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Traveling Salesperson Problems for a double
integrator

Ketan Savla Francesco Bullo Emilio Frazzoli

Abstract—This paper studies the following version of the
Traveling Salesperson Problem (TSP) for a double integrator
with bounded velocity and bounded control inputs: given a set
of points in R

d, find the fastest tour over the point set. We first
give asymptotic bounds on the time taken to complete such a
tour in the worst-case. Then, we study a stochastic version of the
TSP for double integrator in R

2 and R
3, where we propose novel

algorithms that perform within a constant factor of the optimal
strategy with probability one. Lastly, we study a dynamic TSP in
R

2 and R
3, where we propose novel stabilizing algorithms whose

performances are within a constant factor from the optimum.

I. I NTRODUCTION

The Traveling Salesperson Problem (TSP) with its variations
is one of the most widely known combinatorial optimization
problems. While extensively studied in the literature, these
problems continue to attract great interest from a wide range
of fields, including Operations Research, Mathematics and
Computer Science. The Euclidean TSP (ETSP) [2], [3] is
formulated as follows: given a finite point setP in R

d for
d ∈ N, find the minimum-length closed path through all the
points in P . It is quite natural to formulate this problem
in the context of other dynamical vehicles, e.g., UAVs. For
motion planning purposes, the nominal behavior of UAVs
with hover capabilities (e.g., helicopters) is usually captured
by a simple double integrator model with bounded velocity
and acceleration, e.g., see [4]. The focus of this paper is the
analysis of the TSP for a vehicle with such double integrator
dynamics or simply a double integrator; we shall refer to it
as DITSP. Specifically, DITSP will involve finding thefastest
tour for a double integrator through a set ofn points in a
compact domain.

Exact algorithms, heuristics and polynomial-time constant
factor approximation algorithms are available for the Eu-
clidean TSP, see [5], [6]. However, unlike other variationsof
the TSP, there are no known reductions of the DITSP to a
problem on a finite-dimensional graph, thus making it difficult
to use the well-established tools in combinatorial optimization.

The motivation to study the DITSP arises in robotics
and uninhabited aerial vehicles (UAVs) applications. UAV
applications also motivate us to study the Dynamic Traveling
Repairperson Problem (DTRP), in which the aerial vehicle is
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required to visit a dynamically generated set of targets. This
problem was introduced by Bertsimas and van Ryzin in [7] and
then decentralized policies achieving the same performances
were proposed in [8]. Variants of these problems have attracted
much attention recently [8], [9]. There also exists an extensive
literature on motion planning for robots under various motion
constraints, e.g., see [10], [11]. However the study of the TSP
and the DTRP in conjunction with double integrator vehicle
dynamics has eluded attention from the research community.

The contributions of this paper are threefold. First, we
introduce a natural STOP-GO-STOP strategy for the DITSP
to show that the minimum time to traverse the tour is asymp-
totically upper bounded by a constant timesn1− 1

2d , i.e., it
belongs1 to O(n1− 1

2d ). We also show that, in theworst case,
this minimum time is asymptotically lower bounded by a
constant timesn1− 1

d , i.e., it belongs toΩ(n1− 1

d ). Second, we
study thestochasticDITSP, i.e., the problem of finding the
fastest tour through a set of target points that are uniformly
randomly generated. We show that the minimum time to
traverse the tour for the stochastic DITSP belongs toΩ(n2/3)
in R

2 andΩ(n4/5) in R
3. We adapt the RECURSIVE BEAD-

TILING ALGORITHM from our earlier work [12] for the
stochastic DITSP inR2 and we propose a novel algorithm,
the RECURSIVECYLINDER-COVERING ALGORITHM, for the
stochastic DITSP inR3. We prove that, with probability one,
the tours generated by these algorithms are traversed in time
O(n2/3) in R

2 and O(n4/5) in R
3, i.e., these algorithms

provide a constant-factor approximation to the optimal DITSP
solution with probability one. Third, for the DTRP problem we
propose novel policies based on the fixed-resolution versions
of the corresponding algorithms for the stochastic DITSP. We
show that the performance guarantees for the stochastic DITSP
translate into stability guarantees for the average performance
of the double integrator DTRP problem. For a uniform target-
generation process with intensityλ, the DTRP algorithm
performance is within a constant factor of the optimal policy
in the heavy load case, i.e., forλ → +∞. As a final
minor contribution, we also show that the results obtained
for stochastic DITSP carry over to the stochastic TSP for the
Dubins vehicle, i.e., for a nonholonomic vehicle moving along
paths with bounded curvature, without reversing direction. In
the interest of space, this document contains only sketchesof
the proofs; all formal proofs are available in [13].

