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Traveling Salesperson Problems for a double
Integrator

Ketan Savla Francesco Bullo Emilio Frazzoli

Abstract—This paper_studies the following version of the required to visit a dynamically generated set of targetss Th
Traveling Salesperson Problem (TSP) for a double integrator problem was introduced by Bertsimas and van Ryzin in [7] and
with bounded velocity and bounded control inputs: given a set e gecentralized policies achieving the same perforesanc

of points in R, find the fastest tour over the point set. We first - .
give asymptotic bounds on the time taken to complete such a Were proposed in [8]. Variants of these problems have aédac

tour in the worst-case. Then, we study a stochastic version of ¢n Much attention recently [8], [9]. There also exists an esiten
TSP for double integrator in R? and R*, where we propose novel literature on motion planning for robots under various imioti

algorithms that perform within a constant factor of the optimal  constraints, e.g., see [10], [11]. However the study of tB® T
strategy with probability one. Lastly, we study a dynamic TSP in 54 the DTRP in conjunction with double integrator vehicle
R? and R?, where we propose novel stabilizing algorithms whose d ics h luded attention f th h it
performances are within a constant factor from the optimum. ynamics a; e.u edaa en lon from the researc communl Y-
The contributions of this paper are threefold. First, we
introduce a natural STOP-GO-STOP strategy for the DITSP
. INTRODUCTION to show that the minimum time to traverse the tour is asymp-

. . 1 . .

The Traveling Salesperson Problem (TSP) with its variatiofPtically upper bounded by a constant timeS~z7, i.e., it
is one of the most widely known combinatorial optimizatiof?€!ongs to O(n'~=1). We also show that, in thaorst case,
problems. While extensively studied in the literature, ghedhiS minimum time is asymptotically lower bounded by a
problems continue to attract great interest from a wide ean§OnStant times:'~, i.e., it belongs td2(n'~7). Second, we
of fields, including Operations Research, Mathematics af#'dy thestochasticDITSP, i.e., the problem of finding the
Computer Science. The Euclidean TSP (ETSP) [2], [3] fastest tour through a set of target points th_at_ are un_ﬁprml
formulated as follows: given a finite point sét in RY for randomly generated. We show.that the minimum 2tlme to
d € N, find the minimum-length closed path through all thgave;se the tclur for the stochastic DITSP belongS te /%)
points in P. It is quite natural to formulate this problem!" R* andQ(n'/?) in R®. We adapt the RCURSIVE BEAD-
in the context of other dynamical vehicles, e.g., UAVs. Fol'LING ALGORITHM from our earlier work [12] for the
motion planning purposes, the nominal behavior of UAv&tochastic DITSP iR? and we propose a novel algorithm,
with hover capabilities (e.g., helicopters) is usually toapd h® RECURSIVECYLINDER-COVERING ALGORITHM, for the
by a simple double integrator model with bounded velocit‘zochaStIC DITSP ifR*. We prove that, with probability one,
and acceleration, e.g., see [4]. The focus of this paperds € tgours.gensrated by t4hese_ algorithms are traversed & tim
analysis of the TSP for a vehicle with such double integrat6f("”’*) in R* and O(n*/?) in R?, i.e., these algorithms
dynamics or simply a double integrator; we shall refer to Rrovide a constant-factor approximation to the optimal ST
as DITSP. Specifically, DITSP will involve finding tHastest Selution with probability one. Third, for the DTRP problenew
tour for a double integrator through a set ofpoints in a Propose novel policies based on the fixed-resolution vessio
compact domain. of the corresponding algorithms for the stochastic DITSE. w

