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Network abstract linear programming
with application to minimum-time formation control

Giuseppe Notarstefano Francesco Bullo

Abstract—We identify a novel class of distributed opti- all processors. In this paper, we focus on networks destribe
mization problems, namely a networked version of abstract py arbitrary graphs and on robotic networks described by
linear programming. For such problems we propose distributed geometric graphs
algorithms for networks with various connectivity and/or mem- :

ory constraints. Finally, we show how various minimum-time ~ The literature on formation control for robotic networks
formation control problems can be tackled through appropriate  has been growing recently. An early reference on distribute
geometric examples of abstract linear programs. algorithms for the formation of geometric patterns is [7].
Regarding the rendezvous problem, that is, the problem of
|. INTRODUCTION gathering the robots at a common location, an early referenc

This paper focuses on a class of distributed computin§ [8]- A control-Lyapunov function approach to formation
problems and on its applications to formation control propcontrol is discussed in [9]. An input-to-state stability-ap
lems for mobile robotic networks. The objective of formatio Proach is taken in [10]. _
control problems is to move the robots in the network to The contributions of this paper are three-fold. First, we
relative positions with specific properties. To do so, welgtu identify a class of distributed optimization problems that
abstract linear programming, that is, a generalized versfo appears to be noyel and of intrinsic interest. Second, we
linear programming that was introduced by MatekisSharir  Propose a novel simple algorithmic methodology to solve
and Welzl in [1] and extended by &Bner in [2]. Abstract these problems in networks_ Wlth various connectivity and/o
linear programming is applicable also to some geometri®emory constraints. Specifically, we propose three algo-
optimization problems, such as the minimum enclosing ballithms, prove their correctness and establish halting ieond
the minimum enclosing stripe and the minimum enclosingons. Finally, we illustrate how these distributed congiain
annulus. These geometric optimization problems are retevaProblems are relevant in minimum-time formation control
in the design of efficient robotic algorithms for minimum-Problems, such as the rendezvous problem and the problems
time formation control problems. of line and circle formations. Specifically, we design some

Linear programming and its generalizations have receivd@iNt communication and motion coordinations schemes in
widespread attention in the literature. The following refe Which robots move towards the estimated final shape while
ences are most relevant in our treatment. The earliestr(detée final shape is being computed. The proposed laws extend
ministic) algorithm that solves a linear program in a fixed0® @ general setting the rendezvous control law proposed
number of variables subject to linear inequalities in time 1N [11]. _ _ _ _

O(n) is given in [3]. An efficient randomized incremental The paper is organized as follows. Section Il introduces

algorithm for linear programming is proposed in [1], whereabstract linear programs. Section Il introduces netwookim
a linear program inl variables subject ta linear inequalities €ls. Section IV contains the definition of network abstract

is solved in expected tim@(d?n + ¢©(Vd1oed): the expec- linear programs and the proposed distributed algorithms.

tation is taken over the internal randomizations executed b>€ction V shows the relevance of the proposed distributed
the algorithm. An elegant survey on randomized methods fPmputing algorithms in the context of formation control.
linear programming is [4]. The survey [5] discusses theiappl ~ Notation: We let N, Ny, and R, denote the natural
cation of abstract linear programming to a number of geomefiumbers, the non-negative integer numbers, and the positiv
ric optimization problems. Regarding parallel computatio real numbers, respectively. Ferc R, andp € R?, we let
approaches to linear programming, we only note that lined?(p,) denote the closed ball centeredzatvith radiusr,
programs withn linear inequalities can be solved [6] by i-€.., B(p,7) ={q € R | l]p—qll2 <r}. For f,g : N = R,
parallel processors in timé((loglog(n))?). The approach we say thatf € O(g) if there existng € N andk € R,

in [6] and the ones in the references therein are, howeveétich that|f(n)| < k|g(n)| for all n > nq.

limited to parallel random-access machines (usually dshot

PRAM), where a shared memory is readable and writable to 1. ABSTRACT LINEAR PROGRAMMING
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A. Abstract framework More examples are discussed in [1], [2], [4], [5]. O

