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Target assignment for robotic networks:
asymptotic performance under limited communication

Stephen L. Smith  Francesco Bullo

Abstract— We are given an equal number of mobile robotic method—the first polynomial solution for the assignment
agents, and distinct target locations. Each agent has simple problem. Kuhn’s method solves the problem@n?) time
integrator dynamics, a limited communication range, and (gee Section Il for a definition of the notation). Since

knowledge of the position of every target. We address the
problem of designing a distributed algorithm that allows the 1955, many other methods have been developed. The most

group of agents to divide the targets among themselves and, efficient method runs irO(n? logn) time, and is achieved
simultaneously, leads each agent to reach its unique target. by reducing the problem to aetwork flow problenjl].
We do not require connectivity of the communication graph at Another approach to the assignment problem isaiietion
any time. We introduce a novel assignment-based algorithm  5\4qrithm [3], [4], [5], first proposed by Bertsekas. This
with the following features: initial assignments and robot . 3\ g
motions follow a greedy rule, and distributed refinements of the method SO,'VeS the prOblem '@(_n) time, but can be
assignment exploit an implicit circular ordering of the targets. ~computed in a parallel fashion, with one processor for each
We prove correctness of the algorithm, and give worst-case person. Recently, Moore and Passino [6] modified the auction
asymptotic bounds on the time to complete the assignment as algorithm to assign mobile robots to spatially distributed
the environment grows with the number of agents. We show that {555 in the presence of communication delays. However,
among a certain class of distributed algorithms, our algorithm . . ) -
is asymptotically optimal. The analysis utilizes results on the In order. to exchgnge bids on a partlcula.r object (ta}sk),
Euclidean traveling salesperson problem. the auction algorithm, and thus the work in [6], requires
that the communication graph between processors (robots)
. INTRODUCTION is complete. In addition, the auction algorithm requires th
Consider a group of: mobile robotic agents and target election of a “leader” processor to manage the auction for
locations, all lying inR?, d > 1. Each agent has a limited each of the objects; this potentially leads to more complex
communication range, and knows the location of some substd less scalable implementations.
(possibly all) of then targets through GPS coordinates or In this paper we address the task assignment problem
a map of the environment. Thrget assignment problem when each agent has knowledge of all target positions, and
is to design a distributed algorithm that allows the groug limited communication range > 0. We introduce a class
of agents to divide the: targets among themselves andof distributed algorithms, calledssignment-based motion
simultaneously, that leads each agent to reach its uniquéich provide a natural approach to the problem. Following
target. Such a problem could arise in several applicationthe recent interest in determining the time complexity of
For example, one could think of the agents as UAV's on distributed algorithms for robotic networks, as in [7] and
surveillance mission, and the targets as the centers af th{g], we study the worst-case asymptotic performance of the
desired loitering patterns. Or, this behavior could be used assignment-based motion class as the environment grows
stabilize a group of agents to any desired formation. with n. We show that for a-dimensional cube environment,
The first question is; how do we divide the targets amon@), /(n)]¢, d > 1, if the side length¢(n) grows at a rate of
the agents in a centralized fashion? A reasonable strategyleast(1+ €)rn'/¢, wheree > 0, then the time complexity
would be to minimize the sum of the distances traveled big in Q(n(¢=1/¢(n)), for all algorithms in this class.
each agent to arrive at its target. The problem of optimally In Section V we introduce a novel control and com-
dividing n persons among objects, subject to a linear cost munication algorithm, called ETSPSSIGNMENT. In this
function, is a problem in combinatorial optimization [1}. | algorithm, each agent computes an ETSP tour through the
is referred to as tha@ssignment problemor the minimum 5 targets, turning the cloud of target points into an ordered
weight perfect matching problem in bipartite graphiBhe ring. Agents then move along the ring, looking for the next
assignment problem can be written as an integer lineawailable target. When agents communicate, they exchange
program. Unlike some integer linear programs, such as theformation on how far it is to the next available target
Euclidean traveling salesperson problem (ETSP), optimalong the ring. In Section V-A, we verify the correctness of
solutions for the assignment problem can be computed this algorithm for any communication graph which contains,
polynomial time. In 1955 Kuhn [2] developed the Hungariaras a subgraph, the-disk graph. In Section V-B, we show
. . L that whené(n) > (1 + €)rn'/?, among all algorithms in
Submitted to 2007 ACC on September 26, 2006. This material isthas . .
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1. BACKGROUND compact set, there exists a finite constan{£) such that,

In this section we introduce notation and review som(t:‘Or al Q€ Qn,
relevant results in combinatorial optimization. ETSP(Q) < a(&)ntd=1/4, (1)

. In fact, we have that in the worst-case setting, FleSP(Q)
A. Notation belongs to@(n(d—l)/d)_

