
CDC 2007, To appear
New Orleans, LA

Network abstract linear programming
with application to minimum-time formation control

Giuseppe Notarstefano Francesco Bullo

Abstract— We identify a novel class of distributed opti-
mization problems, namely a networked version of abstract
linear programming. For such problems we propose distributed
algorithms for networks with various connectivity and/or mem-
ory constraints. Finally, we show how various minimum-time
formation control problems can be tackled through appropriate
geometric examples of abstract linear programs.

I. I NTRODUCTION

This paper focuses on a class of distributed computing
problems and on its applications to formation control prob-
lems for mobile robotic networks. The objective of formation
control problems is to move the robots in the network to
relative positions with specific properties. To do so, we study
abstract linear programming, that is, a generalized version of
linear programming that was introduced by Matousĕk, Sharir
and Welzl in [1] and extended by Gärtner in [2]. Abstract
linear programming is applicable also to some geometric
optimization problems, such as the minimum enclosing ball,
the minimum enclosing stripe and the minimum enclosing
annulus. These geometric optimization problems are relevant
in the design of efficient robotic algorithms for minimum-
time formation control problems.

Linear programming and its generalizations have received
widespread attention in the literature. The following refer-
ences are most relevant in our treatment. The earliest (deter-
ministic) algorithm that solves a linear program in a fixed
number of variables subject ton linear inequalities in time
O(n) is given in [3]. An efficient randomized incremental
algorithm for linear programming is proposed in [1], where
a linear program ind variables subject ton linear inequalities
is solved in expected timeO(d2n + eO(

√
d log d)); the expec-

tation is taken over the internal randomizations executed by
the algorithm. An elegant survey on randomized methods in
linear programming is [4]. The survey [5] discusses the appli-
cation of abstract linear programming to a number of geomet-
ric optimization problems. Regarding parallel computation
approaches to linear programming, we only note that linear
programs withn linear inequalities can be solved [6] byn
parallel processors in timeO((log log(n))d). The approach
in [6] and the ones in the references therein are, however,
limited to parallel random-access machines (usually denoted
PRAM), where a shared memory is readable and writable to

This material is based upon work supported in part by ARO MURI Award
W911NF-05-1-0219 and ONR Award N00014-07-1-0721. This workwas
completed as part of G. Notarstefano’s PhD program at the University of
Padova.

Giuseppe Notarstefano is with the Dipartimento di Ingegneria
dell’Innovazione, Universit̀a del Salento, Via per Monteroni, 73100 Lecce,
Italy, giuseppe.notarstefano@unile.it

Francesco Bullo is with the Center for Control, Dynamical Systems and
Computation, University of California at Santa Barbara, Santa Barbara, CA
93106,bullo@engineering.ucsb.edu

all processors. In this paper, we focus on networks described
by arbitrary graphs and on robotic networks described by
geometric graphs.

The literature on formation control for robotic networks
has been growing recently. An early reference on distributed
algorithms for the formation of geometric patterns is [7].
Regarding the rendezvous problem, that is, the problem of
gathering the robots at a common location, an early reference
is [8]. A control-Lyapunov function approach to formation
control is discussed in [9]. An input-to-state stability ap-
proach is taken in [10].

The contributions of this paper are three-fold. First, we
identify a class of distributed optimization problems that
appears to be novel and of intrinsic interest. Second, we
propose a novel simple algorithmic methodology to solve
these problems in networks with various connectivity and/or
memory constraints. Specifically, we propose three algo-
rithms, prove their correctness and establish halting condi-
tions. Finally, we illustrate how these distributed computation
problems are relevant in minimum-time formation control
problems, such as the rendezvous problem and the problems
of line and circle formations. Specifically, we design some
joint communication and motion coordinations schemes in
which robots move towards the estimated final shape while
the final shape is being computed. The proposed laws extend
to a general setting the rendezvous control law proposed
in [11].

The paper is organized as follows. Section II introduces
abstract linear programs. Section III introduces network mod-
els. Section IV contains the definition of network abstract
linear programs and the proposed distributed algorithms.
Section V shows the relevance of the proposed distributed
computing algorithms in the context of formation control.