Exact algorithms, heuristics and polynomial-time consta§0W that the performance guarantees for the stochastS®IT
factor approximation algorithms are available for the Ed@nslate into stability guarantees for the average pexioce
clidean TSP, see [5], [6]. However, unlike other variatiaris of the dpuble integrator DT_RP pr_oblem. For a unlform_target-
the TSP, there are no known reductions of the DITSP todneration process with intensity, the DTRP algorithm
problem on a finite-dimensional graph, thus making it dimcuperformance is within a constant factor of the optimal polic

to use the well-established tools in combinatorial optitign. N the heavy load case, i.e., fox — 4oo. As a final
The motivation to study the DITSP arises in robotic2Mnor contribution, we also show that the results obtained

and uninhabited aerial vehicles (UAVs) applications. UAJO" Stochastic DITSP carry over to the stochastic TSP for the
applications also motivate us to study the Dynamic TrageliPuPins vehicle, i.e., for a nonholonomic vehicle movingrejo

Repairperson Problem (DTRP), in which the aerial vehicle RAthS with bounded curvature, without reversing direction
the interest of space, this document contains only sketohes

Submitted to the IEEE Transactions on Automatic Control onevaver 30, the proofs; all formal proofs are available in [13].

2006. This version: April 5, 2008. Preliminary versions dstivork appeared This work completes the generalization of the known combi-
as a conference paper in [1].
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with single integrator dynamics) to double integrators Bud  for the worst-case point sets and with/3 in the stochastic
bins vehicle models. At this point, we clarify the contrilaut case. These upper bound are constructive in the sense that
and the relation of this paper with respect to our companidhere exist algorithms that generate closed paths through t
paper [12], where we considered TSPs for a Dubins vehigdeints which give the corresponding performances.

in R2. In this paper, we adapt the tools and algorithms for Motivated by these results, this paper studies the asymptot
the stochastic TSP for the Dubins vehicle from [12] for thdependence of the cost of the DITSP anand uses those
double integrator case iR? andR3. However, an interesting results to design stabilizing policies for the DTRP for the
fact that arises out this paper, independetly of [12], id thdouble integrator. In other words, we assumg and r¢ to

the path length for the stochastic TSP for a double integratee constant and study the dependence of DITBP— R,
follows a similar theoretical lower bounds as for the Dubinsn n.

vehicle. Moreover, the results and the algorithms for thestvo  Lemma 2.1: (Worst-case Lower Bound on the TSP for Dou-
case DITSP are novel. It is interesting to compare our resulile Integrator)For rye > 0, 7 > 0 andd € N, there exists
with the setting where the vehicle is modeled by a singke point setP € P, in Q C R? such thatDITSP(P) belongs
integrator; this setting corresponds to the so-called iHeah to Q(nlfi).

case in combinatorial optimization. In the following talbhe Proof: As shown in [3], there exists a sét of n points
single integrator results in the first column are taken fr@m [ whose minimum inter-point distance belongs mnfé)_

[7]; the double integrator results in the second column amherefore DITSP(P) belongs tOnxQ(n*%), i_e,,Q(nlfé)_

novel; and the Dubins vehicle results in the third column are |
taken from [12] ford = 2 and are novel forl = 3: We now propose a simple strategy for the DITSP and
Single Double Dubins analyze its performance. The STOP-GO-STOP strategy can
integrator| integrator vehicle be described as follows: The vehicle visits the points in the
Min. time for | ©(n'~7) | Q(n'~7), O(n) same order as in the optimal ETSP tour over the same set of
TSP tour O(n'~3a) (d=12,3) points. Between any pair of points, the vehicle starts at the
(worst-case) 1 - — initial point at rest and follows the shortest-time path ¢ach
ﬁ’éFr’-TmS'S-tgumre O(n'4) @(’Jv;]?l) @(’Jv;:i’l) the final point with zero velocity. Analyzing this STOP-GO-
(stochastic) (d=23) (d—2.3) STOP strategy, one can show the following upper bound.
System time | O(\"1) | ©(\2@-D) | ©(\2@-D) Theorem 2.2: (Upper Bound on the TSP for Double Inte-
for DTRP | (d=2) | (d=2,3) | (d=2,3) grator) For any point sef” € P,, in @ C RY, r¢y > 0, ryer > 0

