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Abstract—In this paper we study minimum-time motion plan- design of the TSP for the Dubins vehicle; we shall refer to
ning and routing problems for the Dubins vehicle, i.e., a non- this problem as to the Dubins TSP (DTSP).
holonomic vehicle that is constrained to move along planar paths A practical motivation to study the DTSP arises naturally in

of bounded curvature, without reversing direction. Motivated by . . . - . N
autonomous aerial vehicle applications, we consider the Traveling "0P0tics and Uninhabited Aerial Vehicles (UAVs) applicas.

Salesperson Problem for the Dubins vehicle (DTSP): givem We envision applying DTSP algorithms to the setting of a
points on a plane, what is the shortest Dubins tour through UAV monitoring a collection of spatially distributed pombf
these points and what is its length? First, we show that the interest. In one scenario, the location of the points ofrage
worst-case length of such a tour grows linearly withn and we might be known and static. Additionally, UAV applications

propose a novel algorithm with performance within a constant . . . .
factor of the optimum for the worst-case point sets. In doing motivate the study of the Dynamic Traveling Repairperson

this, we also obtain an upper bound on the optimal length in the Problem (DTRP), in which the UAV is required to visit a
classical point-to-point problem. Second, we study a stochastic dynamically changing set of targets. Such problems are exam

version of the DTSP where then targets are randomly and ples of distributed task allocation problems and are ctigren
independently sampled from a uniform distribution. We show generating much interest; e.g., [4] discusses complesityes

that the expected length of such a tour is of order at least?/? - ; .
and we propose a novel algorithm yielding a solution with length related to UAVs assignments problems, [S] considers Dubins

of order n2/3 with probability one. Third and finally, we study ~ Vehicles keeping under surveillance multiple mobile tesge
a dynamic version of the DTSP: given a stochastic process that [6] considers missions with dynamic threats; other relevan
generates target points, is there a policy that guarantees thahe  works include [7], [8], [9], [10].

number of unvisited points does not diverge over time? If such The literature on the Dubins vehicle is very rich and

stable policies exist, what is the minimum expected time that a includes contributions from researchers in multiple gitioes
newly generated target waits before being visited by the vehicle? p :

We propose a novel stabilizing algorithms such that the expected The minimum-time point-to-point path planning problemhwit
wait time is provably within a constant factor from the optimum.  bounded curvature was originally introduced by Markov [11]

and a first solution was given by Dubins [12]. Modern
treatments on point-to-point planning exploit the Porgiga
Minimum Principle [13], carefully account for symmetries
. _ _in the problem [14], and consider environments with ob-
In this paper we study a novel class of optimal motiostacles [15]. The Dubins vehicle is commonly accepted as
planning problems for a nonholonomic vehicle required tg reasonably accurate kinematic model for aircraft motion
visit collections of points in the plane, where the vehide iplanning problems, e.g., see [16], and its study is included
said tovisit a region in the plane if the vehicle goes to thah recent texts [17], [18].
region and passes through it. This class of problem has tworhe TSP and its variations continue to attract great interes
main ingredients. First, the robot model is the so-callediBsi from a wide range of fields, including operations research,
vehicle, namely, a nonholonomic vehicle that is consti@ingnathematics and computer science. Tight bounds on the
to move along paths of bounded curvature without reversiagymptotic dependence of the ETSP on the number of targets
dwecuon._Second, the obj_ectlve is to find the s_hortest fa@th are given in the early work [19] and in the survey [20]. Exact
such vehicle through a given set of target points. Except f@igorithms, heuristics as well as polynomial-time cortstan
the nqnholonom|c constraint, this task is qkln tolthe ctassactor approximation algorithms are available for the Eu-
Traveling Salesperson Problem (TSP) and in particular €o thlidean TSP, see [21], [22], [23]. A variation of the TSP with
Euclidean TSP (ETSP), in which the shortest path betwegptential robotic applications is the angular-metric peot
any two target locations is a straight segment. In summagtudied in [24]. The DTRP (without nonholonomic constrajnt
the focus of this paper is the analysis and the algorithmjgas introduced in [25]. However, as with the TSP, the study
: . . " of the DTRP in context of the Dubins vehicle has eluded
To appear in the IEEE Transactions on Automatic Control. Meission: attention from the research communitv. Einally. it i th
January 13, 2008. Preliminary versions of this work appeasedonference i ) - y. Finally, 1t 1s wor
papers in [1], [2], [3]. remarking that, unlike other variations of the TSP, theeerar
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based on the solution to the ETSP o¥&and on an alternating  |l. PROBLEM SETUP. FROM THE EUCLIDEAN TO THE
heuristic to assign target orientations at each target p®oirs DUBINS TRAVELING SALESPERSONPROBLEM
for a certain class of point sets. As an intermediate step dRq review some basic required notation.Dbins vehicle
the analysis of the algorithm, we provide an upper bound 5 planar vehicle that is constrained to move along paths
on the point-to-point minimum length of Dubins optimabf pounded curvature, without reversing direction and with
paths. Second, we propose an algorithm for the stochagfigunded speed. Accordingly, we definteasible curve for the
DTSP, called the RCURSIVE BEAD-TILING ALGORITHM. Dpypins vehicleor a Dubins path as a curvey : [0, 7] — R?
This algorithm is based on a geometric tiling of the plangnat is twice differentiable almost everywhere, and suet th
the vehicle to visit targets from each tile. Thee®RSIVE where p > 0 is the minimum turning radius. We also let
BEAD-TILING ALGORITHM is the first algorithm providing a Length(y) = fT |7/ (£)||d¢ be the length of a differentiable

: . . 0
provable constant-factor approximation to the DTSP Orjt'méurvey . [0, 7] — R2. We represent the vehicle configuration

solution with prqbability one. Third, we propose an algamit by the triplet(z, y, v) € SE(2), where(z, y) are the Cartesian
for the DTRP in the heavy load case, called th€AB- yqrdinates of the vehicle andis its heading.

TILING ALGORITHM, based on a fixed-resolution version of | ot p = {5, ... p,} be a set ofn points in a compact
the RECURSIVE BEAD-TILING ALGORITHM. We show that region O C R? and P, be the collection of all point sets
the performance guarantees for the stochastic DTSP ttansla Q with cardinalityn. Let ETSP(P) denote the cost of
into stability guarantees for the performance of the DTRP fgne Eyclidean TSP ove?, i.e., the length of the shortest closed
the Dubins vehicle in heavy load case. Specifically, we Shod!’ath through all points iwP. Correspondingly, leDTSP,(P)
that the performance of BAD-TILING ALGORITHM is within  jenote the cost of the Dubins TSP overi.e., the length of
a constant factor from the theoretical optimum. the shortest closed Dubins path through all pointsinwith
. L ) o _ minimum turning radiugp.

