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Target assignment for robotic networks:
asymptotic performance under limited communication

Stephen L. Smith Francesco Bullo

Abstract— We are given an equal number of mobile robotic
agents, and distinct target locations. Each agent has simple
integrator dynamics, a limited communication range, and
knowledge of the position of every target. We address the
problem of designing a distributed algorithm that allows the
group of agents to divide the targets among themselves and,
simultaneously, leads each agent to reach its unique target.
We do not require connectivity of the communication graph at
any time. We introduce a novel assignment-based algorithm
with the following features: initial assignments and robot
motions follow a greedy rule, and distributed refinements of the
assignment exploit an implicit circular ordering of the targets.
We prove correctness of the algorithm, and give worst-case
asymptotic bounds on the time to complete the assignment as
the environment grows with the number of agents. We show that
among a certain class of distributed algorithms, our algorithm
is asymptotically optimal. The analysis utilizes results on the
Euclidean traveling salesperson problem.

I. I NTRODUCTION

Consider a group ofn mobile robotic agents andn target
locations, all lying inR

d, d ≥ 1. Each agent has a limited
communication range, and knows the location of some subset
(possibly all) of then targets through GPS coordinates or
a map of the environment. Thetarget assignment problem
is to design a distributed algorithm that allows the group
of agents to divide then targets among themselves and,
simultaneously, that leads each agent to reach its unique
target. Such a problem could arise in several applications.
For example, one could think of the agents as UAV’s on a
surveillance mission, and the targets as the centers of their
desired loitering patterns. Or, this behavior could be usedto
stabilize a group of agents to any desired formation.

The first question is; how do we divide the targets among
the agents in a centralized fashion? A reasonable strategy
would be to minimize the sum of the distances traveled by
each agent to arrive at its target. The problem of optimally
dividing n persons amongn objects, subject to a linear cost
function, is a problem in combinatorial optimization [1]. It
is referred to as theassignment problem, or the minimum
weight perfect matching problem in bipartite graphs. The
assignment problem can be written as an integer linear
program. Unlike some integer linear programs, such as the
Euclidean traveling salesperson problem (ETSP), optimal
solutions for the assignment problem can be computed in
polynomial time. In 1955 Kuhn [2] developed the Hungarian
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method—the first polynomial solution for the assignment
problem. Kuhn’s method solves the problem inO(n3) time
(see Section II for a definition of theO notation). Since
1955, many other methods have been developed. The most
efficient method runs inO(n2 log n) time, and is achieved
by reducing the problem to anetwork flow problem[1].

Another approach to the assignment problem is theauction
algorithm [3], [4], [5], first proposed by Bertsekas. This
method solves the problem inO(n3) time, but can be
computed in a parallel fashion, with one processor for each
person. Recently, Moore and Passino [6] modified the auction
algorithm to assign mobile robots to spatially distributed
tasks in the presence of communication delays. However,
in order to exchange bids on a particular object (task),
the auction algorithm, and thus the work in [6], requires
that the communication graph between processors (robots)
is complete. In addition, the auction algorithm requires the
election of a “leader” processor to manage the auction for
each of the objects; this potentially leads to more complex
and less scalable implementations.

In this paper we address the task assignment problem
when each agent has knowledge of all target positions, and
a limited communication ranger > 0. We introduce a class
of distributed algorithms, calledassignment-based motion,
which provide a natural approach to the problem. Following
the recent interest in determining the time complexity of
distributed algorithms for robotic networks, as in [7] and
[8], we study the worst-case asymptotic performance of the
assignment-based motion class as the environment grows
with n. We show that for ad-dimensional cube environment,
[0, `(n)]d, d ≥ 1, if the side length̀ (n) grows at a rate of
at least(1+ ε)rn1/d, whereε > 0, then the time complexity
is in Ω(n(d−1)/d`(n)), for all algorithms in this class.

In Section V we introduce a novel control and com-
munication algorithm, called ETSP ASSIGNMENT. In this
algorithm, each agent computes an ETSP tour through the
n targets, turning the cloud of target points into an ordered
ring. Agents then move along the ring, looking for the next
available target. When agents communicate, they exchange
information on how far it is to the next available target
along the ring. In Section V-A, we verify the correctness of
this algorithm for any communication graph which contains,
as a subgraph, ther-disk graph. In Section V-B, we show
that when`(n) ≥ (1 + ε)rn1/d, among all algorithms in
the assignment-based motion class, the ETSP ASSIGNMENT

algorithm is asymptotically optimal (i.e., a constant factor
approximation of the optimal). Finally, in Section V-E, we
note that ETSP ASSIGNMENT solves the target assignment
problem even when there aren agents andm targets,n 6= m.



II. BACKGROUND

In this section we introduce notation and review some
relevant results in combinatorial optimization.

A. Notation

We let R denote the set of real numbers,R>0 denote
the set of positive real numbers, andN denote the set of
positive integers. For a setA we let|A| denote the cardinality
of the set. For two functionsf, g : N → R>0, we write
f(n) ∈ O(g) (respectively,f(n) ∈ Ω(g)) if there exist
N ∈ N and c ∈ R>0 such thatf(n) ≤ cg(n) for all
n ≥ N (respectively,f(n) ≥ cg(n) for all n ≥ N ). If
f(n) ∈ O(g) and f(n) ∈ Ω(g) we say f(n) ∈ Θ(g).
Finally, we use the notation(mod n) to denote arithmetic
performed modulon ∈ N. Thus, for an integern ∈ N

we haven + 1 = 1 (mod n) and 0 = n (mod n), and
{n − 1, n, n + 1} = {n − 1, n, 1} (mod n).

