1

Control Algorithms along Relative Equilibria
of Underactuated Lagrangian Systems on Lie

Groups

Nikolaj Nordkvist Francesco Bulld

Abstract

We present novel algorithms to control underactuated mrecabsystems. For a class of invariant
systems on Lie groups, we design iterative small-amplitat@rol forces to accelerate along, decelerate
along, and stabilize relative equilibria. The technicapraach is based upon a perturbation analysis
and the design of inversion primitives and composition mdth We illustrate the algorithms on an

underactuated planar rigid body and on a satellite with twadters.

. INTRODUCTION

In this paper we study control of underactuated mechaniysems on Lie groups. We focus
on the particular class of motions called relative equgibA relative equilibrium is a motion for
which the body-fixed velocity is constant while no contraides are applied; thus when referring
to a relative equilibrium a specific body-fixed velocity isphed. Accelerating/decelerating along
a relative equilibrium means increasing/decreasing thecitg in the direction of a relative equi-
librium while the configuration behaves accordingly. We@anmtrate on the construction of small-
amplitude control forces that, when used iteratively, ltesua given acceleration/deceleration

along a relative equilibrium; stabilization is achievedzaso acceleration. Perturbation analysis
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and Lie group theory play a crucial role in the analysis. Epknsystems to which the theory
applies are a hovercraft, modeled as an underactuatedr plgithbody, and a satellite with two
thrusters.

The motivation for studying underactuated mechanicalesystis twofold. First, control al-
gorithms for underactuated systems enable more generaélotalesigns than those in fully
actuated systems, e.g., less costly designs or lightegrnkesSecond, control algorithms for
underactuated systems are applicable in the situation efcarator failure and, therefore, they
improve robustness of the control system; this robustressucial in case the vehicle is in a
hazardous environment or is hardly accessible (e.g., disgte

A vast literature is available on mechanical control systeExtensive research has focused
on underactuated mechanical systems, especially in thextoof controlled Lagrangians and
Hamiltonians, e.g., see [1], [2] and subsequent works. $omdess research is available for
controlling systems along relative equilibria; a relatpthsup problem is considered in [3], the
theory of kinematic reductions is exposed in [4]. Since tiisument builds directly upon the
work in [5] we refer the reader to that document for a literatgurvey relevant for control
algorithms for underactuated Lagrangian systems on LiaggoA generalization of the theory
in [5] to a larger class of mechanical systems can be foun@]irAn advantage of our approach
compared with implicit methods such as, e.g., the RRT seagahistic presented in [7], is that
the controls are given by closed-form expressions. Thegefmly limited computational power
is required—this is an appealing property when the contaoésto be calculated on-board and
weight and reliability are important design parameters.

As main contribution of this paper, we propose algorithmsctonpute small amplitude
control forces that speed up, slow down, or stabilize, aretanttuated system along a relative
equilibrium. The resulting algorithm amounts to a repeatescation of a motion primitive
which, in turn, is composed of two control primitives in sassion; these are denoted “inversion
primitives” as they amount to local inversion algorithms tbe “controls to state” maps. The
main advantage of the proposed approach is its applicalditsystems that are not linearly
controllable; the main limitation is that part of the resudire applicable only ta-dimensional
systems with(n — 1) controls. We mention that algorithms to control motion alaelative
equilibria are not presented in [5] which focused on congéigbrithms at velocities near zero.

This paper is organized as follows. First, we review the mahtical model of simple
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mechanical control systems on Lie groups, as described,iafpdl perform perturbation analysis
for small amplitude forcing and initial velocity close to alative equilibrium. Based on this
analysis we construct two inversion primitives and comlirem into a single motion primitive.
After an application of the motion primitive the system ha&seaerated or decelerated along
a relative equilibrium. Using this motion primitive iternaly we design an algorithm which
gives a control that results in a given acceleration/deatts along a relative equilibrium. We
illustrate the approach by applying the algorithm numdigce an underactuated planar rigid
body and the satellite with two thrusters, and we end the hgteummarizing the results in a

conclusion.