This work completes the generalization of the known combi-
natorial results on the ETSP and DTRP (applicable to systems

1For f, g : N → R, we say thatf ∈ O(g) (resp.,f ∈ Ω(g)) if there exist
N0 ∈ N andk ∈ R+ such that|f(N)| ≤ k|g(N)| for all N ≥ N0 (resp.,
|f(N)| ≥ k|g(N)| for all N ≥ N0). If f ∈ O(g) andf ∈ Ω(g), then we
use the notationf ∈ Θ(g).
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with single integrator dynamics) to double integrators andDu-
bins vehicle models. At this point, we clarify the contribution
and the relation of this paper with respect to our companion
paper [12], where we considered TSPs for a Dubins vehicle
in R

2. In this paper, we adapt the tools and algorithms for
the stochastic TSP for the Dubins vehicle from [12] for the
double integrator case inR2 andR

3. However, an interesting
fact that arises out this paper, independetly of [12], is that
the path length for the stochastic TSP for a double integrator
follows a similar theoretical lower bounds as for the Dubins
vehicle. Moreover, the results and the algorithms for the worst-
case DITSP are novel. It is interesting to compare our results
with the setting where the vehicle is modeled by a single
integrator; this setting corresponds to the so-called Euclidean
case in combinatorial optimization. In the following tablethe
single integrator results in the first column are taken from [3],
[7]; the double integrator results in the second column are
novel; and the Dubins vehicle results in the third column are
taken from [12] ford = 2 and are novel ford = 3:

Single Double Dubins
integrator integrator vehicle

Min. time for Θ(n1− 1

d ) Ω(n1− 1

d ), Θ(n)

TSP tour O(n1− 1

2d ) (d = 2, 3)
(worst-case)

Exp. min. time Θ(n1− 1

d ) Θ(n1− 1

2d−1 ) Θ(n1− 1

2d−1 )
for TSP tour w.h.p. w.h.p.
(stochastic) (d = 2, 3) (d = 2, 3)
System time Θ(λd−1) Θ(λ2(d−1)) Θ(λ2(d−1))
for DTRP (d = 2) (d = 2, 3) (d = 2, 3)

Remarkably, the differences between the TSP bounds play a
crucial role in the DTRP problem; e.g., stable policies exist
only when the minimum TSP time grows strictly sub-linearly
with n.

II. SETUP AND WORST-CASE DITSP

For d ∈ N, consider a vehicle with double integrator
dynamics:

p̈(t) = u(t), ‖u(t)‖ ≤ rctr, ‖ṗ(t)‖ ≤ rvel, (1)

where p, u ∈ R
d are the position and control input of the

vehicle respectively,rvel, rctr ∈ R+ are the bounds on the
attainable speed and control inputs respectively. LetQ ⊂ R

d

be a unit hypercube. LetP = {q1, . . . , qn} be a set ofn points
in Q and letPn be the collection of all point setsP ⊂ Q with
cardinalityn. Let ETSP(P ) denote the cost of the Euclidean
TSP overP and letDITSP(P ) denote the cost of the TSP
for double integrator overP , i.e., the time taken to traverse
the fastest closed path for a double integrator through all the
points inP .

In the spirit of its companion paper [12], the key objective
of this paper is the design of an algorithm that provides a
provably good approximation to the optimal solution of the
DITSP. To establish what a “good approximation” might be,
let us recall what is known about the ETSP and the DTSP.
For a compact setQ, it is known that the cost of the ETSP
grows asn1/2 for the worst-case point sets [3] as well as in the
stochastic case [2] (as both lower and upper bounds). Similarly,
it was shown in [12] that the cost of the DTSP grows withn

for the worst-case point sets and withn2/3 in the stochastic
case. These upper bound are constructive in the sense that
there exist algorithms that generate closed paths through the
points which give the corresponding performances.

