
Worst-case time complexity of a lattice formation problem

Ketan Savla and Francesco Bullo
Center for Control, Dynamical Systems and Computation

University of California at Santa Barbara
2338 Engineering Bldg II, Santa Barbara, CA 93106-5070

ketansavla@umail.ucsb.edu, bullo@engineering.ucsb.edu

Abstract— We consider a formation control problem
for a robotic network with limited communication and
controlled motion abilities. We propose a novel control
structure that organizes the robots in concentric layers
and that associates to each layer a local leader. Through a
load balancing algorithm on the asynchronous network
of layers we allocate the desired number of robots on
each layer. A final uniform spreading algorithm leads the
robots to a lattice-like formation. This novel distributed
communication and control algorithm runs in linear time
in the worst case.

I. INTRODUCTION

Models for robotic networks are the subject of the
early work in [1], where some impossibility results
are established for certain formation control problems.
More recently, Martı́nez et al in [2] propose a detailed
model and analyze the time complexity of basic ren-
dezvous and deployment algorithms. For many of the
resulting linear dynamical systems, the worst case time
complexity is of orderΘ(n2 log n) (rendezvous) and
O(n3 log n) (deployment). Sharma et al [3] characterize
the time complexity of sensor-based vehicle routing
in 2 dimensions, i.e., of a distributed point to point
motion planning problem. In their formulation, size and
speed of the robots decrease with an increasing size of
the network; in summary the worst case complexity of
the vehicle routing problem isΘ(n) and the expected
time complexity if Θ(

√
n). Smith and Bullo in [4]

consider a target assignment problem and characterize
its time complexity as beingΘ(n) in the worst case. It
is not completely fair to compare all these results as the
models they adopt have small but important differences.
Additional related work includes the study of scaling
laws in statistical mechanics, percolation theory, and
wireless communication; e.g., see [5], [6], [7], [8].

The contributions of this paper are twofold. We
consider a formation control problem for a robotic
network with appropriate scaling laws inspired by the
thermodynamic limit in statistical mechanics and by

the memory and communication rate restrictions typ-
ical in distributed algorithms. Our formation control
problem amounts to the problem of steering robots to
“contiguous” vertices of a lattice formation in the plane.
Our first contribution is to show that this problem has
worst case time complexity of orderO(n). The second
contribution is the explicit design of an communication
and control law that achieves this upper bound. Our
novel approach is based on the distributed computation
and representation of a control structure called “rotating
layers.” The key idea is to organize the robots in
concentric layers and to orchestrate their motion in
such a way that the resulting network is connected over
certain intervals. The main algorithmic contribution is
a load balancing algorithm for an asynchronous chain
network with bounded time complexity.

The paper is organized as follows. Section II presents
the formal model with a particular attention to appro-
priate scaling laws and complexity notions. Section III
introduces our novel control structure and establishes
its properties. Section IV contain the main algorithmic
contribution, namely a simple load balancing algorithm
and its analysis. Finally, Section V describes simple
strategies on how to place the robots in their desired
positions inside the control structure.

II. M ODELING THE ROBOTIC NETWORK

Let n be the number of robots in the network, each
with a unique identifier (UID). LetI = {1, . . . , n} be
the set of unique identifiers. We assume continuous-
time motion and communication at discrete times.
Each robot has the following sensing, computation,
communication, and motion control capabilities. The
memory and transmission capability of the processor
is O(log(n)) bits. Theith robot occupies a locationpi

in a compact regionQ ⊂ R
2, and it moves according

to the continuous-time control system

ṗi = ui,

with |u| ≤ umax. We shall let the robots to always move
at the maximum speedumax. The sensing and com-
munication model is the following. The processor of
each robot can sense its position with1/

√
n accuracy.

Consequently, each robot can represent its position with
O(log(n)) bits. Every robot is capable of transmitting
its position to any other robot within a closed disk of
radius rcomm ∈ R+. We assume thatrcomm and umax

scales as1/
√

n because of congestion. The inspiration
for this scaling comes from the thermodynamic limit
in statistical mechanics.

The n robots are initially randomly placed inQ.
The communication graph is thercomm-disk graph,
i.e., the graphGdisk with verticesp1, . . . , pn and edges
(pi, pj) for all i 6= j if and only if ‖pi − pj‖ ≤
rcomm. We assume that the initial placement of the
robotsp1(0), . . . , pn(0) is such that their communica-
tion graphGdisk(p1(0), . . . , pn(0) is connected.

The coordination objective is as follows: place the
robots at “contiguous” locations in a hexagonal lattice
with desired inter-robot distancerdes ∈ R+ (refer
Fig 1), whererdes scales as1/

√
n because of conges-

tion. We assume thatrdes < rcomm/2.