Il. MATHEMATICAL MODEL AND PERTURBATION ANALYSIS NEAR A RELATIV E

EQUILIBRIUM

A simple mechanical control system on a Lie group is a medahrgystem which has as
configuration manifold am dimensional Lie groug~, with Lie algebrag, and Lagrangian equal
to the kinetic energy which is defined by an inertia tensorg — g*. We assume that; is
a matrix Lie group with identity elemeritl and adjoint mapAd, : g — g associated to each

g € G. Such a system has dynamics given by
1€ = adfIg + ) fiui(t), 2
i=1

whereg € G is the configuration¢ € g is the body-fixed velocityad, : g — g is the adjoint
operator anchd; : g* — g its dual, f; € g* defines theth body-fixed force, and : R — R™ is
bounded and measurable and gives the resultant force orystensaccording t® " | fiu;(t).
In what follows, Y = (G, L, {fi,..., fm}) denotes this mechanical control system.

We define the symmetric produ¢t: -) : g x g — g by
(€ m) = =TI (ad{In + ad;I¢).
Defining b, :=17'f;, i € {1,...,m}, the dynamic equation (2) can be written as

¢ = —§<g:§>+2biui(t). (3)
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Remark 1 (Simplifying convention)t is well known thatg is ann-dimensional vector space.
We make no distinction betwegnandR™ in order to express a vector gas a column vector
in R™ and in order to represent a linear map @m@as a matrix. Although we make this choice
of notation, we shall be careful not to assume that the Lielalg operation is commutative.

A relative equilibriumfor X is a curvet — ggexp(t&e) € G, for go € G and e € R™, that
is a solution to the dynamics (1), (2) for zero inputlt is easy to see that— goexp(tre) IS
a relative equilibrium if and only if¢. : &) = 0. It is convenient to call relative equilibrium
both the curvet — gy exp(t&e) and the vectog,.. Given a relative equilibriung,e, we define
the linear mapAre : R” — R” by Aren := —(&re 1 7).

Remark 2 (Time scaling)tet A > 0 and 7" > 0 and definer = t/\. If (g(¢),&(t)) is a
solution fort¢ € [0,7] to (1)-(2) with controlu(t), then (¢(7/A),&(7/A)/A) is a solution for
7 € [0, \T] with control u(7/))/A?. In the following we choosé = 2 for simplicity. .

We are interested in control signalse C°([0, 27|, R™) of the form

u(t) = eu'(t) + u(t), 0<ex 1,

whereu’ € C°([0,2x],R™). Accordingly, we define)/(t) == Y bul(t), j € {1,2}. In the

1
perturbation analysis it will be convenient to define, foe C°([0, 2x],R") ando € R,

F(t) = / el fs)ds,  F(8) == T(1).

In what follows, s and = will be used as integration variables only.

Proposition 3 (Perturbation analysis).et ¥ be a mechanical control system on a Lie group
with a relative equilibriumé,e and corresponding matrid,. For0 < e < 1 ando > 0, let
0,27] 3 t — (g(t),£(t)) be the solution to (1) and (3) with— > biu; (t) = eb'(t) + €*b?(t)
and from initial velocity£(0) = o + €2£2, for £ = O(1), and initial configurationy(0) = id.

Let A(t) := g(t) - exp(—to&e) and letx(t) := log(h(t)) be the exponential coordinates bf
Then, fort € [0, 27], it holds thaté(t, ) = £°(t) + £ (t) + €2€2(t) + O(€®) with

go(t) = Ufrm
& (t) = b (1),

£(t) = el — 10T

o —0,°

DY (1) + 027 (2),
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andz(t,e) = ex!(t) + e22%(t) + O(e?) with

(s))(2),
72(8) = Aduaplaoge) (€77E) () — FAdupiaot (7 517) (5))(8)

(2

+ Adexrﬁ(saﬁre) (b_2 (5))(t) - %[AdeXp(saﬁre) (EU(S))a AdeXP(TOfre) (b_l

(%

xl(t) = AdeXP(Saére) (ﬁ

(2

(T)()](2)-
Proof: Since the input is analytic ia so is the solutiorg(t) = jjg e/&1(t). Inserting the
expansions fog into equation (3) and collecting terms of same order we cdepu
€ =38 &= )b,
& =—(": &%) -3 ) +07(1).
Inserting the initial condition then gives

(%

go(t) = 0&re, fl(t) =br (t),
62@) _ €aArEt£g o %<€1 . £1>U(t) +b_20(t)
= et _ LG 50 (1) 4+ 07 (1),

Sinceg is a solution to the kinematic equation (1), it follows that

h=g-exp(—to&e) — g exp(—tote) - e =g - & - exp(—toe) — h - 0&e
=h- (exp(ta{re) & eXP(—thre) - Ufre) =h- (Adexp(tafre) (5) - Ugre)