To clarify the contributions of this paper, it is worthwhile  The key objective of this paper is the design of an algorithm
to compare our results w!th the ones existing in the I|te@tu that provides a provably good approximation to the optimal
While the problem of flying an aircraft through way-pointsojytion of the Dubins TSP. To establish what a “good ap-
is a very standard problem in aeronautics (e.g., see [28], [Broximation” might be, let us recall what is known about the

[27]), the formal study of the Dubins TSP (algorithmic angtsp. First, given a compact sé there exists [20] a finite
performance bounds) was introduced in our early work ﬁvlonstanta(Q) such that, for allP € P,,,

where a constant-factor approximation algorithm for worst
case point sets for the DTSP was proposed. Subsequently, ETSP(P) < a(Q)v/n. 1)

similar versions of this problem were also considered inf [2& s ypper bound is constructive in the sense that theré exis
and [7]. A3|mpl|f'|ed version of the problem for ad'ﬁer?”nb“algorithms that generate closed paths through the pdints
closely related kind of vehicle, the Reeds-Shepp vehicls Wyt |ength of ordery/n [20]. In the stochastic case, where

considered in [29]. In [2], we introduced the stochastic PTSye ;, hoints in P are independently chosen from a distribution
and gave the first algorithm yielding, with high probablhty(p with compact suppor® ¢ R2, the following deterministic
a solution with a cost upper bounded by a strictly sub-linegg,it holds [19]:

function of the number of target points. Specifically, it was ETSP(P)
shown that the lower bound on the stochastic DTSP was ofin, —— 7 — ﬁ/ V@(q) dg, with probability 1,
order n?/3 and that our algorithm performed asymptotically*—+> vn Q
within a (logn)'/? factor to this lower bound with high prob- where@ is a probability density function corresponding to the
ability. This result was improved in [30] with an algorithrorf absolutely continuous part af, and 3 is a constant, which
the stochastic DTSP that asymptotically performs withig arhas been evaluated @s= 0.71240.0001, e.g., see [31]. The
e(n) factor of the optimal with high probability, whee¢n) —  fact that the dependence of the ETSP is sub-linearimvery
+00 asn — +oo. In [3] we designed the first algorithm thatimportant in the study of the DTRP, i.e., the problem in which
asymptotically achieves a constant factor approximatotiné the point setP is not given a priori, but is generated over time
stochastic DTSP with high probability. Based on our earlidry a point process; see Section V.
works, this paper presents a comprehensive treatment of thélotivated by the results available in the Euclidean cags, th
worst-case DTSP, the DTSP in the stochastic setting, and treper shows that the DTSP grows withfor the worst-case
DTRP. point sets and wit?/3 in the stochastic case (as both lower
and upper bounds) with probability one. Additionally, this
The paper is organized as follows. Section Il containsaper proposes novel algorithms for the DTSP in the worst-
the problem formulation. The worst-case DTSP is treated @ase and stochastic settings, whose performances ar@ withi
Section Ill. Section IV contains the treatment of the DTSPonstant factor of the optimal solution in the asymptotiaiti
for the stochastic setting. Section V contains the treatmeasn — +oo. Finally, this paper uses these results to introduce
of the dynamic version of the DTSP, namely the DTRP. Wihe first stabilizing policy for the Dubins DTRP.
conclude with a few remarks about future work in Section VI. We conclude this section with some notation that is the
Some proofs are presented in the appendix. standard concise way to state asymptotic properties.fFpr



N — R, we say thatf € O(g) (respectively,f € Q(g)) if
there existNy € N andk € R, such that|f(N)| < k|g(N)|
for all N > N, (respectively, f(N)| > k|g(N)| for all N >
No). If f € O(g) and f € Q(g), then we use the notation
f € ©(g). Finally, we say thatf € o(g) asN — +oo if
limy_ 400 f(N)/g(N) = 0 or, for functionsf,g : R — R,
we say thatf € o(g) asx — 0 if lim,_o f(x)/g(x) = 0.

IIl. THEDTSPIN THE WORST CASE

Here we study the DTSP for worst-case point siis.e.,
when the pointsP are chosen in an adversarial fashion.

A. Lower bound

We first give a lower bound oDTSP,(P) for the worst-
case point sets. Given any point gete P,, with n > 2 and
p > 0, it is immediate to see thdTSP,(P) > ETSP(P).
This bound is improved in the following theorem, whose pro
is reported in the appendix.

Theorem 3.1: (Worst-case lower bound on the TSP for t
Dubins vehicle)Given p > 0, there exists a point sét € P,,,

n > 2, such that

DTSP,(P) > ETSP(P) + 2 EJ p.

Remark 3.2:Theorem 3.1 implies that, foP € P,, and in
the worst caseDTSP,(P) € Q(n). O

B. The Alternating Algorithm

Here we propose a novel algorithm, thel&ARNATING
ALGORITHM, that approximates the solution of the DTS

The underlying principle of the algorithm is the following

observation: since the optimal Dubins path between
configurations has been characterized in [12], a solution

the DTSP consists of (i) determining the order in which the’

Dubins vehicle visits the given set of points, and (ii) assig

headings for the Dubins vehicle at the points. The aIgorithnF0

builds on the knowledge of the optimal solution of the ETS

for the same point set, and provides a sub-optimal DTSP tour. F1(v)) =1 + sin

The ALTERNATING ALGORITHM works as follows. Com-

pute an optimal ETSP tour aP and label the edges on the
tour in order with consecutive integers. A DTSP tour can be

constructed by retaining all odd-numbered (except tHe)

edges, and replacing all even-numbered edges with minimum- F»(¢)) =27 — ¢ + 4 cos ™! (

length Dubins paths preserving the point ordering. In oth
words, the algorithm consists of the following steps:
@) set(ai,...,ay,):= optimal ETSP ordering of
(i) set; := orientation of segment from; to a,
(iiiy for i €{2,...,n—1}, do
if 7 is even, then set); := ;_1, else sety; :
orientation of segment from; to a;;
(iv) if n is even, then set), := ,_1, else sety, :
orientation of segment from,, to a;
(v) return the sequence of
{(aivwi)}ie{l,...,n}-
We illustrate the output of the AERNATING ALGORITHM in
Figure 1.

9

tVrBubins path from

Fig. 1.  An application of the ATERNATING ALGORITHM. Left figure: a
graph representing the solution of ETSP over a givenRight figure: a
graph representing the solution given by theTARNATING ALGORITHM on
P where the alternate segments of ETSP are retained.

C. Analysis of the algorithm

In this section we analyze the performance of ther#r-
ATING ALGORITHM to obtain an upper bound awT'SP,(P)
nd then show that the algorithm performs within a constant
factor of the optimal for the worst-case point sets. To abgai
I['J%per bound on the length of the path traversed by the Dubins
vehicle while executing the IYERNATING ALGORITHM, we

first obtain an upper bound on the optimal point-to-point
problem for the Dubins vehicle.

