
ACC 2007, New York

Visibility-based multi-agent deployment in orthogonal environments

Anurag Ganguli Jorge Cortés Francesco Bullo

Abstract— This paper addresses the problem of deploying a
group of robotic agents equipped with omnidirectional vision in
a simply connected orthogonal environment to achieve complete
visibility. The agents are point masses with discrete-time first-
order dynamics with no prior knowledge of the environment.
Each agent can sense distances to the environment boundary
and to other agents within line-of-sight. Communication is
possible only between collocated agents. The agents operate
asynchronously. The paper also addresses the problem of
complete visibility deployment under the additional constraint
that the visibility graph of the final agent locations is connected.
We provide distributed algorithms that are guaranteed to
solve the above problems if a sufficient number of agents are
available. Remarkably, this number is identical to the number
assuming complete prior knowledge of the environment. A
final contribution of the paper is the characterization of the
robustness properties of the algorithms to agent failures in the
case of deployment with connectivity constraints.

I. I NTRODUCTION

Recently, much research has focused on the use of un-
manned robots for the purpose of surveillance and search.
This paper provides algorithms to deploy robotic agents with
limited capabilities to monitor an unknown environment.
The environment is assumed to be simply connected, i.e.,
without holes, and orthogonal, i.e., polygonal with sides
either parallel or perpendicular to one another. Orthogonal
environments are interesting because they can be used to
model indoor and urban environments. The agents are mod-
eled as point masses with first-order dynamics. The agents
are all identical except with distinct identifiers (UID). No
assumption is made about the UIDs except that they are
distinct. The agents are assumed to operate asynchronously
and to have limited communication and sensing capabilities:
they can communicate only with collocated agents and they
can sense the distance to the environment boundary or to
any other agent within line of sight. It is practical to assume
limitations on the communication bandwidth: we assume that
agents can communicate only their UIDs to other agents. The
first objective is to deploy the agents starting from a single
location so that all points of the environment are visible toat
least one agent. We present a distributed algorithm to solve
the above problem requiring no more than⌊n/4⌋, agents
where n is the number of vertices in the environment. A
second objective is to deploy the agents in such a way so that

Anurag Ganguli is with the Coordinated Science Laboratory,University
of Illinois at Urbana-Champaign, and with the Department of Mechanical
Engineering, University of California, Santa Barbara, CA 93106, USA,
aganguli@uiuc.edu

Jorge Cort́es is with the Department of Applied Mathematics and
Statistics, University of California, Santa Cruz, CA 95064, USA,
jcortes@ucsc.edu

Francesco Bullo is with the Department of Mechanical Engi-
neering, University of California, Santa Barbara, CA 93106, USA,
bullo@engineering.ucsb.edu

the visibility graph of the final configuration of the agents is
connected. We also present a distributed algorithm to solve
the problem requiring no more than(n − 2)/2 agents.

Deployment of robotic sensors have been studied in
centralized and decentralized contexts, centralized referring
to the fact that the environment is known a priori and
decentralized otherwise. In the former setting, this problem
becomes the classical Art Gallery Problem in the compu-
tational geometry literature, which aims to find both the
minimum number of “guards” required and the locations
of these guards to achieve complete visibility of a given
polygonal environment. This problem was first analyzed by
Chvátal, see [1], in the famous Art Gallery Theorem stating
that ⌊n/3⌋ guards are sufficient and sometimes necessary to
guard any simply connected polygon withn vertices. Kahn,
Klawe and Kleitman [2] proved that in simply connected
orthogonal environments,⌊n/4⌋ guards are sufficient and
sometimes necessary. In [3], Pinciu gives a constructive
algorithm to prove thatn/2 − 2 connected set of guards
are always sufficient and occasionally necessary in a simply
connected orthogonal environment.

Relevant works in the decentralized setting include [4],
where an incremental heuristic for deployment is proposed,
and [5] where distributed algorithms for coverage control
based on Voronoi partitions are designed. Coordinated de-
ployment of multiple heterogeneous robots has also been
studied in [6]. Deployment locations are user-specified after
an initial map of the unknown environment has been built.