=h- (Adexr)(taére) (Ugre + 551 + 5252 + 0(63)) - Ufre) =h- AdBXP(taére)(€€1 + 6262 + 0(63))-

If we define((t) := Adexp(ioe) (€61 + €262 + O(e*)), then we have, according to [8], that

z(t) = ¢(t) — 51¢, J(t) + O(e). (4)

Using z = ex! + €22* + O(€*) we achieve the result on' and z? by inserting the expression

for ¢ into equation (4). [ |

I11. DESIGN: LOCAL INVERSION PRIMITIVES

In this section we construct two open-loop control prinewvhich act as inversion primitives.
Later these will be combined into a single motion primitiveigh, in turn, will be used iteratively

in a control algorithm.
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For a mechanical control system = (G,I,{fi,..., fn}) with relative equilibrium¢. and
corresponding matrixd,, we present the following assumptions. First, we make thadhg
assumption that,e ¢ span{by,...,b,}, otherwise the theory of kinematic reductions [4] is
readily applicable and the control problems we consideowedre trivial.

Assumption 1 (Lack of linear controllability)The subspacepan{b, ..., b,,} is invariant un-
der the linear mapi,, that is, (e : b;) € span{b,...,b,}, fori e {1,...,m}.

Assumption 2 (Nonlinear controllability)The subspacepan{b;, (b; : b;) | i,7 € {1,...,m}}
is full rank and(b; : b;) € span{by,...,b,}, fori e {1,...,m}.

Assumption 3:({e : (b @ bg)) € span{by, ..., by}, for j,k € {1,...,m} andj # k.

Assumption 4:The subspacepan{bi, ..., b} is invariant under the linear magl,,..
Assumption 2 is the same controllability assumption adbpie[5]. If we define the matrix
B = [by,...,b,] € R™™, then Assumption 1 is equivalent to the existence of a maprix
R™™ such thatd,.B = BQ, and in turne‘eB = Be®. Similarly, Assumption 4 is equivalent
to the existence of a matrix/ € R™*™ such thatad, B = BM.

Given @ € R™ ™, defineFy, : C°([0, 27], R™) — {f € C'([0,2x],R™) | f(0) =0} by

Folu](t) ::/0 e@=9y(s)ds.

Lemma 4 (Transformation of controlsfhe mapFy, is invertible and its inverse is given as
follows: if w = Fglul, thenu(t) = —Quw(t) + w(t). Additionally, as in Assumption 1, letl,
B andQ satisfy AeB = BQ. If uw € C°(]0,27],R™) andw = F,g[u], 0 € R, then

Bu’ (t) = Buw(t).

Proof: One-to-one correspondence betweemduw is readily checked. We compulew” () =
t

t
/ e et=%) Byy(s)ds = B/ e?QU=)y(s)ds = Bu(t). [ |
0 0
Definition 5 (Convenient forcing frequenciesjake » = [X]. For (i,h) € {1,...,m} x
{1,...,r}, select numbers;, in the se{0, ..., rm~+3m(m—1)} as follows:

1 V:=0;Z:={1,...,rm+3m(m—1)}
2. for he {1,...,r} andfor i € {1,...,m} do
2

w

w:=min(Z); v := Adexp(sote)bi sin(ws)ds

0
if v €span(V) then vy =0 €ése oy, ' =w; Z =7\ {w}; V:=VU{v} end if
5. end for

&
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Define then x rm matrix
2w
Ao 1= /Adexp(sagre)(B[diag(sin(ans), o sin(@n8)), ..., diag(sin(ag,s), . . ., sin(@y,s))])ds.
0

Next, for (i, 7) € {1,...,m}?, select numberg;; as follows: for: < j take 3;; € {1,...,rm+
sm(m — 1)} \ {own e, .mix 1, @l having distinct values, for > j take §;; = (;;, and
for i = j take 3;; = 0.