Notation: We let N, N0, and R+ denote the natural
numbers, the non-negative integer numbers, and the positive
real numbers, respectively. Forr ∈ R+ andp ∈ R

d, we let
B(p, r) denote the closed ball centered atp with radiusr,
i.e., B(p, r) = {q ∈ R

d | ‖p − q‖2 ≤ r}. For f, g : N → R,
we say thatf ∈ O(g) if there existn0 ∈ N and k ∈ R+

such that|f(n)| ≤ k|g(n)| for all n ≥ n0.

II. A BSTRACT LINEAR PROGRAMMING

In this section we present an abstract framework that cap-
tures a wide class of optimization problems including linear
programming and various geometric optimization problems.
These problems are known asabstract linear programs(or
LP-type problems). They can be considered a generalization
of linear programming in the sense that they share some
important properties. A comprehensive analysis of these
problems may be found for example in [5].

A. Abstract framework

We consider optimization problems specified by a pair
(H,ω), whereH is a finite set, andω : 2H → Ω is a function
with values in a linearly ordered set (Ω,≤); we assume that
Ω has a minimum value−∞. The elements ofH are called
constraints, and forG ⊂ H, ω(G) is called thevalueof G.
Intuitively, ω(G) is the smallest value attainable by a certain
objective function while satisfying the constraints ofG. An
optimization problem of this sort is calledabstract linear
program if the following two axioms are satisfied:

(i) Monotonicity: if F ⊂ G ⊂ H, thenω(F) ≤ ω(G);
(ii) Locality: if F ⊂ G ⊂ H with −∞ < ω(F) = ω(G),

then, for allh ∈ H,

ω(G) < ω(G ∪ {h}) =⇒ w(F) < w(F ∪ {h}).

A set B ⊂ H is minimal if ω(B) > ω(B′) for all proper
subsetsB′ of B. A minimal setB with −∞ < ω(B) is
a basis. Given G ⊂ H, a basis ofG is a minimal subset
B ⊂ G, such that−∞ < ω(B) = ω(G). A constrainth is
said to beviolated by G, if ω(G) < ω(G ∪ {h}).

Thesolutionof an abstract linear program(H,ω) is a min-
imal setBH ⊂ H with the property thatω(BH) = ω(H).
The combinatorial dimensionδ of (H,ω) is the maximum
cardinality of any basis. Finally, an abstract linear program is
calledbasis regularif, for any basis withcard(B) = δ and
any constrainth ∈ H, every basis ofB ∪ {h} has the same
cardinality of B. We now define two important primitive
operations that are useful to solve abstract linear programs.

(i) Violation test: given a constrainth and a basisB,
it tests whetherh is violated byB; we denote this
primitive by Viol(B, h);

(ii) Basis computation: given a constrainth and a basis
B, it computes a basis ofB ∪ {h}; we denote this
primitive by Basis(B, h).

Remark 2.1 (Examples of abstract linear programs):We
present three useful geometric examples; see Figure 1.

(i) Smallest enclosing ball:Givenn points inR
d, compute

the center and radius of the ball of smallest volume
containing all the points. This problem has combina-
torial dimensiond + 1.

(ii) Smallest enclosing stripe:Given n points in R
2 in

generic positions, compute the center and the width of
the stripe of smallest width containing all the points.
This problem has combinatorial dimension5.

(iii) Smallest enclosing annulus:Given n points in R
2,

compute the center and the two radiuses of the annulus
of smallest area containing all the points. This problem
has combinatorial dimension4.

Fig. 1. Smallest enclosing ball, stripe and annulus

More examples are discussed in [1], [2], [4], [5]. �

B. Randomized sub-exponential algorithm

A randomized algorithm for solving abstract linear pro-
grams has been proposed in [1]. Such algorithm has linear
expected running time in terms of the number of con-
straints, whenever the combinatorial dimensionδ is fixed,
and subexponential inδ. The algorithm, calledSUBEX lp,
has a recursive structure and is based on the two primitives
introduced above, i.e., the violation test and the basis com-
putation primitives. For simplicity, we assume here that such
primitives may be implemented in constant time, independent
of the number of constraints. Given a set of constraintsG
and a candidate basisC ⊂ G, the algorithm is as follows.

function SUBEX lp(G,C)
if G = C, then returnC
else

choose a randomh ∈ G \ C
B := SUBEX lp(G \ {h}, C)
if Viol(B, h), i.e., h is violated byB,

returnSUBEX lp(G,Basis(B, h))
elsereturnB
end if

end if
For the abstract linear program(H,ω), the routine is invoked
with SUBEX lp(H,B), given any initial candidate basisB.