Another related body of work is that of robotic exploration
of unknown environments since a strategy to solve the
deployment problem might be to first explore and then
solve the centralized problem. The most relevant literature
to the current problem include topological exploration of
graph-like environments by single and multiple robots [7],
[8], [9], [10]. In these problems, it is either assumed that
agents can synchronize their motions to fuse their data,
or read and write to the nodes of the graph. These as-
sumptions are stronger compared to the assumptions in the
present treatment. Synchronizing motions and fusing data
are additional complications, especially in the presence of
limited communication bandwidth. Also, writing to nodes
in a graph is not possible in the case of exploration of
unknown environments. Finally, the problem of deployment
is very different from the problem of exploration. Assuming
that exploration is possible without accumulating errors,in
the absence of a central processor, the robots would have
to allocate tasks amongst themselves. Our strategy, on the
other hand, is a simple one-step strategy for deployment,
without the need for synchronization, achieving the worst-
case optimal bounds in terms of number of robots required,
and under limited communication constraints.

Due to space limitations, the proofs of all results in this
paper are omitted, and will be presented elsewhere.

II. PRELIMINARIES AND NOTATION

We begin by introducing some basic notation. LetR

represent the set of real numbers. Given two pointsx, y ∈
R

2, let [x, y] represent theclosedsegment betweenx andy.
Given a finite setX, let |X| represent the cardinality of the
set. LetP to refer to tuples of elements inR2 of the form
(p1, . . . , pN). With a slight abuse of notation, we shall useP
interchangeably with a point set of the form{p1, . . . , pN}.

An orthogonal environment,Q, is a polygonal environ-
ment whose boundary is composed of segments that are
parallel or perpendicular to each other. An environmentQ is
simply connectedif it does not contain any holes. LetVe(Q)
andVer(Q) be the list of vertices and reflex vertices. Recall
that a reflex vertex is one with interior angle strictly greater
thanπ radians. A vertex that is not reflex is a convex vertex.

We now describe some useful notions of visibility. A point
q ∈ Q is visible fromp ∈ Q if [p, q] ⊂ Q. The visibility set
V(p) ⊂ Q from a point p ∈ Q is the set of points inQ
visible from p. A star-shaped subset ofQ is a setS such
that there existsp ∈ S with the property thatS ⊂ V(p).
The set of all such pointsS is referred to as thekernelof S
denoted byker(S). We now define the following:

Definition 2.1: (i) A diagonal of Q is a segment with
end points inVe(Q) but otherwise belonging to the
interior of Q.

(ii) A partition of a compact setX is a collection of
compact, simply connected sets{P1, . . . ,PN} with
disjoint interiors and with∪N

i=1
Pi = X.

(iii) The visibility graphGv,Q(p1, . . . , pn) of a set of points
{p1, . . . , pn} in Q is a graph with the node set equal
to {p1, . . . , pn} and with(pi, pj) being an edge if and
only if [pi, pj] ⊆ Q and vice versa.

Next we describe the capabilities of an agent followed by
the problem description.

III. A GENT MODEL AND PROBLEM DESCRIPTION

We consider a group of robotic agents modeled as point
masses, moving in a simply connected orthogonal envi-
ronment, Q. Each agent has a unique identifier (UID),
say i. Let pi refer to the position of agenti. Each agent
is equipped with an omnidirectional line-of-sight sensor
capable of measuring the distance to any object visible to
it (another agent or the environment boundary). Thus, the
agent can sense everything within its star-shaped visibility
setV(pi). Each agent can also communicate with any other
agent in close proximity to itself; for simplicity, we assume
that communication is possible only with collocated agents.
The agents have on-board processors whose clocks arenot
synchronized. The agentsdo notpossess a Global Positioning
System (GPS). Each agent has access to some memoryMi.
We useMi to denote all the necessary information that
cannot be obtained byi via local sensing and communication.

We now describe some specifics about the agents’ oper-
ations. An agenti can broadcast its UID to all collocated
agents. Such a broadcast is denoted byBROADCAST(i).
It can also receive broadcasts from other agents. We also

assume that there is an arbitrary time delay between a
broadcast and the corresponding reception which is upper
bounded byδ > 0. Every agenti repeatedly performs the
following sequence of actions beginning at a time instant,
sayT i

l :
(i) send repeatedBROADCAST(i) every δ seconds, until

it starts moving;
(ii) LISTEN for at least2δ seconds before processing the

information;
(iii) PROCESS the received information. Also continue to

LISTEN during this interval;
(iv) MOVE to a desired point.