We let R denote the set of real numberR;, denote In our application of these results it will be useful to
the set of positive real numbers, afd denote the set of consider the case where the environment grows with the
positive integers. For a sett we let| A| denote the cardinality number of points. That is, we are interested in environments
of the set. For two functiong,g : N — R.,, we write which are cubes|0,£(n)]¢, d > 1, where/(n) is the side
f(n) € O(g) (respectively, f(n) € Q(g)) if there exist length of the cube. Applying a simple scaling argument to
N € N and ¢ € Ry such thatf(n) < cg(n) for all  the result in (1), we arrive at the following corollary.

n > N (respectively,f(n) > cg(n) for all n > N). If Corollary 2.1 (ETSP tour length)Consider an environ-
f(n) € O(g) and f(n) € Q(g) we say f(n) € ©(g). mentE = [0,4(n)]?, whered > 1. For every point set
Finally, we use the notation(mod n) to denote arithmetic O € Q,,

performed modulon € N. Thus, for an integem € N ETSP(Q) € O(nl4=V/d¢(n)).

we haven +1 = 1 (mod n) and0 = n (mod n), and The problem of computing an optimal tour is known to

{n—1,n,n+1} ={n—1,n,1} (mod n). be NP-complete. However, there exist heuristics which can
be computed efficiently and give a constant factor approxi-

B. The assignment problem mation to the optimal tour. The best known approximation

Following [4], the classical assignment problem can b&!90rithm is due to Christofides [10]. Th€hristofides’
described as follows. Considerpersons who wish to divide !90rithm computes a tour that is no more thap2 times

; - 3
themselves among objects. For each persoh there is longer than the optimal. It runs in t_|mé)(n ). Another
a nonempty seQl of objects thati can be assigned to, method, known as thdouble-tree algorithmproduces tours

and costc;; > 0 associated to each objegte Qlil. An that are no longer than twice the optimal, in run timén?).

assignments is a set of person-object paifs j) such that [1l. PROBLEM FORMULATION
j € Qi for all (i,5) € S. For each person (likewise,
object j), there is at most one paii, j) € S. We call the

assignmencompleteif it contains n pairs. The goal is 10 gnyironments (n) is compact for each but may grow with
find the complete assignment which minimiZe%; )cs ¢ij-  the number of agents. For ease of presentationtlet=
Letx;; be a set of variables farand;j in 7 := {1,...,n}. [0, ¢(n)]¢, wheref(n) > 0 (that is,€ is ad-dimensional cube
For an assignmen$, we write z;; = 1 if (i,j) € S, and \ith side length¢(n)). Each agent has a unique identifier
z;; = 0 otherwise. Thus, the problem of determining thqyp) taken from the setly;;p C N. For simplicity, we

To describe the target assignment problem formally, con-
sidern agents in an environmerft(n) C R%, d > 1. The

optimal assignment can be written as a linear program: 55sume thafy;p := T = {1,...,n}. However, each agent
n does not know the set of UIDs being used (i.e., agent

minimize Y > ¢z, does not know it has the largest UID). Agente Z has

i=1 jeoli position plil € £. Two agents,; and k in Z, are able to

communicate if and only ifjpl! — pl¥l|| < r, wherer > 0

subjectto ) @iy =1 VieZ, is called the communication range. We refer to the graph

jeQ representing the communication links as thelisk graph.

Z ;=1 VjeT, Agent i’s kinematic model isp! = ull, whereu!! is a
{iljeQlil} velocity control input bounded by > 0. We assume that the
zij > 0. agents move in continuous time and communicate according

to a discrete time communication schedule consisting of an
We cannot use linear inequalities to write the constraiat thincreasing sequence of time instants with no accumulation
x;;'s attain only the values zero and one. However, it turnpoints, {t }ren. We assume that, 1 — tx| < ta., for
out, [4], that there always exists an optimal solution inethi all k& € N, wheret,,.. € Rso. At each communication

the z,;'s satisfy our integer assumption. round, agents can exchange messages of leQgtbg n). *
We assume that communication rouhdbccurs at timety,,
C. The Euclidean traveling salesperson problem and that all messages are sent and received instantanabusly

. Motion then occurs from, until ¢, . It should be noted

at in this setup we are emphasizing the time complexity
due to the motion of the agents.

Let Q :={qi,...,q,} be aset of distinct target locations,
€ & for eachj € Z. Agenti is equipped with memory

Here we review some relevant results on the Euclideattﬁ
traveling salesperson problem (ETSP). I@the a set ofn t
points in a compact environmet ¢ R¢, d > 1, and let
Q,, be the set of all point set® C £ with |Q] = n. Let
ETSP(Q) denote the cost of the ETSP tour over the pointly
setQ, i.e., the Iength of the shortest closed path throth all 1The number of bits required to represent an ID, unique amoagents,
points in Q. An important result, from [9], is that given a grows with the logarithm of.



MU, of size| M. In this memory, agent stores a set of Communication:As agenti communicates with other
target positionsQ[! C Q. These are the targets to whichagents, it updates the tuplg’ “removing” targets which
agenti can be assigned. We lad!’/(0) denote agent’s are assigned to other agents. If ageémbust change culf,
initial target set. These positions may be known through GRS selects a new target i, that has not been removed.
coordinates, or through a map of the environment. This is described more formally in the following.