Remark 6:1n other words, the numbers;; are selected sequentially in such a way as to
maximize the rank of4, .. Note that, fori, j,k,l € {1,...,m} andh € {1,...,r}, we have:
(i) all nonzeroay;, are distinct, (ii) all nonzeray;, are distinct from all nonzerg,,, and (iii)
Bi; = B it and only if (i,7) = (k,1) or (i,j) = (I, k). o

Remark 7:The computations required by Definition 5 include checkimat &a vector belongs
to a subspace. In practical numerical implementations sufficient to verify this condition up
to a specified tolerance. It is convenient to choose thigdolee comparable with the accuracy
of the control algorithms. °

For Z € R™*™ define A : R™*™ — R™*™ py

sign(ZVIZnl, i<k
Ais(Z) = 40, j=k,
VN2, j>k
We are now able to obtain the following result.
Proposition 8 gpeed_inversion inversion primitive): Let X2 be a mechanical control system
on a Lie group with a relative equilibriung,. and corresponding matrixl,. and satisfying
Assumptions 1, 2 and 3. L& € R™*™ satisfy A.B = B(Q. Letn € R", o € R, and compute

z € R™andZ € R™*™ as the pseudoinverse solution to

W—Zzzb—zz Z =0 for j > k.

J=1 k=j+1
Givenr, o, Ay, andﬁ as in Definition 5, let

Z)\]k sin(Bj,t), je{l,...,m},
and lety = (Y11, .-, Ym1s - - s Yirs - - - » Ymr )L D€ the unique solution to
Ao,a'Y = _Adexp(soﬁre)(By(5>>(27">7

Yin =0 if «ay, =0 for (i,h) €{1,..., m} x{1,...,r}.

(5)
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Additionally, if we take

wgl'(t) :yj(t>+27jl5in(ajlt)v J € {17""m}7
=1

ul(t) = Fglw')(t),  u’(t) = 5,e"% ) (x + 2),

wherey € R™ is the unique solution to

B=% Z/ A=) _ Ty (s (s)ds (b - by

=1 k=j+1
: m 2w "
are27rs 1 2 i b)Y, 6
>/ (w!())%ds (b : ), (6)

=1

+

N[

thend!(t) = Bu'(t) andb?(t) = Bu?(t) satisfy
_%<ﬁg : ﬁa>g(27r) - ﬁo(%r) =1, (7

Adexp(sote) (07 () (2) = 0. (8)

We call this inversion primitivespeed_inversion(o,n) = (b'(t), b*(t)).
Proof: Existence and uniqueness of the solution to (6) is a conseguef Assumptions 3

and 2. Regarding existence and uniqueness of the solutidh),t@éfinition 5 ensures that

Adexp(soge) (By(s))(2m) € Image(Ao.a).

Since every nonzero column 4, , contributes to the rank o, ,, the entries ofy corresponding
to these will be unique. The remainingvalues are defined to be 0.

Regarding the proof of equation (8), direct calculationsnstizat

Adexp(sog) (01 (5))(27) = Adexp(sote) (Bwl(5))(27) = Asay + Adexp(soee) (By(s)) (27) = 0.

Regarding the proof of equation (7), from Lemma 4 we compute

m

® () = O _w) Z wi (1))

7j=1

— Z Z )(b; : bi) + Z(w}(t)f(bi:bi).
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Since all nonzerax-values are distinct and are distinct from thesalues we have foj < k

2m o
/0 Z)m )Akg(Z /0 sin(5;:t) sin(Bx,t)dt

l,qg=1

= Z /\]l )\Icq 5ﬁ 71' = /\]k(Z))\k](Z)ﬂ' = ij.
l,g=1
By straightforward calculations we then obtain

117 b7 (2m) 4 027 (2m)
27

27
/ 7 A=) (517 - 1% (5)ds + B / 7T (5)ds
0 0

DN | —

m—1 m o
Z Z (/ wy(s)ds(b; : by) + / (e Ar(2m=s) _ Iwj (s)wy(s)ds(b; : bk>)
j=1 k=j+1 “0 0
%Z/{; UAre(27r s)( ( ))2d8<b b> Z(Xz‘f‘zz)bl

J=l1 i=1
m—1 m m

Z ij b D hy) + Zzibi =

J=1 k=j+1 i=1

Remark 9:From the proof of Proposition 8 we see that Definition 5 enstinat

x1(27r) = Adexp(sote) (b_la(s))(%r) =0,

after an application ofpeed_inversion. Thus, using the controls given lepeed_inversion

the deviation in the configuration from the relative equilin is of orderO(e?). o

Proposition 10 ¢onfiguration inversion inversion primitive): Let > be a mechanical con-
trol system on a Lie group with a relative equilibriugp and corresponding matrid,. and
satisfying Assumptions 1 and 4. L&, M € R™*™ satisfy A.B = BQ andad¢ B = BM. If
weR” oeRand

u'(t) = Fo[w’](t), w(t) = te” M psin®(t),
thend!(t) = Bul(t) andb?(t) = Bu?(t) satisfy

b o) (21) + 02 (2m) = 0,

_ % < bl
Adexp(sote) (B (5))(27) = By,
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10

We denote this inversion primitivenfiguration_inversion(o, i) = (b'(t),b%(t)) = (0,%(t)).