T i
l

T i
l+1

LISTEN

PROCESS MOVE

BROADCAST(i) BROADCAST(i)

δ δ δ δ δ

≥ 2δ

Fig. 1. Sequence of actions for agenti beginning at timeT i
l
. Instantaneous

BROADCAST(i) events are represented by vertical pulses. TheMOVE
interval might be empty if the agent does not move. The subsequent instant
T i

l+1 is the time when the agent stops performing theMOVE action and it
is not predetermined.

At any timet in theMOVE interval, agenti, moves according
to the following discrete-time control system:

pi(t + ∆t) = pi(t) + ui,

where‖ui‖ ≤ 1. The control action,ui, depends on time,
on the memory contents,Mi at that time, and on the
information obtained from communication and sensing. This
model is similar in spirit to thepartially asynchronous
network modeldescribed in [11].

Given this agent model, our first goal is to design a
provably correct discrete-time algorithm to deploy agents
on locations such that each point of the environment is
visible to at least one agent. This is thevisibility-based
deployment problem. Our second goal is to design a provably
correct discrete-time algorithm to solve the visibility-based
deployment problem under the additional constraint that
the final configuration of agents is connected. This is the
connected visibility-based deployment problem.

IV. I NCREMENTAL PARTITION ALGORITHM

Here we describe a procedure to incrementally partition
an orthogonal environmentQ into star-shaped sets. Given
Q and s ∈ Ve(Q) such that an adjacent vertext is convex,
the Incremental Partition Algorithm computes
a finite ordered set of star-shaped polygonal sets,Pvc-Q(s).
The algorithm also returns a finite ordered set of points
Nvc-Q(s) with |Nvc-Q(s)| = |Pvc-Q(s)| and with Pvc-Q(s)i

visible from Nvc-Q(s)i, wherePvc-Q(s)i andNvc-Q(s)i are,
respectively, theith elements ofPvc-Q(s) andNvc-Q(s)

We now begin with the description of the
Incremental Partition Algorithm. It consists of
two components: (i) theRemovable-quadrilateral
computation (described in the Appendix); and (ii) the

Star-set computation algorithm described as
follows. The variablePstar-shapedin the algorithm contains a
polygon. An execution of theStar-set computation
algorithm is also illustrated in Figure 2.

Algorithm: Star-set computation

Input: Orthogonal simply-connected polygonQ, tilted edgee such that at

least one vertex ofe is convex, and a specified vertexv of e

Initialization: Pstar-shaped:= ∅, X := Q, [a, b] := e

Compute removable quadrilateralC of X with tilted edge e using

Removable-quadrilateral.

SetPstar-shaped= Pstar-shaped∪C.

If any edge,e′ of C containingv is a diagonal ofX, then

Repeat all the above steps withX being the environment on the

opposite side ofe′ asPstar-shapedande = e′.

Return: Pstar-shaped, v

Beginning with Q as the polygon,[s, t] as the initial

p

C

e

e′

q

v

C
q

e

p

Fig. 2. TheStar-set computation algorithm. On the left, the shaded
region represents the quadrilateralC computed in the first step of the
computation routine. The edgee′ is a diagonal ofQ; thus the first step
is repeated again withX as the unshaded portion of the environment and
e′ as the new tilted edge. The result is shown in the figure on the right.
The union of the shaded regions representsPstar-shapedas computed by the
Star-set computation algorithm.

tilted edge andv = s, the Star-set computation
algorithm is executed for every diagonal generated until
there are no diagonals. However, for every diagonal, the
choice of which vertex serves asv is important. This
is done as follows. Given a tilted edgee containing
vertex v, the setPstar-shapedis constructed according to the
Star-set computation algorithm. The vertices of
Pstar-shapedare numbered in a counter-clockwise fashion with
v as the first vertex. For any edge ofPstar-shapedthat is a
diagonal ofQ, the vertex that is odd numbered is chosen
as the new vertexv. The Removable quadrilateral
together with theStar-set computation algorithm
and the above rules for choosing the vertexv constitute the
Incremental Partition Algorithm.