andd € N, DITSP(P) belongs toO(n'~z2a).
Remarkably, the differences between the TSP bounds play a (P) g (n'727)

crucial role in the DTRP problem; e.g., stable policies &xis

only when the minimum TSP time grows strictly sub-linearly IIl. THE STOCHASTICDITSP
with n. The results in the previous section showed that based on a
simple strategy, the STOP-GO-STOP strategy, we are already
Il. SETUP AND WORSFCASEDITSP guaranteed to have sub-linear cost for the DITSP when the
For d € N, consider a vehicle with double integratompoint sets are considered on an individual basis. Howewisr, i
dynamics: reasonable to argue that there might be better algorithnesiwh
. . one is concerned wittaverage performance. In particular,
i) = u(®). |u®)] <re. 1HOI<re. (@) p b

one can expect that whem target points are stochastically
where p,u € R? are the position and control input of thegenerated irQ according to a uniform probability distribution
vehicle respectivelyyye, 7er € R, are the bounds on thefunction, the cost of DITSP should be lower than the one given
attainable speed and control inputs respectively. Qet R? by the STOP-GO-STOP strategy. We shall refer to the problem
be a unit hypercube. Le? = {q¢1, ..., ¢, } be a set ofr points of studying the average performance of DITSP over this class
in @ and letP,, be the collection of all point setB C Q with  of point sets astochasticDITSP. In this section, we present
cardinalityn. Let ETSP(P) denote the cost of the Euclideamovel algorithms for stochastic DITSP & andR?® and then
TSP overP and letDITSP(P) denote the cost of the TSPestablish bounds on their performances.
for double integrator ovelP, i.e., the time taken to traverse We make the following assumptions:IR¥, Q is a rectangle
the fastest closed path for a double integrator throughhall tof width 1 and heightd with W > H; in R3, Q is a
points in P. rectangular box of widthiV, height H and depthD with

In the spirit of its companion paper [12], the key objectivél’ > H > D. Different choices for the shape @ affect
of this paper is the design of an algorithm that provides @ur conclusions only by a constant (consider, for example, t
provably good approximation to the optimal solution of themallest rectangle or the smallest rectangular box emgosi
DITSP. To establish what a “good approximation” might beQ). Specifically, different choices for the shape @fwould
let us recall what is known about the ETSP and the DTSéhly affect the constants associated with the various b®und
For a compact se@, it is known that the cost of the ETSPin Theorems 3.1, 3.3 and 3.8 and do not affect the asymptotic
grows as»'/? for the worst-case point sets [3] as well as in thdependence on. The axes of the reference frame are parallel
stochastic case [2] (as both lower and upper bounds). Slgilato the sides of@. The pointsP = (¢, ..., q,) are randomly
it was shown in [12] that the cost of the DTSP grows with generated according to a uniform distribution with supprt



A. Lower bounds C. The basic geometric construction

First, we provide lower bounds on the expected length of Here we define useful geometric objects and study their
the stochastic DITSP fad = 2, 3. properties. 2Given the constant spedr the double integrator

Theorem 3.1: (Lower bounds on stochastic DITEB) all let p = from Lemma 3.2 this constant corresponds
Tvel > 0, ey > 0, the expected minimum time in a stochastito the minimum turning radius of thenalogous Dubins
DITSP to visit a set of, uniformly-randomly-generated pointsvehicle. Consider two pointg_ and p, on the plane, with

satisfies the following inequalities: ¢ = ||p+—p—||2 < 4p, and construct the beds),(¢) as detailed
in Figure 1.
. E[DITSP(P C Q CR?)] _ 3 (6WH />
lim inf - - ( ) and
n—-+oo n2/3 4 TvelTctr
. _E[DITSP(P C Q CR3)] _ 5 /20WHD\1/5
lim inf > — <7> .
n—-4o00 n4/5 6 7T7"V9|Tgtr

