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Cooperative Pursuit with Sensing Limitations

Shaunak D. Bopardikar Francesco Bullo adaHespanha

Abstract— We address a discrete-time pursuit-evasion prob- Each of above mentioned works proposes strategies which
lem involving multiple pursuers and a single evader in an require that the pursuers have unlimited sensing capaXity.
unbounded, planar environment in which each player has 46 realistic assumption is to introduce sensing limotai

limited-range sensing. The evader appears at a random location .
in a bounded region and moves only when sensed. We propose for the pursuers and the evader. In this context, Geete.

a g/\/eep-pursuit-capture Strategy for a group of at least three [12] haVe Studied a VerSion of V|S|b|l|ty I|m|ted to an an,gle
pursuers and determine a lower bound on the probability instead of the entire region. This is termedsagrching using

of capture for the evader. This bound is a function of the g flashlight Suzuki and Yamashita have studied visibility
pursuer formation and independent of the initial evader’s limited to k-searchers, where the pursuer hasuch finite

spatial distribution and the evader strategy. We also provide . .
an upper bound on the time for our pursuit strategy to angle search flashlights [13]. Islet al.[14] have considered

succeed. These results show that on the basis of maximizing the problem on a graph, with the visibility of the pursuer
the probability of evader capture per pursuer, the pursuers limited to nodes adjacent to the current node of a pursuer.
should search the bounded region as a single grougdnjoin) A framework which uses probabilistic models for sensing

rather than to divide the region into smaller parts and search  geyjices for the agents can be found in the works of Hespanha
simultaneously in smaller groups @éllocate). et al. [15] and Vidalet al. [16].

I. INTRODUCTION

The game of pursuit can be posed as to determine @ contributions
strategy for a team of pursuers to capture an evader in a

given environment. Bycapture we mean that the evader e consider the case of sensing capabilities restricted to
and some pursuer meet at the same location after a fingeclosed disc of a given sensing radius, around the current
time. The aim of the pursuers is to capture an evader for appsitions of the players. To the best of our knowledge,
evader trajectory. The evader wins the game if it can avoighis is the first paper in pursuit-evasion that uses such a
capture indefinitely. All the players have identical motionmodel for limited sensing. The motion of each player is
capabilities. confined to a closed disc of a given stepping radius around
its current position. The game is played in an unbounded,
A. Related Work planar environment. The evader is assumed to be born in a
The continuous time version of this problem has beebounded region known to the pursuers. The evader follows a
studied by Haet al.[1], Lim et al.[2] and Pachter [3] to cite a reactive rabbitmodel [14], i.e., moves only when detected.
few. Recently, significant attention has been received by thWe propose a strategy for the pursuers, comprising of three
discrete-time version of the game. The paper by Sgall [4jhases - sweep, pursuit and capture. In the sweep phase, the
gives sufficient conditions for a single pursuer to capture apursuers search the bounded region in a proposed formation.
evader in a semi-open environment. This strategy has be®hey succeedwhen they detect the evader inside a special
extended by Kopparty and Ravishankar [5] to the case @@ptureregion, which we characterize for the pursuer forma-
multiple pursuers, in an unbounded environment, to captuti®n. We show that using our sweep strategy, the probability
a single evader which is inside their convex hull. Aloreto of pursuer success is a function of the pursuer formation
al. [6] and Alexanderet al. [7] propose strategies so thatand independent of the initial evader distribution. Nexg w
the pursuer can reduce the distance between itself and fh@pose a cooperative pursuit strategy for the pursuers to
evader to a finite, non-zero amount after finite time stepgonfine the appropriately-sensed evader within their sgnsi
The game has also been studied in different types of bounddi$cs. We show that using this pursuit strategy, the problem
environments, e.g., circular environment by Alord@l. [6], is converted into a previously-studied problem of pursuit-
curved environments by LaVallet al. [8]. Visibility-based evasion with unlimited sensing. We also give an upper bound

pursuit evasion has been studied by Guibasl. [9], Sachs on the time for our trapping strategy to converge.

et al.[10] and in polygonal environments by Islet al. [11]. Of all proposed pursuer formations, we defindinaiting

_ _formation that gives maximum probability of evader capture
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C. Biological Motivation some pursuer at thg + 1) time instant. These are given