B. The assignment problem

Following [4], the classical assignment problem can be
described as follows. Considern persons who wish to divide
themselves amongn objects. For each personi, there is
a nonempty setQ[i] of objects thati can be assigned to,
and costcij ≥ 0 associated to each objectj ∈ Q[i]. An
assignmentS is a set of person-object pairs(i, j) such that
j ∈ Q[i] for all (i, j) ∈ S. For each personi (likewise,
object j), there is at most one pair(i, j) ∈ S. We call the
assignmentcompleteif it contains n pairs. The goal is to
find the complete assignment which minimizes

∑

(i,j)∈S cij .
Let xij be a set of variables fori andj in I := {1, . . . , n}.

For an assignmentS, we write xij = 1 if (i, j) ∈ S, and
xij = 0 otherwise. Thus, the problem of determining the
optimal assignment can be written as a linear program:

minimize
n

∑

i=1

∑

j∈Q[i]

cijxij ,

subject to
∑

j∈Q[i]

xij = 1 ∀ i ∈ I,

∑

{i|j∈Q[i]}

xij = 1 ∀ j ∈ I,

xij ≥ 0.

We cannot use linear inequalities to write the constraint that
xij ’s attain only the values zero and one. However, it turns
out, [4], that there always exists an optimal solution in which
the xij ’s satisfy our integer assumption.

C. The Euclidean traveling salesperson problem

Here we review some relevant results on the Euclidean
traveling salesperson problem (ETSP). LetQ be a set ofn
points in a compact environmentE ⊂ R

d, d ≥ 1, and let
Qn be the set of all point setsQ ⊂ E with |Q| = n. Let
ETSP(Q) denote the cost of the ETSP tour over the point
setQ, i.e., the length of the shortest closed path through all
points inQ. An important result, from [9], is that given a

compact setE , there exists a finite constantα(E) such that,
for all Q ∈ Qn,

ETSP(Q) ≤ α(E)n(d−1)/d. (1)

In fact, we have that in the worst-case setting, theETSP(Q)
belongs toΘ(n(d−1)/d).

In our application of these results it will be useful to
consider the case where the environment grows with the
number of points. That is, we are interested in environments
which are cubes,[0, `(n)]d, d ≥ 1, where`(n) is the side
length of the cube. Applying a simple scaling argument to
the result in (1), we arrive at the following corollary.

Corollary 2.1 (ETSP tour length):Consider an environ-
ment E = [0, `(n)]d, where d ≥ 1. For every point set
Q ∈ Qn,

ETSP(Q) ∈ Θ(n(d−1)/d`(n)).
The problem of computing an optimal tour is known to

be NP-complete. However, there exist heuristics which can
be computed efficiently and give a constant factor approxi-
mation to the optimal tour. The best known approximation
algorithm is due to Christofides [10]. TheChristofides’
algorithm computes a tour that is no more than3/2 times
longer than the optimal. It runs in timeO(n3). Another
method, known as thedouble-tree algorithm, produces tours
that are no longer than twice the optimal, in run timeO(n2).

III. PROBLEM FORMULATION

To describe the target assignment problem formally, con-
sider n agents in an environmentE(n) ⊂ R

d, d ≥ 1. The
environmentE(n) is compact for eachn but may grow with
the number of agents. For ease of presentation letE :=
[0, `(n)]d, where`(n) > 0 (that is,E is ad-dimensional cube
with side length`(n)). Each agent has a unique identifier
(UID) taken from the setIUID ⊆ N. For simplicity, we
assume thatIUID := I = {1, . . . , n}. However, each agent
does not know the set of UIDs being used (i.e., agentn
does not know it has the largest UID). Agenti ∈ I has
position p[i] ∈ E . Two agents,i and k in I, are able to
communicate if and only if‖p[i] − p[k]‖ ≤ r, wherer > 0
is called the communication range. We refer to the graph
representing the communication links as ther-disk graph.
Agent i’s kinematic model isṗ[i] = u[i], whereu[i] is a
velocity control input bounded byv > 0. We assume that the
agents move in continuous time and communicate according
to a discrete time communication schedule consisting of an
increasing sequence of time instants with no accumulation
points, {tk}k∈N. We assume that|tk+1 − tk| ≤ tmax, for
all k ∈ N, where tmax ∈ R>0. At each communication
round, agents can exchange messages of lengthO(log n). 1

We assume that communication roundk occurs at timetk,
and that all messages are sent and received instantaneouslyat
tk. Motion then occurs fromtk until tk+1. It should be noted
that in this setup we are emphasizing the time complexity
due to the motion of the agents.

LetQ := {q1, . . . ,qn} be a set of distinct target locations,
qj ∈ E for eachj ∈ I. Agent i is equipped with memory

1The number of bits required to represent an ID, unique amongn agents,
grows with the logarithm ofn.



M [i], of size |M [i]|. In this memory, agenti stores a set of
target positions,Q[i] ⊆ Q. These are the targets to which
agent i can be assigned. We letQ[i](0) denote agenti’s
initial target set. These positions may be known through GPS
coordinates, or through a map of the environment.