Motivated by these results, this paper studies the asymptotic
dependence of the cost of the DITSP onn and uses those
results to design stabilizing policies for the DTRP for the
double integrator. In other words, we assumervel and rctr to
be constant and study the dependence of DITSP: Pn → R+

on n.
Lemma 2.1: (Worst-case Lower Bound on the TSP for Dou-

ble Integrator)For rvel > 0, rctr > 0 and d ∈ N, there exists
a point setP ∈ Pn in Q ⊂ R

d such thatDITSP(P ) belongs
to Ω(n1− 1

d ).
Proof: As shown in [3], there exists a set̃P of n points

whose minimum inter-point distance belongs toΩ(n− 1

d ).
Therefore,DITSP(P̃ ) belongs ton×Ω(n− 1

d ), i.e.,Ω(n1− 1

d ).

We now propose a simple strategy for the DITSP and
analyze its performance. The STOP-GO-STOP strategy can
be described as follows: The vehicle visits the points in the
same order as in the optimal ETSP tour over the same set of
points. Between any pair of points, the vehicle starts at the
initial point at rest and follows the shortest-time path to reach
the final point with zero velocity. Analyzing this STOP-GO-
STOP strategy, one can show the following upper bound.

Theorem 2.2: (Upper Bound on the TSP for Double Inte-
grator) For any point setP ∈ Pn in Q ⊂ R

d, rctr > 0, rvel > 0
andd ∈ N, DITSP(P ) belongs toO(n1− 1

2d ).

III. T HE STOCHASTICDITSP

The results in the previous section showed that based on a
simple strategy, the STOP-GO-STOP strategy, we are already
guaranteed to have sub-linear cost for the DITSP when the
point sets are considered on an individual basis. However, it is
reasonable to argue that there might be better algorithms when
one is concerned withaverage performance. In particular,
one can expect that whenn target points are stochastically
generated inQ according to a uniform probability distribution
function, the cost of DITSP should be lower than the one given
by the STOP-GO-STOP strategy. We shall refer to the problem
of studying the average performance of DITSP over this class
of point sets asstochasticDITSP. In this section, we present
novel algorithms for stochastic DITSP inR2 andR

3 and then
establish bounds on their performances.

We make the following assumptions: inR2, Q is a rectangle
of width W and heightH with W ≥ H; in R

3, Q is a
rectangular box of widthW , height H and depthD with
W ≥ H ≥ D. Different choices for the shape ofQ affect
our conclusions only by a constant (consider, for example, the
smallest rectangle or the smallest rectangular box enclosing
Q). Specifically, different choices for the shape ofQ would
only affect the constants associated with the various bounds
in Theorems 3.1, 3.3 and 3.8 and do not affect the asymptotic
dependence onn. The axes of the reference frame are parallel
to the sides ofQ. The pointsP = (q1, . . . , qn) are randomly
generated according to a uniform distribution with supportQ.
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A. Lower bounds

First, we provide lower bounds on the expected length of
the stochastic DITSP ford = 2, 3.

Theorem 3.1: (Lower bounds on stochastic DITSP)For all
rvel > 0, rctr > 0, the expected minimum time in a stochastic
DITSP to visit a set ofn uniformly-randomly-generated points
satisfies the following inequalities:

lim inf
n→+∞

E[DITSP(P ⊂ Q ⊂ R
2)]

n2/3
≥ 3

4

( 6WH

rvelrctr

)1/3

and

lim inf
n→+∞

E[DITSP(P ⊂ Q ⊂ R
3)]

n4/5
≥ 5

6

(20WHD

πrvelr2
ctr

)1/5

.

Proof: In R
2, the area of the set reachable in timet from a

random initial state belongs toO(t3). Therefore, the expected
value of the time between two successive points in the tour
belongs toΩ(n−1/3). Hence, the minimum time to traverse the
total tour belongs ton × Ω(n−1/3), i.e., Ω(n2/3). The proof
for R

3 follows on similar lines.