Fig. 1. Hexagonal lattice formation.

III. A CONTROL STRUCTURE BASED ON ROTATING

LAYERS

In this section we outline the details of a control
structure that the robots compute as part of their
initialization before executing the main algorithm. The
communication graph used for this initialization pro-
cess is thercomm-disk graph, i.e., two robots are able to
communicate to each other only when they are within
rcomm distance of each other. The control structure is
constructed via a few intermediate steps.

Step 1: Central leader election

The robots estimate the boundaries of thebounding
box, i.e., the smallest rectangle that is aligned with the

ℓ0

Fig. 2. Establishing layers

Fig. 3. Rotating Layers.

coordinate axes and that contains all the robots. The
robots then calculate their respective distances from
the geometric center of this rectangle and the robot
ℓ0 that is closest to the center is elected as the leader.
A flooding protocol to compute the bounding box is
discussed in [9]; it is immediate to see that its time
complexity isΘ(n), wheren is the number of robots.
As is well know [10], [11], the time complexity of
leader election based on a flooding algorithm is also in
Θ(n).

Step 2: Rotating layer formation

The second step in computing the control structure
is the formation of rotating layers centered at the leader
ℓ0. To do this, the robots first determine the layer to
which they belong based on their distances from the

leaderℓ0 (refer Figure 2). The layer number of robot
i, denoted byL(i), is given by

L(i) =
⌈‖pi − pℓ0‖

rdes

⌉

.

Because the environment is bounded, so is the maxi-
mum layer number, that we denote withNlayer. As a
consequence of the connectivity assumption and of the
relationship betweenrcomm andrdes, one can see that if
the annulus with radii[jrdes, (j +1)rdes] is empty, then
so are all other annuli with larger radii.

The robots then move radially away frompℓ0 to a
distance frompℓ0 determined by their layer number.
The nominal distance fromℓ0 for robot i is rnom(i)
defined by

rnom(i) = L(i)rdes.

Once the robots reach their nominal distances as shown
in Figure 3, the ones in the odd numbered layers rotate
in the clockwise direction and the ones in the even num-
bered layers rotate in the counterclockwise direction.
We shall refer to such layers asrotating layers (refer
Figure 3). Without loss of generality, we assume that
the speedumax is sufficiently small, as compared with
rcomm, so that any robot in layer numberk is within
communication range of all robots in layer numbers
k− 1 andk + 1 at least once every2πkrdes/umax time
intervals. The resulting communication graph over an
appropriate time interval is shown in Figure 4. This
step takesO(1) time.

ℓ0 ℓ1 ℓ2 ℓ3

Fig. 4. Resulting “over-time” communication graph

Step 3: Layer leader elections

After all robots reach their nominal distances and
begin rotating, the following protocol is executed. The
objective is to elect a leaderℓj for each rotating layer
j and to count the number of robots present in each
layer.

1: setj := 1

2: robot ℓj−1 counts the number of robots
in layer j, denoted bynlayer(j), during
the next2πjrdes/umax time interval

3: if nlayer(j) = 0 then
4: exit
5: else
6: among all the robots present in layer

j, robot ℓj−1 elects the one with the
highest UID asℓj and communicates
nlayer(j) to it

7: end if
8: Set j := j + 1 and go back to2:

For layer j, the counting and leader election process
requires at most4πjrdes/umax time. The following
lemma characterizes the time complexity of the process
required for the layer leader election step.

Lemma 3.1: Starting from the rotating layers, the
time required to elect layer leaders belongs toO(n).

Proof: Circumference of thejth layer is
2πjrdes(n) ∼ j/

√
n. Robot speed isumax(n) ∼ 1/

√
n.

Hence, steps2: and6: requireO(j). But the number
of layers, Nlayer ∈ O(

√
n). Therefore the total time

required to elect layer leaders is
∑

√
n

j=1 j ∈ O(n).
We are now ready to state the time complexity

required to form the rotating layer structure.
Lemma 3.2: The time required to form the rotating

layer structure from an initially connected set ofn
robots belongs toO(n).

Analysis of communication across and inside layers

As the control structure is in place and robots
rotate according to their layer identifier, the commu-
nication graph across robots changes with time. In
other words, if the robot trajectories are denoted by
(p1(t), . . . , pn(t)), then the time-dependent communi-
cation graph ist 7→ Gdisk(p1(t), . . . , pn(t)). Because
the number of layers belongs toO(

√
n), this time-

dependent graph has the following useful properties
(refer Figure 5):

(i) for all j ≥ 0, there is an edge betweenℓj and
any robot in layerj + 1 at least once every
2πjrdes/umax ∈ O(

√
n) time instants, and

(ii) each leaderℓj can broadcast a message to all
robots in its own layerj in time 4πjrdes/umax ∈
O(
√

n).