Let Pvc-Q(s) be the resulting collection ofPstar-shapedsets
and letNvc-Q(s) be the correspondingv vertices. We refer to
Pvc-Q(s) as thevisually-connected vertex-induced partition
of Q starting from s; see Figure 3 (left). The following
lemma characterizes the properties ofPvc-Q(s) andNvc-Q(s).

Lemma 4.1:Given any simply connected orthogonal re-
gion Q and s ∈ Ve(Q) such that there exists an adjacent
vertex that is convex, the following statements are true:

(i) Pvc-Q(s)i ∈ Pvc-Q(s) is star-shaped withNvc-Q(s)i ∈
ker(Pvc-Q(s)i) for all i;

(ii) |Pvc-Q(s)| = |Nvc-Q(s)| ≤ n−2

2
wheren = |Ve(Q)| ;

(iii) the visibility graph Gv,Q(Nvc-Q(s)) has a single con-
nected component;

(iv) if Pvc-Q(s)i and Pvc-Q(s)j share a diagonal, then
Nvc-Q(s)i,Nvc-Q(s)j are mutually visible.

We now define thevisually-connected vertex-induced tree.
Definition 4.2: Given a simply connected orthogonal

environment Q, and s ∈ Ve(Q) with an adjacent
convex vertex, the visually-connected vertex-induced
tree Gvc-Q(s) is the graph with node setNvc-Q(s)
and with (Nvc-Q(s)i,Nvc-Q(s)j) being an edge iff
Pvc-Q(s)i ∩Pvc-Q(s)j is a diagonal ofQ.

s s

Fig. 3. The figure on the left is the visually-connected vertex-induced
partition of the orthogonal polygonQ induced bys. The set of points
represented by the black discs isNvc-Q(s). The diagonals insideQ are the
boundaries of the sets comprising the partition. The figure onthe right is
an illustration of the visually-connected vertex-inducedtree for the same
partition rooted at the nodes. The black discs represent the nodes. The
thick directed lines are the edges of the tree, and the arrowsindicate the
direction away from the root.

The following is a consequence of Lemma 4.1.
Corollary 4.3: Given any simply connected orthogonal

environmentQ and s ∈ Ve(Q) such that there exists an
adjacent vertex that is convex, the following hold true:

(i) the graphGvc-Q(s) is a rooted tree1 with s as the root;
(ii) the number of nodes ofGvc-Q(s) is less than or equal

to n−2

2
;

(iii) if (Nvc-Q(s)i,Nvc-Q(s)j) is an edge ofGvc-Q(s), then
Nvc-Q(s)i andNvc-Q(s)j are mutually visible.

As a result of our discussion, we have converted the
visibility-based deployment problem to the problem of de-
ploying agents onevery nodeof Gvc-Q(s) under the assump-
tion that all agents are initially located at the same node.
Next, we design an algorithm that identifies a smaller subset
of nodes ofNvc-Q(s) from which the entire polygon is visible
and deploys agents on this smaller set.

V. V ISIBILITY -BASED DEPLOYMENT

Here, we start by identifying in Section V-A a subsetN
of Nvc-Q(s) such that∪|N |

i=1
V(Ni) = Q and|N | ≤ ⌊n

4
⌋. The

visibility-based deployment problem further reduces thento
deploying agents on the set of pointsN . The algorithm
design that achieves this is presented in Sections V-B to V-D.

1A connected graph with no simple cycles is a tree. A tree is called a
rooted tree if there exists a node that has been specified as a root and all
edges have a natural direction, either towards or away from the root. In this
paper, we assume that the edges are directed away from the root. Given any
nodex of a rooted tree, lety be a node such that there exists a directed
edge fromy to x. Theny is the parent ofx and correspondinglyx is the
child of y. The root has no parent. A predecessor of a nodex is any other
node from which a directed path exists tox

A. Desirable agent locations

Let us first notice that, for alli ∈ {1, . . . , |Pvc-Q(s)|},
the set Pvc-Q(s)i is a union of convex quadrilaterals.
Let qi denote the number of convex quadrilaterals in
Pvc-Q(s)i. The algorithm to compute the setN is as follows.

Algorithm: N -computation-algorithm

Input: The graphGvc-Q(s) with simply connected orthogonal polygonQ,

ands ∈ Ve(Q) with an adjacent convex vertex.