B. Relation with the Dubins vehicle

In [12], we studied stochastic versions of TSP for a Dubins
vehicle. Though conventionally a Dubins vehicle is restricted
to be aplanar vehicle, one can easily generalize the model
even for the three (and higher) dimensional case. Accordingly,
a Dubins vehicle can be defined as a vehicle that is constrained
to move with a constant speed along paths of bounded curva-
ture, without reversing direction. Correspondingly, afeasible
curve for a Dubins vehicleor a Dubins pathis defined as a
curve that is twice differentiable almost everywhere, and such
that the magnitude of its curvature is bounded above by1/ρ,
whereρ > 0 is the minimum turn radius. Based on this, one
can immediately come up with the following analogy between
feasible curves for a Dubins vehicle and a double integrator.

Lemma 3.2: (Trajectories of Dubins vehicles and double
integrators) For any ρ > 0, a feasible curve for a Dubins
vehicle with minimum turn radiusρ is a feasible curve for a
double integrator (modeled in equation (1)) moving with an
appropriate constant speeds ≤ rvel. Conversely, a feasible
curve for a double integrator moving with a constant speed
s ≤ rvel is a feasible curve for Dubins vehicle with any
minimum turn radiusρ that is greater than or equal tos

2

rctr
.

In [12], we proposed a novel algorithm, the RECURSIVE

BEAD-TILING ALGORITHM (RECBTA) for the stochastic
version of the Dubins TSP (DTSP) inR2; we showed that this
algorithm performed within a constant factor of the optimal
with high probability. In this paper, taking inspiration from
those ideas, we propose an algorithm to compute feasible
curves for a double integrator moving with a constant speed
s ≤ rvel and then optimize overs. Note that moving at a
constant speed is not necessarily the best strategy. Nonethe-
less, this strategy leads to efficient algorithms. We adopt
the RECBTA for the stochastic DITSP inR2 and based
on the same ideas, we propose the RECURSIVE CYLINDER-
COVERING ALGORITHM (RECCCA) for stochastic DITSP in
R

3. We prove that these algorithms perform within a constant
factor of the optimal with probability one.

C. The basic geometric construction

Here we define useful geometric objects and study their
properties. Given the constant speeds for the double integrator
let ρ = s2

rctr
; from Lemma 3.2 this constant corresponds

to the minimum turning radius of theanalogous Dubins
vehicle. Consider two pointsp− and p+ on the plane, with
ℓ = ‖p+−p−‖2 ≤ 4ρ, and construct the beadBρ(ℓ) as detailed
in Figure 1.

Fig. 1. Construction of the “bead”Bρ(ℓ). The figure shows how the upper
half of the boundary is constructed, the bottom half is symmetric. The figure
shows the rectangleefghwhich is used to construct the ”cylinder”Cρ(ℓ).

Associated with the bead is also the rectangleefgh. Rotating
this rectangle about the line passing throughp− andp+ gives
rise to a cylinderCρ(ℓ). Cρ(ℓ) enjoys the following asymptotic
properties as(l/ρ) → 0+ (properties of the bead,Bρ(ℓ) are
listed in [12]):
(P1) The length ofCρ(ℓ) is ℓ/2 and its radius of cross-section

is w(ℓ)/4, wherew(ℓ) is the maximumthicknessof the
beadBρ(ℓ) and it is equal to

w(ℓ) = 4ρ

(

1 −
√

1 − ℓ2

16ρ2

)

=
ℓ2

8ρ
+ ρ · o

(

ℓ3

ρ3

)

.

(P2) The volume ofCρ(ℓ) is equal to

Volume[Cρ(ℓ)] = π
(w(ℓ)

4

)2 ℓ

2
=

πℓ5

2048ρ2
+ρ3·o

(

ℓ6

ρ6

)

.

(P3) For anyp ∈ Cρ, there is at least one feasible curve
γp through the points{p−, p, p+}, entirely contained
within the region obtained by rotatingBρ(ℓ) about the
line passing throughp− andp+. The length of any such
path is at most

Length(γp) ≤ 4ρ arcsin

(

ℓ

4ρ

)

= ℓ + ρ · o
(

ℓ3

ρ3

)

.