In this paper we assume that each agent knows the positi"f‘tommumcaﬁon round for a ;

O] _ . gvent i. , .
of every target. That i2!"(0) = Q fpr eachi € 7. V\_/e refer 1: Broadcast a message, riisgbased orgl? and containing cuf
to this as thdull knowledgeassumption. To store this amount and the UIDs.
of information we must assume that the size of each agents’ 2: Receive ms%’i] from each agenk within communication range.

[4] ; ; ; 3: for all msd*! receiveddo _
memory,|M], grows linearly withn. Our goal is to solve 4:  Based on mdfl, (possibly) remove assigned targets frogfl.

the full knowledge target assignment problem 5 if curdd = curd®! then _
Determine a control and communication law for 6: If agent: is farther from curf) than agent, or if they are
. . . the same distance but < k, remove the target given by
n € N agents, with attributes as described above, curri) from g,
satisfying the following requirement. There exists 7: Set curk! to a target inql! (i.e., a target that has not been
atimeT > 0 such that for every ageiite Z, there removed).

is & unique targey;, € QI(0) with pl(t) = a, B. Lower bound on task complexity

for all time ¢ > T, wherej; = ji if and only if i . . .

i— k. In order to classify the time complexity of the assignment-

In the remainder of the paper. we will refer to this as th(L’Jased motion class of algorithms, we introduce a few useful

target assignment proble?n per, definitions. We say that agentc 7 is assignedto target
Remark 3.1 (Consistent knowledged: more general as- (,1['1.]’ J € I Wgetn curf’ ?6\/ In thistﬁafe, W(r?ﬁa|sozsayttarget

sumption on the initial target set®! (0), which still ensures 7 ' @ssighed 10 agent We ;}ay al agent € £ enters

the existence of a complete assignment, is ¢basistent a conflict over the target cuf¥, when agent receives a

i i 1 = curt*, Agenti loses the
. C (k] - message, még, with curt curr®l. Agent i
Knowedgeassumption: For eack < - |Uk€KQ (O)| i Iconflict if agenti is farther from curf! than agent:, and

|K]. In fact, it was proved by Frobenius, 1917, and Hall,”" o A ]

1935 that this is the necessary and sufficient condition fé/}/ms th? conflicif agent is C'Osef to cur! than agent;,
ine xsence of a complte assignment 1] e e e o e e e
In t_h_e ful knowledge_assumption, eg_ch age_:nt knows thgs another agent, it Willgenter a cor?flict in finite time ’
position of all targets inQ. These positions will be stored Lemma 4.1 (C(;nflict in finite time)Consider an c.om-
in an array within each agents memory, rather than as nication .ran o > 0. and anv fixed number 034 agents
an unordered set. To represent this, we replace the taré?i’ 9 - y ] ] g

set Q with the targetn-tuple q := (qi1,...,q,), and the . € N. If, for two agen'FSz and k curr = cur f':lt some
local target setQl’ with the n-tuple q/. Thus, in the full time ¢, > 0, then agent (and likewise, agen) will enter

. ) . a conflict over curf! in finite time.

knowledge assumptiony”(0) := q for eachi € Z. (It is _ . .
possible that the order of the targets in the local gétsmay mot'(i)grzofoofr. e';g;] Za(:;]? _tshe_rialobnf és cgglizctéqngt_ﬁhe
initially be different. However, given a set of distinct pts reaclh cui! in no rgore Ithagrlt\i/iam(g)ﬁu).time uni’ts E{:s vlviII
in RY, it is always possible to create a unique ordering. " ; ; T

ys P g 9) agentk. The condition||pl) — pl¥l|| < » will be satisfied
IV. ASSIGNMENTBASED ALGORITHMS WITH LOWER within diam(€(n)) /v time units. At the nextv communication

BOUND ANALYSIS round, agent will enter a conflict over cuff. ]

In this section we introduce and analyze a class of deter- With these definitions we give a lower bound on the
S . naly time complexity of the task assignment problem when the
ministic algorithms for the target assignment problem.

environment grows with the number of agents.

e . L Considern agents, with communication range> 0, in an
The initialization, motion, and communication for each 9 ge

. ) \ ) environmente = [0,4(n)]%, d > 1. If £(n) > (1 + ¢)rn'/,
a'go”t_hm N _theaSS|gnment-based motiatlass have the wheree € R+, then for all algorithms in the assignment-
following attributes:

o . . L based motion class, the time complexity of the target
Initialization: In this class of algorithms agentnitially

o _ Y assignment problem is ifR(n(?—V/d¢(n)).
selects the closest target ¢!, and sets the variable clitr gProof' R/Ve will coné?ruct a s(:t))of target positions
(agenti’s current target), to the index of that target. :

. ; 4 th it and a set of initial agent positions for which the bound
Motion: Agent i moves toward the target cufrat 5145 The environment is the d-cube, [0, £(n)]¢. Divide

speedy: the cube& into ([n'/])% cubes, each with side length
g —ptl , ¢(n)/[n'/], and place a target at the center of each of
. currl?] If [Z] # [l] . . . . .
plil — la  —pi’ eyt 7 P @ the.cubes until you run out. This is shown in E|g. 1.
0, otherwise Notice that the distance between any two targets is lower

bounded by/(n)/[n'/4], and that, for sufficiently large.,
wherev > 0 is a constant. ((n)/[nY* > (1 4 e)rn/4/[n'/4] > r,
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Fig. 1. Targets and agents placed on a lattice for the prodhebrem 4.2.
The lattice is split into 4 blocks, each containidg) = 9 agents. The center
agent of each block is shown along with its communication diuThe
distance between these center agents is lower boundé@nby [n'/2].