Problem 3.3: Given an initial configuration
(Tinitial » Yinitial » Yinitial) and a final configuration
(Zfinal, Ysinal, Vfinal), find an upper bound on the length
of the shortest Dubins path going from initial to final
configuration. |

To tackle this problem, we introduce some prelimi-

gary definitions. Without loss of generality, we assume

(Tinitial , Yinitial» Yinitit) = (0,0,0). Let C, : SE(2) — Ry
associate to a configuratidm, y, ¢) the length of the shortest
(0,0,0) to (x,y,). Define Fy : 10, 7| x
w[— 0, 7], Fy : ]0,7[ — R and F; : ]0, 7] — R by

sin(¢/2) — 2sin(y/2 — 6) )

cos(¥/2) + 2cos(1p/2 — 0)
Fo(y,¢/2 —a(w»)

(¢,0) =2tan~! (

(

P

2
_q sin((y — Fo(v, 9/2 — a(¥)))/2)
+4cos™! ( 0 9 )7
(2)
sin(1)/2)
m =) ©
o sin(v)/2)

where (1)) 7/2 — cos™!(Z=54=). The proof of the
following result is postponed to the appendix.

Theorem 3.4 (Upper bound on optimal point-to-point length)
For ¢ € [0, 27, (x,y) € R?, andp > 0,

Cﬂ(‘rvyv/w) S V x2 + y2 + K’ﬂ—pv
[2.657,2.658)

where & € is defined by «

configurations; max{ Fz(7), supsejo ( min{ F1 (), Fa(¢)}}.

It is a conjecture that = 7/3; we provide some numerical
evidence in Appendix D. Next, we leLaa ,(P) denote
the length of Dubins path as given by theL’ERNATING



ALGORITHM for a point setP. The following lemma es- Proof: The first statement follows from the simple fact
tablishes bounds on the performance of theTBRNATING that Laa ,(P) > DTSP,(P), and from the results in

ALGORITHM. Lemma 3.5 and Theorem 3.1. To prove the second statement,
Lemma 3.5: (Upper bound on the performance of Ahe we take the limit asm — +oo in the first statement and we
TERNATING ALGORITHM) For any P € P,, with n > 2 and use the bound in equation (1). [ ]
p>0, n Remark 3.8:For P ¢ P,, Lemma 3.5 implies that
Laa,o(P) < ETSP(P) + & [51 p. Laa ,(P) belongs toO(n) and Theorem 3.7 implies that

in the worst caseDTSP,(P) belongs to©(n) and that
the ALTERNATING ALGORITHM performs withing factor of
the optimal for the worst-case point sets. The computationa
complexity of the ATERNATING ALGORITHM is of ordern.

O

Additionally, if there exists » > 0 such that
ming je(1,..n}, i%j [P — pjll = np, then forn >3

5
Laa,(P) < (1+ g) ETSP(P).

Proof: The first statement follows from Theorem 3.4.

: . IV. STOCHASTICDTSP
The second statement follows from the first by noting that ) o Stoc S_ DTS .
Ming je g1, ). iz Ipi — byl = np implies thatETSP(P) > The discussion in the previous section showed that the

nnp. m ALTERNATING ALGORITHM performs well when the points
Remark 3.6: (i) The first statement of Lemma 3.5 im-t0 be visited by the tour are chosen in an adversarial manner.
plies that for any point seP € P, with n > 2 andp > Howgver, 'Fhis algorithm is not a constant-fac_tor app.roxima.
0, ETSP(P) < DTSP,(P) < ETSP(P) + & [2] 7p. algorithm in the general case. Moreqver, this aIgor{thmhh!g
An important consequence of this result is the followin§Ot perform very well when dealing with a random distribatio
fact: given a point set, for small enough the order of Of the target points. In particular, we will show that when
points in the optimal path for the Euclidean TSP is thBoints are chosen randomly and independently, the cost of
same as in the optimal path for the Dubins TSP. the DTSP increases sub-linearly with i.e., that the average
(i) Theorem 3.1 and Lemma 3.5 imply that there exists !§ngth of the path between two points decreasesiasreases.
point setP € P, such thatETSP(P) + 2|2 | mp < In this section, we consider the_ scenarlo.wherarget points
DTSP,(P) < ETSP(P) + x [%] 7p, that is, in the are stqc.:has.tlcglly.generatgd i@ according to a uniform
worst-caseD TSP ,(P) belongs to0(n). probability distribution function. We present a nov_el_aigjlnn,
(i) The second statement of Lemma 3.5 implies that #& RECURSIVE BEAD-TILING ALGORITHM, to visit these
the minimal inter-target distance is lower bounded, the?fints and establish bounds on its performance.

DTSP,(P) is within a constant factor oETSP(P). .We make the .following assumptiongz is a recte}ngle of
In that case the ATERNATING ALGORITHM provides Width W and heightH with W > H; different choices for

1+ 5;4 factor approximation to the optimal. Moreoverthe shape oB affect our conclusions only by a constant. The
this constant factor is comparable to the one derivd§0 axes of the reference frame are parallel to the sides of
in [7] under the stricter assumptiop= 2. Also, once <- In what follows, P = {py,...,p,} is a random variable,
the conjecture that = 7/3, as stated in Appendix D, is indicating a set pfn points. randomly_ ar_1d independently
proven, it will decrease the constant factorlef 22 for generated according to a uniform distributiongh

the ALTERNATING ALGORITHM. However, note that in

a bounded environment the minimal inter-target distange Lower bound

must vanish as: — +00 and, therefore, the AER'_ We begin with a result from [32] that provides a lower
NATING ALGORITHM is a constant factor approximationy J .4 on the expected length of the stochastic DTSP.
algorithm only for finite point sets with lower bounded Theorem 4.1 (Lower bound on stochastic DTSBt P ¢

inter-target distance. P be uniforml : :
) ; " y, randomly and independently generated in

Having established bounds on the performar!ce of the Athe rectangle of width?” and heightf. For anyp > 0,
TERNATING ALGORITHM, we now show that it performs

within a constant factor of the optimal for the worst-casapo . E[DTSP,(P)] _ 3.
p p lﬁgng > 1\3/3/)WH.
sets. n

Theorem 3.7: (Performance of thBLTERNATING ALGO-
RITHM for the worst-case point sgtsorn > 2, P € P, and
p >0,

Remark 4.2:Theorem 4.1 implies thaE[DTSP,(P)] be-
longs toQ(n?/3). O

DTSP,(P) < Laa,,(P) B. The basic geometric construction

< ETSP(P) + k[n/2]7p sup DTSP,(P) ) Here_ we defipe a useful_ geometric object and stqu its
pep, ETSP(P) +2[n/2|mp properties. Consider two points. andp., on the plane, with
Furthermore, ¢ = |lp+ —p—|l2 < 4p, and construct the regioB,(¢) as
L P detailed in Figure 2. We refer to such a region alsead of
lim sup asp(P) length ¢. The regionB3,(¢) enjoys the following asymptotic
n—+oo SUPpep, DTSP,(P) properties ag¢/p) — 0%:

K
< —.
-2



NS N C. The Recursive Bead-Tiling Algorithm

;/ ‘ a ‘ \ In this section, we design a novel algorithm that computes a
L 1 ! Dubins path through a point set @. The proposed algorithm
" ’ consists of a sequence of phases; during each phase, a Dubins

, tour (i.e., a closed path with bounded curvature) is contal
" NS that “sweeps” the se@. We begin by considering a tiling of
/ ‘ \ the plane such thatrea(B,(¢)) = W H/(2n); in such a case,
| i j w(l(n)) =1/(2n), v=1/2, and
S l(n) = 2(pT) +o(n”3), (n — 4+00).