The geometric shapes introduced above can be used to cover
R

2 andR
3 in anorganizedway. The plane can be periodically

tiled2 by identical copies ofBρ(ℓ), for any ℓ ∈ ]0, 4ρ]. The

2A tiling of the plane is a collection of sets whose intersection has measure
zero and whose union covers the plane.
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cylinder, however does not enjoy any such special property.
For our purpose, we consider a particular covering ofR

3 by
cylinders described as follows.

Fig. 2. A typical layer of cylinders formed by stacking rows ofcylinders

A row of cylindersis formed by joining cylinders end to end
along their length. A layer of cylinders is formed by placing
rows of cylinders parallel and on top of each other as shown
in Figure 2. For coveringR3, these layers are arranged next
to each other and with offsets as shown in Figure 3(a), where
the cross section of this arrangement is shown. We refer to
this construction as thecovering ofR3.

(a) (b)

Fig. 3. (a): Cross section of the arrangement of the layers of cylinders used
for coveringQ ⊂ R

3, (b): The relative position of the bigger cylinder relative
to smaller ones of the prior phase during the phase transition.

D. The algorithm

We adopt the RECURSIVE BEAD-TILING ALGORITHM

(RECBTA) from [12] for the stochastic DITSP inR2. Let
TRecBTA be the time taken by a double integrator to traverse
a stochastic DITSP tour according to the RECBTA. The
RECBTA performance is analyzed as follows.

Theorem 3.3: (Upper bound on the total time inR
2) Let

P ∈ Pn be uniformly randomly generated in the rectangle of
width W and heightH. For any double integrator (1) moving
with a constant speeds ≤ rvel, with probability one,

lim sup
n→+∞

TRecBTA

n2/3
≤ 24

(

WH

srctr

)1/3(

1 +
7πs2

3Wrctr

)

.

Remark 3.4:The speed that minimizes the upper bound in

Theorem 3.3 ismin{
√

3Wrctr
35π , rvel}.

Taking inspiration from the RECBTA, we now pro-
pose the RECURSIVE CYLINDER-COVERING ALGORITHM

(RECCCA) for the stochastic DITSP inR3. Consider a
covering ofQ ∈ R

3 by cylinders such thatVolume[Cρ(ℓ)] =
Volume[Q ⊂ R

3]/(4n) = WHD/(4n) (assuming thatn is
sufficiently large). Furthermore, the covering is chosen insuch
a way that the layers of the cylinders are aligned with the
length ofQ ⊂ R

3.

The proposed algorithm will consist of a sequence of
phases; each phase will consist of five sub-phases, all similar
in nature. For the first sub-phase of the first phase, a feasible
curve is constructed with the following properties:

(i) it visits all non-empty cylinders once,
(ii) it visits all rows of cylinders in a layer in sequence top-

to-down in a layer, alternating between left-to-right and
right-to-left passes, and visiting all non-empty cylinders
in a row,

(iii) it visits all layers in sequence from one end of the region
to the other,

(iv) when visiting a non-empty cylinder, it services at least
one target in it.

In subsequent sub-phases, instead of considering single
cylinders, we will consider “meta-cylinders” composed of2,
4, 8 and 16 beads each for the remaining four sub-phases,
as shown in Figure 4, and proceed in a similar way as the
first sub-phase, i.e., a feasible curve is constructed with the
following properties:

(i) the curve visits all non-empty meta-cylinders once,
(ii) it visits all (meta-cylinder) rows in sequence top-to-down

in a (meta-cylinder) layer, alternating between left-to-
right and right-to-left passes, and visiting all non-empty
meta-cylinders in a row,

(iii) it visits all (meta-cylinder) layers in sequence fromone
end of the region to the other,

(iv) when visiting a non-empty meta-cylinder, it services at
least one target in it.

A meta-cylinder at the end of the fifth sub-phase, and
hence at the end of the first phase will consist of 16 nearby
cylinders. After this phase, the transitioning to the next phase
will involve enlarging the cylinder to32 times its current size
by increasing the radius of its cross section by a factor of4 and
doubling its length as outlined in Figure 3(b). It is easy to see
that this bigger cylinder will contain the union of32 nearby
smaller cylinders. In other words, we are forming the object
Cρ(2ℓ) using a conglomeration of32 Cρ(ℓ) objects. This whole
process is repeated at mostlog2 n + 2 times. After the last
phase, the leftover targets will be visited using, for example, a
greedy strategy. We have the following result for the leftover
targets after the last phase which is similar to the result for
RECBTA [12].