Next, place agen? at q», agent 3 atqs and so on so
thatpl) = q;, for all i € {2,...,n}. From the initialization,
we have that cull = i for eachi € {2,...,n}. Now, if
we place agent 1 i¢ \ {qi,...,qx,}, it will lose a conflict
over any of then — 1 occupied targetsys,...,q,. Thus,

.Cn

tour

4

currentll = 7

pila~

prevll =6

Fig. 3. The initialization for agent.

value, (.,.;; = rn'/?. This same type of bound appears
in percolation theory and the study of random geometric
graphs, where it is referred to the thermodynamic limit
[11]. When/(n) grows more slowly than this critical value,
the performance depends on the particular algorithm in the
assignment-based motion class. In addition, wiien <

the assignment will not be complete until agent 1 reach%m, congestion issues in both motion and communication

targetq;. Since the distance between targets is greater thag

r, communication between ageritandk is not possible for
any i,k € {2,...,n}. So, agent € {2,...,n} will com-
municate only with agent 1. Thus, prior to communicatio
with agent 1, each agente {2,...,n} will have /" = q.
The first time ageni comes within distance of a target
j € {2,...,n}, in the best-case, ageitwill remove target

j from q!. Now, for any deterministic method of selecting

currl, we can place ageritin £\ {qi,...,q,} such that
targetq; is the last target for which agemtwill come within
distancer. Therefore, agent 1 must come within distance

come more prevalent, and a more complex communication
and motion model would ideally be used.
In the next section we introduce an asymptotically optimal

r}sllgorithm in the assignment-based motion class.

V. THE ETSP ASSIGNMENTALGORITHM

In this section we introduce the ETSPSAIGNMENT
algorithm—an algorithm within the assignment-based mo-
tion class. We will show that whef(n) grows more quickly

of each of then — 1 assigned targets, before finally arrivingthan a critical value, this algorithm is asymptotically iofl.

at q;.

The algorithm can be described as follows.

Now we will lower bound the distance traveled by agent 1. For each:i < Z, agenti computes a constant factor

To do this, split the largé-cube into|n/3¢| smallerd-cubes,
or blocks, where each block contaisstargets. An example

is shown in Fig. 1. There is one target at the center of eacBorders the indices af(’); tour(q'”)) = (q

of these blocks, and agent 1 must come within distano&

it. The distance between the center target of each block

lower bounded by the distance between targ&is)/ [n'/¢].

Agent 1 must travel this distance at ledst/3¢] — 1 times.
t(n)

So we have
| =1) foa

Hence, the path length is iR(n(¢=Y/¢(n)). Sincev €

R0, the time complexity is also i®(n(¢= 1/ (n)). =
Remark 4.3 4(n) < ¢..;+): We have lower bounded the

time complexity wher¢(n) grows faster than some critical

n

3d

Path length> Q e Q(n'4=V/dp(n)).

approximation of the optimal ETSP tour of thetargets in

q"l, denotedtour(q(’l). We can think ofour as a map which
i (]

. ot (Go(g)>- 2 Do)
whereo : 7 — Z is a bijection. Notice that this map is

iisdependent of since all agents use the same method. An
example is shown in Fig. 2. Agerntthen replaces its:-
tuple g/ with tour(q!). Next, agenti computes the index
of the closest target in!”, and calls it curf!. Agenti also
maintains the index of the next target in the tour which may
be available, neXt, and first target in the tour before clirr
which may be available, préli Thus, next! is initialized

to curt’) + 1 (mod n) and pre¥! to curf! — 1 (mod n).
This is depicted in Fig. 3. In order to “remove” assigned
targets from the tuplegl’), agenti also maintains the:-
tuple, statul'. Letting statull(j) denote thejth entry in the



n-tuple, the entries are given by

if agenti knows qy] is assigned
to another agent
otherwise

statu§! (j) = {
L,

®)

Thus, statu$ is initialized as theax-tuple (1, ..., 1). The ini-

tialization is summarized in Table I. At each communication

TABLE |
THE INITIALIZATION PROCEDURE FOR AGENTZ.

Initialization for agent 1.
Assumes:qlil := q for eachi € 7.
1: Compute a TSP tour af!¥, tour(q!), and seigl? := tour(q?).
2: Compute the closest targetgi’l, and set cuft! equal to its indext
curt’) = argmin; ez {[la;” — pl’[1}.