Proof: For b'(t) = 0 we have, using Lemma 4 and?(t) = Le~7usin®(¢) , that

LT B (21) + 52 (2m) = B2 (27) = Buw?(2m) = 0.

1
2

Using Assumption 4 and Lemma 4 we compute

Adexp(onge) (7 (5))(27) = exp(soade,) (Bw?(s))(2r) = Bemow?(s)(2r)

= L Busin?(s)(27) = Bp.

o

IV. DESIGN: GLOBAL MOTION ALGORITHMS

In this section we combine the two inversion primitives doamnsted in the previous section
into a single motion primitive used iteratively in a contadgorithm to achieve speeding up or
slowing down along a relative equilibrium.

The algorithm presented in this section requires the faligwadditional assumption.

Assumption 5:The n dimensional systenx. hasn — 1 control forces, that is;m =n — 1.

Remark 11:Assumption 5 together with the standing assumpgier span{b, ..., b, } im-
pliesR"™ = span{by, ..., by, &e}. Additionally, one can verify that Assumptions 5 and 1 tbget
imply Assumption 3. Assumption 4, which is needed for Prajms 10, can be weakened to
assuming thagpan{bi, ..., b, e} is invariant underd,,, a condition which is automatically
satisfied under Assumption 5 and the standing assumptien[9%e °
Define the projection operatof®s; : R" — R™ and P, : R" — R" by

Peo(v) == (V- &re) e, Pp =1id — Ps,.
where - is the dot product inR" defined by requiring{b, ..., b, &e} to be an orthonormal
basis. Notice that, under Assumption 4, these projecticgraiprs commute withad,. This
allows us to construct the following motion primitive.

Proposition 12 ¢hange speed motion primitive): Let ¥ be a mechanical control system on
a Lie group with a relative equilibriurge and corresponding matriX,. and satisfying Assump-
tions 1, 2, 4, and 5. Fab < ¢ < 1, assume that

9(0) = go exp(€*Verrar),

5(0) = 0&re + €2§error7
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11
for somegy € G, 0 € R, Verror, Eerror € R™ With verror = O(1) and&enor = O(1). If we takep € R
and
speed_inversion(a, pe — 2™ elo),  t € [0, 27,

(b'(1), b°(t)) =

configuration_inversion(o, u), t € [2m,47],
Bt = —Adep(—2r06)PB (uerror+ élog (9(0)~"g(2m) exp(—merJ))a
then we obtain
g(47) = g5 exP(Vor),
£(4m) = (0 + €p)ére + EE 0

for Someygrrorv gérror € R" with Pﬁre(V;rI‘OI’) = 0(1)’ ,PB(V;rror) = O(E)’ gérror = 0(6) and for

gg = go eXp ((471-0- + 27T62p)£re + E2P£re<]/error)> .
We denote this control map UYJS, Varron 0 + EQPa férror) = Change_speed(gg, Verror, T Serror, p)-
Proof: Using Propositions 3 and 8 we compute

£(2m) = 0&re + € (egAre%gerror"‘ Pére — eUAre27r£error) + 0(63) = (0 + ,062)§re + (9(63),

and from this, Propositions 3 and 10 we ha\@nr) = (o + pe®)&e + O(€®). Define go1/2 =
goexp ((2m0 + €20)&e), Vére := Pee(Verror), @aNdvp := Pp(venor), then we achieve using Propo-
sition 3 and the Campbell-Baker-Hausdorff formula
901,29(2m) = exp (= (210 + €D)&re) gy ' 9(0) exp(e”2?(27) + O(€7)) exp(2m0ére)
— xp ( — (270 + €7)&re) exp(€X (e + Vi) exp(e2a(27) + O(€)) exp(2matye)
= exp(—2m0&e) exp(e’vp + O(e')) exp(e®2?(27) + O(€%)) exp(2m0&re)