The inspirations for the strategies proposed in this papgy ,
have been derived from aspects of animal behavior. It is Pr(f] = {pk[t]a if ||Pk[tJ —e[t]]| < 7sens
well known that predators hunt as a conjoined group, when ?, otherwise.
it is less efficient to hunt alone. This behavior is als‘%imilarly
observed when the prey is large or can move as fast as the '
predators [17]. Further, predators show an inclinatioreials e[t + 1], if for somek € {1,...,n},
specialized behavior by maintaining a fixed formation dgrin -~ ez 4 1] = Ipelt] — elt + 1]|| < Tsens
search and capture of preys [18]. Such specializationsesiigg é otherwise.

that there may be configurations that are preferred during
group hunting. Also, in presence of sensing limitationsThe functionsu® : R2. x R? — R2 anduP* : R2. x R%, x
groups tend to maintain spacing between each other that®$ — R? are termed astrategiesfor the evader and pursuer
regulated by their sensory capabilities [19]. These faints g respectively. Due to theeactive rabbitmodel for the evader,

us some additional hints towards selecting capture-cameluc ¢ = 0 until the evader is sensed by the pursuers for the first
predator formations. time. The constraint on the maximum step size gives,

D. Organization [[ufll, [[uP*]| < rstep

The problem assumptions and its mathematical model ak€t to denote the time at which the evader is detected by the
presented in Section Il. Pursuer formations are defined pursuers. We seek sufficient conditions dty] relative to
Section Ill. In Section 1V, we describe thgearch-pursuit- positions of the pursuers; [to] and a corresponding pursuers
capture strategies and give the corresponding results. Trsirategyu?s so that the pursuers will capture the evader for
respective proofs are given in Section V. Section VI dealgny evader strategy®.
with the analysis for determining whether the pursuers lshou

. . . I1l. SOME PRELIMINARIES
allocate or conjoin In figures, circles around the agents

denote their sensing ranges. In this section, we define certain preliminaries which we
propose to use in our solution. We define two notions of
Il. PROBLEM SET-UP captureas follows.

. - . 9
We assume that there exists a finite, region,C R*,  pefinition 111.1 (Capture notions) The evader is said to be
where an evader appears with a uniform spatial density. Tr&%\pturecby the pursuers if for any evader strateg§, some

motion and sensing abilities of the evader are restricted Hhrsuer is at the same position as the evader after a finite
closed discs of radiisiep and rsens respectively, around the time.

current evader position. We have a totalopursuers, who Similarly, the evader is said to be&apped within the

have the same motion and _sensing_capabilities as those g‘érnsing radiiof the pursuers if for any evader strategy,
the evader. We assume a discrete-time model with alterngig, stion disc of the evader is completely contained within
motion of the evader and the pursuers. The pursuers hayg, \nion of the sensing discs of the pursuers after a finite

complete communication between themselves, i.e., they Che. We define theeapping timet* as the time taken by the
communicate the location of a sensed evader as well as thﬁﬁrsuers to trap the evader within their sensing radii.

own position with respect to a fixed, global reference frame,

among themselves. The evader wins if it can avoid being/e would like to point out here that the time needed to

captured indefinitely. We seek pursuer strategies to captucapture as well as the trapping time could possibly depend

the evader. on the initial relative locations of the pursuers and thedeva
DefineR?e = R% U ¢, whereR? is the unbounded, planar Let the sensing radius be times the stepping radius.

environment and is the null element. Here, the null elementWe assume throughout our problem thats large enough:

refers to the fact that during sensing, the measuremeneof ttypically greater thar2y/2. We define the following pursuer

position of an evader may not be available to all pursuergormation.

Let e[t] andp,[t] denote the absolute positions of the evader

and thek" pursuer respectively, at time Here, % takes all Definition I11.2 (Trapping chain) A group ofn > 3 pur-

values in{1,...,n}. The equations of motion, in discrete-suers{ps,...,p,} are said to be in d@rapping chairforma-
time, can be written as, tion if
e[t + 1] = e[t] + uc(eft], {y"* [£]}), @ p1,...,pn are at the vertices of a convex polygon, and

1) (i) forall ke {1,....,n—1},

: pr — el < 2rsiepV/ K2 — 4.

whereyP[t] € R? is the measurement of the” pursuer | al siep

position taken by the evader at tHé time instant and/®[t+ An example of a trapping chain is shown in Figure 1. We
1] € R% is the measurement of the evader position taken byefine thecapture regionfor a trapping chain as under.

it + 1] = pr[t] + u™ (e[t], y°[t + 1], p[t]),



L + [, of which the favorable length i€. The sweeping
policy for the pursuers is as follows.