3: Set next! := curd +1 (mod n).

4: Set pre¥) := curtd — 1 (mod n).

5: Set statudl := 1,, (i.e., ann-tuple containingr ones).

round agent executes the algorithmmomMm-RD displayed in

next" = nextll =1

current!l = current!! = 7

pllE™

prev[’] =6

[k — 5
prev 9) 4

(a) Setup before the conflict over target 7.

currentl! = 1

currentlt =7

plla™

2 = next"l = nextl’

previl = prevll = 5
4

(b) Setup after resolution of the conflict.

Fig. 4. The resolution of a conflict between agentnd k over target7.

Table Il at the end of the paper. The following is an informabince agent: is closer to targe? than agent, agentk wins the conflict.

description.

Informal Description of comm -RD for agent 4

Assumes: status’l(s) = 0 for eachs € {prevd + 1,pred? +
2,...,next — 1} \ {curd} (mod n).
1: Broadcast mdg, consisting of the target indices, pf8y curtil, and
nextd, the UID 4, and the distance to the current target, [ist
2: for all messages, m&g, receiveddo
3:  Set statddl(j) to assigned (‘0") for each targgtfrom prev* +
1 (mod n) to next*l — 1 (mod n) not equal to cuff!.
4:  if prev®] = next*] = curd®l = curdd then
5 Set the status of cuff to O (because it was missed in the
previous step).
6. if curdd = curd¥] but agent is farther from curl than agent:
(ties broken with UIDs}hen
Set the status of cutt to assigned (‘0").
if curdd = curd®]l and agent is closer than agerit then
Leave curl unchanged. However, agehtwill set curf*! to
a new target. This target will be at least as far along the
as the farther of ne¥ and next*]. So, set the status of néit
and next*! to assigned (‘0").
10: if the status of every target is assigned (‘Oign
11: Exit ETSP ASSIGNMENT and stop motion. (This can occur only
if there are more agents than targets and every target isnask)g
12: else
13:  Update cuff! to the next target in the tour with status available
(17, nextl? to the next available target in the tour after éthrr
and pre¥! to the first available target in the tour before édrr

© o~

Fig. 4 gives an example afoMMm-RD resolving a conflict
between agentsandk, over curf! = curri®!, In this figure,
all other agents are omitted.
We are now ready to define the algorithm ETSBAGN-
MENT for solving the target assignment problem.
Definition 5.1 ETSP ASSIGNMENT): The ETSP A-
SIGNMENT algorithm is the triplet consisting of the initial-

four

communication graph which contains thelisk graph as a
subgraph. In order to prove correctness, let us first present
some properties of the algorithm.

Lemma 5.2 ETSP ASSIGNMENT properties): During an
execution of ETSP ASIGNMENT the following statements
hold:

(i) Once targetj € Z, is assigned to some agent, the
assignment may change, but targeemains assigned
for all time.

(i) Agent i is assigned to the target cliwhich satisfies
status! (curr?) = 1.

(iii) For agenti, statu§!(j) = 0, for eachj € {prev! +
1,previl +2, ... nextd — 1} \ {curd} (mod n).

(iv) For agenti, statu§!(j) = 0 only if target; is assigned
to some agenk # 1.

(v) If, for agenti, statu§!(j) = 0 at some timet;, then
statug!(j) = 0 for all t > t;.

(vi) If agent i receives ms§l during a communication
round, agent will set statu§!(j) = 0 for each;j ¢
{prevw* +1,... next®l — 1} \ {curf} (mod n).

Proof: Statements (ii) and (v) and (vi) follow directly
from the initialization and the algorithraOMM-RD.

To see (i), consider an agehtwho is assigned to targgt
Agenti's assignment can change only if it loses a conflict
over targetj. In every conflict there is a winner and the
winner remains assigned to target

Statement (iii) is initially satisfied since prév+ 1

ization of each agent (see Table 1), the motion law in (2)SUr 1= ”?XM — 1 implies that{prev’l +1,. :_:’UGXM -
and COMM-RD (see Table 1), which is executed at eachl} \ {curtl} = 0. Assume that statement (iii) is satisfied

communication round.

A. Correctness oETSP ASSIGNMENT
We will now prove the correctness of ETSPS&IGN

before the execution afoMMm-RD. At the end ofcoMM-RD,
previl is updated to the first target before dtirin the tour
with status available (‘1’). If statl$(currt’)) = 1 then cur¥!
remains unchanged. If stattigcurr) = 0 then curf! is

MENT. It should be noted that this result is valid for anyincreased to the first target with status available (‘1'hdfy,



next! is set to the first target after clifrwhich is available. is’s next target;; must not be in7, for if it were we would

Thus, at the end oEomMm-RD the status of pré¥, cur’!  have a contradiction. Thus, repeating this argument .J

and next! are available, and stat[ﬂ$j) = 0 for each target times we have that agenf,_; loses a conflict ovey,,_ ;.

