(si) to pi+1, as
shown in Figure 4. Let D = ℓ+(si)∩ ℓ−(si + δsi). Define
the triangle TA with vertices D, A(si), and A(si + δsi),
and the triangle TB with vertices D, B(si), and B(si +
δsi). By construction:

EO(p1, . . . , γ(si+δsi), . . . pN )−EO(p1, . . . , γ(si), . . . , pN )

= Area(TA) − Area(TB).

αi

−δαi

γ(si + δsi)
γ(si)B(si + δsi)

pi−1

TA

B(si)
A(si)TB

D

A(si + δsi)

pi+1

Fig. 4. Notation used in the proof of Proposition 4.1.

Therefore, to compute the variation of EO, we compute
the areas of the two triangles. We begin with some no-
tation. Let α(si) be the counter-clockwise angle from
ti = t(si) to ti+1; if the angle ∠t(si) denotes the orien-
tation of t(si) (measured counter-clockwise from some
reference orientation), then α(si) = ∠ti+1−∠t(si). Note
that equation (1) implies ∂∠t(si)/∂si = κ(si) so that
∂α(si)/∂si = −κ(si). Next, let δαi = α(si+δsi)−α(si).
Therefore, δαi = −κ(si)δsi +o(δs2

i ). Note that, because
Q is strictly convex and pi, pi+1 are ordered counter-
clockwise, we have α(si) > 0 and δαi < 0. We are now
ready to use some trigonometry to compute the area of
TA. Because ‖γ(si + δsi) − γ(si)‖ = δsi + o(δs2

i ), we
know that ‖D − A(si)‖ = d−i + 1

2δsi + o(δs2
i ). Now,

let h be the height of the triangle TA with respect to
the base segment from D to A(si). Clearly, we have
h = ‖A(si) − A(si + δsi)‖ sin(α(si−1)) and

‖A(si) − A(si + δsi)‖

sin(−δα(si))
=

‖D − A(si)‖

sin(π − (α(si−1) − δαi))
,

and, therefore,

h = ‖D − A(si)‖
sin(−δαi)

sin(α(si−1) − δαi)
sin(α(si−1)).

We have then:

Area(TA) =
1

2
‖D − A(si)‖

2 sin(α(si−1))

sin(α(si−1) − δαi)
sin(−δαi).

For small δsi and δαi, we have that sin(α(si−1))
sin(α(si−1)−δαi)

=

1 + o(δαi), and sin(−δαi) = −δαi + o(δα2
i ). Therefore:

Area(TA) =
1

2
(d−i )2(−δαi) + o(δα2

i ).

Analogously, it can be proved that Area(TB) =
1
2 (d+

i )2(−δαi) + o(δα2
i ). Finally, for pi = γ(si),

∂EO(p1, . . . , pN )

∂si

= lim
δsi→0+

Area(TA) − Area(TB)

δsi

= lim
δsi→0+

−1

2
((d−i )2 − (d+

i )2)
δαi

δsi

=
1

2

(

(d−i )2 − (d+
i )2
)

κ(si). 2
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We are now ready to propose a gradient-like dynamical
system for EO. First, recall from Lemma 2.3 that EO

is well-defined only for configurations that are pairwise
cc-tangent-connected. When a pair (pi, pi+1) is not cc-
tangent-connected, the distance functions d+

i and d−i+1
are unbounded and the partial derivative of E0 is ill-
defined (note indeed the assumption of Proposition 4.1).
To define a globally well-posed dynamical system, we
introduce a saturation function. Pick a positive number
v and define satv : R ∪ {+∞,−∞} → [−v, v] by:

satv(x) =







x, x ∈ [−v, v],

+v, x ∈ ]v,+∞[ ∪ {+∞},

−v, x ∈ ] −∞,−v[ ∪ {−∞}.

Next, we define the dynamical system

ṗi = satv((d+
i )2 − (d−i )2) ti , i ∈ {1, . . . , N}. (6)

where we adopt the usual conventions regarding opera-
tions in R∪{+∞,−∞}. It can be checked that the right
hand side of (6) is Lipschitz. We are ready for the main
result of this section; note that the characterization of
the critical points of EO was originally given in [13].

Theorem 4.2 (Gradient flow for EO) If t 7→ η(t) =
(p1(t), . . . , pN (t)) denotes a trajectory of the dynamical
system (6), then (i) EO ◦ η is bounded in finite time and
monotonic non-increasing afterwards, and (ii) η con-
verges asymptotically to the set of critical configurations
of EO. A configuration p1, . . . , pN is critical for EO if
and only if, for all i ∈ {1, . . . , N},

d+
i (pi, pi+1) = d−i (pi, pi−1).

Furthermore, if the boundary ∂Q is analytic, then η con-
verges asymptotically to a critical configuration.