We consider optimization problems specified by a pair . i )
(H,w), whereH is a finite set, and : 27 — Qs a function B. Randomized sub-exponential algorithm
with values in a linearly ordered se?(<); we assume that A randomized algorithm for solving abstract linear pro-
2 has a minimum value-co. The elements off are called grams has been proposed in [1]. Such algorithm has linear
constraints and forG C H, w(G) is called thevalueof G.  expected running time in terms of the number of con-
Intuitively, w(G) is the smallest value attainable by a certairstraints, whenever the combinatorial dimensibiis fixed,
objective function while satisfying the constraints@f An  and subexponential in. The algorithm, calledSUBEX_| p,
optimization problem of this sort is callealostract linear has a recursive structure and is based on the two primitives

programif the following two axioms are satisfied: introduced above, i.e., the violation test and the basis-com
(i) Monotonicity if ' C G C H, thenw(F) < w(G); putation primitives. For simplicity, we assume here thathsu

(i) Locality: if F* C G C H with —0 < w(F') = w(G), primitives may be implemented in constant time, indepehden
then, for allh € H, of the number of constraints. Given a set of constradits

and a candidate basis C G, the algorithm is as follows.

W@ <wl@Uih) = wlf) <wlFU{R). o on SUBEX p(G.C)

A set B C H is minimal if w(B) > w(B’) for all proper if G = C, then returnC

subsetsB’ of B. A minimal setB with —co < w(B) is else

a basis Given G C H, abasis ofG is a minimal subset choose a random € G\ C

B C @G, such that-co < w(B) = w(G). A constrainth is B := SUBEXU p(G \ {h},C)

said to beviolated by G, if w(G) < w(G U {h}). if Vi ol (B,h), i.e., his violated byB,
Thesolutionof an abstract linear prograf#f, w) is a min- return SUBEX_| p(G,Basi s(B, h))

imal setBy C H with the property thatv(By) = w(H). elsereturn B

The combinatorial dimensior of (H,w) is the maximum end if

cardinality of any basis. Finally, an abstract linear pergiis end if

calledbasis regularif, for any basis withcard(B) = d and g the abstract linear prograffl, «), the routine is invoked
any constraint: € H, every basis of3 U {h} has the same | i SUBEX | p(H, B), given any initial candidate basis.

cardinality of B. We now define two important primitive In [1] the expected completion time for tHBUBEX | p

operations that are useful to solve abstract linear programalgorithm in conjunction with Clarkson's algorithms was

(i) Violation test given a constraint: and a basisB,  shown to be irO(d2n+e°(V71%ed) for basis regular abstract
it tests whetherh is violated by B; we denote this |inear programs. In [4] the result was extended to problems

_ primitive by Vi ol (B, h); _ ~that are not basis regular.
(i) Basis computatiangiven a constraint, and a basis

B, it computes a basis oB U {h}; we denote this 1
primitive by Basi s(B, h).
Remark 2.1 (Examples of abstract linear programgje Following [12], we define a synchronous network system
present three useful geometric examples; see Figure 1. as a “collection ofcomputing elementiocated at nodes of
() Smallest enclosing balBivenn points inR<, compute a directed network graph.” These computing elements are

the center and radius of the ball of smallest volum&°MetMes callegprocessors
containing all the points. This problem has combina- . -
torial dimgensiond+p1. P A. Digraphs and connectivity
(i) Smallest enclosing stripeGiven n points in R? in We let7 = {1,...,n} and letG = (I,FE) denote a
generic positions, compute the center and the width afirected graph, wheré is the set of nodes anl C I x I is
the stripe of smallest width containing all the pointsthe set of edges. For each nodef G, the number of edges
This problem has combinatorial dimensién going out from (coming into) nodé is called out-degree
(i) Smallest enclosing annulugiven n points in R?,  (in-degred and is denotedut degl’! (i ndeg!?). The set of
compute the center and the two radiuses of the annulggitgoing (incoming) neighbors of nodere the set of nodes
of smallest area containing all the points. This problengo (from) which there are edges from (to)They are denoted
has combinatorial dimensiof No (i) and N;(i), respectively. A directed graph is called
strongly connectedf, for every pair of nodegi, j) € I x I,
there exists a path of directed edges that goes frdmj.
In a strongly connected digraph, the minimum number of

oo edges between nodeand j is called thedistance from; to
. j and is denotedlist(z, 7). The maximumdist(i,j) taken
over all pairs(, j) is thediameterand is denotediam(G).