In this paper we assume that each agent knows the position
of every target. That is,Q[i](0) = Q for eachi ∈ I. We refer
to this as thefull knowledgeassumption. To store this amount
of information we must assume that the size of each agents’
memory,|M [i]|, grows linearly withn. Our goal is to solve
the full knowledge target assignment problem:

Determine a control and communication law for
n ∈ N agents, with attributes as described above,
satisfying the following requirement. There exists
a timeT > 0 such that for every agenti ∈ I, there
is a unique targetqji

∈ Q[i](0) with p[i](t) = qji

for all time t ≥ T , whereji = jk if and only if
i = k.

In the remainder of the paper, we will refer to this as the
target assignment problem.

Remark 3.1 (Consistent knowledge):A more general as-
sumption on the initial target sets,Q[i](0), which still ensures
the existence of a complete assignment, is theconsistent
knowledgeassumption: For eachK ⊆ I,

∣

∣∪k∈KQ
[k](0)

∣

∣ ≥
|K|. In fact, it was proved by Frobenius, 1917, and Hall,
1935 that this is the necessary and sufficient condition for
the existence of a complete assignment [1]. •
In the full knowledge assumption, each agent knows the
position of all targets inQ. These positions will be stored
in an array within each agents memory, rather than as
an unordered set. To represent this, we replace the target
set Q with the targetn-tuple q := (q1, . . . ,qn), and the
local target setQ[i] with the n-tuple q[i]. Thus, in the full
knowledge assumption,q[i](0) := q for eachi ∈ I. (It is
possible that the order of the targets in the local setsq[i] may
initially be different. However, given a set of distinct points
in R

d, it is always possible to create a unique ordering.)

IV. A SSIGNMENT-BASED ALGORITHMS WITH LOWER

BOUND ANALYSIS

In this section we introduce and analyze a class of deter-
ministic algorithms for the target assignment problem.

A. The assignment-based motion class

The initialization, motion, and communication for each
algorithm in the assignment-based motionclass have the
following attributes:

Initialization: In this class of algorithms agenti initially
selects the closest target inq[i], and sets the variable curr[i]

(agenti’s current target), to the index of that target.
Motion: Agent i moves toward the target curr[i] at

speedv:

ṗ[i] =







v
q

[i]

curr[i]
−p

[i]

‖q
[i]

curr[i]
−p[i]‖

, if q
[i]

curr[i]
6= p[i],

0, otherwise,
(2)

wherev > 0 is a constant.

Communication:As agenti communicates with other
agents, it updates the tupleq[i] “removing” targets which
are assigned to other agents. If agenti must change curr[i],
it selects a new target inq[i], that has not been removed.
This is described more formally in the following.

Communication round for agent i.
1: Broadcast a message, msg[i], based onq[i] and containing curr[i]

and the UIDi.
2: Receive msg[k] from each agentk within communication range.
3: for all msg[k] receiveddo
4: Based on msg[k], (possibly) remove assigned targets fromq[i].
5: if curr[i] = curr[k] then
6: If agenti is farther from curr[i] than agentk, or if they are

the same distance buti < k, remove the target given by
curr[i] from q[i].

7: Set curr[i] to a target inq[i] (i.e., a target that has not been
removed).

B. Lower bound on task complexity

In order to classify the time complexity of the assignment-
based motion class of algorithms, we introduce a few useful
definitions. We say that agenti ∈ I is assignedto target
q

[i]
j , j ∈ I, when curr[i] = j. In this case, we also say target

j is assigned to agenti. We say that agenti ∈ I enters
a conflict over the target curr[i], when agenti receives a
message, msg[k], with curr[i] = curr[k]. Agent i loses the
conflict if agent i is farther from curr[i] than agentk, and
wins the conflictif agent i is closer to curr[i] than agentk,
where ties are broken by comparing UIDs.

Now we show that if agenti is assigned to the same target
as another agent, it will enter a conflict in finite time.

Lemma 4.1 (Conflict in finite time):Consider any com-
munication ranger > 0, and any fixed number of agents
n ∈ N. If, for two agentsi andk, curr[i] = curr[k] at some
time t1 ≥ 0, then agenti (and likewise, agentk) will enter
a conflict over curr[i] in finite time.

Proof: For eachn the regionE is compact, and the
motion for each agent is given by (2). Hence, agenti will
reach curr[i] in no more thandiam(E)/v time units, as will
agentk. The condition‖p[i] − p[k]‖ ≤ r will be satisfied
within diam(E(n))/v time units. At the next communication
round, agenti will enter a conflict over curr[i].

With these definitions we give a lower bound on the
time complexity of the task assignment problem when the
environment grows with the number of agents.

Theorem 4.2 (Time complexity of target assignment):
Considern agents, with communication ranger > 0, in an
environmentE = [0, `(n)]d, d ≥ 1. If `(n) ≥ (1 + ε)rn1/d,
where ε ∈ R>0, then for all algorithms in the assignment-
based motion class, the time complexity of the target
assignment problem is inΩ(n(d−1)/d`(n)).