Fig. 2. Construction of the "bead3,(¢). The figure shows how the upper (Note that this implies that must be large enough in order
half of the boundary is constructed, the bottom half is symimetr that Z(n) < 4p) Furthermore. the tiIing is chosen in such a
way that it is aligned with the sides @, see Figure 3. In the

first phase of the algorithm, a Dubins tour is constructedh wit

(P1) Its maximum “thickness” is the following properties:

2 02 /3 (i) it visits all non-empty beads once,
w(l) =4p | 1—4/1- 62— 5,7 ° <3> (ii) it visits all rows® in sequence top-to-down, alternating
p P between left-to-right and right-to-left passes, and ingit
(P2) lts area is all non-empty beads in a row,
(iii) when visiting a non-empty bead, it visits at least one
tw(t) &, o target in it
Area(B,(0) = 2 = — 4+ %0 = ). :
2 16p p In order to visit the targets outstanding after the first phas

a second phase is initiated. Instead of considering sireged
we now consider “meta-beads” composed of two beads each,
as shown in Figure 3, and proceed in a way similar to the first
phase, i.e., a Dubins tour is constructed with the following
1 A& properties:
Length <4 in(—|)=~0+p- — |- . -
ength(yy) < 4parcsin <4p) p-o (p3> (i) the tour visits all non-empty meta-beads once,

(P3) For anyp € B,(¢), there is at least one Dubins path
through the point§p_, p, p }, entirely contained within
B,(¢). The length of any such path satisfies

it visits all (meta-bead) rows in sequence top-to-dpwn
alternating between left-to-right and right-to-left pass
and visiting all non-empty meta-beads in a row,

(i) when visiting a non-empty meta-bead, it visits at leas

These facts are verified using elementary planar geometr)g!')
Finally, the bead has the property that the plane can begserio
ically tiled* by identical copies of3,(¢), for any ¢ € 0, 4p).
This fact is illustrated in Figure 3 below.

o . one target in it.
Next, we study the probability of targets belonging to a hi g o i h oh
given bead. Consider a bedd entirely contained inQ and 'S Process is iterateflog, n| times, and at each phase,

assumen points are randomly and independently generat€j€ta-beads composed of two neighboring meta-beads from the
according to a uniform distribution i@. The probability that PreV'ous phase are considered, n other words, the metisbea
the i point is sampled in3 is at the:"™ phase are composed &~ neighboring beads. After

the last recursive phase, the leftover targets are visisigu
(0) = Area(B,(¢)) the ALTERNATING ALGORITHM.
HE = Area(Q)

Furthermore, the probability that exacyout of then points D- Analysis of the algorithm
are sampled inB has a binomial distribution, i.e., indicating In this section, we calculate an upper bound on the length

with np the total number of points sampled B, of Dubins path as given by the RURSIVE BEAD-TILING
ALGORITHM. By comparing this upper bound with the lower
Pring = k| n samples= (n) pF (1 — )k, bound established earlier, we will conclude that the algo-
k rithm provides a constant factor approximation to the optim

If the bead lengtlY is chosen as a function of in such a Stochastic DTSP with high probability. We begin with a
way thaty = n - u(¢) is a constant, then the limit for large key result about the number of outstanding targets after the

of the binomial distribution is [33] the Poisson distritartiof €xecution of theflog, n| recursive phases; the proof of this

meanv, that is, result is based upon techniques similar to those develaped i
) [34].
lim Prinp = k| n samples= Vie_u. Theorem 4.3 (Targets remaining after recursive phases):
n—+4o0 k! Let P € P, be uniformly, randomly and independently

1A tiling of the plane is a collection of sets whose intersathas measure  2A row is a maximal sequence of horizontally-aligned beads waidin-
zero and whose union covers the plane. empty intersection withQ.
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Fig. 3. Sketch of “meta-beads” at successive phases in thesiee bead tiling algorithm. From left to right: phase 1, ¢h& and phase 3. Note that for
phase 2 (and for all subsequent even-numbered phases),Hivtevwill have to visit every row of meta-beads twice, oncevigit targets in the meta-beads
with the darker shade and once to visit targets in the metdsbeiéh the lighter shade.

generated inQ. The number of unvisited targets after thén other words,Y;(i) = 1 if the #" target is not visited
last recursive phase of the ERURSIVE BEAD-TILING during the firsti phases even though the number of beads still
ALGORITHM over P is less than24log,n with high containing unvisited targets at the inception of ifephase is
probability, i.e., with probability approaching one adess thans;n. Even though the random variabie(i) depends
1-— 10%2". on the targets generated before tHetarget, the probability

Proof: Associate a unique identifier to each bead, 1dpat it takes the value 1 is bounded by
b(t) be the identifier of the bead in which th# target is ;
sampled, and leb(t) € N be the phase at which th&" PeY (i) — 11 b(1). b(2 bt — 1) < 22052 o
target is visited. Without loss of generality, assume thegéts ri®) [5(1),5(2), -, b = li[lﬂj S
within a single bead are visited in the same order in which =
they are generated, i.e., #{t1) = b(tz) and iy < tz, then yegardiess of the actual values bfl),...,b(t — 1). It is
h(t1) < h(tz). Note that we assume here that only one targRhown [34] that if the random variable; (i) satisfy such
per bead is visited at each phase. The resultant analydis Wilsondition, the sun)", Y;(i) is stochastically dominated by

give an upper bound on the path length for thedRRSIVE 3 pinomially distributed random variable, namely,
BEAD-TILING ALGORITHM. Letv;(¢) be the number of beads

that contain unvisited targets at the inception of tighase,

computed after the insertion of th&' target. Furthermore, Pr

let m; be the number of" phase meta-beads (i.e., meta-
L . .

i Cloa 2 o) 0 PO e anere (1) denctes a binomial distiued random var-

v1(n) < n < my/2 with certainty. Thet™ target will not be able with parameters andg;. In particular,

visited during the first phase if it is sampled in a bead that

already contains other targets. In other words, Pr

Vi) > k] < Pr[B(n, ;) > K.