. NETWORK MODELS

Finally, we consider time-dependent directed graphs of the
form t — G(t) = (I, E(t)). The time-dependent directed
graphg is jointly strongly connectedf, for every ¢t € Ny,

Fig. 1. Smallest enclosing ball, stripe and annulus Uj;";g(q-) is strongly connected.



Moreover, the time-dependent directed gr&pis uniformly  the dynamics ofith agent; Ecnm : X* — 27% is the
strongly connected, there existsS > 0 s.t. for everyt € Ny communication edge mapiere the communication edges
4+ ) depend upon the position of the robots, as opposed to time.
U7LiG(7) is strongly connected. The robotic network evolves according to a discrete-time
communication and motion model.
i i , ) Definition 3.2 (Control and communication lawlet S
Strictly speaking, asynchronous networks a directed pe g robotic network. Acontrol and communication la@C
graphG = (I, Ecmm) Where the setl = {1,...,n} is the o S consists of the setd/ (message alphabet)y (set of
set of identifiers of the computing elements, and the t'me'logical states) andV, C W (allowable initial values), as
dependent magemm : No — 27/ is the communication gefined in Definition 3.1, and of the maps:

edge mawith the following property: an edgg, j) belongs . ) i .
to Ecmm(t) if and only if processor can communicate to () I];?J?]%t'io)l'i x W x I — M, calledmessage-generation

processor; at timet. (i " - .
S - . i) stf: W x M™ — W, calledstate-transition function
Definition 3.1 (Distributed algorithm)Let G = : n :
(I, Ecmm) be a synchronous network. A distributed (”g Ctlh'lX x V[L.X M h'_) de'. qa_llledhcont:]ol ;unctm_)n .
algorithm consists of the sets _ Roughly speaking, this definition has the following mean-
ing: for all ¢ € I, to theith physical agent corresponds

B. Synchronous networks and distributed algorithms

- W, set of “logical” statess"’, for all i € I; a processor, labelef] that performs the following actions.

- Wy C W, subset of allowable initial values; First, at each communication round tite processor sends

- M, message alphabet, including thel | symbol; to each of its outgoing neighbors in the communication
and the maps graph a message (possibly thnell | message) computed

- msg: W x I — M, message-generation function; by applying the message-generation function to the current

- stf: W x M™ — W, state-transition function. 0 values ofzl! and wl’l. After a negligible period of time,

Execution of the network begins with all processors ithe ith processor resets the value of its logical staté
their start states and all channels empty. Then the processBy applying the state-transition function to the curreritiea
repeatedly perform the following two actions. First, tie  of w!’, and to the messages received at timeBetween
processor sends to each of its outgoing neighbors in the cogPmmunication instants, the motion of th¢h agent is
munication graph a message (poss|b|y thd | message) determined‘ by applying the control fUﬂCtiOﬂ to the current
computed by applying the message-generation functioreto talue of =/, and the current value ofl’l. This idea is
current value ofw(. After a negligible period of time, the formalized as follows.
ith processor computes the new value of its logical variables Definition 3.3 (Evolution of a robotic network):et S be
wll by applying the state-transition function to the curren@ robotic network and’C be a control and communication
value ofwl’, and to the incoming messages (present in eadfw for S. The evolutionof (S,CC) from initial conditions
communication edge). The combination of the two actions([)” € X, and wl € Wo, i € I, is the set of curves! :
is called acommunication rounar simply a round. Ny — X andw“?: Ng — W, i € I, satisfying

In this execution scheme we have assumed that each il (i il (il (i
processor executes all the calculations in one round. If it @ (t +1) = f(a" (), cti(z! (2), w™ (t + 1),y (1)),
is not possible to upper_bound the exec_ution-time of thﬁ/here, fori e I,
algorithm, we may consider a slightly different network
model that allows the state-transition function to be efettu wl(t +1) = sti(wl(t), (1)),
in multiple rounds. When this happens, the message is 4 , ‘ _
generated by using the logical state at the previous roundwith the conventions that!" (0) = 2t and wll (0) = wl.