PROOF. Suppose that there exists i ∈ {1, . . . , N} such
that (pi, pi+1) is not cc-tangent-connected (i.e., d−i <
+∞ and d+

i = +∞). Since d+
i = +∞ also d−i+1 = +∞

and EO is unbounded. Since Q is strictly convex, we
have d−j < +∞ (resp. d+

j < +∞), for all j 6∈ {i, i + 1}.
Because of equation (6), pi will move counter-clockwise
with speed v > 0, while pi+1 will move clockwise with the
same speed. Therefore, in finite time the two rays ℓ+i and
ℓ−i+1 intersect, (pi, pi+1) become cc-tangent-connected
and EO becomes bounded. Now, we prove that, if all
pairs (pi, pi+1) are cc-tangent-connected, then EO◦η de-
creases. This implies that, once a cc-tangent-connected
configuration is reached, the subsequent configurations
remain cc-tangent-connected. Clearly, equation (6) is
equivalent to

ṡi = satv((d+
i )2 − (d−i )2),

and, therefore:

d

dt
EO(p1, . . . , γ(si(t)), . . . , pN )

=
N
∑

i=1

∂EO(p1, . . . , pN )

∂si

ṡi

=
1

2

N
∑

i=1

κ(si) ((d−i )2 − (d+
i )2) satv((d+

i )2 − (d−i )2).

Because the curvature κ is strictly positive on the en-
tire boundary, the cost function EO decreases monoton-
ically along the trajectories of equation (6). Invoking the
LaSalle Invariance Principle, we know that the pi’s will
asymptotically converge to the set of critical configura-
tions for EO.

Let s(t) = [s1(t), . . . , sN (t)] ∈ [0, length(∂Q)]N , and
note that if ∂Q is analytic then EO is analytic on the
set of configurations p1, . . . , pN that are pairwise cc-
tangent-connected. Next, we recall a result from [9]; see
also [1]. If there exists δ > 0 and τ such that, for all t > τ ,

dEO

dt
=

∂EO

∂s
· ṡ(t) ≤ −δ‖∇EO(s(t))‖‖ṡ(t)‖,

then s(t) converges to a unique critical configuration s∗.
We use this result as follows. Note that as t → +∞,
s(t) approaches the set of critical configurations. We can
then conclude that there exists a time τ after which satv

is not active any longer and, hence, ṡi(t) = −λi(t)
∂EO

∂si
,

where λi(t) = 2
κ(si)

. Therefore, with the abbreviation
∂EO

∂s
= ∇EO, we have

∇EO(s(t)) · ṡ(t) = −∇EO(s(t))T Λ(t)∇EO(s(t))

≤ −λmin(t)‖∇EO(s(t))‖2 ,

where Λ(t) ∈ R
N×N is a diagonal matrix with entries

[Λ(t)]ii = λi(t) > 0, and λmin(t) = min{λ1(t), . . . , λN (t)}.
We require:

−λmin(t)‖∇EO(s(t))‖2 ≤ −δ‖∇EO(s(t))‖‖ṡ(t)‖ ,

or equivalently

λmin(t)‖∇EO(s(t))‖ ≥ δ‖ṡ(t)‖ .

Note that ‖ṡ(t)‖ ≤ λmax(t))‖∇EO(s(t))‖, where
λmax(t) = max{λ1(t), . . . , λN (t)}. Therefore:

δ = inf
t>τ

λmin(t))‖∇EO(s(t))‖

‖ṡ(t)‖
≥ inf

t>τ

λmin(t)

λmax(t)
> 0.

We can then conclude that the pi’s will asymptotically
converge to a unique critical configuration for EO. 2
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Remark 4.3 (Implementation by group of robots)
To implement equation (6), it suffices that the robots
exchange information about their positions (like for the
inner-polygon approximation) and their local tangent.•

4.1 Discrete-time outer-polygon approximation algo-
rithms

It is easy to prove that an algorithm analogous to Al-
gorithm 1 in the previous section guarantees conver-
gence to the critical configuration of EO. We state the
analogous results here omitting the corresponding proof.
Given a strictly convex set Q, define qmin : (∂Q)2 →
∂Q as follows: qmin(q1, q2) is the point of the counter-
clockwise arc from q1 to q2 whose tangent to ∂Q sat-
isfies d−i = d+

i . Note that qmin(q1, q2) minimizes q 7→
Area(PO(q1, q, q2)).

Algorithm 3. At each discrete time instant k ∈ N and for
each node i ∈ {1, . . . , N} define:

pi(k+1) =

{

qmin(pi−1(k), pi+1(k)), if i = k mod N,

pi(k), if i 6= k mod N .
(7)

Theorem 4.4 (Convergence of Algorithm 3) If
k 7→ η(k) = (p1(k), . . . , pN (k)) denotes a trajectory of
the dynamical system (7), then EO ◦ η is monotonic
non-increasing and η converges asymptotically to the set
of critical configurations of EO.