In [1] the expected completion time for theSUBEX lp
algorithm in conjunction with Clarkson’s algorithms was
shown to be inO(d2n+eO(

√
d log d)) for basis regular abstract

linear programs. In [4] the result was extended to problems
that are not basis regular.

III. N ETWORK MODELS

Following [12], we define a synchronous network system
as a “collection ofcomputing elementslocated at nodes of
a directed network graph.” These computing elements are
sometimes calledprocessors.

A. Digraphs and connectivity

We let I = {1, . . . , n} and let G = (I, E) denote a
directed graph, whereI is the set of nodes andE ⊂ I × I is
the set of edges. For each nodei of G, the number of edges
going out from (coming into) nodei is called out-degree
(in-degree) and is denotedoutdeg[i] (indeg[i]). The set of
outgoing (incoming) neighbors of nodei are the set of nodes
to (from) which there are edges from (to)i. They are denoted
NO(i) and NI(i), respectively. A directed graph is called
strongly connectedif, for every pair of nodes(i, j) ∈ I × I,
there exists a path of directed edges that goes fromi to j.
In a strongly connected digraph, the minimum number of
edges between nodei and j is called thedistance fromi to
j and is denoteddist(i, j). The maximumdist(i, j) taken
over all pairs(i, j) is thediameterand is denoteddiam(G).
Finally, we consider time-dependent directed graphs of the
form t 7→ G(t) = (I, E(t)). The time-dependent directed
graphG is jointly strongly connectedif, for every t ∈ N0,

∪+∞
τ=tG(τ) is strongly connected.

Moreover, the time-dependent directed graphG is uniformly
strongly connectedif, there existsS > 0 s.t. for everyt ∈ N0

∪t+S
τ=tG(τ) is strongly connected.

B. Synchronous networks and distributed algorithms

Strictly speaking, asynchronous networkis a directed
graphG = (I, Ecmm) where the setI = {1, . . . , n} is the
set of identifiersof the computing elements, and the time-
dependent mapEcmm : N0 → 2I×I is the communication
edge mapwith the following property: an edge(i, j) belongs
to Ecmm(t) if and only if processori can communicate to
processorj at time t.

Definition 3.1 (Distributed algorithm):Let G =
(I, Ecmm) be a synchronous network. A distributed
algorithm consists of the sets

- W , set of “logical” statesw[i], for all i ∈ I;
- W0 ⊂ W , subset of allowable initial values;
- M , message alphabet, including thenull symbol;

and the maps
- msg: W × I → M , message-generation function;
- stf : W × Mn → W , state-transition function. �

Execution of the network begins with all processors in
their start states and all channels empty. Then the processors
repeatedly perform the following two actions. First, theith
processor sends to each of its outgoing neighbors in the com-
munication graph a message (possibly thenull message)
computed by applying the message-generation function to the
current value ofw[i]. After a negligible period of time, the
ith processor computes the new value of its logical variables
w[i] by applying the state-transition function to the current
value ofw[i], and to the incoming messages (present in each
communication edge). The combination of the two actions
is called acommunication roundor simply a round.

In this execution scheme we have assumed that each
processor executes all the calculations in one round. If it
is not possible to upper bound the execution-time of the
algorithm, we may consider a slightly different network
model that allows the state-transition function to be executed
in multiple rounds. When this happens, the message is
generated by using the logical state at the previous round.

The last aspect to consider is thealgorithm halting, that
is a situation such that the network (and therefore each
processor) is in a idle mode. Such status can be used to
indicate the achievement of a prescribed task. Formally we
say that a distributed algorithm is inhalting statusif the
logical state is a fixed point for the state-transition function
(that becomes a self-loop) and no message (or equivalently
the null message) is generated at each node.

C. Robotic networks and control and communication laws

We report here the notion of robotic network adopting
a simplified version of the formal model introduced in
[13]. A robotic network is a tuple (I,A, Ecmm), where
I = {1, . . . , n} is the set of identifiers;A = {A[i]}i∈I =
{(X,U,X0, f)}i∈I is called theset of physical agentsand
is a set of control systems consisting of a differentiable
manifold X (state space), a compact subsetU of R

m (input
space), a subsetX0 of X (set of allowable initial states) and
a (sufficiently smooth) mapf : X × U → X describing

the dynamics ofith agent;Ecmm : Xn → 2I×I is the
communication edge map. Here the communication edges
depend upon the position of the robots, as opposed to time.