(i) Choose the first rectangular strip at a random distance,
lo, from one edge off and sweep it length-wise. The
distancelp is a uniform random variable taking values
in the interval[—%, L + L]. Here, negativd, implies
that some of the pursuers may begin sweeping from
outside the regiory.

(i) Form a sweeping path fag and sweep along adjacent
strips as shown in Figure 2.

The shaded region in Figure 2 refers to the area that would
fall in the proposed capture regiaofi, Now we are interested

in determining the probability that an evader falls in the
shaded region in Figure 2. That is given by the following

Fig. 1. A trapping chain

result.
Stl= U Bpulrsend N Cofpa,....pa}lt]. powesmgpn | Ty
ke{2,...,n—1} Strip 2
The lightly shaded region in Figure 1 is the proposed capture ¢ ___________ /
region, S, for the trapping chain.

There is a chance that the evader can step into a region $ iL sipd
such that the pursuers trap it within their sensing radii. So ¢y
we define arextended capture regioior the trapping chain T E @m
as under,

o Fig. 2. A sweeping path
sl= U Bp(rsend N Cofpr,....pn}lH]

ke{l,...,n}

The darkly shaded region along with the lightly shadedheorem IV.1 (Sweep property) For an evader located
region in Figure 1 is the extended capture regiSf, for ~anywhere ing, the probability,, of detecting it insides for

the trapping chain. a group of pursuers in a trapping chain, using theeeping
policy, is given by
V. THE ALGORITHMS AND MAIN RESULTS L
We have three phases of sweep, pursuit and capture. In this L+0

section, we describe the pursuer strategies in each phdse athere L and ! are defined in Figure 1.
the corresponding results. The proofs of the main resuéts ar . -
given in Section V. Throughout the three phases, the pw;sueorn'l\log(r:]etg;atnthmebloerfz?b'“trys O(];Vzu;lée{hseufg;f.s’gepergdzr
maintain a trapping chain formation. The following are thq y u pursu Ve pursu

strategies in each phase. ocations. We shall refer to it aB(n) from now on. We will

use the result in Theorem IV.1 in Section VI. The pursuers
A. Sweep Phase win when the evader is detected # by the pursuers.

In this phase, the aim of the pursuers is to sense é%thermse, the evader is scared away and lost forever.
evader within the capture region of the trapping chain. FaB. Pursuit phase: algorithnTRAP
this purpose, we propose that the pursuers swieep the Once an evader has been detected within the proposed

direction of the outward normal t@ip,, with respect 10 contre region at time,, the pursuers need to ensure that

the convex hull of the pursuers. We demonstrate our resyffe eyader is trapped within their sensing ranges. For this
for a square regiorg of length b. But |tlwould be clear purpose, we propose the following algorithm,

from our approach that the result is valid for any bounded ¢ a5ch time step > to

environment. For a trapping chain shown in Figure 1, we Teers

define. (i) While e[t + 1] ¢ S¢[t], the pursuers move towards the

circumcenterO of Api[tole[to]pn[to] With maximum
L = [|p1 — pnll — 27sens step size.
(i) Otherwise, one of the pursuers which senses the evader
directly, moves with maximum step towards the evader
As the pursuers move in the direction described earliey, the and the others move parallel to that pursuer with the
clear a rectangular strip of lengthand width of at most maximum step size.

I = 47sens



The notationA XY Z denotes the triangle formed by points that containse[to + t*] is bounded. Her&R? refers to
X,Y and Z. One such move is shown in Figure 3. In case the entire unbounded environment. This is illustrated in
(i) of the algorithm, note that the pursuers may not sense Figure 4.

the evader in all the subsequent moves. But the idea is thate For every pursuer, choogg[t+ 1] on line joininge[t+

the pursuers will encircle the evader by completing therchai 1] andC};, such thall|py[t + 1] — e[t + 1]|| is minimized,
around it and trap it within the overlapping chain. Then the  subject to|py [t+1] —px[t]]] < rseep This move is shown
pursuers can shrink the chain around the evader. Thus, we in Figure 5.

propose the result,

Fig. 4. Algorithm spHERES lllustrating selection of point§y,.

et +1]

Fig. 3. Algorithm TRAP

eft] pilt+1]

Theorem IV.2 (TRAP) Starting from a trapping chain for-
mation, the pursuers trap the evader within their sensing
radii using algorithmTRAP, if e[to] € S[to]. The trapping
time ¢* using algorithmTRAP satisfies,

[lpx[0] — OIIW

T'step

Pilt]

)

t* < max {
ke{l,....,n}

whereO is the circumcenter of\ps[to]elto]pn[to)-

The following corollary helps us to link the end of the
pursuit phase to the commencement of the final capture

Fig. 5. Algorithm sPHERES lllustrating a pursuer move.
phase.