g€ {prevl +1,... next! —1}\ {curt} (mod n). After this conflict, we have statlis-!(j;,) = 0 for eachk €
Statement (iv) is also initially satisfied since stétus 1,,  {1,...,n — J}, whereji, = ji, if and only if k; = ko. In

for eachi € 7. Assume Statement (iv) is satisfied before th@ther words, agent,_ ; knows that alln— J assigned targets

execution ofcomM-RD and that during this communication have indeed been assigned. Also, by our initial assumption,

round agenti changes the status of a targeto assigned statu§~-1(j) = 1 for eachj € 7. By Lemma 5.2 (i),

(‘0. We will show that Statement (iv) is still satisfied agenti, _;'s new current target must have status available

upon completion of the execution @foMM-RD. In order (‘1). Therefore, it must be that ageiy_ ; will set curifi»-]

for statu§!(j) to be changed, ageritmust have received to a target in7. Thus, after a finite amount of time, — 1

a message, m¥g, for which one of the following cases targets are unassigned, a contradiction. [ ]

is satisfied: (1) Targej # currll lies between pré! and The following remark displays that the ETSPS&IGN-

next®! on the tour; (2) There is a conflict between agentstENT algorithm does not solve the target assignment under

¢ and k over targetj which agenti loses; or, (3) There is the consistent knowledge assumption.

a conflict between agentsand & which agenti wins and Remark 5.4 (Consistent knowledge: cont'@onsider as
next’! = j or next¥! = ;. in Remark 3.1 the consistent knowledge assumption for each
In Case (1) either statlf(;) = 0 or curt*] = j, and thus agent’s target set. Specifically, consider two agents, 12and

targetj is assigned. In Case (2) agehtwon the conflict with initial target setsQ!!(0) = {q2}, QP1(0) = {a1,q2},
implying curt*l = j entering the communication round.and any initial positions such thail'l(0) = q., We will
Thus after the communication round, direz j and targetj  have curf! = curd?l = 2. However, agen® will win the

is assigned to another agent. In Case (3),[8usrcurrt®l £  conflict over target 2. Thus, agent 1 will set st&t{g) = 0,

j, and agent: loses the conflict. In this case, agénwill and a complete assignment will not be possible. .
change cuff! to the next available target on its tour. All ) .

targets from predf) + 1 to next* — 1 have been assigned. B- Time complexity foETSP ASSIGNMENT

Also, during the communication round, agénwill receive In this section we will give an upper bound on the time
msd? and determine that all targets from pféw 1 to complexity for ETSP ASIGNMENT. We will show that
next! — 1 are assigned. Thus, the next available target ishen £(n) > (1 + ¢)rn'/?, for somee € R.,, ETSP

at least as far along the tour as the farther of Wexind ASSIGNMENT is asymptotically optimal among algorithms
next*!. Thus, after the communication round, both fféxt in the assignment-based motion class. Before doing tttis, le

and next! are assigned. m us first comment on the lower bound when the environment
With these properties we are now ready to present thgrows at a slower rate.
main result of this section. Remark 5.54(n) < £..;; contd): When ¢(n) < rn'/4,

Theorem 5.3 (Correctness &TSP AsSIGNMENT): For  and we use the setup shown in Fig. 1, the distance between
any fixedn € N, ETSP ASSIGNMENT solves the target targets is lower bounded bfn)/[n'/4] < rn'/?/[n!/4] <

assignment problem. r. Thus, agent2,...,n can communicate to their neigh-
Proof: Assume by way of contradiction that at somebors on the target grid, and the communication graph is
time t; > 0 there areJ € {1,...,n—1} targets unassigned, connected. If the agents execute ETS®sAGNMENT, from

and for all timet¢ > t;, J targets remain unassigned. ByLemma 5.2 (vi), after one communication round, agert
Lemma 5.2 (i) then — J assigned targets remain assigned?2,...,n} will set statu§!(j) = 0 for each targetj # 1

for all time, and thus it must be the sandetargets which within distancer. Thus, afterC' communication rounds,
remain unassigned for all > ¢;. Let J denote the index whereC is the diameter of the communication graph, every
set of theJ unassigned targets. From our assumption, aragenti € {2, ..., n} will have statu§!(j) = 0, for all targets
by Lemma 5.2 (iv), for every > ¢; and for everyi € Z, j other than 1 and cuft. OnceC' communication rounds are
status!(j) = 1 for eachj € J. Now, among then — J  complete, the next time ageitenters a conflict, it will set
assigned targets, there is at least one target to which two aurt!) = 1 and the assignment will be complete. This gives
more agents are assigned. Consider one such target, calait upper bound 0O (Ct,,.... + £(n)) for the specific setup
41, and consider an agemt with curt] = j;. By Lemma in Fig. 1, but it does not provide a useful lower bound on
4.1, agenti; will enter a conflict overy; in finite time. Let ETSP ASSIGNMENT. .

us follow the loser of this conflict. The losing agent, call In what follows we show that if an agent arrives and
it i, will set statu€2!(j;) = 0, and will move to the next remains at its assigned target for sufficiently long timenth
target in the tour it believes may be available, cajbitNow, it stays there for all subsequent times.