Proof: In R?, the area of the set reachable in titfeom a
random initial state belongs 1©0(¢%). Therefore, the expected
value of the time between two successive points in the tour
belongs ta2(n~'/3). Hence, the minimum time to traverse the
total tour belongs ta x Q(n=1/3), i.e., (n?/3). The proof
for R? follows on similar lines. ]

B. Relation with the Dubins vehicle

In [12], we studied stochastic versions of TSP for a Dubins
vehicle. Though conventionally a Dubins vehicle is restdc
to be aplanar vehicle, one can easily generalize the model
even for the three (and higher) dimensional case. Accolyling
a Dubins vehicle can be defined as a vehicle that is constfairféd. 1. Construction of the “bead3, (¢). The figure shows how the upper
to move with a constant speed along paths of bounded curlfff e ounda s constucted e botom hal s syt e
ture, without reversing direction. Correspondinglyfeasible

curve for a Dubins vehicl®er a Dubins pathIS defined as a Associated with the bead is also the rectaﬂggh Rotating

curve that is twice differentiable almost everywhere, amchs this rectang|e about the line passing throughandp_i_ gives

that the magnitude of its curvature is bounded abovd by rise to a cylindec,,(¢). C,(¢) enjoys the following asymptotic

wherep > 0 is the minimum turn radius. Based on this, ongroperties agl/p) — 0+ (properties of the bead3,(¢) are

can immediately come up with the following analogy betweegsted in [12]):

feasible curves for a Dubins vehicle and a double |ntegrat0(p1) The length o€, (¢) is £/2 and its radius of cross-section
Lemma 3.2: (Trajectories of Dubins vehicles and double g (¢) /4, Whereﬂ)(g) is the maximunthicknesof the

integrators) For any p > 0, a feasible curve for a Dubins beadB, () and it is equal to

vehicle with minimum turn radiup is a feasible curve for a

double integrator (modeled in equation (1)) moving with an 2 2 3

appropriate constant spead< r.. Conversely, a feasible w(l) =4p (1 - 16p2> =g, TP <p3> :

curve for a double integrator moving with a constant speed

s < mvl is a feasible curve for Dubins vehicle with any(P2) The volume ot p(£) is equal to

minimum turn radius that is greater than or equal tb w(l)\2 4 A 3 Al
Volume[C,(¢)] = 7r( ) - = stp7o| —

In [12], we proposed a novel algorithm, theERUstE 4 /2 2048p P
BEAD-TILING ALGORITHM (RECBTA) for the stochastic (P3) For anyp € C,, there is at least one feasible curve
version of the Dubins TSP (DTSP) R?; we showed that this 7, through the points{p_, p,p+}, entirely contained
algorithm performed within a constant factor of the optimal within the region obtained by rotating,(¢) about the
with high probability. In this paper, taking inspirationofn line passing throughp_ andp... The length of any such

those ideas, we propose an algorithm to compute feasible path is at most

curves for a double integrator moving with a constant speed

s < ry and then optimize oveks. Note that moving at a / /3
constant speed is not necessarily the best strategy. Neneth Length(v,) < 4parcsin <4p> ={l+p-o (p)

less, this strategy leads to efficient algorithms. We ado;lg
the RECBTA for the stochastic DITSP irR2 and based he geometric shapes introduced above can be used to cover

R? andR? in anorganizedway. The plane can be periodically

on the same ideas, we propose theCRRSIVE CYLINDER- = i . X
tiled® by identical copies of3,(¢), for any ¢ € 0,4p]. The

COVERING ALGORITHM (RECCCA) for stochastic DITSP in
R”. We prove th.at thes_e a|90r|thr_n.5 perform within a constantzp jing of the plane is a collection of sets whose interseethas measure
factor of the optimal with probability one. zero and whose union covers the plane.



cylinder, however does not enjoy any such special property.The proposed algorithm will consist of a sequence of

For our purpose, we consider a particular coverindgRdfby phases; each phase will consist of five sub-phases, allagimil

cylinders described as follows. in nature. For the first sub-phase of the first phase, a feasibl
curve is constructed with the following properties:

(i) it visits all non-empty cylinders once,

(ii) it visits all rows of cylinders in a layer in sequence top
to-down in a layer, alternating between left-to-right and
right-to-left passes, and visiting all non-empty cylingler
in a row,

(i) it visits all layers in sequence from one end of the myi
to the other,

(iv) when visiting a non-empty cylinder, it services at leas
one target in it.