> V(i) > 2ng;| < Pr[B(n,q;) > 2ng;] < 27"%/%,
_wn(-1) < v1(n) < 1 =t 4)
my 2n 2 where the last inequality follows from Chernoff’'s Bound [33
Similarly, thet™ target will not be visited during thé" phase Now, it is convenient to defin¢s; };cn by
if (i) it has not been visited before th# pass, and (i) it
belongs to a meta-bead that already contains other targets n
visited before the™ phase:
Pr[h(t) =i+ 1] (vi(t —1),vi—1(t = 1),...,v1(t = 1))]
=Pr [h(t) > i+ 1| h(t) > i,v(t — 1)]
< Pr[h(t) >i| (vi—1(t —1),...,01(t = 1))]

Pr [h(t) > 2| vi(t —1)]

%
i(i—3) .
=1, Bpi=20=2"7 "[[8=2""4,
=1

which leads tg3; = 2'~%. In turn, this implies that equation (4)
can be rewritten as

(t—1 , " n
< (m ) Pr[h(t) = il (vi-1(t = 1),...,v1(t = 1))] Pr|» Yi(i) > 5i+1n] < 27Pmin/6 = 9755,
. ! . ) i t=1
Luit—1) 2 ) (27 1
= H]T < H an =\ HW(”) which is less thanl/n? for i < i*(n) := Llogzn -
j=1 / j=1 7=1 log, log, n — log, 6] < log, n. Note thatj3; < 12 <22~ for
Given a sequencéf; }ien C Ry and given a fixed > 1, all i >i"(n).
define a sequence of binary random variables Let & be the event thawv;(n) < (;n. Note that if &

) _ is true, thenv;11(n) < Y7, Yi(i): the right hand side
Yi(i) = 1, ifa(t) i+ 1 andvi(t — 1) < Bin, represents the number of targets that will be visited after t
0, otherwise. i phase, whereas the left hand side counts the number of



beads containing such targets. We have, for alli*(n): Proof: A path visiting each bead once can be constructed
by a sequence of passes, during which all beads in a row are

Pr [Ui+1(n) > Biyan| 51} - Pr(&] visited in a left-to-right or right-to-left order. In eacbw, there
, 1 are at most{W/¢] + 1 beads with a non-empty intersection
<Pr ZYt(i) > ﬁiﬂn] <=, with Q. Hence, the cost of each pass is at most:
n

£2
_ 1 L‘faSS<W+2€+p-o(2).
that is, Pr[—&; 1] & - Pr[&;] < —;, and thus (recall tha, p
is true with certainty): Two passes are connected by a U-turn maneuver, in which
the direction of travel is reversed, and the path moves to the

Pri~€in] next row, at distance equal to one half the width of a bead.
= Pr[=&ii| &) - Prl&i] + Pr[=&iy1] =&i] - Pr[=&i] Since the length of the shortest path to reverse the heading
< i + Pr[-&] < L of a Dubins vehicle with co-located initial and final poinss i
n? (7/3)mp, the length of the U-turn satisfies
In other words, for alli < i*(n), v;(n) < G;n with high . 1 . 2 63
probabilty. e L b < Trpr £ g ( 3) |
Let us now turn our attention to the phases such that 3 2 3 16p P

i > i*(n). The total number of targets visited after thié)" The total number of passes, i.e., the total number of rows of
phase is dominated by a binomial varial##¢n, 12log, n/n); beads with non-empty intersection with, satisfies

in particular, 9OH 160H
NP | S 1< =2 2o ().
Pr {vi*ﬂ(n) > 241og, n| Ei*} - Pr[&;+] w(¥) 1 1
n A simple upper bound on the cost of closing the tour is given
<Pr [Z Yi(i) > 241og, n] by
t=1

< Pr[B(n,12log,n/n) > 24log,n| < 27 '2loszm, L5 < (W + 20) + (H + 2w({)) + 2mp

Dealing with conditioning as before, we obtain =W H+2mp+ 20+ p-oll/p).
1 log,n Insummary, the total length of the path followed during the

1
Pr [Ui*+1(n) > 24 10g2 TL] S W —Q—Pr[—m‘:ﬂ] S

12 n2 - first phase is
(5) pass pass U—turn close
In other words, the number of unvisited targets after the Ly = Ny (Ll + L )+L
()™ phase is bounded by a logarithmic functionsofwith - (16PH Lo40 (P))
high probability. Equatlon (5) also shows that this probgbi - 02 L
approaches one ds— %822, u 7 2 22
In summary, Theorem 4.3 says that after a sufficiently large (W +20+ 3TP T 16p tp-o (p2)>

number of phases, almost all targets will be visited, with

high probability. A simple application of the Borel-Catitel Wt H+2mp+ 20+ p-o(l/p)

Lemma [35] to the upper bound in equation (5) gives the < 16pW H <1 +Z p> +p-0 (B).
following corollary. & 3w ¢
Corollary 4.4: With probability one, the number of unvis- ]

ited targets after the last recursive phase of thecBRSIVE Based on this calculation, we can estimate the length of

BEAD-TILING ALGORITHM over P is less than24log,n the paths in generic phases of the algorithm. Since the total

asymptotically. number of phases in the algorithm depends on the number of
We also observe that (i) the length of the first phase is tdrgetsn, as does the length of the beafiswe will retain

ordern?/? and (i) the length of each phase is decreasing explicitly the dependency on the phase number.

such a rate that the sum of the lengths of ffhe, n] recursive ~ Lemma 4.6 (Path length at odd-numbered phases):

phases remains bounded and proportional to the length of fhensider a tiling of the plane with beads of lengtHor any

first phase. (Since we are considering the asymptotic casepire 0 and for any set of target points, the length; _; of

which the number of targets is very large, the length of tife path visiting once and only once each meta-bead with a

beads will be very small; in the remainder of this section weon-empty intersection with a rectang{ of width W and

will tacitly consider the asymptotic behavior 48 — 07.)  length I at phase numbei2;j — 1), j € N, satisfies

_ _Lemma 4.5 (Path_length for the first phas€jonsider a o [pWH 7p P

tiling of the plane with beads of length For anyp > 0 and Loj 1 <277/ [ 1z (1 + ) +p-o (E)]

for any set of target points, the lengfly of a path visiting i ¢

once and only once each bead with a non-empty intersection L3Pt - O( ) +9J [g,g +p-o < )} )

with a rectangleQ of width W and lengthH satisfies ¢ ¢ p

16pW H 1 7T op P Proof: During odd-numbered phases, the number of beads
02 + 3"wW tpo (Z) in a meta-bead is a perfect square and the considerations mad

L,

IN




in the proof of Lemma 4.5 can be readily adapted. The length Proof: For simplicity we letLggra,,(P) = LrpTa.

of each pass satisfies Clearly, Lrgra = Ligra + LiprTa, Where Lipra
. ¢ is the path length of the firstlog,n| phases of the
L3 < (W +274) {1 +0 ()} RECURSIVEBEAD-TILING ALGORITHM and L, is the

length of the path required to visit all remaining targetsr A

The length of each U-turn maneuver is bounded as immediate consequence of Lemma 4.7 is that

ngf_tfm < gﬁp + 297 2(0) Mogs (n)] [og, (n)/2]
- e 63 Lipra = Z Li<3 Z Laj-1.
< -mp+2) —+p-ol =], i=1 j=1
3 8p p?