The last aspect to consider is th&gorithm halting that  Here, the functionyl’l : Ny — M™ (describing the messages
is a situation such that the network (and therefore eadlkceived by agent) has components
processor) is in a idle mode. Such status can be used to 0] Gl A i (s
indicate the achievement of a prescribed task. Formally wglil ;) — msgz (1), wi(t), i), i (4,]) € Eemm(2(t)),
say that a distributed algorithm is inalting statusif the ™’ nul l, otherwise
logical state is a fixed point for the state-transition fumct |
(that becomes a self-loop) and no message (or equivalently
thenul | message) is generated at each node. IV. NETWORK ABSTRACT LINEAR PROGRAMMING

) o In this section we definemetwork abstract linear program

C. Robotic networks and control and communication lawsgnq propose novel distributed algorithms to solve it.

We report here the notion of robotic network adopting
a simplified version of the formal model introduced in”- Problem statement
[13]. A robotic networkis a tuple (1, A, Ecmme, where Informally we can say that anetwork abstract linear
I ={1,...,n} is the set of identifiersA = {All},c; = program consists of three main elements: a network, an
{(X,U, Xo, f)}icr is called theset of physical agentand abstract linear program and a mapping that associates to
is a set of control systems consisting of a differentiableach constraint of the abstract linear program a node of the
manifold X (state space), a compact subsebf R™ (input network. A more formal definition is the following.
space), a subseX of X (set of allowable initial states) and Definition 4.1: A network abstract linear program
a (sufficiently smooth) map : X x U — X describing (NALP) is a tuple(G, (H,w), B) consisting of



(i) G = (I, Eemm), @ communication digraph;
(i) (H,w), an abstract linear program;

the network model as described in Section lll, so that

each processor may execute the state transition function

(i) B : H — I, a surjective map callectonstraint “asynchronously”, in the sense that the time-length of the
distribution map 0 execution may take multiple rounds. If that happens, the

The solution of the network abstract linear program ismessage generation function in each intermediate round is

attained when all processors in the network have computedlled using the logical state of the previous round. Here

a solution to the abstract linear program. is an informal description of what we shall refer to as the

Remark 4.2:0ur definition allows for various versions of FloodBasisMultiRounalgorithm:

network abstract linear programs. Regarding the constrain  [Informal description] Each processor has the

distribution map, the most natural case to consider is when same message alphabet and logical state as in

the constraint distribution map is bijective. In this case o FloodBasisand also the same state initialization.

constraint is assigned to each node. More complex distribu- At each communication round it performs the

tion laws are also interesting depending on the computation  following tasks: i) it acquires the messages from its

power and memory of the processors in the network. In what  in-neighbors; ii) if the execution of th8UBEX_| p

follows, we assumés to be bijective. 0 at the previous round was over it starts a new

instance, otherwise it keeps executing the one in

progress; iii) if the execution of th&UBEX. p

ends it updates the logical state and runs the

B. Distributed algorithms

Next we define three distributed algorithms that solve
network abstract linear programs. First, we describe a syn- message-generation function with the new state,
chronous version that is well suited for time-dependent otherwise it generates the same message as in the
networks whose nodes have bounded computation time and previous round.
memory, but also bounded in-degree or equivalently amyitra |n the third scenario we work with a time-independent
in-degree, but also arbitrary computation time and memoryetwork with no bounds on the in-degree of the nodes. We
Then we describe two variations that take into account tf‘guppose that each processor has limited memory capacity,
problem of dealing with arbitrary in-degree versus shoro that it can store at modd messages. The memory is
computation time and small memory. The second versiofimensioned so to guarantee that ®EBEX_| p is always
of the algorithm is suited for time-dependent networks thafolvable during two communication rounds. The memory
have arbitrary in-degree and bounded computation time, bggnstraint is solved by processing only part of the incoming
are allowed to store arbitrarily large amount of informafio messages at each round and cycling in a suitable way in

in the sense that the number of stored messages may depgpger to process all the messages in multiple rounds.
on the number of nodes of the network. The third algorithm Here is an informal description of what we shall refer to

considers the case of time-independent networks with aris theFloodBasisCyclingalgorithm:
trary m—degreg and bounded' computa_non time and Memory. [informal description] The firstd + 1 components