Fig. 2. A typical layer of cylinders formed by stacking rowsayfinders

A row of cylindersis formed by joining cylinders end to end In subsequent sub-phases, instead of considering single
along their length. A layer of cylinders is formed by placingylinders, we will consider “meta-cylinders” composed 2f
rows of cylinders parallel and on top of each other as shown 8 and 16 beads each for the remaining four sub-phases,
in Figure 2. For coverindR?, these layers are arranged nexa@s shown in Figure 4, and proceed in a similar way as the
to each other and with offsets as shown in Figure 3(a), whditst sub-phase, i.e., a feasible curve is constructed wieh t
the cross section of this arrangement is shown. We refer falowing properties:

this construction as theovering ofR®. (i) the curve visits all non-empty meta-cylinders once,
CO0O000 CO00000 (ii) it visits all (meta-cylinder) rows in sequence topdown
(*)(‘)’*X‘)’*"‘E’ é‘)’*)(*)(*)(‘)(‘) in a (meta-cylinder) layer, alternating between left-to-

4‘*’4‘*’&*’4‘*’@« &*’&*’&*’&*’4‘*’4‘ right and right-to-left passes, and visiting all non-empty
(XRRHLN) CXREHHY |

.\O,*\#)*(*)*(#)&%\#, ¢%€$¢;€$¢$ﬁ’ meta-cylinders in a row,
(*);%%%%‘)’ (*;(%*;(‘)*(%*)’ (iii) it visits all (meta-cylinder) layers in sequence froone
RIKPKS RPRPIHOKD end of the region to the other

XXX KKK 9 :

(iv) when visiting a non-empty meta-cylinder, it servicds a
(@) (b) least one target in it.

Fig. 3. (a): Cross section of the arrangement of the layerglofders used A meta-cylinder at the. end of the. fifth S_Ub'phase' and
for coveringQ C R3, (b): The relative position of the bigger cylinder relatvehence at the end of the first phase will consist of 16 nearby
to smaller ones of the prior phase during the phase transition cylinders. After this phase, the transitioning to the nexage
will involve enlarging the cylinder t32 times its current size
by increasing the radius of its cross section by a factarafid
D. The algorithm doubling its length as outlined in Figure 3(b). It is easy¢e s
We adopt the RCURSIVE BEAD-TILING ALGORITHM that this bigger cylinder will contain the union 62 nearby
(RECBTA) from [12] for the stochastic DITSP iiR?. Let smaller cylinders. In other words, we are forming the object
TrecBTA bE the time taken by a double integrator to traversg (2¢) using a conglomeration @2 C,(¢) objects. This whole
a stochastic DITSP tour according to thee€BTA. The process is repeated at mdst, n + 2 times. After the last
RECBTA performance is analyzed as follows. phase, the leftover targets will be visited using, for exeana
Theorem 3.3: (Upper bound on the total time3?) Let greedy strategy. We have the following result for the ledtov
P ¢ P, be uniformly randomly generated in the rectangle dfirgets after the last phase which is similar to the result fo
width W and heightH . For any double integrator (1) movingRECBTA [12].

with a constant speed < r;, with probability one, Lemma 3.5 (Targets remaining after recursive phases):
T W M3 g With probability one, the number of unvisited targets after

limsup 2R < 24( ) (1+ s ) the last recursive phase of theE®URSIVE CYLINDER-

n—too 1% STetr SWrey COVERING ALGORITHM over P is less than24log,n

Remark 3.4:The speed that minimizes the upper bound iaSymptotically.
Theorem 3.3 isnin{/ 3er°",r\,e|}. We skip the calculations of the path lengths for the various