Lemma 3.5 (Targets remaining after recursive phases):
With probability one, the number of unvisited targets after
the last recursive phase of the RECURSIVE CYLINDER-
COVERING ALGORITHM over P is less than 24 log2 n
asymptotically.

We skip the calculations of the path lengths for the various
sub phases and give the following result for the path length
of the first phase. Details of the intermediate calculationscan
be found in [13].

Lemma 3.6 (Path length for the first phase):Consider a
covering of the space with cylindersCρ(ℓ). For anyρ > 0
and for any set of target points, the lengthL1 of a path
visiting once and only once each cylinder with a non-empty
intersection with a rectangular boxQ of width W , heightH
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Fig. 4. From top left in the left-to-right, top-to bottom direction, sketch of projection of “meta-cylinders” on the corresponding side ofQ ⊂ R
3 at second,

third, fourth and fifth sub-phases of a phase in the recursivecylinder covering algorithm.

and depthD satisfies

L1 ≤ 3328ρ2WHD

ℓ4

(

1 +
7πρ

3W

)

+ ρ · o
(

ρ3

ℓ3

)

.

Since we increase the length of cylinders by a factor of two
while doing the phase transition from one phase to the another,
the length of path for the subsequentith phase is given by:

Li ≤
3328ρ2WHD

16iℓ4

(

1 +
7πρ

3W

)

+ ρ · o
(

ρ3

ℓ3

)

.

We now state the following result which characterizes the
total path length for the RECCCA, which we denote as
LRecCCA,ρ(P ).

Lemma 3.7:(Path length for the RECURSIVE CYLINDER-
COVERING ALGORITHM) Let P ∈ Pn be uniformly randomly
generated in the rectangle of widthW , height H and depth
D. For anyρ > 0, with high probability

lim sup
n→+∞

LRecCCA,ρ(P )

n4/5

≤ 3328

15

( π

16

)4/5

(ρ2WHD)1/5
(

1 +
7πρ

3W

)

.

Proof: There are at mostlog2 n + 2 phases at the end of
which there areO(log2 n) points by Lemma 3.5. By summing
the expression for the path length for theith phase,Li, over
log2 n + 2 phases and using any greedy strategy to visit the
remainingO(log2 n), we get the desired result.
In order to obtain an upper bound on theDITSP(P ) in R

3,
we derive the expression for time taken,TRecCCA, by the
RECCCA to execute the path of lengthLRecCCA,ρ(P ).

Theorem 3.8: (Upper bound on the total time inR
3) Let

P ∈ Pn be uniformly randomly generated in the rectangular
box of width W , height H and depthD. For any double
integrator (1) moving with a constant speeds ≤ rvel, with
probability one,

lim sup
n→+∞

TRecCCA

n4/5
≤ 61

(

WHD

sr2
ctr

)1/5(

1 +
7πs2

3Wrctr

)

.

Proof: We substitute ρ = s2

rctr
in the bound for

LRecCCA,ρ(P ) given by Lemma 3.7 and evaluate the time
required to traverse the total path of lengthLRecCCA,ρ(P ) at
speeds.

Remark 3.9:The speed that minimizes the upper bound in

Theorem 3.8 ismin{
√

Wrctr
21π , rvel}.

Next, we state a result for the concentration ofDITSP(P )
around its mean, which will let us compare the lower bounds in
Theorem 3.1 with the upper bounds in Theorems 3.3 and 3.8.

Lemma 3.10 (Concentration around the mean):LetQ be a
rectangle or a rectangular box andP ∈ Pn be uniformly,
randomly and independently generated inQ. For anyρ > 0,
with probability one, the concentration ofDITSP(P ) around
its mean is of orderO(

√
n log n), i.e.,

|DITSP(P ) − E[DITSP(P )]| ∈ O(
√

n log n).

Remark 3.11: (i) Lemma 3.10 implies that, with proba-
bility one,

lim
n→+∞

(DITSP(P )

nr
−E[DITSP(P )]

nr

)

= 0, for r >
1

2
.