In the algorithms we consider a uniform netwa$kwith of the logical state are the same asFloodBasis
communication digraphg = (I, Ecmm) and a network and are initialized in the same way. A further
abstract linear progrant, (H,w), B). We assumes to be component is added. It is simply a counter variable
bijective, that is, the set of constrainis has dimensiom, that keeps trace of the current round. At each

H ={hy,---,hn}. The combinatorial dimension i& communication round each processor performs the
Here is an informal description of what we shall refer to following tasks: (i) it acquires from its neighbors

as theFloodBasisalgorithm: (a message consisting of) their current basis; (i)

[Informal description]Each processor has a logical
state ofy + 1 variables taking values idf. The
first 5 components represent the current value of
the basis to compute, while the last element is the
constraint assigned to that node. At the start round
the processor initializes every component of the
basis to its constraint, then, at each communication
round, performs the following tasks: (i) it acquires
from its neighbors (a message consisting of) their
current basis; (ii) it executes tHaUBEX | p algo-

it choosesD messages according to a scheduled
protocol, e.g. it labels its in-neighboring edges with
natural numbers fror up toi ndeg” and cycles
over them in increasing order; (iii) it executes the
SUBEX p algorithm over the constraint set given
by the collection of theD messages plus its basis
and its constraint (that it maintains in memory),
thus computing a new basis; (iv) it updates its
logical state and message using the new basis
obtained in (iii).

rithm over the constraint set given by the collection
of its and its neighbors’ basis and its constraint
(that it maintains in memory), thus computing a

Remark 4.3:For the algorithm to converge it is important
that each agent keeps in memory its constraint and thus
1aintains / > implements theSUBEX_| p on the bases received from its

new basis; (iii) it updates its logical state and  npeighbors together with its constraint. This requirement i
message using the new basis obtained in (ii). important because of the following reason: no element of a

In the second scenario we work with a time-dependerttasisB for a setG C H needs to be an element in the basis
network with no bounds on the in-degree of the nodes aref GU {h} foranyh € H \ G. O
on the memory size. In this setting the execution of the We are now ready to prove the algorithms’ correctness.
SUBEX_| p may exceed the communication round length. Proposition 4.4 (Correctness dfloodBasi$: Let S be a
In order to deal with this problem, we slightly changesynchronous time-dependent network with communication



digraphG = (I, Ecmm) and let(G, (H,w), B) be a network w(B*1l(1)) > w(B). Iterating this argumentist (i, j) times,
abstract linear program. I§ is jointly strongly connected, the node;j satisfiesw (B! (dist(i,j))) > w(B). Now, con-
then theFloodBasisalgorithm solveq g, (H,w), B), that is, sider the out-neighbors of node For everyks € No(j),
in a finite number of rounds each node acquires a copy @ must hold thatw(Bsl(dist(i,j) + 1)) > w(BVI(t)).
the solution of(H,w), i.e., the basisB of H. Iterating this argumendlist(j,4) times, the node satisfies
Proof: In order to prove correctness of the algorithmw (B (dist(7, j) +dist(j,1))) > w(BY! (dist(7, 5))). In sum-
observe, first of all, that each law at every node converges mary, becausdist(z, 7) + dist(j,7) < 2diam(G), we know
a finite number of steps. In fact, using axioms from abstra¢hat B (dist (i, j) + dist(j,4)) = B and, in turn, that
linear programming and finiteness df, each sequence o
w(Bl(t)), t € Ny, is monotone nondecreasing, upper w(B) > w(BY(dist(i, 1)) > w(B).
bounded and can assume a finite number of values. Then Wis shows that,
proceed by contradiction to prove that all the laws conver
to the samew(B) and that it is exactlyw(B) = w(H).
Suppose that fot > t; > 0 all the nodes have converged to
their limit basis and that there exist at least two noded, c
them: and j, such thatu(Bl(t)) = w(Bl) £ w(BU) =
w(BUI(t)), for all t > to. Fort = to + 1, for everyk; € V. FORMATION CONTROL FOR ROBOTIC NETWORKS
No(i), Bl does not violateB*], otherwise they would