35
Taking inspiration from the RcBTA, we now pro- Sub phases and give the following result for the path length

pose the RCURSIVE CYLINDER-COVERING ALGORITHM Of the first phase. Details of the intermediate calculaticas
(RECCCA) for the stochastic DITSP irR3. Consider a be found in [13].

covering of @ € R? by cylinders such thaVolume|C,(¢)] = Lemma 3.6 (Path length for the first phas&onsider a
Volume[Q C R?*]/(4n) = WHD/(4n) (assuming that: is covering of the space with cylinde,(¢). For anyp > 0
sufficiently large). Furthermore, the covering is chosesuoh and for any set of target points, the lengih of a path

a way that the layers of the cylinders are aligned with thasiting once and only once each cylinder with a non-empty
length of Q C R?. intersection with a rectangular bag of width W, height H



Fig. 4. From top left in the left-to-right, top-to bottom dation, sketch of projection of “meta-cylinders” on the esponding side o C R3 at second,
third, fourth and fifth sub-phases of a phase in the recurspieder covering algorithm.

and depthD satisfies Remark 3.9:The speed that minimizes the upper bound in
3328p2W HD Tnp 03 Theorem 3.8 isnin{4/ Z/IT;",TVH}.
1S 1z Ity ) trol s Next, we state a result for the concentration@fT'SP(P)

_ . _ around its mean, which will let us compare the lower bounds in

Since we increase the length of cylinders by a factor of tWwpheorem 3.1 with the upper bounds in Theorems 3.3 and 3.8.
while doing the phase transition from one phase to the anothe Lemma 3.10 (Concentration around the meahgt Q be a
the length of path for the subsequefitphase is given by:  rectangle or a rectangular box afd € P, be uniformly,
332802 W HD Tp 0 randomly ar_u_j independently generfitedQn For anyp > 0,
T I+ 5 ) +tp-o I with probability one, the concentration &fITSP(P) around

L; <
- 3SW . : .
its mean is of orde©(yv/nlogn), i.e.,

We now state the following result which characterizes the
total path length for the RcCCA, which we denote as | DITSP(P) — E[DITSP(P)]| € O(y/nlogn).
Lreccoa,p(P). Remark 3.11: (i) Lemma 3.10 implies that, with proba-

Lemma 3.7:(Path length for the RCURSIVE CYLINDER-
COVERING ALGORITHM) Let P € P, be uniformly randomly
generated in the rectangle of widili, height H and depth lim
D. For anyp > 0, with high probability n—+00
This statement together with Theorems 3.3, 3.8 and 3.1

bility one,

(DITSP(P)iE[DITSAP(P)]) 0 forr> % |

n" n’

Lreccca,p(P)

lim sup Y implies thatzwith probability one, the RBTA is a
n—-+4oo 77r7"
1+ ) -factor approximation (with respect to
_ 3328 ( )4/5( 2y H D)5 (1 . 77rp) f ( 3Wre Pp ( p
- 15 \16 3w

n) and that the RCCCA is a 50 g_‘l + ;V’TVTT:P -factor

approximation (with respect to) to the optimal stochas-

tic DITSP in R? and R? respectively. These results
also show that, with probability ond)ITSP(P) and
[DITSP( )] belong to®©(n?/3) in R? and to®(n*/%)

in R3.

(i) The constant factor for the approximation in the 3D
case can be optimized by designief§icient tilingof R?
tuned to the vehicle dynamics. Moreover, we envision
that, in practice, the algorithmseRBTA and RECCCA
coupled with greedy heuristics (e.g., using shortcuts
between successive points) are expected to give much
better performances than the ones obtained here.