Proof: We will construct a set of target positions
and a set of initial agent positions for which the bound
holds. The environmentE is the d-cube, [0, `(n)]d. Divide
the cubeE into (dn1/de)d cubes, each with side length
`(n)/dn1/de, and place a target at the center of each of
the cubes until you run out. This is shown in Fig. 1.
Notice that the distance between any two targets is lower
bounded bỳ (n)/dn1/de, and that, for sufficiently largen,
`(n)/dn1/de ≥ (1 + ε)rn1/d/dn1/de > r.
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Fig. 1. Targets and agents placed on a lattice for the proof ofTheorem 4.2.
The lattice is split into 4 blocks, each containing32 = 9 agents. The center
agent of each block is shown along with its communication radius r. The
distance between these center agents is lower bounded by`(n)/dn1/2e.

Next, place agent2 at q2, agent 3 atq3 and so on so
thatp[i] = qi, for all i ∈ {2, . . . , n}. From the initialization,
we have that curr[i] = i for eachi ∈ {2, . . . , n}. Now, if
we place agent 1 inE \ {q1, . . . ,qn}, it will lose a conflict
over any of then − 1 occupied targetsq2, . . . ,qn. Thus,
the assignment will not be complete until agent 1 reaches
targetq1. Since the distance between targets is greater than
r, communication between agentsi andk is not possible for
any i, k ∈ {2, . . . , n}. So, agenti ∈ {2, . . . , n} will com-
municate only with agent 1. Thus, prior to communication
with agent 1, each agenti ∈ {2, . . . , n} will have q[i] = q.
The first time agent1 comes within distancer of a target
j ∈ {2, . . . , n}, in the best-case, agent1 will remove target
j from q[i]. Now, for any deterministic method of selecting
curr[i], we can place agent1 in E \ {q1, . . . ,qn} such that
targetq1 is the last target for which agent1 will come within
distancer. Therefore, agent 1 must come within distancer
of each of then− 1 assigned targets, before finally arriving
at q1.

Now we will lower bound the distance traveled by agent 1.
To do this, split the larged-cube intobn/3dc smallerd-cubes,
or blocks, where each block contains3d targets. An example
is shown in Fig. 1. There is one target at the center of each
of these blocks, and agent 1 must come within distancer of
it. The distance between the center target of each block is
lower bounded by the distance between targets,`(n)/dn1/de.
Agent 1 must travel this distance at leastbn/3dc − 1 times.
So we have

Path length≥
(⌊ n

3d

⌋

− 1
) `(n)

dn1/de
∈ Ω(n(d−1)/d`(n)).

Hence, the path length is inΩ(n(d−1)/d`(n)). Since v ∈
R>0, the time complexity is also inΩ(n(d−1)/d`(n)).

Remark 4.3 (̀(n) ≤ `crit): We have lower bounded the
time complexity wheǹ (n) grows faster than some critical
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Fig. 2. The maptour, creating an ETSP tour of seven targets.

current[i]
= 7

next[i]
= 1

prev[i]
= 6

p
[i]

5

3

2

4

Fig. 3. The initialization for agenti.

value, `crit = rn1/d. This same type of bound appears
in percolation theory and the study of random geometric
graphs, where it is referred to the thermodynamic limit
[11]. When`(n) grows more slowly than this critical value,
the performance depends on the particular algorithm in the
assignment-based motion class. In addition, when`(n) ≤
`crit, congestion issues in both motion and communication
become more prevalent, and a more complex communication
and motion model would ideally be used. •

In the next section we introduce an asymptotically optimal
algorithm in the assignment-based motion class.

V. THE ETSP ASSIGNMENTALGORITHM

In this section we introduce the ETSP ASSIGNMENT

algorithm—an algorithm within the assignment-based mo-
tion class. We will show that wheǹ(n) grows more quickly
than a critical value, this algorithm is asymptotically optimal.
The algorithm can be described as follows.

For each i ∈ I, agent i computes a constant factor
approximation of the optimal ETSP tour of then targets in
q[i], denotedtour(q[i]). We can think oftour as a map which
reorders the indices ofq[i]; tour(q[i]) = (q

[i]
σ(1), . . . ,q

[i]
σ(n)),

where σ : I → I is a bijection. Notice that this map is
independent ofi since all agents use the same method. An
example is shown in Fig. 2. Agenti then replaces itsn-
tuple q[i] with tour(q[i]). Next, agenti computes the index
of the closest target inq[i], and calls it curr[i]. Agent i also
maintains the index of the next target in the tour which may
be available, next[i], and first target in the tour before curr[i]

which may be available, prev[i]. Thus, next[i] is initialized
to curr[i] + 1 (mod n) and prev[i] to curr[i] − 1 (mod n).
This is depicted in Fig. 3. In order to “remove” assigned
targets from the tupleq[i], agent i also maintains then-
tuple, status[i]. Letting status[i](j) denote thejth entry in the



n-tuple, the entries are given by

status[i](j) =







0, if agent i knowsq
[i]
j is assigned

to another agent,

1, otherwise.
(3)

Thus, status[i] is initialized as then-tuple(1, . . . , 1). The ini-
tialization is summarized in Table I. At each communication

TABLE I

THE INITIALIZATION PROCEDURE FOR AGENTi.

Initialization for agent i.

Assumes:q[i] := q for eachi ∈ I.
1: Compute a TSP tour ofq[i], tour(q[i]), and setq[i] := tour(q[i]).
2: Compute the closest target inq[i], and set curr[i] equal to its index:

curr[i] := arg minj∈I{‖q
[i]
j − p[i]‖}.