= exp (Adusp(2r05) (v + 2°(27)) + O(")).
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change speed

—ﬂ+

measur

t € 0,2m) ‘
.

measur

speed_inversion

t € [2m,4m)

configuration_inversion

12

Fig. 1. Diagram of theechange speed motion primitive. The first measurement, of configuration and velocity, the second

measurement, of configuration alone, are represented by the blatdscir

Using this, Propositions 3, 8, 10, and the Campbell-Bakersdarif formula we obtain

g(4m) = g(27) exp(e2Bu + O(€*)) exp (2#(0 + €2p)§re)

= ggexp (—2m(o + ezp)fre)gﬁpg(%r) exp(e’Bu + O(€%)) exp (2m(0 + €2p)&re)

= 90 exXp | € Adexp( 27 (o+€2p)ére) (Adexp (—27motre) (VB +x (27’(’)) + B,u) + 0(53))

G
(62 Qexp(~2n(o-+20)¢re) (Adexp(-2mogie) Pee (77(27))) +O(63)>
o (¢

"Peo(@?(2m)) + O(c")).

We illustrate the motion primitivehange speed in Fig. 1. With this motion primitive we are

now able to construct the following control algorithm thaeeds up, slows down, or stabilizes,

a system along a relative equilibrium.

Proposition 13 §peed_control algorithm): Let ¥ be a mechanical control system on a

Lie group with a relative equilibriunt, and corresponding matrixd,e. Assume. satisfies

Assumptions 1, 2, 4, and 5 and talke< ¢ < 1. Let ¢(0), go, Verror, 7, &error, p b€ @S in Proposition
12 and let/V € N.
Define the algorithnigy, vzon 0+€2N p, Eror) = SPeed_control(go, Veror, 0, error, £, N) DY

1 go,1 ‘= go; Verror,l ‘= Verron 01 = 0, ferror,l = &erron

2. for ke {1,...,

N} do

3: (90,k+1; Verrork+15 Ok+1, ferror,k—i-l) = Change_Speed(go,m Verrorks Ok, gerror,ka p)

4: end for

5: gy = Jo,N+1;
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13
The final configuration and velocity after the execution o$ thigorithm are

g(N47T) = gS eXp(EZV;rror)>
f(N47T) = (U + €2Np)§re + 62§erorv

Whereygrror’ ggrror € R", ,PEre(V;rror) - O(l)! ,PB(V;rror) - O<€)' ggrror: O(E)' and
N
9o = go exp ((UTfinal + %pgNT}inaI) Sre + ¢ Z P&re(yel’foﬂk)> :
k=1

Proof: From Proposition 12 we have, = o + (k — 1)pe®> so we immediately obtain
E(N4T) = onpie+ O(e3) = (0 + €N p)&e + O(e®). From Proposition 12 we hawg N4r) =

9% eXp(EQVgrror) where

N
gE)k = Jo (H €xXp <27T(20k + PEQ)gre + E27D§re(’/error,l~c)>)
N
—_= go eXp Z (27}’(20‘]@ + p€2)€re + 627D£re(]/err0r’k)>>

N
=goexp | 2r N (20 + Np€2) Ere + € Z Psre(Verror,k)>
k=1

N
= Jo €Xp (UTfinaI + %/KQNTﬁnaI) Sre + e Z Pgre(yerror,k)) .
k=1

From Proposition 12, its proof, and Proposition 3, we haw thange speed gives the map
(&errorks P (Verrork), ) — (Serrork+1, P (Verrorkt1), o + €2p) independent ofy, and P, (Verrork)-
Because(&erork, P (Verrork)) = O(1) gives (Serorkt1, Po(Verrork+1)) = O(e) we obtain that
P (Verrork) = O(€, k) = O(€), Pee(Verrork) = O(1, k) = O(1), and&errory = O(e, k) = O(e). M

Note thatp > 0 speeds up the system along the relative equilibripms 0 slows down
the system, angp = 0 stabilizes the system’s motion along the relative equiitr We may
selectN = O(%) in Proposition 13 so that the absolute change in velocitngithe relative
equilibrium is of orderO(1). Thus, it is possible to use the algorithipeed_control to change
the velocity along the relative equilibrium from a given walto another independent af

In summary, the algorithmpeed_control consists of the repeated use of thienge speed
motion primitive which, in turn, invokes the two inversiomirpitives speed_inversion and

configuration inversion in succession.
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Fig. 2. The planar rigid body with two forces applied at a point a distanéem the center of mass CMs denotes an
inertial reference framg#, x, y) are coordinates for the configuration of the body. The body referéiame (not depicted) is

aligned with the direction of application gfi and f-.