The robotic network evolves according to a discrete-time
communication and motion model.

Definition 3.2 (Control and communication law):Let S
be a robotic network. Acontrol and communication lawCC
for S consists of the setsM (message alphabet),W (set of
logical states) andW0 ⊆ W (allowable initial values), as
defined in Definition 3.1, and of the maps:

(i) msg : X × W × I → M , called message-generation
function;

(ii) stf : W × Mn → W , calledstate-transition function;
(iii) ctl : X × W × Mn → U , calledcontrol function. �

Roughly speaking, this definition has the following mean-
ing: for all i ∈ I, to the ith physical agent corresponds
a processor, labeledi, that performs the following actions.
First, at each communication round theith processor sends
to each of its outgoing neighbors in the communication
graph a message (possibly thenull message) computed
by applying the message-generation function to the current
values ofx[i] and w[i]. After a negligible period of time,
the ith processor resets the value of its logical statew[i]

by applying the state-transition function to the current value
of w[i], and to the messages received at timet. Between
communication instants, the motion of theith agent is
determined by applying the control function to the current
value of x[i], and the current value ofw[i]. This idea is
formalized as follows.

Definition 3.3 (Evolution of a robotic network):Let S be
a robotic network andCC be a control and communication
law for S. The evolutionof (S, CC) from initial conditions
x

[i]
0 ∈ X0 and w

[i]
0 ∈ W0, i ∈ I, is the set of curvesx[i] :

N0 → X andw[i] : N0 → W , i ∈ I, satisfying

x[i](t + 1) = f
(

x[i](t), ctl(x[i](t), w[i](t + 1), y[i](t))
)

,

where, fori ∈ I,

w[i](t + 1) = stf(w[i](t), y[i](t)) ,

with the conventions thatx[i](0) = x
[i]
0 and w[i](0) = w

[i]
0 .

Here, the functiony[i] : N0 → Mn (describing the messages
received by agenti) has components

y
[i]
j (t) =

{

msg(x[j](t), w[j](t), i), if (i, j) ∈ Ecmm(x(t)),

null, otherwise.
�

IV. N ETWORK ABSTRACT LINEAR PROGRAMMING

In this section we define anetwork abstract linear program
and propose novel distributed algorithms to solve it.

A. Problem statement

Informally we can say that anetwork abstract linear
program consists of three main elements: a network, an
abstract linear program and a mapping that associates to
each constraint of the abstract linear program a node of the
network. A more formal definition is the following.

Definition 4.1: A network abstract linear program
(NALP) is a tuple(G, (H,ω),B) consisting of

(i) G = (I, Ecmm), a communication digraph;
(ii) (H,ω), an abstract linear program;
(iii) B : H → I, a surjective map calledconstraint

distribution map. �

The solution of the network abstract linear program is
attained when all processors in the network have computed
a solution to the abstract linear program.

Remark 4.2:Our definition allows for various versions of
network abstract linear programs. Regarding the constraint
distribution map, the most natural case to consider is when
the constraint distribution map is bijective. In this case one
constraint is assigned to each node. More complex distribu-
tion laws are also interesting depending on the computation
power and memory of the processors in the network. In what
follows, we assumeB to be bijective. �

B. Distributed algorithms

Next we define three distributed algorithms that solve
network abstract linear programs. First, we describe a syn-
chronous version that is well suited for time-dependent
networks whose nodes have bounded computation time and
memory, but also bounded in-degree or equivalently arbitrary
in-degree, but also arbitrary computation time and memory.
Then we describe two variations that take into account the
problem of dealing with arbitrary in-degree versus short
computation time and small memory. The second version
of the algorithm is suited for time-dependent networks that
have arbitrary in-degree and bounded computation time, but
are allowed to store arbitrarily large amount of information,
in the sense that the number of stored messages may depend
on the number of nodes of the network. The third algorithm
considers the case of time-independent networks with arbi-
trary in-degree and bounded computation time and memory.