; e : In this section we introduce the problem of minimum time
compute a new ba5|_s thus violating the assumption that th‘fggrmation for a robotic network V\f:e focus on the formation
have converged. Using the same argumerit-att, + 2, for '

everyks € No(ky), Bl does not violates =), Notice that ¢S BIOTER T & P (SENALEE EAMERAE, £ L0
this does not imply thaBl’! does not violateB[*2!, but it '

implies thatw (Bl < w(Blk]). Iterating this argument we tion law based on the distributed algorithm of the previous
can show that for everg > 0, everyk connected ta in the section s p(rjopoiedfa”s an apprSX|_rnate SOIL:(“O”' h age
orapn 11 G1) mus e st such () e e e oo 0ot newor Each gen
w(B™). However, using the joint fofg‘ec“"'tY assumptiony, o first order discrete-time integrat¥! (t+1)=pllt) +
there existsSo > 0 such thatU,Z, °G(¢) is strongly ull(t). The communication edge map is the one arising
connecte[g and ther[e]fomels con'nected tgj, thus showing according to thedisk graph Fgsc note that the disk graph
that?”(B ') < w(BY)). Repeating the same argument byis undirected. Each contrall” takes values in the bounded
starting from nodej we obtain thato(BY!) < w(Bl), that ¢ fcor omd B(0, rex). that is, |ul 5 < r
implies w(Bl) = w(BU), thus giving the contradiction. e ’ 2=
Now, the basis at each node satisfies, by construction, tlae Formation tasks
constraints of that node. Since the basis is the same for eac
node, it satisfies all the constraints, theB) = w(H). B
Remark 4.5:Correctness of the other two versions of th
FloodBasisalgorithm may be established along the sam

lines. For example, it is immediate to establish that th rovides a parametrization df,. For exampleF, could be

ba_5|s at each node reachgs a constant valu_e i finite t! ﬁe x axis in the plane and’, the set of lines translated
It is easy to show that this constant value is the solution

of the abstract linear program for tféoodBasisMultiRound and rotated in the plane. We ask the network to reach the
algorithm. For theFloodBasisCyclingalgorithm we note that configuration where all the agents’ states belong to the same

the procedure used to process the incoming data is equivalgrlfbsetFa (for somea). Theformation taskis defined as

to considering a time-dependent graph whose edges change true, if JastzldeF, U cF,
with that law. O _ -

Proposition 4.6 (Halting condition)Consider a network Tomn() = for. all (i, j) € Eomm(),
S with time-independent, strongly connected digragh fal se, otherwise

where theFloodBasisalgorithm is running. Each processornote that, if the digraph is not connected, then the formmatio

can halt the algorithm execution if the value of its basis hagq\ is achieved if agents belonging to each disconnected

not changed afte? diam(¢) + 1 communication rounds.  comnonent belong to the same &, for possibly different
Proof: First, notice that, for alk € Ny and for every

if basi$ does not change for a duration
g?diam(g) + 1, then it will never change afterwards because
all basesBV!, for j € {1,...,n}, have cost equal to(B)
t least as early as time equal daam(G) + 1. Therefore,
odei can safely stop after 2diam(G) + 1 duration. =

qn the literature many definitions of formation have been
egiven and studied. Here we consider a somehow specific
situation. We letFy, ¢ R? be a “nominal” subset of the
State space and let — F,, o € R™, be a mapping that

o values ofa.
(i,) € Ecmm, In the following we are interested in formation to a point
w(B[i](t)) < W(B[j](tJr 1)). 1) (rendezvous), a line and a circle fdr= 2. It is easy to

reformulate these tasks in terms of appropriate $gteind
This holds by simply noting thaBl!(¢ 4+ 1) is not vio- F,. For therendezvoudask, Zds Fo iS, €.9., the origin
lated by Bl(t) by construction of theFloodBasisalgo- of the reference frame and eaéh is a point in the plane.
rithm. Assume that nodeé satisfies Bl/(t) = B for all For the line-formation task, Zjom, Fpy is, €.g., thex axis
t € {to,...,to + 2diam(G)}, and pick any other nod¢. and eachF,, is a line in the plane. Finally, for theircle-
Without loss of generality assume thigt = 0. Because of formationtask, Z¢orm, Fo may be taken as the circle of unit
equation (1), ifk; € No(i), then w(B¥1(1)) > w(B) radius centered at the origin, and eakh is a circle (with

and, recursively, ifk, € No(k1), then w(B*21(2)) > different center and radius) in the plane.