IV. L AYER BALANCING

The hexagonal lattice can be viewed as a layer
formation around a central point with6j points in layer
number j. In order to arrange the robots into such

ℓ0 ℓ1 ℓj ℓ√nℓj+1

Transmission delayO(j)

Fig. 5. Asynchronous chain network

a configuration, we first need to distribute the robots
among the layers so that we have6j robots in the
jth layer. We want this property to hold for as many
consecutive layers as possible starting with layer1. We
call this the layer balancing problem. To solve this
problem, we introduce a useful finite state machineΣ
and design a load balancing algorithm forΣ. We later
show how to implement this algorithm on the robotic
network.

The state of the finite state machineΣ is the number
of robots in each layer. LetN∗ be the smallest positive
integer such thatN∗(N∗ + 1) ≥ n/3 (this will be the
final number of balanced layers). The number of states
of Σ, denoted byNdyn, is max{Nlayer, N

∗}. Hence,
the state ofΣ can be described by the tuplex(t) =
(x1(t), . . . , xNdyn(t)), wherexj(0) = nlayer(j) ∀1 ≤
j ≤ Nlayer and xj(0) = 0 ∀Nlayer + 1 ≤ j ≤
Ndyn. In addition to this, we defineauxiliary state
variables y(t) = (y1(t), . . . , yNdyn(t)) and z(t) =
(z1(t), . . . , zNdyn(t)). These variables are initialized as
follows: y1(0) = 1, yj(0) = 0 ∀i > 1 and zj(0) =
0 ∀i ≥ 1. These auxiliary variablesy(t) andz(t) take
values in{0, 1} and their values influence the evolution
of Σ. The evolution ofΣ obeys the following discrete-
time linear system:

x(t + 1) = x(t) +















+1
−1
0
...
0















u1 + . . .















0
...
0

+1
−1















uNdyn−1,

where uj ∈ Z is a control signal establishing how
many robots should transfer from layerj + 1 to j.
For the systemΣ, the layer balancing problem amounts
to the selection of an input trajectory that steersx(t)
from the initial state(x1(0), . . . , xNdyn(0)) to a final
state(x1(T), . . . , xNdyn(T)), wherexj(T) = 6j ∀1 ≤
j ≤ N∗ − 1, xN∗ = n −∑N∗

j=1 xj(T) and xj(T) =
0 ∀N∗ + 1 ≤ j ≤ Ndyn for someT > 0. This is akin
to a load balancing problem on an asynchronous chain
network.

We assume that only one control signal can be

nonvanishing at each instant of time. In the following
algorithm we denote byΣ← (α, β) the transition ofΣ
generated by the control signaluα = β with all other
inputs equal to zero.

INCREMENTAL BALANCING ALGORITHM

1: for j := 1 to (Ndyn− 1) do
2: if (yj = 1) AND (xj ≥ 6j) then
3: {push excess robots to next layer}
4: Σ← (j, 6j − xj)
5: {relinquish the token to next leader}
6: setyj+1 := 1, yj := 0 andzj := 1
7: end if
8: if (yj = 1) AND (xj > 6j) then
9: {push excess robots to previous

layer}
10: Σ← (j − 1, xj − 6j)
11: end if

Lemma 4.1: The incremental balancing algorithm
solves the layer balancing problem in timeO(n) in
the worst case.

Proof: We only provide a sketch of the proof here
and refer the reader to a forthcoming manuscript. If
no layer leader ever waits, then leaderj requires time
of order O(j) to execute the algorithm and the time
complexity is

∑O(
√

n)
j=1 j = O(n). On the other hand,

if the layer leaderi waits for robots to arrive from the
layerj with j > i, then one can deduce that the waiting
time is at mostO(

∑j
k=i k) and that, afteri sets itszi

variable to1, then no more layer leader will wait until
layer leaderj at least. In summary, the total waiting
time is at mostO(

∑

√
n

j=1 j) = O(n).
Next, we explain how the robotic network equipped

with the rotating layer structure can implement the IN-
CREMENTAL BALANCING ALGORITHM in a sequential
asynchronous manner.

We begin by designing some communication mes-
sages between layer leaders that encode various inter-
layer cooperation requests. Based on the following
requests one can easily envision how a distributed
algorithm for the synchronous robotic network can
be designed to exactly implement the INCREMEN-
TAL BALANCING ALGORITHM for the asynchronous
chained network.

Relinquish from j to j + 1: Provided layerj + 1
exists, leaderℓj communicates toℓj+1 that it is now
its turn to evaluate if the layerj +1 is balanced or not.

Push excess robots from j to j+1: Provided layer
j contains at least6j robots, leaderℓj requests the
excess robots in its layer to move to layerj+1 (possibly

creating it and subsequently electing a leader). The
counters on layersj and j + 1 are updated through
a communication betweenℓj andℓj+1.