This statement together with Theorems 3.3, 3.8 and 3.1
implies that, with probability one, the RECBTA is a
32
3
√

6

(

1 +
7πr2

vel
3Wrctr

)

-factor approximation (with respect to

n) and that the RECCCA is a 50
(

1 +
7πr2

vel
3Wrctr

)

-factor
approximation (with respect ton) to the optimal stochas-
tic DITSP in R

2 and R
3 respectively. These results

also show that, with probability one,DITSP(P ) and
E[DITSP(P )] belong toΘ(n2/3) in R

2 and toΘ(n4/5)
in R

3.
(ii) The constant factor for the approximation in the 3D

case can be optimized by designingefficient tilingof R
3

tuned to the vehicle dynamics. Moreover, we envision
that, in practice, the algorithms RECBTA and RECCCA
coupled with greedy heuristics (e.g., using shortcuts
between successive points) are expected to give much
better performances than the ones obtained here.

IV. T HE DTRP FOR DOUBLE INTEGRATOR

We now turn our attention to the Dynamic Traveling Re-
pairperson Problem (DTRP) for the double integrator modeled
in equation (1). In the DTRP, the double integrator is required
to visit a dynamically growing set of targets, generated by
some stochastic process. We assume that the double integrator
has unlimited range and target-servicing capacity. We letD(t)
denote the set ofn(t) outstanding target positions representing
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the demand at timet. Targets are generated and inserted
into D according to a time-invariant spatio-temporal Poisson
process with time intensityλ > 0 and with uniform spatial
density inside the regionQ. As before,Q is a rectangle in
two dimensions and a rectangular box in three dimensions.
Servicing of a target and its removal from the setD is achieved
when the double integrator moves to the target position. A
control policyΦ for the DTRP assigns a control input to the
vehicle as a function of its configuration and of the current
outstanding targets. The policyΦ is a stable policy for the
DTRP if, under its action

nΦ = lim sup
t→+∞

E[n(t)| ṗ = Φ(p,D)] < +∞,

i.e., if the double integrator is able to service targets at
a rate that is, on average, at least as large as the target
generation rateλ. Let Tj be the time elapsed from the time
the jth target is generated to the time it is serviced and let
TΦ := limj→+∞ E[Tj ] be the steady-state system time for the
DTRP under the policyΦ. (If the system is stable, then it is
known [14] thatnΦ = λTΦ.)

In what follows, we design a control policyΦ whose
system timeTΦ is within a constant-factor approximation
of the optimal achievable performance. Consistently with the
theme of the paper, we consider the case ofheavy load,
i.e., the problem as the time intensityλ → +∞. We first
provide lower bounds for the system time, and then present
novel approximation algorithms providing upper bound on the
performance.

Theorem 4.1 (Lower bound on the DTRP system time):
For a double integrator (1), the system timeTDTRP,2 and
TDTRP,3 for the DTRP in two and three dimensions satisfy

lim inf
λ→∞

TDTRP,2

λ2
≥ 81

32

WH

rvelrctr
,

lim inf
λ→∞

TDTRP,3

λ4
≥ 7813

972

WHD

rvelr2
ctr

.

Proof: For a stable policy, the average time,t∗(n∗),
needed to service a target must be no greater than the
average time interval in which a new target is generated,
i.e., E[t∗(n∗)] ≤ 1/λ, where n∗ is the average number of
outstanding targets. This gives a bound onn∗. Using Little’s
formula [14], one obtains the result.

In [12], we proposed a simple strategy, the BEAD TILING

ALGORITHM (BTA) for the DTRP for Dubins vehicle inR2.
We adapt the BTA for the DTRP problem for a double integra-
tor in R

2 and based on those ideas, we propose the CYLINDER

COVERING ALGORITHM (CCA) for R
3. As before, we make

the double integrator to move at some constant speeds ≤ rvel

and letρ = s2/rctr. The BTA strategy consists of the following
steps:

(i) Tile the plane with beads of length
ℓ := min{CBTA/λ, 4ρ}, where CBTA =

0.524s
(

1 + 7πρ
3W

)−1
.

(ii) Traverse all non-empty beads once, visiting one target
per bead. Repeat this step.