B. Minimum-time formation control
Having defined the formation tasks for the robotic net

positions, the agents run tHdoodBasisalgorithm for the
problem of interest (smallest enclosing ball or stripe).d%p

work, we ask whether such tasks can be accomplished ibility could be to wait for the algorithm to end, then move
minimum time. The problem may be formalized as follows (&t Maximum speed) toward the optimal set. We propose a
slightly different strategy. While the algorithm is runnjng

each agent starts moving toward the set corresponding to
its own current estimate of the solution. Everyone does it
while maintaining connectivity with its current neighbohs

order to speed up the process and to guarantee convergence,

An important property of the minimum time formation to €onnectivity is no longer enforced once the algorithm reach
a point and a line is that the centralized version of thes@€ halting condition (meaning that the network abstract
problems is equivalent to finding the smallest enclosing) balinéar program has been solved).
and stripe enclosing the agents. Recall from Remark 2.1 _ Proposition 5.3 (Move-toward-estimate correctness):
that these problems are found to be abstract linear progrark¥ the networkS with communication edge mapisk
The property is formalized in the following proposition. ~ and bound on theth control inputul’) € B(0, rey), the
Lemma 5.1:Let P be the set of points ifR?, L the set move-toward-estimate control and communication laws
of lines inR? and C the set of circles iR2. Given the set achieve the taskligzvs and Zpom respectively. For the
of points P, = {p1,...,pn} C R2, consider the problems: line-formation task we need the further assumption that the
point set of initial conditions is in generic position.

Proof: By the connectivity arguments done before and
by Proposition 4.4 we know that there exidfsc N, such
that for¢ = T the network is connected and all the agents
have solved the network abstract linear program. Since this

min T
subj. to: Trom(x(t)) =true forall ¢t > T,
t — z(t) is an evolution of the robotic netwark

. o . dist(os. 1
;ggpglealgil\pg pll, min ma dis (pj;1),

where, given a set and a poinp, dist(p, S) is the distance
of p from S, that is dist(p, $) = min ||p — s|.. These are
S

S
equivalent to the problems of finding the smallest enclosing ™ . . . W
r line) at maximum speed without enforcing connectivity

ball and stripe of the point set, which are abstract linea
programs. For Problem (ii) we need the further assumptio?l
that the point set is in generic position in the sense that,
given any two groups of three distinct poinis, p-, p3 and
P4, s, e (Where points in distinct groups may coincide), the
distance between the poipt and the line through the points [1]
p2 and p3 is different from the distance between the point
p4 @and the line through the poings and pg. O
Remark 5.2 (Circle-formation)The centralized version (21
of the minimum time circle-formation problem is equiva- [3]
lent to the problem of finding the minimum-width annulus
containing the point-set. This problem is very complex and[4
cannot be tackled via abstract linear programming. For ar-
bitrary data sets, the minimum-width annulus has arbisrari
large minimum radius and, even worse, it is possible thats
the minimum-width annulus is a stripe. Typically, in such
configurations, all points are contained only in a small
fraction of the annulus. This is not the solution we envisiong
when we consider placing robots in circle. A related, simple
problem is the smallest-area annulus. The cost function in
this problem, that is known to be an abstract linear program[,7]
penalizes both the difference of the radiuses of the annulus
(width of the annulus) and their sum. Typical solutions (8]
to smallest-area annulus are annuli where the points are
more uniformly distributed; circle-formation problemsliwi

be analyzed in detail in a forthcoming paper. o o

C. Move-toward-estimate control and communication law (10]

We have shown that the centralized solution of the mini;

X : . . [11]
mum time formation to point and line may be found by solv-
ing an abstract linear program. Next, we use the distributed
algorithms introduced in Section IV to design a control?]
and communication law that approximates the centralizggls;
solution of the minimum time formation problem.

Themove-toward-estimateontrol and communication law

may be summarized as follows. On the basis of their initial

onstraints anymore. Thus, they achieve the task.
In
communication law for the rendezvous problem in the plane.

igstant all the agents can move toward the target set (point

[ |
[11] the reader can find a simulation of the control and
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