Push excess robots from j to j−1: Provided layer
j contains at least6j robots, leaderℓj requests the
excess robots in its layer to move to layerj − 1. The
counters on layersj and j − 1 are updated through a
communication betweenℓj andℓj−1.

V. UNIFORM SPREADING

This phase is executed sequentially starting from
innermost layer and progressing outwards. We provide
an informal description in three steps:

(i) When the leaderℓj is in charge of the uniform
spreading of the layerj+1, starting fromℓj+1, it
does the following two things as it encounters a
roboti in layerj+1. First, it determines the order
number of the roboti in the layer, denoted by
order(i), i.e.,1 for the leaderℓj+1, 2 for the next
robot and so on. Second, it transmits the STOP
signal and the quantityθ(i) = 2π(i−1)/nlayer(j+
1) to the roboti.

(ii) When a robot i in layer j + 1 receives these
messages from the leaderℓj , it makes one full
rotation and then stops at a position which ex-
tends an angleθ(i) at ℓ0 with respect to the
north direction. (One way to do this is storing
coordinates of one point which is exactly north
of ℓ0).

(iii) After stopping,ℓj+1 takes charge of the uniform
distribution of the layerj + 2. All the other
robots in the layerj + 1, move inwards by an
appropriate distance until they are at a vertex on
the hexagonal lattice. (One way to do this is by
making every robot move radially inwards until
it cannot move further without being closer than
rdes to any other robot).

On the completion of this uniform spreading step,
all the robots have occupied the vertices of a regular
lattice. This step takesO(n) time.

VI. SUMMARY

In summary, we can now state a result for the total
time required to solve the lattice formation problem
using the procedure in this paper.

Theorem 6.1: The time required to solve the lattice
formation problem for a robotic network described in
Section II belongs toO(n). This bound is achieved
by the sequential computation of the rotating layers

and execution of the incremental balancing and uniform
spreading algorithms.

In future work we envision studying worst-case
lower bounds as well as investigating stochastic sce-
narios in which the initial robot positions are randomly
uniformly placed.

ACKNOWLEDGMENTS

This material is based upon work supported in part
by ARO MURI Award W911NF-05-1-0219. The sec-
ond author would like to thank Stephen L. Smith for a
number of useful discussions about congestion model-
ing and control structures in coordination problems.

REFERENCES

[1] I. Suzuki and M. Yamashita, “Distributed anonymous mobile
robots: Formation of geometric patterns,”SIAM Journal on
Computing, vol. 28, no. 4, pp. 1347–1363, 1999.

[2] S. Martı́nez, F. Bullo, J. Cortés, and E. Frazzoli, “On syn-
chronous robotic networks – Part I: Models, tasks and com-
plexity notions. & Part II: Time complexity of rendezvous
and deployment algorithms,”IEEE Transactions on Automatic
Control, Apr. 2005. Submitted.

[3] V. Sharma, M. Savchenko, E. Frazzoli, and P. Voul-
garis, “Time complexity of sensor-based vehicle routing,”
in Robotics: Science and Systems (S. Thrun, G. Sukhatme,
S. Schaal, and O. Brock, eds.), pp. 297–304, Cambridge, MA:
MIT Press, 2005.

[4] S. L. Smith and F. Bullo, “Target assignment for robotic
networks: asymptotic performance under limited communi-
cation,” in American Control Conference, (New York), July
2007. Submitted.

[5] M. Penrose,Random Geometric Graphs. Oxford Studies in
Probability, Oxford, UK: Oxford University Press, 2003.

[6] L. Booth, J. Bruck, M. Franceschetti, and R. Meester, “Cov-
ering algorithms, continuum percolation and the geometry
of wireless networks,”The Annals of Applied Probability,
vol. 13, no. 2, pp. 722–741, 2003.

[7] P. Gupta and P. R. Kumar, “The capacity of wireless net-
works,” IEEE Transactions on Information Theory, vol. 46,
no. 2, pp. 388–404, 2000.

[8] J. Urrutia, “Local solutions for global problems in wireless
networks.” Preprint, May 2006.

[9] G. Notarstefano and F. Bullo, “Distributed consensus on
enclosing shapes and minimum time rendezvous,” inIEEE
Conf. on Decision and Control, (San Diego, CA), Dec. 2006.
To appear.

[10] N. A. Lynch,Distributed Algorithms. San Mateo, CA: Morgan
Kaufmann Publishers, 1997.

[11] D. Peleg, Distributed Computing. A Locality-Sensitive Ap-
proach. Monographs on Discrete Mathematics and Appli-
cations, Philadelphia, PA: SIAM, 2000. 0898714648.