Proof: There are at modbg, n + 2 phases at the end of
which there are(log, n) points by Lemma 3.5. By summing
the expression for the path length for tiié phase,L;, over
log, n + 2 phases and using any greedy strategy to visit the
remainingO(log, n), we get the desired result. [ |
In order to obtain an upper bound on thdTSP(P) in R3,
we derive the expression for time takefiz..cca, by the
RECCCA to execute the path of lengihrcccon,,(P).

Theorem 3.8: (Upper bound on the total time ) Let
P € P, be uniformly randomly generated in the rectangular
box of width W, height H and depthD. For any double
integrator (1) moving with a constant speed< rg, with
probability one, IV. THE DTRPFOR DOUBLE INTEGRATOR
Treccca _ ¢ <WHD)1/5 (1 n Trs? > We now turn our attention to the Dynamic Traveling Re-
nt/5 T3 3Wre ) pairperson Problem (DTRP) for the double integrator matiele
, in equation (1). In the DTRP, the double integrator is reeglir

Proof: We substitutep = ;- in the bound for to visit a dynamically growing set of targets, generated by
Lreccca,p(P) given by Lemma 3.7 and evaluate the timgome stochastic process. We assume that the double imtegrat
required to traverse the total path of lendthcccca,o(P) at  has unlimited range and target-servicing capacity. Weélg)
speeds. B denote the set af(¢) outstanding target positions representing

lim sup
n—-+o0o



the demand at time. Targets are generated and insertefl:= min{Ccca /A, 4p}, whereCooa = 0.476s (1+%)_1.

into D according to a time-invariant spatio-temporal Poissofhe policy is then to traverse all non-empty cylinders once,
process with time intensith > 0 and with uniform spatial visiting one target per cylinder. The following result cher
density inside the regio. As before,Q is a rectangle in terizes the system time for the closed loop system induced by
two dimensions and a rectangular box in three dimensiorikese algorithms and is based on the bounds derived to arrive
Servicing of a target and its removal from the Beis achieved at Lemmas 3.3 and 3.8.

when the double integrator moves to the target position. ATheorem 4.2 (Upper bound on the DTRP system time):
control policy ® for the DTRP assigns a control input to thé=or a double integrator (1) moving with a constant speed
vehicle as a function of its configuration and of the current< r, and > 0, the BTA and the CCA are stable policies
outstanding targets. The policy is a stable policy for the for the DTRP and the resulting system tiniBsra andTcca

DTRP if, under its action satisfy:
=i En(t)| p = ®(p, D T T WH 7rs? \°
ne ?iljgop [n(t)] p (p,D)] < +o0, limsupm < limsup BTA <705 14 TS
—00 A2 A—00 A2 STctr SWrey

A
i.e., if the double integrator is able to service targets at 9\ 5
a rate that is, on average, at least as large as the taﬂgﬁtsup% < limsupTCCA < 9748WI£D <1+ s )

. . . 4 4 —
generation rate\. Let 7 be the time elapsed from the time *— A Amoo A STewr 3Wrey

the ;" target is generated to the time it is serviced and let proof: For the given policies, we derive bounds on the
Ty :=lim;, ;o E[T}] be the steady-state system time for thearget generation rate and servicing rate for a bead/astind
DTRP under the policy. (If the system is stable, then it isThe bead/cylinder is then modeled as a standafdD/1
known [14] thatne = AT5.) queue and we use the known result [14] for the system time
In what follows, we design a control police whose for such a queue. ™
system timeTy is within a constant-factor approximation Remark 4.3:The speeds that minimize the upper bounds
of the optimal achievable performance. Consistently with tin Theorem 4.2 turn out to be the same as those for the
theme of the paper, we consider the casehefivy load corresponding DITSPs as reported in Remarks 3.4 and 3.9.
i.e., the problem as the time intensily — +oo. We first Also, note that the achievable performances of the BTA
provide lower bounds for the system time, and then presejfid the CCA provide a constant-factor approximation to the
novel approximation algorithms providing upper bound a& thower bounds established in Theorem 4.1. The large constant
performance. associated with the 3D case is an outcome of the corresppndin
Theorem 4.1 (Lower bound on the DTRP system time): constant associated with the upper bound on the path length