In the algorithms we consider a uniform networkS with
communication digraphG = (I, Ecmm) and a network
abstract linear program(G, (H,ω),B). We assumeB to be
bijective, that is, the set of constraintsH has dimensionn,
H = {h1, · · · , hn}. The combinatorial dimension isδ.

Here is an informal description of what we shall refer to
as theFloodBasisalgorithm:

[Informal description]Each processor has a logical
state ofδ + 1 variables taking values inH. The
first δ components represent the current value of
the basis to compute, while the last element is the
constraint assigned to that node. At the start round
the processor initializes every component of the
basis to its constraint, then, at each communication
round, performs the following tasks: (i) it acquires
from its neighbors (a message consisting of) their
current basis; (ii) it executes theSUBEX lp algo-
rithm over the constraint set given by the collection
of its and its neighbors’ basis and its constraint
(that it maintains in memory), thus computing a
new basis; (iii) it updates its logical state and
message using the new basis obtained in (ii).

In the second scenario we work with a time-dependent
network with no bounds on the in-degree of the nodes and
on the memory size. In this setting the execution of the
SUBEX lp may exceed the communication round length.
In order to deal with this problem, we slightly change

the network model as described in Section III, so that
each processor may execute the state transition function
“asynchronously”, in the sense that the time-length of the
execution may take multiple rounds. If that happens, the
message generation function in each intermediate round is
called using the logical state of the previous round. Here
is an informal description of what we shall refer to as the
FloodBasisMultiRoundalgorithm:

[Informal description] Each processor has the
same message alphabet and logical state as in
FloodBasisand also the same state initialization.
At each communication round it performs the
following tasks: i) it acquires the messages from its
in-neighbors; ii) if the execution of theSUBEX lp
at the previous round was over it starts a new
instance, otherwise it keeps executing the one in
progress; iii) if the execution of theSUBEX lp
ends it updates the logical state and runs the
message-generation function with the new state,
otherwise it generates the same message as in the
previous round.

In the third scenario we work with a time-independent
network with no bounds on the in-degree of the nodes. We
suppose that each processor has limited memory capacity,
so that it can store at mostD messages. The memory is
dimensioned so to guarantee that theSUBEX lp is always
solvable during two communication rounds. The memory
constraint is solved by processing only part of the incoming
messages at each round and cycling in a suitable way in
order to process all the messages in multiple rounds.

Here is an informal description of what we shall refer to
as theFloodBasisCyclingalgorithm:

[Informal description]The firstδ + 1 components
of the logical state are the same as inFloodBasis
and are initialized in the same way. A further
component is added. It is simply a counter variable
that keeps trace of the current round. At each
communication round each processor performs the
following tasks: (i) it acquires from its neighbors
(a message consisting of) their current basis; (ii)
it choosesD messages according to a scheduled
protocol, e.g. it labels its in-neighboring edges with
natural numbers from1 up toindeg[i] and cycles
over them in increasing order; (iii) it executes the
SUBEX lp algorithm over the constraint set given
by the collection of theD messages plus its basis
and its constraint (that it maintains in memory),
thus computing a new basis; (iv) it updates its
logical state and message using the new basis
obtained in (iii).

Remark 4.3:For the algorithm to converge it is important
that each agent keeps in memory its constraint and thus
implements theSUBEX lp on the bases received from its
neighbors together with its constraint. This requirement is
important because of the following reason: no element of a
basisB for a setG ⊂ H needs to be an element in the basis
of G ∪ {h} for any h ∈ H \ G. �

We are now ready to prove the algorithms’ correctness.
Proposition 4.4 (Correctness ofFloodBasis): Let S be a

synchronous time-dependent network with communication

digraphG = (I, Ecmm) and let(G, (H,ω),B) be a network
abstract linear program. IfG is jointly strongly connected,
then theFloodBasisalgorithm solves(G, (H,ω),B), that is,
in a finite number of rounds each node acquires a copy of
the solution of(H,ω), i.e., the basisB of H.