Initialization: N = ∅, Pmark = ∅

While Pmark 6= Nvc-Q(s) do

Take any node, sayNvc-Q(s)i, of Gvc-Q(s) which has no children or

whose children all belong toPmark.

Let cocc denote the number of children ofNvc-Q(s)i belonging toN .

If qi − cocc = 0 then

Pmark = Pmark∪{Nvc-Q(s)i}.

else

Pmark = Pmark∪{Nvc-Q(s)i}; N = N ∪{Nvc-Q(s)i}.

Return: N

The following proposition enumerates the properties ofN .
Proposition 5.1:Given a simply connected orthogonal

environment Q and s ∈ Ve(Q) such that an adjacent
vertex is convex, letN be computed according to theN -
computation-algorithm. Then the following state-
ments are true:

(i) ∪
|N |
i=1

V(Ni) = Q; and
(ii) |N | ≤ ⌊n

4
⌋,

whereNi is the ith element ofN , andn = |Ve(Q)|.
We now design a distributed algorithm to deploy agents on
the set of nodes given byN . Note thatN is a subset of
Nvc-Q(s). Therefore, to move between the nodes of the set
N , we design local navigation algorithms to move between
the nodes inNvc-Q(s).

B. Local node-to-node navigation algorithms

In a rooted tree, every neighbor of a node is either a
child or a parent. Also, in the visually-connected vertex-
induced tree, neighboring nodes are mutually visible; see
Corollary 4.3(iii). Therefore, moving between adjacent nodes
consists of moving along a straight line from one point
to another, possible due to the first order dynamics of
the agents described in Section III. This constitutes the
Move-to-Parent Algorithm and Move-to-Child
Algorithm. It is easy to see that navigation is straight-
forward if sufficient information is available to the agents.
In other words, at a node the agent must have information
about the location of its parent and children. Additionally, it
must also be able to decide if the node belongs to the set
N . This is the subject of the following subsection.

C. Distributed information processing

For an agent is to execute theMove-to-Parent
Algorithm, it needs to know where the parent is located.
To compute the locations of the children, an agent at a node
must be able to compute its star-shaped set from that node.
For that, it must know the diagonal(s) (A node can possibly
be located at the intersection of two diagonals; see the child

of s in Figure 3 (right)) that will separate its star-shaped set
from the parent set. This geographic information is gathered
and managed by the agents via the following state transition
laws. At this time, we make full use of the computation and
sensing abilities of the agents mentioned in Section II.

(i) The memory contentM of each agent has four
components:(pparent, plast, g1, g2), where pparent is an
ordered list of points inR2, plast is a point in R

2,
g1 and g2 are ordered list of elements belonging to
R

2 × R
2. For any agenti, at time t = 0, Mi(0) =

{(pi(0)), pi(0), (((pi(0), pi(0))) , ((pi(0), pi(0)))}.

During run time,M is updated to acquire and maintain
the following meaning:pparent is the list of locations of the
predecessor nodesto the agent’s current position,plast is
the location of thelast nodevisited by the agent, andg1

and g2 are lists oflocations of diagonals that separate the
predecessor sets, all measured relative to the agent’s current
position. This is accomplished as follows:

(ii) After an agent moves from a nodeNvc-Q(s)i to a
child nodeNvc-Q(s)j located on diagonals described
by verticesv′

1
, v′′

1
and v′

2
, v′′

2
via Move-to-Child

Algorithm, its memoryM is updated as follows:
Nvc-Q(s)i−Nvc-Q(s)j is added to the beginning of the
list pparent, plast := Nvc-Q(s)i − Nvc-Q(s)j , and (v′

1
−

Nvc-Q(s)j , v
′′
1
−Nvc-Q(s)j) and(v′

2
−Nvc-Q(s)j , v

′′
2
−

Nvc-Q(s)j) are added to the beginning of the listsg1

andg2 respectively.
(iii) After an agent moves from a nodeNvc-Q(s)j to

the parent nodeNvc-Q(s)i via Move-to-Parent
Algorithm, its memoryM is updated as follows:
the first elements ofpparent, g1 andg2 are deleted and
plast := Nvc-Q(s)j −Nvc-Q(s)i.