3: Set next[i] := curr[i] + 1 (mod n).
4: Set prev[i] := curr[i] − 1 (mod n).
5: Set status[i] := 1n (i.e., ann-tuple containingn ones).

round agenti executes the algorithmCOMM-RD displayed in
Table II at the end of the paper. The following is an informal
description.

Informal Description of COMM -RD for agent i

Assumes: status[i](s) = 0 for each s ∈ {prev[i] + 1, prev[i] +
2, . . . , next[i] − 1} \ {curr[i]} (mod n).
1: Broadcast msg[i], consisting of the target indices, prev[i], curr[i], and

next[i], the UID i, and the distance to the current target, dist[i].
2: for all messages, msg[k], receiveddo
3: Set status[i](j) to assigned (‘0’) for each targetj from prev[k] +

1 (mod n) to next[k] − 1 (mod n) not equal to curr[i].
4: if prev[k] = next[k] = curr[k] 6= curr[i] then
5: Set the status of curr[k] to 0 (because it was missed in the

previous step).
6: if curr[i] = curr[k] but agenti is farther from curr[i] than agentk

(ties broken with UIDs)then
7: Set the status of curr[i] to assigned (‘0’).
8: if curr[i] = curr[k] and agenti is closer than agentk then
9: Leave curr[i] unchanged. However, agentk will set curr[k] to

a new target. This target will be at least as far along the tour
as the farther of next[i] and next[k]. So, set the status of next[i]

and next[k] to assigned (‘0’).
10: if the status of every target is assigned (‘0’)then
11: Exit ETSP ASSIGNMENT and stop motion. (This can occur only

if there are more agents than targets and every target is assigned.)
12: else
13: Update curr[i] to the next target in the tour with status available

(‘1’), next[i] to the next available target in the tour after curr[i],
and prev[i] to the first available target in the tour before curr[i].

Fig. 4 gives an example ofCOMM-RD resolving a conflict
between agentsi andk, over curr[i] = curr[k]. In this figure,
all other agents are omitted.

We are now ready to define the algorithm ETSP ASSIGN-
MENT for solving the target assignment problem.

Definition 5.1 (ETSP ASSIGNMENT): The ETSP AS-
SIGNMENT algorithm is the triplet consisting of the initial-
ization of each agent (see Table I), the motion law in (2),
and COMM-RD (see Table II), which is executed at each
communication round.

A. Correctness ofETSP ASSIGNMENT

We will now prove the correctness of ETSP ASSIGN-
MENT. It should be noted that this result is valid for any

current[k]
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= 7
2

prev[k]
= 5

next[k]
= next[i]

= 1
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= 6

p
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p
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(a) Setup before the conflict over target 7.
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= next[i]
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= 5

current[i]
= 1

6

3

4

p
[k]

p
[i]

(b) Setup after resolution of the conflict.

Fig. 4. The resolution of a conflict between agentsi andk over target7.
Since agentk is closer to target7 than agenti, agentk wins the conflict.

communication graph which contains ther-disk graph as a
subgraph. In order to prove correctness, let us first present
some properties of the algorithm.

Lemma 5.2 (ETSP ASSIGNMENT properties): During an
execution of ETSP ASSIGNMENT the following statements
hold:

(i) Once targetj ∈ I, is assigned to some agent, the
assignment may change, but targetj remains assigned
for all time.

(ii) Agent i is assigned to the target curr[i] which satisfies
status[i](curr[i]) = 1.

(iii) For agent i, status[i](j) = 0, for eachj ∈ {prev[i] +
1, prev[i] + 2, . . . , next[i] − 1} \ {curr[i]} (mod n).

(iv) For agenti, status[i](j) = 0 only if targetj is assigned
to some agentk 6= i.

(v) If, for agent i, status[i](j) = 0 at some timet1, then
status[i](j) = 0 for all t ≥ t1.

(vi) If agent i receives msg[k] during a communication
round, agenti will set status[i](j) = 0 for eachj ∈
{prev[k] + 1, . . . , next[k] − 1} \ {curr[i]} (mod n).

Proof: Statements (ii) and (v) and (vi) follow directly
from the initialization and the algorithmCOMM-RD.

To see (i), consider an agenti, who is assigned to targetj.
Agent i’s assignment can change only if it loses a conflict
over targetj. In every conflict there is a winner and the
winner remains assigned to targetj.

Statement (iii) is initially satisfied since prev[i] + 1 =
curr[i] = next[i] − 1 implies that{prev[i] + 1, . . . , next[i] −
1} \ {curr[i]} = ∅. Assume that statement (iii) is satisfied
before the execution ofCOMM-RD. At the end ofCOMM-RD,
prev[i] is updated to the first target before curr[i] in the tour
with status available (‘1’). If status[i](curr[i]) = 1 then curr[i]

remains unchanged. If status[i](curr[i]) = 0 then curr[i] is
increased to the first target with status available (‘1’). Finally,



next[i] is set to the first target after curr[i] which is available.
Thus, at the end ofCOMM-RD the status of prev[i], curr[i]

and next[i] are available, and status[i](j) = 0 for each target
j ∈ {prev[i] + 1, . . . , next[i] − 1} \ {curr[i]} (mod n).