V. EXAMPLES

The usefulness of the theory is illustrated in the followsgmples.

Example 14 (Planar rigid body)Consider a rigid body moving in the plane as described
in [5]. The configuration manifold i&x = SE(2) with local coordinatesd, z,y). Let m denote
the mass of the body] its moment of inertia and the distance from the center of mass to the
control forces. Fofw,v;,v5)" € R* we have that the adjoint operator is given dy

0 0 O . . . .
[ v2 0 —w]. The inertia tensor has the representatios diag(./, m,m). With controls as in

—v1 w

w,orw2)T =

Fig. 2 we haveh; = Le, andby, = —2e; + Les, which gives(b; : by) = 0, (by : by) = e,
and (b, : by) = —%63. Assumption 2 is immediately seen to be satisfied. Choosiegdlative

equilibrium &e = e3 we haveA, = adg, = [gg%} so Assumptions 3 and 4 are met. It is
straightforward to calculate that.B = BQ, with Q = —22[9 1], so Assumption 1 is satisfied.

The ~-values can be calculated using Definition 5 todg = a3 = ag = 0, as; = 1,
Y1 = Y12 = Y22 = 0, ande; = —an1 91 (Z)/ 5, where € {2,3,4,5}. Finally, the components
of x are found to bey; = Th(X\a1(Z)? +12,)/J and x, = 0.

Assumption 5 is immediately seen to be satisfied, so all teemaptions are met, and therefore
we can apply thespeed_control algorithm to speed up the system along The result of the
speed_control algorithm applied to the planar rigid body can be seen in Big.

Example 15 (Satellite with two thrustersonsider a satellite with two thrusters aligned with
the first and second principal axes. The configuration mihifoG = SO(3) and the equations

of motion are of the form (1) and (3) where the symmetric patds given by (¢ : n) =
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Fig. 3. speed_control applied to the planar rigid body withe = e3, ¢ = 0.1, and p = 2 and with initial conditions
(0,2,y)(0) = 0, go = g(0), and (w,v1,v2)(0) = 0. The dotted curve in the left figure corresponds to the motion of the
center of mass and the ellipses corresponds to the planar body at timdéstt instances. In the right figure the dashed curve

corresponds ta, (¢) and the solid curve corresponds(t).

I (¢ x (In) +n x (I€)), wherel = diag(J;, J», J3), J; being the moment of inertia along the
ith principal axis, andx is the cross product. We have that : e3) = 0, SO e; is a relative

equilibrium, and sincé, = Jilel andb, = }262 it is not possible to directly control the motion in

thee; direction. Withé,e = e; we computed,e = [agl a§2 §} wherea,, = ‘bj;l"S andas, = "SJ;Z;’I
. . . 0o 27 .
It is straightforward to calculate thad,eB = BQ, with Q) = [Jg,Jl J02 ] so Assumption 1
J3

is satisfied. Fromb; : b)) = (by : by) = 0 and (b, : by) = f;;]‘]geg we see that Assumption 2

is fulfilled if J, # J,. Assumption 3 is satisfied becaugg : (b, : b)) = 2771 (e5 : e3) = 0.

J1J2J3

Sincead:n = £ x n we see that also Assumption 4 is satisfied. Assumption 5 iseidnately
seen to be met. Thus, if; # J; in a satellite with thrusters along the first and second pguaic
axis, then the theory presented in this paper can be usectéal sp the satellite along the third
(un-actuated) principal axis. The result of tfiged control algorithm applied to this example

can be seen in Fig. 4.

VI. CONCLUSION

In this note we have designed a motion control algorithmasilét for a class of invariant
mechanical systems on Lie groups. Using small-amplituaérobforces the algorithm solves the
tasks of accelerating along, decelerating along, andltalyi relative equilibria. The algorithm

has been applied numerically to two example systems tariditesthe theory.
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0 50 100 0 50 100

Fig. 4. speed_control applied to the satellite with two thrusters wigh = e3, e = 0.1, andp = 1 and with initial conditions
£(0) = (0,0,0.2) andgo = ¢(0). In the right figure the dashed curve correspondsitf) and the solid curve corresponds to
U2 (t)
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