The summation on the right hand side of this equation can be

from which . ' ' expanded using Lemma 4.6 yielding
LpaiS +LU:turn _ W+*7Tp+0 () +2] |:£+p ) ():l X

2t 2t 3 P P Li%BTA

The number of passes satisfies: [logy(n)/2]

i % <3 {pWH (1+7w>+p-0(p2)] gQZ 2577
ass 5—5 | P P - 2 2
N3 <2 [EQH(K)] +2. ‘ 3W ‘ P
Finally, the cost of closing the tour is bounded by + <32pf +p-o0 (g)) Fogzg n-‘
LEP < W+ H +21p + 27 [(+ p-o(¢/p))].- [logs (m)/2]
Therefore, a bound on the total length of the path is +B+p-olt/p)] D, Y
ass ass —turn close '7:1
Loj—1 = Ng;™ (L5 + ng—t1 )+ L21j—1 i N N .
. . 4 00 —j 7 i +1
<ori |[PWVH (1 TTPN o, (B) Smceszzl 27 <2527 =1 andy,;, 2 = 2
= 02 3W ; 2 < 2%t1 the previous equation can be simplified to
H A 1
+32”7+p.o<§)+23 {3€+p~0(p)]. Lhra
pWH Tmp p
m <3382 | (14530 ) 400 (%)

Lemma 4.7 (Path length at even-numbered phases):
Consider a tiling of the plane with beads of length + <32/’H tp-0 (/’)) Pogz n-‘
For anyp > 0, a rectangleQ of width W and lengthH 4 l 2
and any set of target points, paths in each phase of the +[3C+p-0(l/p)] - (4y/n)} .

RECURSIVEBEAD-TILING ALGORITHM can be chosen such
that L2j < 2L2j+1; for all RS N.

Proof: Consider a generic meta-be#t; ,, traversed in

the (25 + 1)*® phase, and let; be the length of the path RBTA W .

segment withinB,;, ;. The same meta-bead is traversed at <3 {32 [p . (1 + Wp) Yp-0 (pﬂ

most twice during thé2;)*" phase; lety, I, be the lengths of ¢ 3w ¢

the two path segments of th{g;)®™* phase withinBs;, ;. By + (SQPH tpeo (£>) Fogz n-‘
convention, fori € {1,2,3}, we let/; = 0 if the i*" path does ¢ p 2

not intersectBy;+;. Without loss of generality, the order of +[3C+p-0(l/p)] - (4¥/n)} .

target points can be chosen in such a way that I, < I3, ) s L
and hencd; + I, < 2;. Repeating the same argument for afRecalling that’ = 2(pW H/n)'/* +o(n="/") for largen, the
non-empty meta-beads, we prove the claim. m above can be rewritten as
Finally, we can summarize these intermediate bounds into , 5 7T p
D! . - 2 P 2/3
the main result of this section. We I&rpTa ,(P) denote Rpra < 249/ pWHn? (1 + 37TW) +o(n™?).

the length of the Dubins path computed by thed®RSIVE . ) g . o .
BEAD-TILING ALGORITHM for a point setP. Now it suffices to show thak;r, is negligible with respect

Theorem 4.8 (Path length for th&®ECURSIVE BEAD- © L% gra for largen with probability one. From porollary 4.4,
TILING ALGORITHM) Let P € P, be uniformly, randomly W€ know that asymptotlca]ly, with probability one, there
and independently generated in the rectangle of wigittand Will b€ at most24log, n unvisited targets after thglog, 7]

height H. For anyp > 0, with probability one, recursi\_/t_—:- phases. Lemma 3.5 would then imply that, with
probability one, the length of a IAERNATING ALGORITHM
lim sup w < limsup Lrpra.p(P) tour through these points asymptotically satisfies
n—-4oo n /3 n—-+4oo 77,2/3

0 ) Liigra < k[121ogy n]mp + o(logs n).

< 24/pWH (1 + gww



Next, we state a result for the concentrationDof'SP ,(P) log(Lrpra,p(P))

around its mean, which will let us compare the lower bound 2
in Theorem 4.1 with the upper bound in Theorem 4.8. .
Lemma 4.9 (Concentration around the meahgt P € s
P, be uniformly, randomly and independently generated in ;
the rectangle of widtiW and heightH. For anyp > 0, with e log(n)

probability one,

|DTSP,(P) — E[DTSP,,(P)]| € O(y/nlogn).

Proof: The proof presented here closely follows the one
for the Long Common Sub-sequence Problem in ChapterEl Numerical Results
of [36]. We use Doob’s method to construct a martingale from In this section we present numerical results for trecBR-
the random variabl® TSP, (P). First let7; = o(p1,...,px), SIVE BEAD-TILING ALGORITHM.The results are summarized
that is, 7, is the sigma-field generated by the fitselements in the form of a logarithmic plot in Figure 4. The points
of P ={p1,...,pn}, and then we set comprising the setP are randomly and independently gen-
_ erated according to a uniform distribution in a rectangle of

di = E[DTSP,(P)|7] = E[DTSP, (P)|Fi-a] width W = 10 and heightH = 8. The minimum turning
The sequencéd;} can be easily checked to be a martingalgadius for the Dubins vehicle is = 1. Each point represents
difference sequence adapted to the increasing sequencdhefmean of Dubins path length as given by thecRRSIVE
sigma-fields{F;}. Moreover,d;’s are related to the original BEAD-TILING ALGORITHM, taken over 10 instances of the

Fig. 4. Plot oflog(LrpTa.,(P)) Vs. log(n)

variables via the following relation: experiment for the corresponding values of The lower
" solid line represents the functiog (C;n?/3) where C; is
DTSP,(P) — E[DTSP,(P)] = Zdi' the value of _the quantity? \3/3pWH corresponding to th_e
=1 lower bound in Theorem 4.1. Similarly, the upper solid line

. 2/3 . .
Consider a new sequence of independent random variabl r:?/e%lelfungtld?g (Cun?’?), V(;’.'th (“;“ ?ﬁmg the vt:)alued
{p:} with the same distribution as the origing; }. Accord- ° H P 4(8 ngthr)] colrresip;)n ng 1o tﬁ u?ﬁe; Ilouq
ingly, define B, := {p1,....pi_1.pipist,....pu). Sincesr;, N Theorem 4.8. From the simulations we gather the following

: ; _ qualitative observations. First, the lower boundX@SP ,(P)
has no information aboyt;, we have established in Theorem 4.1 is fairly conservative when con-
E[DTSP,(P)|Fi-1] = E[DTSP,(P;)|F;], sidered as a lower bound fozgTa,,(P). Second, the upper
bound toLgrgra,,(P) established in Theorem 4.8 becomes

and this representation then lets us rewrite the expregsion less conservative and the data conforms more accuratefty wit
d; in terms of a single conditional expectation: the 2/3 exponent as: grows.

d; = E[DTSP,(P) — DTSP,(P;)|Fi].

From Theorem 3.4, one can easily check that V. THEDTRPFOR THEDUBINS VEHICLE

. ] We now turn our attention to the Dynamic Traveling Re-
| DTSP,(P) = DTSP,(F)] < 2diam(Q) + 2xmp =: ¢. pairperson Problem (DTRP) that was introduced by Bertsimas

Since conditional expectations cannot increase the up@ld van Ryzin in [25]. When compared with previous work,
bound, we haved;| < c for all i € {1,...,n}. Finally, by the novel feature of the following work is the focus on the

Azuma’s Inequality, we have the useful tail bound: Dubins vehicle.