Statement (iv) is also initially satisfied since status[i] = 1n

for eachi ∈ I. Assume Statement (iv) is satisfied before the
execution ofCOMM-RD and that during this communication
round agenti changes the status of a targetj to assigned
(‘0’). We will show that Statement (iv) is still satisfied
upon completion of the execution ofCOMM-RD. In order
for status[i](j) to be changed, agenti must have received
a message, msg[k], for which one of the following cases
is satisfied: (1) Targetj 6= curr[i] lies between prev[k] and
next[k] on the tour; (2) There is a conflict between agents
i and k over targetj which agenti loses; or, (3) There is
a conflict between agentsi and k which agenti wins and
next[i] = j or next[k] = j.

In Case (1) either status[k](j) = 0 or curr[k] = j, and thus
target j is assigned. In Case (2) agentk won the conflict
implying curr[k] = j entering the communication round.
Thus after the communication round, curr[i] 6= j and targetj
is assigned to another agent. In Case (3), curr[i] = curr[k] 6=
j, and agentk loses the conflict. In this case, agentk will
change curr[k] to the next available target on its tour. All
targets from prev[k] + 1 to next[k] − 1 have been assigned.
Also, during the communication round, agentk will receive
msg[i] and determine that all targets from prev[i] + 1 to
next[i] − 1 are assigned. Thus, the next available target is
at least as far along the tour as the farther of next[i] and
next[k]. Thus, after the communication round, both next[i]

and next[k] are assigned.
With these properties we are now ready to present the

main result of this section.
Theorem 5.3 (Correctness ofETSP ASSIGNMENT): For

any fixed n ∈ N, ETSP ASSIGNMENT solves the target
assignment problem.

Proof: Assume by way of contradiction that at some
time t1 ≥ 0 there areJ ∈ {1, . . . , n−1} targets unassigned,
and for all time t ≥ t1, J targets remain unassigned. By
Lemma 5.2 (i) then − J assigned targets remain assigned
for all time, and thus it must be the sameJ targets which
remain unassigned for allt ≥ t1. Let J denote the index
set of theJ unassigned targets. From our assumption, and
by Lemma 5.2 (iv), for everyt ≥ t1 and for everyi ∈ I,
status[i](j) = 1 for eachj ∈ J . Now, among then − J
assigned targets, there is at least one target to which two or
more agents are assigned. Consider one such target, call it
j1, and consider an agenti1 with curr[i1] = j1. By Lemma
4.1, agenti1 will enter a conflict overj1 in finite time. Let
us follow the loser of this conflict. The losing agent, call
it i2, will set status[i2](j1) = 0, and will move to the next
target in the tour it believes may be available, call itj2. Now,
we know j2 is not inJ , for if it were J − 1 targets would
be unassigned contradicting our assumption. Moreover, by
Lemma 5.2 (ii),j2 6= j1. Thus, agenti2 will enter a conflict
overj2 in finite time. After this conflict, the losing agent, call
it i3, will set status[i3](j2) = 0 (because it lost the conflict),
and from Lemma 5.2 (vi), status[i3](j1) = 0. Again, agent

i3’s next target,j3 must not be inJ , for if it were we would
have a contradiction. Thus, repeating this argumentn − J
times we have that agentin−J loses a conflict overjn−J .
After this conflict, we have status[in−J ](jk) = 0 for eachk ∈
{1, . . . , n − J}, wherejk1

= jk2
if and only if k1 = k2. In

other words, agentin−J knows that alln−J assigned targets
have indeed been assigned. Also, by our initial assumption,
status[in−J ](j) = 1 for each j ∈ J . By Lemma 5.2 (ii),
agentin−J ’s new current target must have status available
(‘1’). Therefore, it must be that agentin−J will set curr[in−J ]

to a target inJ . Thus, after a finite amount of time,J − 1
targets are unassigned, a contradiction.

The following remark displays that the ETSP ASSIGN-
MENT algorithm does not solve the target assignment under
the consistent knowledge assumption.

Remark 5.4 (Consistent knowledge: cont’d):Consider as
in Remark 3.1 the consistent knowledge assumption for each
agent’s target set. Specifically, consider two agents, 1 and2,
with initial target setsQ[1](0) = {q2}, Q[2](0) = {q1,q2},
and any initial positions such thatp[1](0) = q2, We will
have curr[i] = curr[j] = 2. However, agent2 will win the
conflict over target 2. Thus, agent 1 will set status[1](2) = 0,
and a complete assignment will not be possible. •

B. Time complexity forETSP ASSIGNMENT

In this section we will give an upper bound on the time
complexity for ETSP ASSIGNMENT. We will show that
when `(n) ≥ (1 + ε)rn1/d, for some ε ∈ R>0, ETSP
ASSIGNMENT is asymptotically optimal among algorithms
in the assignment-based motion class. Before doing this, let
us first comment on the lower bound when the environment
grows at a slower rate.

Remark 5.5 (̀(n) ≤ `crit cont’d): When `(n) ≤ rn1/d,
and we use the setup shown in Fig. 1, the distance between
targets is lower bounded bỳ(n)/dn1/de ≤ rn1/d/dn1/de ≤
r. Thus, agents2, . . . , n can communicate to their neigh-
bors on the target grid, and the communication graph is
connected. If the agents execute ETSP ASSIGNMENT, from
Lemma 5.2 (vi), after one communication round, agenti ∈
{2, . . . , n} will set status[i](j) = 0 for each targetj 6= 1
within distancer. Thus, afterC communication rounds,
whereC is the diameter of the communication graph, every
agenti ∈ {2, . . . , n} will have status[i](j) = 0, for all targets
j other than 1 and curr[i]. OnceC communication rounds are
complete, the next time agent1 enters a conflict, it will set
curr[1] = 1 and the assignment will be complete. This gives
an upper bound ofO(Ctmax + `(n)) for the specific setup
in Fig. 1, but it does not provide a useful lower bound on
ETSP ASSIGNMENT. •

In what follows we show that if an agent arrives and
remains at its assigned target for sufficiently long time, then
it stays there for all subsequent times.