For a double integrator (1), the system tifigrrp,2 and for the first phase of the BCBTA as given by Lemma 3.6.
Torrp,3 for the DTRP in two and three dimensions satisfy

. Torrpo . 81 WH V. EXTENSION TO THETSPs FOR THEDUBINS VEHICLE

I&IEL%f N2 T 32 rverc In our earlier work [12], we have studied the Dubins

. . ~Torrps _ 7813 WHD Traveling Salesperson Problem (DTSP) for the planar case.
lim inf = > . .

o 2\ 972 Toelrd, In that paper, we proposed an algorithm that gave a constant

factor approximation to the optimal stochastic DTSP with
Proof: For a stable policy, the average tim&\(n*), probability one. This naturally led to a stable policy foeth
needed to service a target must be no greater than {eRP problem for the Dubins vehicle 2 which also per-
average time interval in which a new target is generategymed within a constant factor of the optimal. The €&CCA
ie, E[t"(n")] < 1/A, wheren® is the average number of jeveloped in this paper can naturally be extended to apply to
outstanding targets. This gives a boundson Using Little’s  the stochastic DTSP iR3. It follows directly from Lemma 3.2
formula [14], one obtains the result. B that in order to use the BECCA for a Dubins vehicle with
In [12], we proposed a simple strategy, theAD TILING  minimum turning radiup, one has to simply compute feasible
ALGORITHM (BTA) for the DTRP for Dubins vehicle ilR*.  cyrves for the double integrator moving with an appropriate
We adapt the BTA for the DTRP problem for a double integrgpnstant speed. Hence the results stated in Theorem 3.8 and
tor in R? and based on those ideas, we propose BIDER  Theorem 4.2 also hold true for the Dubins vehicle.
COVERING ALGORITHM (CCA) for R®. As before, we make  This equivalence between trajectories makes tEeGCA

the double igtegrator to move at some constant spe€dvel  the first known strategy with a strictly sub-linear asymigtot
and letp = s*/rer. The BTA strategy consists of the followingminimum time for the stochastic DTSP iR3. Also novel

steps: is that the ECCCA performs within a constant factor of the
(i) Tile the plane with beads of lengthoptimal with probability one and gives rise to a constantdac
¢ = min{Cpra/\ 4p}, where Cgra = approximation and stabilizing policy — the CCA for DTRP for
0.524s (1 + 2m2) 7. the Dubins vehicle irR?.
(i) Traverse all non-empty beads once, visiting one target
per bead. Repeat this step. VI. CONCLUSIONS

The CCA strategy is akin to the BTA, where the region In this paper we have proposed novel algorithms for various
is covered with cylinders constructed from beads of lengSP problems for vehicles with double integrator dynamics.



We showed that th®ITSP(P) belongs toO(n!~2:) and in
the worst casealso belongs t(ﬂ(nl—i). We further proposed
novel approximation algorithms and showed thatdteehastic
DITSP(P) belongs to0(n?/3) in R? and to©(n*/®) in R3,
both with probability one. The policy proposed in this paper
for the DTRP for a double integrator helps in proving that
the system time belongs ©(\?) in R? and to©(\*) in R3.
Comparing our results with those for the single integraiy [
we argue that our analysis rigorously establishes theviatig
intuitive fact: higher order dynamics make the system much
more sensitive to increases in the target generation rate.

It is interesting to note that the results presented in tipepa
hold true even in the presence of small damping in the double
integrator dynamics: the lower bounds are the same because
the damping only slows down the vehicle; the upper bounds
also remain the same as long as the damping coefficient is
relatively smallas compared tog.

Future directions of research include study of centralized
and decentralized versions of the DTRP and more general
task assignment and surveillance problems for vehiclel wit
nonlinear dynamics.
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