Pr [|DTSP,(P)—E[DTSP,(P)]| > t] < 2exp (—t%/(2nc?)).
| o(P)—E| p(PI 2 1] < 2exp (=1%/(2nc”)) A. Model and problem statement
A straightforward application of the Borel-Cantelli Lemma

with ¢ = /2c2n(logn)(1 + ¢€), where ¢ is some positive
constant, gives us the desired result.

In this subsection we describe the vehicle and sensing model
and the DTRP definition. The key aspect of the DTRP is
that the Dubins vehicle is required to visit a dynamically
Remark 4.10:L.emma 4.9 implies that, with probability growing set of targets, generated by some stochastic moces

one, We assume that the Dubins vehicle has unlimited range and
) DTSP,(P) E[DTSP,(P)] target-servicing capacity and that it moves at a unit spagd w
nﬂlfoo ( 23 1273 ) =0. minimum turning radius > 0.

This statement together with Theorems 4.1 and 4.8 impligslnformatlon. abogt the ogtstandmg t‘f’“.@’ets represeng@g th
; e emand at timet is described by a finite set of positions
that, with probability one, the RCURSIVE BEAD-TILING :

_ s 7T p 7 D(t) C Q, with n(t) := card(D(t)). Targets are generated,
ALGORITHM is a(32/\/§)(1+*7ff> factor approximation and inserted intaD, according to a homogeneous (i.e., time-
(with respect ton) to the optimal DTSP and thaTSP,(P) invariant) spatio-temporal Poisson process, with timerisity
belongs to©(n?/3). The computational complexity of the \ > 0, and uniform spatial density inside the rectangleof
RECURSIVEBEAD-TILING ALGORITHM is of ordern. [0 width W and heightH. In other words, given a s& C Q,
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the expected number of targets generated inithin the time A, whereas in the Euclidean case it depends only linearly on
interval [¢,t'] is it, e.g., see [25]. O

, , We now propose a simple strategy, theeAD-TILING
E [card(D(#) N S) = card(D(t) N S)] = A(t' — ) Area(S). ALGORITHM, based on the concepts introduced in the previous

(Strictly speaking, the above equation holds when targets section. The strategy consists of the following steps:
not being removed from the queu®.) Servicing of a target (i) Tile the plane with beads of length/ :=

and its removal from the sdb are achieved when the Dubins min{Cpra /A, 4p}, where
vehicle moves to the target position. 7 V17 7 —1
A feedback control policy for the Dubins vehicle is a map Cgta = —1 <1 + 37TVI?/> (6)

® assigning a control input to the vehicle as a function of
its configuration and of the current outstanding targets. Weii) Update D to contain information of all (and only) the
also consider policies that compute a control input based on outstanding targets.
a snapshot of the outstanding target configurations aticertgiii) Visit all non-empty beads once, visiting one target pe
time sequences. Lefs, = {tx}ren be a strictly increasing non-empty bead.
sequence of times at which such computations are starte@v) Repeat step (ii).
with some abuse of terminology, we say tldais areceding  The following result characterizes the system time for the
horizon strategyif it is based on the most recent target datglosed loop system induced by this algorithm and is based on
D (t), where the bound derived in Lemma 4.5.
Theorem 5.3: (System time for tlBEAD-TILING ALGO-

Din(t) = D(max{tin € To | fm < t}). RITHM) For anyp > 0 and A > 0, the BEAD-TILING

The (receding horizon) policyp is a stable policy for the ALGORITHM is a stable policy for the DTRP and the resulting

DTRP if, under its action, system timelgr, Ssatisfies:
3
ne = limsup E[n(t)| p = ®(p, Dmn)] < +o0, . Torre _ . Tra 7T p
® H+ocp [n(t)| p (P, D) 1/1\12?:;5 Sz Sl;\rﬁilolf > <71 pWH 1+§FW )

that is, if the Dubins vehicle is able to visit targets at aerat

that is, on average, at least as fast as the rate at which new Prpof: C_c;]n5|d$r a generic be.ahE.!r,lewth"nsn-empty 'n;j
targets are generated. L&} be the time that thg" target tersection withQ. Target points within will be generate

spends within the seb, i.e., the time elapsed from the time2ccording to a Poisson process with raig satisfying
Area(BN Q) < )\Area(B) _ C8ma +0( 1 > )

the j target is generated to the time it is visited. If the system _
is stable, then we can write the balance equation (known A = WH =7 WH  16pWHX? A2
Little's Formula [37]): The vehicle will visit B at least once every,; time units,

ne = Mg, where L, is the bound on the length of a path through all

beads, as computed in Lemma 4.5. As a consequence, targets
whereTy := lim;. E[T}] is the steady-state system tim&n p will be visited at a rate no smaller than
for the DTRP under the polic. Our objective is to minimize ) 4
the steady-state system time over all possible feedbadkaton Lp = Chra (1 + 77Tp> +o (1> .
policies, i.e., to minimize 16pW H\? 3w A2
In summary, the expected tiniEs between the appearance
of a target inB and its visit by the vehicle is no more than
the system time in a queue with Poisson arrivals at rate

B. Lower and constructive upper bounds and deterministic service rafegz. Such a queue is called a

In what follows, we design a control policy that provided/D/1 queue in the literature [37], and its system time is
a constant-factor approximation of the optimal achievablgown to be
performance. Consistently with the theme of the paper, we T B ] 1 Ap
consider the case dfeavy loadi.e., the problem as the time M/P/L = + 2up —Ag )
intensity A\ — +oo. We first review from [32] a lower bound
for the system time, and then present a novel approximati
algorithm providing an upper bound on the performance.

Torrp = inf{Te | ¥ is a stable control policy.

Uﬁ:ing the computed bounds ot and pp, and taking the
fifhit as \ — 400, we obtain

. i T Ty,
Theorem 5.1: (Lower bound on the system time for thﬁmsup% < Tim sup M/2D/1
DTRP)For anyp > 0, the system tim@prrp for the DTRP  Ajoo A Aotoo A
in a rectangle of widthH? and heightH satisfies . 16pW H < . 1 Chra )
T 1 = —1 5 1 .
iminf 22TRP 5 81 b Cora (1+57) 2(1+§7%)" —Cbra
A—+too A2 64 7

Remark 5.2:Theorem 5.1 implies that the system time foBince equation (7) holds foany bead intersecting?, the
the Dubins vehicle depends quadratically on the time intyensbound derived forT's holds for all targets and is therefore
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a bound onTgTa. The expression on the right hand side ACKNOWLEDGMENT
of (7) is a constant that depends on problem parameters

W, and H, and on the design paramet€gra, as defined in
equation (6). Stability of the queue is established by mpti
that Cpra < (1 + 7/3 © p/W)~!. Additionally, the choice
of CpTa in equation (6) minimizes the right hand side of (7

yielding the numerical bound in the statement, . thank anonymous referees for several useful and insightful
Remark 5.4:The achievable performance of theeBDp- comments y 9
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APPENDIX

We first present a sketch of the proof of Theorem 3.1; a

Length(r) > ETSP(P(r)) + > _¢ip— 20, (11)
more detailed proof is presented in [38]. =