D. Global exploration and deployment algorithm

In the previous sections, we have designed local node-
to-node navigation algorithms and also specified how the
memory must be managed to execute them. As a final step,
to ensure that two agents do not occupy the same node, we
utilize the communication capabilities of the agents. Agents
collocated at the same node exchange their UIDs and take
the appropriate decision.

At this time, we have all the elements to design a
global exploration algorithm that leads the agents to de-
ploy on the nodesN . The algorithm is as follows.

Algorithm: Depth-first Deployment

Input: Simply connected orthogonal polygonQ, ands ∈ Ve(Q) with an

adjacent convex vertex,N agents located ats

For every PROCESS interval for agentj located at nodeNvc-Q(s)i of

Gvc-Q(s) do

Compute the locations of the children and order them based onj.

If plast is last child or no child existsthen

If maximum UID received is greater thanj

Move-to-Parent Algorithm towardspparent1.

else

Let cocc be the number of child nodes occupied by other agents.

If qi − cocc = 0

Move-to-Parent Algorithm towardspparent1.

else

Stay at current node.

else

Move-to-Child Algorithm towards next child in the ordering.

E. Convergence analysis

We now present the main result of this section.
Theorem 5.2:Given a simply connected orthogonal poly-

gon Q, let p1(0) = · · · = pN (0) = s, represent the
initial positions of an asynchronous network ofN agents
as described in Section III. Lets be a vertex ofQ with an
adjacent convex vertex. Let the behavior of the agents be
governed by theDepth-first Deployment algorithm.
Then the following are true:

(i) there exists a finite timet∗ after which there is at least
one agent onmin{|N |, N} nodes of the setN ;

(ii) if N ≥ ⌊n
4
⌋, then the visibility-based deployment

problem is solved in finite time.
Remark 5.3:The assumptions on the initial points can

be removed easily. For example, starting fromany single
location inQ, the first stage of deployment could be moving
towards the nearest vertex and then following a wall until a
vertex satisfying the assumptions in Theorem 5.2 is reached.
The Depth-first Deployment algorithm can then be
executed starting from this new vertex.

VI. CONNECTED VISIBILITY-BASED DEPLOYMENT

In the previous section, we designed an algorithm for
deployment of agents in a simply connected orthogonal
environment to achieve complete coverage. However, such
a deployment does not guarantee that the visibility graph of
the final configuration of the agents is connected. In many
cases, this is desirable when after deployment, the sensed
data from all the agents is to be gathered at a single node
via line-of-sight communication. We also see later in this
section that connectivity via line-of-sight enables the agents
to sense the failure of other agents and take the necessary
repair action.

Therefore, in this section we design an incremental parti-
tion and deployment algorithm for orthogonal environments
with the property that ifP = (p1, . . . , pN) is the final
position of the agents then∪N

i=1
V(pi) = Q and Gv,Q(P)

has one connected component. We also characterize the
robustness of the algorithm to agent failures. To solve this
problem, it suffices to deploy agents onevery node of
the visually-connected vertex-induced tree,Gvc-Q(s). This
follows from Lemma 4.1(iii) and the definition ofGvc-Q(s).
The local navigation algorithms have already been discussed
in Section V-B. In the following, we discuss the information
processing and global deployment aspects.

A. Distributed information processing

As will be clear in the next section, the algorithm to
solve the connected visibility based deployment problem
requires agents to navigate only from the parent to the
children. Because of this simplification, it suffices for the
memory to be given byMi = (pparent, g1, g2), wherepparent

is a point in R
2, and g1 and g2 are elements belonging

to R
2 × R

2. For any agenti, at time t = 0, Mi(0) =
{pi(0), (pi(0), pi(0)), (pi(0), pi(0))}. The difference from
the non-connected deployment lies in the fact thatpparent,
g1 and g2 are just single elements instead of lists andplast

is absent. After an agent moves from a nodeNvc-Q(s)i to a
child nodeNvc-Q(s)j located on diagonals described by ver-
ticesv′

1
, v′′

1
andv′

2
, v′′

2
via Move-to-Child Algorithm,

its memoryM is updated as follows:pparent := Nvc-Q(s)i −
Nvc-Q(s)j , andg1 := (v′

1
−Nvc-Q(s)j , v

′′
1
−Nvc-Q(s)j) and

g2 := (v′
2
−Nvc-Q(s)j , v

′′
2
−Nvc-Q(s)j).