_ _ The algorithmTRAP ensures that until convergence, after
Corollary IV.3 At the end of algorithnTRAP, the evader is  every pursuer move, the evader is inside the convex hull of
inside the convex hull of the pursuers. the pursuers. Thus, final capture follows from the following

C. The Capture phase theorem, the proof of which can be found in [5].

Once an evader is captured within the sensing ranges of tlibeorem V.4 (SPHERES [5]) Assume the evader lies
pursuers, the pursuers now have access to the next poditiongthin the convex hull of the pursuers. If every pursuer
the evader at the present time instant. So the problem redudellows the algorithmsPHERES then the evader will be
to one having unlimited sensing capabilities for the pursue captured in finite number of steps.

A capture strategy for this phase is algorith®®HERES

proposed by Kopparty and Ravishankar [5], which is beingI
reproduced here for clarity and completeness. Let the tin}ﬁ
at the end of the pursuit phase bg + t*).

We would like to point out an important property of

gorithmsPHERES The distance between every pursuer and

e evader never increases at the end of every pursuer move

o o [5]. Thus, once the evader is trapped within the sensing

« Each pursuep, initially selects (by communication) & yanges of the pursuers, it would remain trapped within their
point €, such that, sensing ranges at the end of every move using algorithm

— pk[to+t*] lies on the line segmerttielto+t*] and  spHERES The capture phase is now complete.

— The connected component of
P V. PROOFS OF THEMAIN RESULTS

R?\ Up_1Be, (I Cr — prlto + *]])) The main results in Section IV are proved in this section.



A. The Sweep phase The bound in equation (2) is the time taken by the furthest
Proof of Theorem IV.1: pursuer (and hence all the pursuers) to reach p@inthus,

in Figure 2. Let its distance from the lower edge /heThe Pursuers would have covered the interior of their convex
event thatz would lie in the shaded region is given -+  hull. Thus, after at mostaxyc(i,... n} [WW steps,

é < horly— é > h. Thus, if we consider the interval the evader’s motion circle would be contained within the
[—é, L+ %}, wherely takes values, the favorable interval issensing radii of the pursuers. [ |
of length L. Thus, the probability of success for the pursuers
is equivalent to determining the ratio of the lengths of th&: The Capture phase
favorable interval, i.e.L to the total interval, i.e..L + [. The proof of Theorem V.4 can be found in [5].
Hence, the result follows. |

VI. ALLOCATE OR CONJOIN?
Remark V.1 It is worthwhile to mention here that the prob-  Qur analysis in the previous sections sheds some light
ability of success for the proposed sweeping policy for thgnto the trade-offs that agents evaluate when deciding be-
pursuers isndependendf the evader’s locatiom. Thus, the tweenallocating a task by dividing into smaller groups and
Optlmal p0||Cy for the evader in the present framework is t(berforming the task as mnjoinedgroup_ We exp|ore some
have a uniform Spatial probablllty denSity of arrival ¢h of these trade-offs in what follows.
This justifies our problem assumption about evader arrival Gjven a total ofkn pursuers and an environment large
probability. enough to avoid trivial cases, which of the following option
is advantageous,

(i) Divide the environmeng into k identical parts. Form
k groups of n pursuers each and assign each group
to a part of the environment. Run the sweep strategy
independently on each group.

(i) Form a single chain ofn pursuers and searchusing
the sweep strategy.

then the following statements hold. Since the pursuit and capture phases imply capture, the
probability of successful evader detection in the swee@ha

® I{fl dlsrt(i[t]l’}p k#}gﬁ#@ ev>ad eZStf:‘;nLOort ztllapk oufsid ds equal to the probability of capture of the evader for

T s T our sweeping strategy. From the results in Section 1V, it
(i I(]So{péi[gt’('e'[t']’%gofln%’“mﬁgl@éme < s evident that larger the total width of the sweep, i.e.,
0 o 1’} then the ev_ade? ?;apped within the L T the higher is the probability’. But, beyond a certain
N o configuration, the convergence time for algoritimap may
sensing radiof pursuerspy, and p.1. become arbitrary large. Such a configuration results when

Proof of Theorem IV.21f dist(e[0], px[tolprsalto]) < rsep DiDn iS tangent to the sensing discs of all the other pursuers.