Remark 4.5 Similarly to Algorithm 2 in the inner-
polygon approximation problem, it is possible to design
a discrete time algorithm based on admissible quintu-
plets. Such algorithm would have limitations similar to
the ones of Algorithm 2 and we do not present it here
in the interest of brevity. •

5 “Outer minus inner” polygon approximation
algorithms

In this section we provide a novel expression for the par-
tial derivative of the symmetric difference error ES (un-
der the assumption that the outer polygon is bounded)
and we design a new gradient decent algorithm.

Lemma 5.1 (Partial derivative of ES) If (pi, pi+1)
is cc-tangent-connected, then the area of the triangle
formed by the segment pi+1pi and the rays ℓ+(pi) and
ℓ−(pi+1) is

Ai(pi, pi+1,ni,ni+1)

=
1

2

(ni · (pi − pi+1))(ni+1 · (pi − pi+1))

(ni × ni+1)3
,

where, for ni = (n1
i , n

2
i ) and ni+1 = (n1

i+1, n
2
i+1), we let

(ni × ni+1)3 = n1
i n

2
i+1 − n2

i n
1
i+1. Furthermore,

∂ES(p1, . . . , γ(si), . . . , pN )

∂si

=

(

∂Ai−1

∂pi

+
∂Ai

∂pi

− κ(si)

(

∂Ai−1

∂ni

+
∂Ai

∂ni

))

· ti.

The proof of the first statement is based upon elemen-
tary calculations and is omitted in the interest of space;
the second statement is an immediate consequence of
equation (1). Explicit expressions for the relevant par-
tial derivatives in Lemma 5.1 are given as follows. If
we set pi = (xi, yi), ni = (n1

i , n
2
i ) and ni−1 × n+

i :=
n1

i−1n
2
i + n1

i n
2
i−1, then

∂Ai−1

∂xi

=
(pi − pi−1) · ( 2n1

i−1n
1
i , ni−1 × n+

i )

2(ni−1 × n+
i )

,

∂Ai−1

∂yi

=
(pi − pi−1) · (ni−1 × n+

i , 2n1
i−1n

1
i )

2(ni−1 × n+
i )

,

∂Ai−1

∂n1
i

=
n2

i (ni−1 · (pi − pi−1)
2)

2(ni−1 × n+
i )2

,

∂Ai−1

∂n2
i

=
n1

i (ni−1 · (pi − pi−1)
2)

2(ni−1 × n+
i )

.

We are now ready to state the properties of the gradient
flow of ES . We omit the proof of the following theorem
as it closely parallels that of Theorem 3.1.

Theorem 5.2 (Gradient flow for ES) If t 7→ η(t) =
(p1(t), . . . , pN (t)) denotes a trajectory of the dynamical
system

ṗi = − ti

(

∂Ai−1

∂pi

+
∂Ai

∂pi

− κ(si)

(

∂Ai−1

∂ni

+
∂Ai

∂ni

))

· ti ,

(8)

with ES ◦ η(0) < +∞, then ES ◦ η is monotonic non-
increasing and η converges asymptotically to the set of
critical configurations of ES. Furthermore, if the bound-
ary ∂Q is analytic, then η converges asymptotically to a
critical configuration.

Remark 5.3 (Implementation by group of robots)
Even for this scenario, the robots can move along the
gradient of ES relying upon information that is available
to them through one-hop communication and through
sensing of local tangent and curvature data. •

6 Simulations

Figure 5 shows the implementation results of the
three continuous time descent algorithms described
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in equations (2), (6), and (8). The eleven nodes
are on the contour described by γ(θ) = (2.1 +
sin(2πθ))(cos(2πθ), sin(2πθ))T , for θ ∈ [0, 1). Figure 6
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Fig. 5. From left to right and from top to bottom: initial
condition of eleven nodes on a convex boundary, final con-
dition after the implementation of the inner-polygon, out-
er-polygon, and “outer minus inner” polygon approximation
algorithms.

shows the implementation results of the discrete-time
Algorithm 2 described in (5).
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Inner-polygon Algorithm 2

Fig. 6. From left to right: initial condition of eleven nodes
on a convex boundary and final condition after the imple-
mentation of Algorithm 2. In this particular case the final
point configuration satisfies the critical point condition of
equation (3).

7 Conclusions

We have discussed various geometric optimization prob-
lems and corresponding gradient flows. Future works
will focus on nonsmooth contours such as polygons, non-
convex sets, and more general algorithms for optimal in-
terpolation of boundaries.
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[11] D. Marthaler and A. L. Bertozzi. Tracking environmental
level sets with autonomous vehicles. In S. Butenko,
R. Murphey, and P. M. Pardalos, editors, Recent

Developments in Cooperative Control and Optimization,
pages 317–330. Kluwer Academic Publishers, 2003.

[12] L. Scardovi, A. Sarlette, and R. Sepulchre. Synchronization
and balancing on the N -torus. Systems & Control Letters,
56(5):335–341, 2007.
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