Lemma 5.6:Considern agents executing ETSP ASSIGN-
MENT with communication ranger > 0 and assume the
time delay between communication rounds,tmax, satisfies
tmax < r/v. If there exists a timet1 and an agenti
such thatp[i](t) = curr[i] for all t ∈ [t1, t1 + tmax], then
p[i](t) = curr[i] for all t > t1 + tmax.



Proof: Consider agenti, who has been at target
curr[i] during the entire time interval[t1, t1 + tmax]. By
the definition of tmax there was a communication round
at some timet2 ∈ [t1, t1 + tmax[. Agent i must have won
any conflicts it entered during this communication round
since we have assumed thatp[i](t1 + tmax) = curr[i]. Thus
every agentk within distancer of curr[i] will have set
status[k](curr[i]) = 0. After the communication round att2,
every agentk with curr[k] = curr[i] must be a distance greater
than r from curr[i]. Since tmax < r/v, any agentk that
enters a conflict with agenti at time t > t2, will be at a
distance dist[k] ∈ ]0, r[ from curr[i]. Agent k will lose the
conflict since dist[k] > 0 = dist[i]. Thus, agenti will remain
at curr[i] for all t > t1 + tmax.
With this lemma we are now able to provide an upper bound
on the time complexity of our scheme.

Theorem 5.7 (Time complexity forETSP ASSIGNMENT):
Consider an environmentE = [0, `(n)]d, d ≥ 1. If
tmax < r/v, then ETSP ASSIGNMENT solves the
target assignment problem with time complexity in
O(n(d−1)/d`(n) + n). If, in addition, `(n) ≥ (1 + ε)rn1/d,
whereε ∈ R>0, the time complexity is inΘ(n(d−1)/d`(n)),
and ETSP ASSIGNMENT is asymptotically optimal among
algorithms in the assignment-based motion class.

Proof: Consider any initial agent positions,
p[1](0), . . . , p[n](0), and any n-tuple of target positions,
q. In the worst-case, some agent must travel around its
entire ETSP tour, losing a conflict at each of the first
n − 1 targets in the tour. By Lemma 5.6, this agent
can spend no more thantmax time units at each of the
n − 1 targets, before losing a conflict. Since each agent’s
tour is a constant factor approximation of the optimal,
the tour length isO(n(d−1)/d`(n)) (see Theorem 2.1).
The agent will not follow the ETSP tour exactly because
it will enter a conflict over each of then − 1 targets
before actually reaching the target. However, the resulting
path is no longer than the ETSP tour (since the agent
could just follow the ETSP tour exactly if that happened
to be the shortest path). Hence, the time complexity is
O(n(d−1)/d`(n) + tmax(n − 1)) ∈ O(n(d−1)/d`(n) + n).
If `(n) = (2 + ε)rn1/d, with ε ∈ R>0, we can combine
this with Theorem 4.2 to get a time complexity in
Θ(n(d−1)/d`(n)).
Notice that wheǹ (n) satisfies the bound in Theorem 5.7,
and `(n) ∈ O(n1/d), the time complexity is inO(n).

We have given complexity bounds for the case whenr and
v are fixed constants, and̀(n) grows withn. We allow the
environmentE(n) to grow withn so that, as more agents are
involved in the task, their workspace is larger. An equivalent
setup would be to consider` to be fixed, and allowr andv
to vary inversely with then. That is, we can introduce a set
of parameters,̀̃ = 1, and r̃(n) and ṽ(n) such that the time
complexity will be the same as for the parametersr, v, `(n).

Corollary 5.8 (Scaling radius and speed):Consider
n agents in the environmentE = [0, 1]d, with speed
ṽ(n) := v/`(n), and communication radius̃r(n) := r/`(n),
where `(n) ≥ (1 + ε)rn1/d, and ε ∈ R>0. Then ETSP
ASSIGNMENT solves the target assignment problem with

time complexity inΘ(n(d−1)/d`(n)).
Scaling the communication radiusr inversely with the

number of agents arises in the study of wireless networks
[12]. In wireless applications there are interference and
media access problems between agents in the network. Since
the agents are in a compact environment, the only way to
limit this interference is to scale the communication radius
inversely with the number of agents. Scaling the agent speed
inversely withn appears in the study of the vehicle routing
problem in [7]. The inverse scaling is required to avoid
collisions in the presence of traffic congestion.