we know j, is not in 7, for if it were J — 1 targets would Lemma 5.6:Considern agents executing ETSPSSIGN-

be unassigned contradicting our assumption. Moreover, byeNT with communication range: > 0 and assume the
Lemma 5.2 (ii),j2 # j1. Thus, agents will enter a conflict time delay between communication rounds,,., satisfies
over js in finite time. After this conflict, the losing agent, call ¢t,,,... < 7/v. If there exists a timet; and an agent

it 43, will set statu§s!(j,) = 0 (because it lost the conflict), such thatpl” (t) = currt?) for all t € [t1,t1 + timas], then
and from Lemma 5.2 (vi), statli8(j,) = 0. Again, agent pl(t) = curt’ for all t > t; + t,40.



Proof: Consider agenti, who has been at target time complexity in©(n(¢=1/¢(n)).
curt) during the entire time intervalty, t1 + tmaz). BY Scaling the communication radius inversely with the
the definition oft,,,, there was a communication roundnumber of agents arises in the study of wireless networks
at some timets € [t1,t1 + tmaz[- Agenti must have won [12]. In wireless applications there are interference and
any conflicts it entered during this communication roungnedia access problems between agents in the network. Since
since we have assumed thait! (¢, + t,,..) = curt’]. Thus the agents are in a compact environment, the only way to
every agentk within distancer of curtd will have set limit this interference is to scale the communication radiu
statu$”! (currl) = 0. After the communication round at, inversely with the number of agents. Scaling the agent speed
every agent with curt*! = curt”) must be a distance greaterinversely withn appears in the study of the vehicle routing
than  from curt’). Sincet,,., < /v, any agentk that problem in [7]. The inverse scaling is required to avoid
enters a conflict with agent at time¢ > ¢, will be at a collisions in the presence of traffic congestion.
distance dist! € ]0,r[ from curtl. Agent k will lose the

conflict since dist! > 0 = dist’. Thus, agent will remain C. Communication and computation complexity

at curt?! for all t > t1 + t,ae- m In our notion of time complexity we have emphasized
With this lemma we are now able to provide an upper bountl€ complexity due to the motion of the agents. Here we
on the time complexity of our scheme. will briefly classify the complexity of computation and
Theorem 5.7 (Time complexity f&TSP AssIGNMENT):  communication for ETSP ASIGNMENT. (i) Initialization:
Consider an environmenf = [0,4(n)]%, d > 1. If AS reviewed in Section II-C, we can compute a constant

tmae < ’I’/'U, then ETSP ASIGNMENT solves the factor approximation ETSP tour in tlm@(n2) This is
target assignment problem with time complexity inthe most expensive computation and thus the complexity
O(nl4=/2¢(n) 4+ n). If, in addition, £(n) > (1 + ¢)rn!/4, of initialization is in O(n?). (i) Communication complexity
wheree € R, the time complexity is irQ(n(¢=1/d¢(n)),  Per round: At each round agent broadcast a message of
and ETSP ASIGNMENT is asymptotically optimal among !engthO(logn), msd'l, and we consider this to be one unit
algorithms in the assignment-based motion class. of communication. In the worst-case, each agent receives
Proof: Consider any initial agent positions, messages, and so, the worst-case communication complexity
pl(0),...,p"(0), and anyn-tuple of target positions, iSin O(n) [8]. (iii) Computation complexity per rounéror
q. In the worst-case, some agent must travel around ig&ch meisage recel\éed, agergets status(s) = 0 for s
entire ETSP tour, losing a conflict at each of the firsfrom prev*1+1 to next*)—1. In the worst-case, this operation
n — 1 targets in the tour. By Lemma 5.6, this ageniS O(n) and must be performed for messages. This is the
can spend no more thaf,., time units at each of the dominant computation icomMm-RD and thus the worst-case
n — 1 targets, before losing a conflict. Since each agent&mputation complexity n each round &(n?). .
tour is a constant factor approximation of the optimal, It should be noted that in the case when the communica-
the tour length isO(n(@=Y/4¢(n)) (see Theorem 2.1). tion graph is not even connected (let alone complete as is

The agent will not follow the ETSP tour exactly becauséequired to achieve these worst-case bounds), the corplexi
it will enter a conflict over each of the: — 1 targets Will be considerably lower.
before actually reaching the target. However, the resglltlrb_ Simulations

path is no longer than the ETSP tour (since the agent _ S 5
could just follow the ETSP tour exactly if that happened_ e have simulated ETSPSSIGNMENT in R* and R”.

to be the shortest path). Hence, the time complexity &0 compute the ETSP tour we have used guncorde
O(n@=1/20(n) + tyae(n — 1)) € OnE=D/dg(n) + n). TSP solvel A representative simulation for 15 agents in
If £(n) = (2 + e)rn'/9, with e € R, we can combine [0, 100]3_C“R3 with 7 = 15 andv = 1 is shown in Fig.
this with Theorem 4.2 to get a time complexity in2- The initial configuration shown in Fig. 5(a) consists of
O(nld=/dg(n)). m uniformly randomly generated target and agent positions.