for somek € {1,...,n — 1}, then the evader is already The separation between the pursuer8rigepy/s? — 4.

trapped within the sensing ranges of the pursuers, from partTo obtain finite upper bound on time, we define a limiting

(i) of Lemma V.2. So letdist(e[to], px[to]pr+i[to]) > rsep ~ fOrmation as under,

for everyk € {1,...,n — 1}. If e[t + 1] € S¢[t], for any

t > to, then the pursuers would use part (i) of the algorithnDefinition VI.1 (Limiting trapping chain) Given aé > 0,

TRAP and the result follows. n pursuers are said to be in the limiting trapping chain fif,
Finally, if efto + 1] ¢ S[to], then the pursuers compute (y for all k € {1,...,n — 1},

the circumcente® of Apiltole[to]pn[to]. Construct the per-

pendicular bisectors, and m of e[to|pi[to] and e[to]px [to] ok — pr+1l| = 2rsiepV/ K2 — 4 24,

respectively, as shown in Figure 3. Any point on the side

opposite toe[to] of the lines! andm can be reached faster () forall ke {2,....n—1},

by p; and p,, respectively. Since all the other pursuers are

moving towardsO, the overlap between their sensing discs

increases at each step. Thus, the motion of the evader isSuch a limiting configuration is shown in Figure 6. The-

confined to the quadrilateralto] AOB, which is cleared by orem IV.1 leads to the following result for a limiting chain.

the pursuers in finite time. The best path for the evader is

to move alonge[to] — O with maximum step size. Since proposition V1.2 (Limiting trapping chain property)

Tsens> Tstep the sensing discs of pursuersandp,, overlap  For a limiting trapping chain,

before the evader can reach thus closing the trapping chain

around the evader. Note that the evader is within the convex P(n) = nd — (3d — 2c) _

hull of the pursuers at the end of every pursuer move. nd — (3d — I — 2c)

B. The Pursuit phase

To prove Theorem IV.2, we first state the following
properties of a trapping chain. These properties follownfro
the definitions of trapping within sensing radii and of the
trapping chain.

Lemma V.2 (Trapping chain properties) If e[t] € SJt],

dist (pkaplpn) = Tsens 0.
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capabilities limited to a finite disc. We proposesaeep-
* o6 pursuit-capturestrategy for a group of pursuers to capture
an evader placed randomly inside a bounded environment.
We give an expression for the probability of success in the
Fig. 6. A limiting trapping chain sweep phase which is a function of the pursuer formation
andindependentf the environment and the location of the
evader inside it. We then give a deterministic policy using
We define a performance metric as the probability 0 novel algorithmTrAP in the pursuit phase followed by
capturing the evader per pursuer, i85, whereN £ kn  an existing algorithmsPHERES[5], to complete theapture
is the total number of pursuers. Intuitively, this metriéers  Thus, the probability of success in the sweep phase is also
to the amount of benefit per pursuer. Using option (i) for ahe probability of capturing an evader. We then evaluate
limiting trapping chain, a decision to be made by a group of pursuers to either
P(N, k) Nd — (3d — 2¢)k conjoin or allocate during _t_he sweep phase. Using the
N = N(Nd—(3d—1—2k)" 3 measure of success probability per pursuer, we conclud_ie tha
it is advantageous for the pursuers to sweep the region as
Equation (3) follows from the fact that when we divide a conjoined unit. This result has similar analogies in the
into k£ identical parts, the probability that the evader wouldehavior of wolves during hunting operations.
be in any one of the parts %and the fact that the capture of In this paper, we consider any arbitrary motion for the
the evader by one group implies capture by no other groupvader, once it is detected. In reality, evader motion can be
The quantity, “&-%) is a maximum whert = 1. Thus, specialized or predictable. We have assumed that the pur-
searching the environment as a conjoined chain is the betters group together as a chain. Interesting future dinegti
option. This fact is supported by a “strong pack adhesiveould be to determine and characterize pursuer formations
behavior” in wolves, refer Section 14.5 from [20]. and possibly more efficient strategies for specialized evad
Let us examine the effect of increasing the size of a singleehaviors. Additional information on the total time to aat
group. Consider a single limiting trapping chain, i+ 1 would shed more light on the tendencies dfiocate or

and N = n. Equation (3) gives us, conjoin
P(n) nd — (3d — 2c) ACKNOWLEDGMENTS
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in sizes of wolf-packs which are noted to be ranging from 3
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