Proof: In order to prove correctness of the algorithm,
observe, first of all, that each law at every node converges in
a finite number of steps. In fact, using axioms from abstract
linear programming and finiteness ofH, each sequence
ω(B[i](t)), t ∈ N0, is monotone nondecreasing, upper
bounded and can assume a finite number of values. Then we
proceed by contradiction to prove that all the laws converge
to the sameω(B) and that it is exactlyω(B) = ω(H).
Suppose that fort > t0 > 0 all the nodes have converged to
their limit basis and that there exist at least two nodes, call
them i and j, such thatω(B[i](t)) = ω(B[i]) 6= ω(B[j]) =
ω(B[j](t)), for all t ≥ t0. For t = t0 + 1, for every k1 ∈
NO(i), B[i] does not violateB[k1], otherwise they would
compute a new basis thus violating the assumption that they
have converged. Using the same argument att = t0 + 2, for
everyk2 ∈ NO(k1), B[k1] does not violateB[k2]. Notice that
this does not imply thatB[i] does not violateB[k2], but it
implies thatω(B[i]) ≤ ω(B[k2]). Iterating this argument we
can show that for everyS > 0, everyk connected toi in the
graph∪t0+S

t=t0
G(t) must have a basisB[k] such thatω(B[i]) ≤

ω(B[k]). However, using the joint connectivity assumption,
there existsS0 > 0 such that∪t0+S0

t=t0
G(t) is strongly

connected and thereforei is connected toj, thus showing
that ω(B[i]) ≤ ω(B[j]). Repeating the same argument by
starting from nodej we obtain thatω(B[j]) ≤ ω(B[i]), that
implies ω(B[i]) = ω(B[j]), thus giving the contradiction.
Now, the basis at each node satisfies, by construction, the
constraints of that node. Since the basis is the same for each
node, it satisfies all the constraints, thenω(B) = ω(H).

Remark 4.5:Correctness of the other two versions of the
FloodBasisalgorithm may be established along the same
lines. For example, it is immediate to establish that the
basis at each node reaches a constant value in finite time.
It is easy to show that this constant value is the solution
of the abstract linear program for theFloodBasisMultiRound
algorithm. For theFloodBasisCyclingalgorithm we note that
the procedure used to process the incoming data is equivalent
to considering a time-dependent graph whose edges change
with that law. �

Proposition 4.6 (Halting condition):Consider a network
S with time-independent, strongly connected digraphG
where theFloodBasisalgorithm is running. Each processor
can halt the algorithm execution if the value of its basis has
not changed after2 diam(G) + 1 communication rounds.

Proof: First, notice that, for allt ∈ N0 and for every
(i, j) ∈ Ecmm,

ω(B[i](t)) ≤ ω(B[j](t + 1)). (1)

This holds by simply noting thatB[j](t + 1) is not vio-
lated by B[i](t) by construction of theFloodBasis algo-
rithm. Assume that nodei satisfiesB[i](t) = B for all
t ∈ {t0, . . . , t0 + 2diam(G)}, and pick any other nodej.
Without loss of generality assume thatt0 = 0. Because of
equation (1), if k1 ∈ NO(i), then ω(B[k1](1)) ≥ ω(B)
and, recursively, ifk2 ∈ NO(k1), then ω(B[k2](2)) ≥

ω(B[k1](1)) ≥ ω(B). Iterating this argumentdist(i, j) times,
the nodej satisfiesω(B[j](dist(i, j))) ≥ ω(B). Now, con-
sider the out-neighbors of nodej. For everyk3 ∈ NO(j),
it must hold thatω(B[k3](dist(i, j) + 1)) ≥ ω(B[j](t)).
Iterating this argumentdist(j, i) times, the nodei satisfies
ω(B[i](dist(i, j)+dist(j, i))) ≥ ω(B[j](dist(i, j))). In sum-
mary, becausedist(i, j) + dist(j, i) ≤ 2 diam(G), we know
that B[i](dist(i, j) + dist(j, i)) = B and, in turn, that

ω(B) ≥ ω(B[j](dist(i, j))) ≥ ω(B).

This shows that, if basisi does not change for a duration
2 diam(G)+ 1, then it will never change afterwards because
all basesB[j], for j ∈ {1, . . . , n}, have cost equal toω(B)
at least as early as time equal todiam(G) + 1. Therefore,
nodei can safely stop after a2 diam(G) + 1 duration.

V. FORMATION CONTROL FOR ROBOTIC NETWORKS

In this section we introduce the problem of minimum time
formation for a robotic network. We focus on the formation
control problem for a point formation (rendezvous), a line
formation and a circle formation. A control and communica-
tion law based on the distributed algorithm of the previous
section is proposed as an approximate solution.