Notice that when/(n) satisfies the bound in Theorem 5.7, The case of. agents andn targets

1/d H H i i
and((n) € O(n"/), the time complexity is irO(n). It should be noted that the ETSPSAIGNMENTalgorithm

We have given complexity bounds for the case whemd : P
X . works without any modification when there areagents and
v are fixed constants, art{n) grows withn. We allow the : :
m targets. Ifm > n, at completion,n targets are assigned

environment (n) to grow withn so that, as more agents are_ o targets are not. Whem; < n, at completion, aln

involved in the task, their workspace is larger. An equikéle . :
: : targets are assigned, and— m agents are stationary, after
setup would be to considérto be fixed, and allow andv : . :
: . : . losing a conflict at each of the: targets. The complexity
to vary inversely with thex. That is, we can introduce a set
bounds are changed as follows.

of paranjeter_se = L, and#i(n) and?(n) such that the time The lower bound on the assignment-based motion class
complexity will be the same as for the parameters, £(n). in Theorem 4.2, holds whem > n, and ((n) > (1 +

Corollary.5.8 (Scalmg radius and spee%QZon.ader e)rm!/¢ (notice them instead ofn). The bound become
n agents in the environmenf = [0,1]% with speed QE(n)m~1/4n). If m = Cn whereC € Roy, (i, m > n
9(n) :=v/l(n), and communication radiu&n) := r/¢(n), ' N 21y A= T =
where ¢(n) > (1 + ¢)rn'/?, and e € R>o. Then ETSP. 2The concorde TSP solver is available for research use at
ASSIGNMENT solves the target assignment problem withhtt p: // www. t sp. gat ech. edu/ concor de/ i ndex. ht ni



TABLE Il
COMMUNICATION ROUND (COMM-RD) FOR AGENTA.

Name: COMM-RD
Goal: Obtain information on assigned targets.
Assumes: (i) Knowledge of then-tuple g, and a method for
computing a constant factor TSP tour of theargets,
tour. (ii) A communication range > 0.
1: Compute dist) := [|pl — g} .
2: Broadcast mdg := (prev, currdl next?, 4, dist).
3: Receive ms§!, from eachk # i satisfying||pl! — pl¥l|| < 7.
4: for all msd*! receiveddo
5. for s = pred¥] + 1 to next*! — 1 (mod n) do
6: if s # curtd then
7: Set statuél gsf =0
8: if prev*l = next*] = currd®l + curdd then
9 Set statuél (curr®l) := 0
10: if curi’! = curd*! then
11: if (dist?l > dist*]) OR (dist’l = dist*] AND 4 < k) then
12: Set statdd (curfil) := 0.
13: else
14: if next?’l # curdd then
15: Set statud (next?) := 0.
16: if next®! £ curdi then
17: Set statud (next*]) := 0.
18: if statu§’!(5) = 0 for every targetj then
19: Exit ETSP ASSIGNMENT and stop motion.
- : ; : 20: else
(c) Positions after 90 time units.  (d) Complete target assignment. 21°  while status) (curti)=0 do
Fig. 5. Simulation for 15 agents, with= 1 andr = 15. in an environment | 22 cur’ ]: curr] j 1 (mod n).
[0, 100]3. The targets are spheres and the agents are cubes. An edawiis d | 23 S€t next! := cur ! +1 (mod n).
between two agents when they are within communication range. 24:  while statu$’) (next')=0 do
25: nextd := next’l + 1 (mod n).
26:  while statu$! (prev’)=0 do
27: prevd := prev — 1 (mod n).

but they grow at the same rate), then the bound becomes
Q(e(n)nld=1/d),

The upper bound on ETSPSSIGNMENT holds for any
n and m, and become®({(n)N@=1/4) where N := |1
min{n,m}. So our final result would be that i = Cn
where C € R, and when/(n) > (1 + €)rm!/4, then
ETSP AsSSIGNMENT solves the target assignment prob-
lem in ©(¢(n)n(4=1/4), That is, among all algorithms in [3]
the assignment-based motion class, ETSHSUSNMENT is
asymptotically optimal. [4]

VI. CONCLUSIONS 5]

We have developed the ETSPsSAIGNMENT algorithm
for solving the full knowledge target assignment problem.g
We derived worst-case asymptotic bounds on the time
complexity, and we showed that among a certain class oﬁ]
algorithms, ETSP ASIGNMENT is asymptotically optimal.
There are many possible extensions of this work. We have
not computed bounds on the time-complexity in the averag
case. Also, the problem is unsolved under the consistent
knowledge assumption. It would be nice to extend the
ETSP AssiGNMENTalgorithm to agents with nonholonomic [9]
motion constraints. Also, it would be interesting to coesid
a sensor based version of this problem, where agents acquire
target positions through local sensing. Finally, to derivét®
asymptotic time bounds, we made some assumptions on the
communication structure at each communication round. A1]
interesting avenue for future study would be to more accyy
rately address the communication issues in robotic netsvork
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