C. Communication and computation complexity

In our notion of time complexity we have emphasized
the complexity due to the motion of the agents. Here we
will briefly classify the complexity of computation and
communication for ETSP ASSIGNMENT. (i) Initialization:
As reviewed in Section II-C, we can compute a constant
factor approximation ETSP tour in timeO(n2). This is
the most expensive computation and thus the complexity
of initialization is in O(n2). (ii) Communication complexity
per round: At each round agenti broadcast a message of
lengthO(log n), msg[i], and we consider this to be one unit
of communication. In the worst-case, each agent receivesn
messages, and so, the worst-case communication complexity
is in O(n) [8]. (iii) Computation complexity per round:For
each message received, agenti sets status[i](s) = 0 for s
from prev[k]+1 to next[k]−1. In the worst-case, this operation
is O(n) and must be performed forn messages. This is the
dominant computation inCOMM-RD and thus the worst-case
computation complexity in each round isO(n2).

It should be noted that in the case when the communica-
tion graph is not even connected (let alone complete as is
required to achieve these worst-case bounds), the complexity
will be considerably lower.

D. Simulations

We have simulated ETSP ASSIGNMENT in R
2 and R

3.
To compute the ETSP tour we have used theconcorde
TSP solver.2 A representative simulation for 15 agents in
[0, 100]3 ⊂ R

3 with r = 15 and v = 1 is shown in Fig.
5. The initial configuration shown in Fig. 5(a) consists of
uniformly randomly generated target and agent positions.

E. The case ofn agents andm targets

It should be noted that the ETSP ASSIGNMENTalgorithm
works without any modification when there aren agents and
m targets. Ifm ≥ n, at completion,n targets are assigned
andm−n targets are not. When,m < n, at completion, allm
targets are assigned, andn − m agents are stationary, after
losing a conflict at each of them targets. The complexity
bounds are changed as follows.

The lower bound on the assignment-based motion class
in Theorem 4.2, holds whenm ≥ n, and `(n) ≥ (1 +
ε)rm1/d (notice them instead ofn). The bound become
Ω(`(n)m−1/dn). If m = Cn whereC ∈ R≥1, (i.e., m ≥ n

2The concorde TSP solver is available for research use at
http://www.tsp.gatech.edu/concorde/index.html



(a) Initial agent and target positions. (b) Positions after 30 time units.

(c) Positions after 90 time units. (d) Complete target assignment.

Fig. 5. Simulation for 15 agents, withv = 1 andr = 15. in an environment
[0, 100]3. The targets are spheres and the agents are cubes. An edge is drawn
between two agents when they are within communication range.

but they grow at the same rate), then the bound becomes
Ω(`(n)n(d−1)/d).

The upper bound on ETSP ASSIGNMENT holds for any
n and m, and becomesO(`(n)N (d−1)/d), where N :=
min{n,m}. So our final result would be that ifm = Cn
where C ∈ R≥1 and when`(n) ≥ (1 + ε)rm1/d, then
ETSP ASSIGNMENT solves the target assignment prob-
lem in Θ(`(n)n(d−1)/d). That is, among all algorithms in
the assignment-based motion class, ETSP ASSIGNMENT is
asymptotically optimal.

VI. CONCLUSIONS

We have developed the ETSP ASSIGNMENT algorithm
for solving the full knowledge target assignment problem.
We derived worst-case asymptotic bounds on the time
complexity, and we showed that among a certain class of
algorithms, ETSP ASSIGNMENT is asymptotically optimal.
There are many possible extensions of this work. We have
not computed bounds on the time-complexity in the average
case. Also, the problem is unsolved under the consistent
knowledge assumption. It would be nice to extend the
ETSP ASSIGNMENTalgorithm to agents with nonholonomic
motion constraints. Also, it would be interesting to consider
a sensor based version of this problem, where agents acquire
target positions through local sensing. Finally, to derive
asymptotic time bounds, we made some assumptions on the
communication structure at each communication round. An
interesting avenue for future study would be to more accu-
rately address the communication issues in robotic networks.

TABLE II

COMMUNICATION ROUND (COMM-RD) FOR AGENTi.

Name: COMM-RD
Goal: Obtain information on assigned targets.
Assumes: (i) Knowledge of then-tuple q, and a method for

computing a constant factor TSP tour of then targets,
tour. (ii) A communication ranger > 0.

1: Compute dist[i] := ‖p[i] − q
[i]

curr[i]
‖.

2: Broadcast msg[i] := (prev[i], curr[i], next[i], i, dist[i]).
3: Receive msg[k], from eachk 6= i satisfying‖p[i] − p[k]‖ ≤ r.
4: for all msg[k] receiveddo
5: for s = prev[k] + 1 to next[k] − 1 (mod n) do
6: if s 6= curr[i] then
7: Set status[i](s) := 0
8: if prev[k] = next[k] = curr[k] 6= curr[i] then
9: Set status[i](curr[k]) := 0

10: if curr[i] = curr[k] then
11: if (dist[i] > dist[k]) OR (dist[i] = dist[k] AND i < k) then
12: Set status[i](curr[i]) := 0.
13: else
14: if next[i] 6= curr[i] then
15: Set status[i](next[i]) := 0.
16: if next[k] 6= curr[i] then
17: Set status[i](next[k]) := 0.
18: if status[i](j) = 0 for every targetj then
19: Exit ETSP ASSIGNMENT and stop motion.
20: else
21: while status[i](curr[i])=0 do
22: curr[i] := curr[i] + 1 (mod n).
23: Set next[i] := curr[i] + 1 (mod n).
24: while status[i](next[i])=0 do
25: next[i] := next[i] + 1 (mod n).
26: while status[i](prev[i])=0 do
27: prev[i] := prev[i] − 1 (mod n).
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