We consider the following robotic network. Each agenti
occupies a locationp[i] ∈ R

d, d ∈ N, and moves according to
the first order discrete-time integratorp[i](t + 1) = p[i](t) +
u[i](t). The communication edge map is the one arising
according to thedisk graph, Edisk; note that the disk graph
is undirected. Each controlu[i] takes values in the bounded
subset ofRd B(0, rctr), that is,‖u[i]‖2 ≤ rctr.

A. Formation tasks

In the literature many definitions of formation have been
given and studied. Here we consider a somehow specific
situation. We letF0 ⊂ R

d be a “nominal” subset of the
state space and letα 7→ Fα, α ∈ R

m, be a mapping that
provides a parametrization ofF0. For exampleF0 could be
the x axis in the plane andFα the set of lines translated
and rotated in the plane. We ask the network to reach the
configuration where all the agents’ states belong to the same
subsetFα (for someα). The formation taskis defined as

Tform(x) =











true, if ∃α s.t. x[i] ∈ Fα, x[j] ∈ Fα

for all (i, j) ∈ Ecmm(x),

false, otherwise.

Note that, if the digraph is not connected, then the formation
task is achieved if agents belonging to each disconnected
component belong to the same setFα, for possibly different
values ofα.

In the following we are interested in formation to a point
(rendezvous), a line and a circle ford = 2. It is easy to
reformulate these tasks in terms of appropriate setsF0 and
Fα. For the rendezvoustask, Trndzvs, F0 is, e.g., the origin
of the reference frame and eachFα is a point in the plane.
For the line-formation task, Tlform, F0 is, e.g., thex axis
and eachFα is a line in the plane. Finally, for thecircle-
formation task,Tcform, F0 may be taken as the circle of unit
radius centered at the origin, and eachFα is a circle (with
different center and radius) in the plane.

B. Minimum-time formation control

Having defined the formation tasks for the robotic net-
work, we ask whether such tasks can be accomplished in
minimum time. The problem may be formalized as follows.

min T

subj. to: Tform(x(t)) = true for all t ≥ T,

t 7→ x(t) is an evolution of the robotic network.

An important property of the minimum time formation to
a point and a line is that the centralized version of these
problems is equivalent to finding the smallest enclosing ball
and stripe enclosing then agents. Recall from Remark 2.1
that these problems are found to be abstract linear programs.
The property is formalized in the following proposition.

Lemma 5.1:Let P be the set of points inR2, L the set
of lines in R

2 andC the set of circles inR2. Given the set
of pointsPn = {p1, . . . , pn} ⊂ R

2, consider the problems:

min
p∈P

max
pj∈Pn

‖pj − p‖, min
l∈L

max
pj∈Pn

dist(pj , l),

where, given a setS and a pointp, dist(p, S) is the distance
of p from S, that is dist(p, S) = min

s∈S
‖p − s‖. These are

equivalent to the problems of finding the smallest enclosing
ball and stripe of the point set, which are abstract linear
programs. For Problem (ii) we need the further assumption
that the point set is in generic position in the sense that,
given any two groups of three distinct pointsp1, p2, p3 and
p4, p5, p6 (where points in distinct groups may coincide), the
distance between the pointp1 and the line through the points
p2 and p3 is different from the distance between the point
p4 and the line through the pointsp5 andp6. �

Remark 5.2 (Circle-formation):The centralized version
of the minimum time circle-formation problem is equiva-
lent to the problem of finding the minimum-width annulus
containing the point-set. This problem is very complex and
cannot be tackled via abstract linear programming. For ar-
bitrary data sets, the minimum-width annulus has arbitrarily
large minimum radius and, even worse, it is possible that
the minimum-width annulus is a stripe. Typically, in such
configurations, all points are contained only in a small
fraction of the annulus. This is not the solution we envision
when we consider placing robots in circle. A related, simpler
problem is the smallest-area annulus. The cost function in
this problem, that is known to be an abstract linear program,
penalizes both the difference of the radiuses of the annulus
(width of the annulus) and their sum. Typical solutions
to smallest-area annulus are annuli where the points are
more uniformly distributed; circle-formation problems will
be analyzed in detail in a forthcoming paper. �

C. Move-toward-estimate control and communication law

We have shown that the centralized solution of the mini-
mum time formation to point and line may be found by solv-
ing an abstract linear program. Next, we use the distributed
algorithms introduced in Section IV to design a control
and communication law that approximates the centralized
solution of the minimum time formation problem.