B. Global exploration and deployment algorithm

As before, to prevent two or more agents from occu-
pying the same node, we adopt the method of comparing
UIDs. The deployment algorithm is described as follows.

Algorithm: Connected Depth-first Deployment

Input: Simply connected orthogonal polygonQ, ands ∈ Ve(Q) with an

adjacent convex vertex,N agents located ats.

Find the number of UIDs received during theLISTEN action greater than

its own UID, saym.

Find the number of child nodes,c.

Find the number of agents that it can sense on the child nodes and on the

paths between the present node and the child nodes, saynpath.

If c > npath+ m

Order the children according to some scheme common for all agents.

d := c − npath− m

Move-to-Child Algorithm towards thedth child among those that

are unoccupied and do not have another agent on the path towards them

else

Stay at current node

C. Convergence analysis and robustness to failures

In this section, we analyze the convergence properties
of the Connected Depth-first Deployment algo-
rithm. We also characterize the robustness properties of the
algorithm to agent failures. However, we begin by defining
what we understand by a failure.

Definition 6.1: An agenti is said to have failed at time
tf , if for all t ≥ tf , it cannot be sensed by any other agent
and cannot communicate with any other agent.

Theorem 6.2:Given a simply connected orthogonal poly-
gon Q, let p1(0) = . . . = pN (0) = s, represent the
initial positions of an asynchronous network ofN agents
as described in Section III. Lets be a reflex vertex ofQ
with an adjacent convex vertex. Let the behavior of the
agents be governed by theConnected Depth-first
Deployment algorithm. AssumeNf agents fail in finite
time. Then the following are true:

(i) there exists a finite timet∗ after which there is at
least one agent onmin{|Nvc-Q(s)|, N − Nf} nodes
of Gvc-Q(s).

(ii) if N −Nf ≥ n−2

2
, then the connected visibility-based

deployment problem is solved in finite time.
Remark 6.3:If no agents are assumed to fail, thenNf =

0. Thus the visibility-based deployment problem with con-
nectivity constraint is solved in finite time inN ≥ n−2

2
.

VII. C ONCLUSIONS

We have presented distributed asynchronous algorithms
for agents equipped with line-of-sight sensing and commu-
nication capabilities in simply connected orthogonal poly-
gons. Provably correct algorithms are designed to solve the
deployment problem, both with and without constraints on
the connectivity of the final agent configuration. For both
problems, the number of agents sufficient to complete the
task is the same as the number if the environment was
known a priori. When connectivity constraints are imposed,
the proposed algorithm is robust to individual agent failures.

VIII. A CKNOWLEDGMENT

This material is based upon work supported in part by
AFOSR Award F49620-02-1-0325, by NSF Award CMS-
0626457, and by NSF CAREER Award ECS-0546871.

REFERENCES

[1] V. Chvátal, “A combinatorial theorem in plane geometry,”Journal of
Combinatorial Theory. Series B, vol. 18, pp. 39–41, 1975.

[2] J. Kahn, M. Klawe, and D. Kleitman, “Traditional galleries require
fewer watchmen,”SIAM Journal on Algebraic and Discrete Methods,
vol. 4, no. 2, pp. 194–206, 1983.

[3] V. Pinciu, “Connected guards in orthogonal art galleries,” in Com-
putational Science and Its Applications (ICCSA)(V. Kumar, M. L.
Gavrilova, C. J. K. Tan, and P. L’Ecuyer, eds.), vol. 2669 ofLecture
Notes in Computer Science, pp. 886–893, Springer Verlag, 2003.

[4] A. Howard, M. J. Mataríc, and G. S. Sukhatme, “An incremental
self-deployment algorithm for mobile sensor networks,”Autonomous
Robots, vol. 13, no. 2, pp. 113–126, 2002.

[5] J. Cort́es, S. Mart́ınez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,”IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[6] R. Simmons, D. Apfelbaum, D. Fox, R. Goldman, K. Haigh,
D. Musliner, M. Pelican, and S. Thrun, “Coordinated deployment of
multiple heterogenous robots,” inIEEE/RSJ Int. Conf. on Intelligent
Robots & Systems, (Takamatsu, Japan), pp. 2254–2260, 2000.