The CCA strategy is akin to the BTA, where the region
is covered with cylinders constructed from beads of length

ℓ := min{CCCA/λ, 4ρ}, whereCCCA = 0.476s
(

1 + 7πρ
3W

)−1
.

The policy is then to traverse all non-empty cylinders once,
visiting one target per cylinder. The following result charac-
terizes the system time for the closed loop system induced by
these algorithms and is based on the bounds derived to arrive
at Lemmas 3.3 and 3.8.

Theorem 4.2 (Upper bound on the DTRP system time):
For a double integrator (1) moving with a constant speed
s ≤ rvel andλ > 0, the BTA and the CCA are stable policies
for the DTRP and the resulting system timesTBTA andTCCA

satisfy:

lim sup
λ→∞

TDTRP,2

λ2
≤ lim sup

λ→∞

TBTA

λ2
≤ 70.5

WH

srctr

(

1 +
7πs2

3Wrctr

)3

,

lim sup
λ→∞

TDTRP,3

λ4
≤ lim sup

λ→∞

TCCA

λ4
≤ 9748

WHD

sr2
ctr

(

1+
7πs2

3Wrctr

)5

.

Proof: For the given policies, we derive bounds on the
target generation rate and servicing rate for a bead/cylinder.
The bead/cylinder is then modeled as a standardM/D/1
queue and we use the known result [14] for the system time
for such a queue.

Remark 4.3:The speeds that minimize the upper bounds
in Theorem 4.2 turn out to be the same as those for the
corresponding DITSPs as reported in Remarks 3.4 and 3.9.
Also, note that the achievable performances of the BTA
and the CCA provide a constant-factor approximation to the
lower bounds established in Theorem 4.1. The large constant
associated with the 3D case is an outcome of the corresponding
constant associated with the upper bound on the path length
for the first phase of the RECBTA as given by Lemma 3.6.

V. EXTENSION TO THETSPS FOR THEDUBINS VEHICLE

In our earlier work [12], we have studied the Dubins
Traveling Salesperson Problem (DTSP) for the planar case.
In that paper, we proposed an algorithm that gave a constant
factor approximation to the optimal stochastic DTSP with
probability one. This naturally led to a stable policy for the
DTRP problem for the Dubins vehicle inR2 which also per-
formed within a constant factor of the optimal. The RECCCA
developed in this paper can naturally be extended to apply to
the stochastic DTSP inR3. It follows directly from Lemma 3.2
that in order to use the RECCCA for a Dubins vehicle with
minimum turning radiusρ, one has to simply compute feasible
curves for the double integrator moving with an appropriate
constant speed. Hence the results stated in Theorem 3.8 and
Theorem 4.2 also hold true for the Dubins vehicle.

This equivalence between trajectories makes the RECCCA
the first known strategy with a strictly sub-linear asymptotic
minimum time for the stochastic DTSP inR3. Also novel
is that the RECCCA performs within a constant factor of the
optimal with probability one and gives rise to a constant factor
approximation and stabilizing policy – the CCA for DTRP for
the Dubins vehicle inR3.

VI. CONCLUSIONS

In this paper we have proposed novel algorithms for various
TSP problems for vehicles with double integrator dynamics.
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We showed that theDITSP(P ) belongs toO(n1− 1

2d ) and in
theworst casealso belongs toΩ(n1− 1

d ). We further proposed
novel approximation algorithms and showed that thestochastic
DITSP(P ) belongs toΘ(n2/3) in R

2 and toΘ(n4/5) in R
3,

both with probability one. The policy proposed in this paper
for the DTRP for a double integrator helps in proving that
the system time belongs toΘ(λ2) in R

2 and toΘ(λ4) in R
3.

Comparing our results with those for the single integrator [7],
we argue that our analysis rigorously establishes the following
intuitive fact: higher order dynamics make the system much
more sensitive to increases in the target generation rate.

It is interesting to note that the results presented in the paper
hold true even in the presence of small damping in the double
integrator dynamics: the lower bounds are the same because
the damping only slows down the vehicle; the upper bounds
also remain the same as long as the damping coefficient is
relatively smallas compared torctr.

Future directions of research include study of centralized
and decentralized versions of the DTRP and more general
task assignment and surveillance problems for vehicles with
nonlinear dynamics.
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