Themove-toward-estimatecontrol and communication law
may be summarized as follows. On the basis of their initial

positions, the agents run theFloodBasisalgorithm for the
problem of interest (smallest enclosing ball or stripe). A pos-
sibility could be to wait for the algorithm to end, then move
(at maximum speed) toward the optimal set. We propose a
slightly different strategy. While the algorithm is running,
each agent starts moving toward the set corresponding to
its own current estimate of the solution. Everyone does it
while maintaining connectivity with its current neighbors. In
order to speed up the process and to guarantee convergence,
connectivity is no longer enforced once the algorithm reaches
the halting condition (meaning that the network abstract
linear program has been solved).

Proposition 5.3 (Move-toward-estimate correctness):
On the networkS with communication edge mapEdisk

and bound on theith control input u[i] ∈ B(0, rctr), the
move-toward-estimate control and communication laws
achieve the taskTrndzvs and Tlform respectively. For the
line-formation task we need the further assumption that the
point set of initial conditions is in generic position.

Proof: By the connectivity arguments done before and
by Proposition 4.4 we know that there existsT ∈ N0 such
that for t = T the network is connected and all the agents
have solved the network abstract linear program. Since this
instant all the agents can move toward the target set (point
or line) at maximum speed without enforcing connectivity
constraints anymore. Thus, they achieve the task.

In [11] the reader can find a simulation of the control and
communication law for the rendezvous problem in the plane.

REFERENCES

[1] J. Matousek, M. Sharir, and E. Welzl, “A subexponential bound for
linear programming,”Algorithmica, vol. 16, no. 4/5, pp. 498–516,
1996.

[2] B. Gärtner, “A subexponential algorithm for abstract optimization
problems,”SIAM J Computing, vol. 24, no. 5, pp. 1018–1035, 1995.

[3] N. Megiddo, “Linear programming in linear time when the dimension
is fixed,” J. Assoc. Computing Mach., vol. 31, no. 1, pp. 114–127,
1984.

[4] B. Gärtner and E. Welzl, “Linear programming - randomization
and abstract frameworks,” inSymposium on Theoretical Aspects of
Computer Science, ser. Lect. Notes Comp. Science, vol. 1046, 1996,
pp. 669–687.

[5] P. K. Agarwal and S. Sen, “Randomized algorithms for geometric
optimization problems,” inHandbook of Randomization, P. Pardalos,
S. Rajasekaran, J. Reif, and J. Rolim, Eds. Dordrecht, The Nether-
lands: Kluwer, 2001.

[6] M. Ajtai and N. Megiddo, “A deterministicpoly(log log n)-time n-
processor algorithm for linear programming in fixed dimension,” SIAM
J Computing, vol. 25, no. 6, pp. 1171–1195, 1996.

[7] I. Suzuki and M. Yamashita, “Distributed anonymous mobile robots:
Formation of geometric patterns,”SIAM J Computing, vol. 28, no. 4,
pp. 1347–1363, 1999.

[8] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, “Distributed mem-
oryless point convergence algorithm for mobile robots with limited
visibility,” IEEE Trans Robotics & Automation, vol. 15, no. 5, pp.
818–828, 1999.

[9] M. Egerstedt and X. Hu, “Formation constrained multi-agent control,”
IEEE Trans Robotics & Automation, vol. 17, no. 6, pp. 947–951, 2001.

[10] H. G. Tanner, G. J. Pappas, and V. Kumar, “Leader-to-formation
stability,” IEEE Trans Robotics & Automation, vol. 20, no. 3, pp. 443–
455, 2004.

[11] G. Notarstefano and F. Bullo, “Distributed consensus on enclosing
shapes and minimum time rendezvous,” inProc CDC, San Diego,
CA, Dec. 2006, pp. 4295–4300.

[12] N. A. Lynch, Distributed Algorithms. San Mateo, CA: Morgan
Kaufmann Publishers, 1997.

[13] S. Mart́ınez, F. Bullo, J. Cort́es, and E. Frazzoli, “On synchronous
robotic networks – Part I: Models, tasks, and complexity. Part II: Time
complexity of rendezvous and deployment algorithms,”IEEE Trans
Automatic Ctrl, 2007, to appear.