[7] I. M. Rekleitis, V. Dujmovíc, and G. Dudek, “Efficient topological
exploration,” inIEEE Int. Conf. on Robotics and Automation, (Detroit,
MI), pp. 676–681, May 1999.

[8] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Topological explo-
ration with multiple robots,” inInternational Symposium on Robotics
and Applications, (Anchorage, Alaska), May 1998.

[9] M. Dynia, J. Kutylowski, F. Meyer auf der Heide, and C. Schindel-
hauer, “Smart robot teams exploring sparse trees,” inInternational
Symposium of Matematical Foundations of Computer Science, (Staŕa
Lesńa, Slovakia), Aug. 2006.

[10] P. Fraigniaud, L. Ga̧sieniec, D. R. Kowalski, and A. Pelc, “Collective
tree exploration,” inLATIN 2004(M. Farach-Colton, ed.), vol. 2976
of Lecture Notes in Computer Science, pp. 141–151, Springer Verlag,
2004.

[11] D. P. Bertsekas and J. N. Tsitsiklis,Parallel and Distributed Compu-
tation: Numerical Methods. Belmont, MA: Athena Scientific, 1997.

[12] A. Lubiw, “Decomposing polygonal regions into convex quadri-
laterals,” in First Annual Symposium on Computational Geometry,
(Baltimore, MA), pp. 97–106, 1985.

APPENDIX

A 1-rectangular regionis defined as follows, see [12].
Definition 1.1: A 1-rectangular region is a polygonal re-

gion without holes and with a distinguished edgee called the
tilted edge such that: (i) there are an even number of edges;
(ii) the edges except possiblye are alternately (around the
polygon) horizontal and vertical; (iii) all interior angles are
less than or equal to270◦; (iv) the nose of the tilted edge
contains no vertices.
The nose of the tilted edge is the triangular region in-
side the 1-rectangular region with one horizontal side, one
vertical side, and the tilted edge as hypotenuse. The nose

is closed along the hypotenuse, open along the other two
sides, and excludes the three corners; see Figure 4 (a).
The nose of a horizontal or vertical side is empty. An
orthogonal polygon without holes is 1-rectangular since any
edge is a tilted edge. Given a tilted edge[a, b] of a 1-

e

(a)

b

a

a

b

(b)

Fig. 4. Left: A 1-rectangular region; tilted edgee and nose (shaded region).
Right: Illustration of the possible cases when[a, b] is a tilted edge of
1-rectangular region andb is a convex vertex. Arrows point towards the
polygon interior.

rectangular region such thatb is a convex vertex, we may
assume one of the two cases shown in Figure 4 (b). The
other cases can be obtained by reflection and/or rotations
of these two. We now describe an algorithm to compute
a convex quadrilateral with one edge as[a, b] [12]. This
quadrilateral is termedremovablesince its deletion from
the 1-rectangular region leaves behind polygon(s) that are
in turn 1-rectangular. Let(xa, ya), (xb, yb) and (xp, yp)
represent the pointsa, b and p, wherep is defined in the
algorithm. Hg is the half-plane defined by a constraintg.

Algorithm: Removable-quadrilateral

Input: 1-rectangular regionQ, tilted edge[a, b] such that eithera or b is

a convex vertex

R1 := (Hx≥xb
∩Hy≤yb

∩Hy>ya) \ {(xb, ya), b}.

Let p ∈ Ve(Q)∩R1 be of minimumx then maximumy.

R2 := (Hx>xa ∩Hx≤xp
∩H

y≤
yp−ya
xp−xa

(x−xp)+yp
) \ {a, p}.

Let q ∈ Ve(Q)∩R2 be of maximumy and then maximumx.

If q does not existthen

Let f be the horizontal edge vertically belowp.

Let yf be they coordinate off .

R3 := (Hx≥xp
∩Hy<yb

∩Hy≥yf) \ {p, (xp, yf)}.

Let q ∈ Ve(Q)∩R3 be of minimumx and then minimumy.

Return: Quadrilateralabpq

See Figure 5 for a graphical illustration ofR1, R2 andR3.
We refer the reader to [12] for a proof on the existence ofp

b

a

b

p

p

f

b

aa

R1

R2

R3

Fig. 5. Illustration of regionsR1, R2 andR3.

andq and hence the existence ofabpq.