Now, we use the fact that as— 0, {; — 2= for all i. By
. S . .
A. Proof of Theorem 3.1 taking the limit in (11) as- — 0", we obtain

We first describe the construction of the dete P,, for Length(7) > ETSP(P(r)) + 2mvp. (12)
which the statement holds true. L€} be a circle of radius
r < p with center at the origin. For€ {1,...,n}, define the
it" point b; by

The inequality (12) holds true faany algorithm over the set
P. Therefore, it holds true for the optimal algorithm when
attains its minimum value ofn/2]. Substituting this value of
b; = (rcos(2mi/n), rsin(2mwi/n)). v in (12) we obtain the desired lower bound.
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B. Dubins classification of optimal curves loss of generality, assun® (¢)) € Cy,, (). LetO¢,, be the

myq

Following [12], the minimum length feasible curve for the€Nter 0fCr, . Let Po(y) = Cry, (1) N Gy (). In order to
Dubins vehicle is either (i) an arc of a circle of radips remove ambiguity, we shall pick that heading of the tangent

followed by a line segment, followed by an arc of a circjdine to a circle at a given point which is consistent with the
of radius p, or (i) a sequence of three arcs of circles ofrientation of that circle to béhe orientation of the tangent

radius p, or (iii) a sub-path of a path of path type (i) ort0 that circle at that point. Let the orientation of the Dubin

(ii). To specify thetype of these minimum length feasible VENiCle atPy be along the orientation of the tangentd, at
curves for the Dubins path we follow the notations used - Similarly, let the orientation of the Dubins vehicle B
[14]. Three elementary motions are considered: turningiéo t°€ @long the orientation of the tangentd, at 1. Let the
left, turning to the right (both along a circle of radiy, vehicle configuration af’ and P, be denoted byJ,,,, J,, €
and straight line motiors. Three operators are introducedSE(2): respectively. Lety, ¢, t; be such that,, (0,0,0) =
L, (for left/counterclockwise tum of length > 0), R, “ri: L (Jpy) = Jp, @ndLe, (Jp,) = (0,0,v). Let LRLo(v)
(for right/clockwise turn of lengthy > 0), S, (for straight and/iLEo(¢) be the minimum length curves of typdsitL
motion of lengthv > 0). The operatorsL,, R,, and S,, and RLR _respectwely from the configuratiof®, 0,0) to the
transform an arbitrary configuratiofr,y, <) € SE(2) into configuration(0,0, ). _

its corresponding image point BE(2) by For ¢ # 0, we defmefor.blldden cones/;, Vs : [0, 27[—

R? to be the open, positive cones with symmetry axes

(z + sin(¢ 4+ v) — siny, y — cos(v¥ + v) + cos P, ¥ + v), (d,¢/2)aer, and(d, T+1/2)qer. , respectively, and half an-
(z — sin(¢ — v) +sin e, y + cos(sh — v) — costp,yp —v),  gle for both of them given by (y)) = 7/2 — cos ™! (Snle/2)y,
(z +vcosth,y +vsin, ), We also writeVy (1) = R?\ Vi(¢) and Vi (¢) = R*\ Va(¢)).

respectively. Thus, thBubins setD which is the domain for C. Proof of Theorem 3.4

the type of the minimum length feasible curve for a Dubins \\e begin with some preliminary results. To keep the pre-
vehicle between a given initial and final configuration iseiv gantation simple in this section, we either sketch the groof
by D = {LSL, RSR, RSL, LSR, RLR, LRL}. One may re- omjt them altogether. We refer to [38] for detailed proofs.
fer to [12] for a detailed discussion on the constructiorhee  \we start by providing bounds on the Dubins path length
path types between a given initial and final configuratiomO@tarting and ending at the same points. One can prove that
may note that there are sets of initial and final configuratiogor ¢ — (0, the minimal length feasible curve for the Dubins
for which all the path types may not be feasible between thoggnicle is of typeLRL or RLR.
configurations. Lemma A.1 (Optimal path length returning to the origin):

In the remaining part of the paper we will need to frequentlyet ¢ — 0 and ¢ < [0, 2.

use the curves of typg RL and RLR starting with the initial (i) if ¢ €]0,7], then LRLo(v) is the optimal path and

configuration(0, 0, 0) and the final configuratiofn, 0, ). We _, 7sin(y/2)

introduce some additional notations to facilitate prestoi Cp(0,0,4) = pp +4pcos™ —y )

of the same. We introduce notations for the path tygeL. (i) if ¢ €], 2x[, then RLRo(¢) is the optimal path and
For ) # 0, let C,, (1) be a circle with centeO¢, = (0, p) C,(0,0, 1) = p(2m — 1) + dpcos~! (SIH(;WQ))_

and radiusp, and letC,, () be a circle with centeO¢,, :=
(—psin, pcos ) and radius. Note thaty) # 0 implies tha
Cp, ()NC,, (1) is either a point or 2 points. Then I€t,,, ()
and C,,,, (1) be two circles with radiug that are tangent to
both C), (v) and C,,(¢), see Figure 5 and Figure 6.

t Therefore, for alk) € [0, 27[ andp > 0,
C,(0,0,4) < C,(0,0,7) = gm.

Next, we start to analyze the general case whietg) #
(0,0). In what follows, we let(d,f) = polar(z,y) be the
polar coordinates ofx,y) # (0,0) and, with a slight abuse
of notation, we letC,(d,0,v) = C,(x,y, ).

Lemma A.2: (Upper bound on the optimal length via
LRLo and RLRo) For ) €]0,2x[, and(d, §) = polar(x,y),

(i) if (z,y) € V), then C,(d,0,¢) < d +

Length(LRLo(v)),
(i) if (z,y) € V5(), then C,(d,0,v) < d +
Length(RLRo ().
Therefore, for (d,0) = polar(z,y) and (z,y) €
Fig. 5. LRL curves returning teig. 6. LRL curves returning to (Uwe]o,w] Vlc(w) U Uwe]w,%[ Vf(@b)),
the origin fory € [0, 7). the origin fory € |, 27]. 7
By constructionC,,, (¢) intersectsC,,, (v) andCy,, (v) at

one point each: leP; (¢) be the first of these two points thatis It now remains to obtain a bound ofi,(d,§,v) when
reached moving left from the origi® alongC,, (). Without (z,y) € Vi(¢) or (z,y) € Va(y)) where(d, §) = polar(x, y).
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To this effect, let the vehicle start moving at time- 0 at unit  from a state of the fornf0, 0, 0) to a state of the forn(0, 0, )
speed along’,, in the counterclockwise direction and keemccording to our setup. Hence, we conjecture that the value
updating the parametedsd, ¢ as if the coordinate system wasof «, which is the upper bound for the quanti@%,
moving along with the vehicle. Consequentl§ () keeps is % !
shrinking and there is a time instant= ¢* when the final
configuration is such thatz,y) ¢ Vi(y). This construction
along with Lemma A.2 gives the following result.

Lemma A.3:For ¢y €]0,x[, (z,y) € Vi(y), (d,0) =
polar(z,y) andp > 0,

Co(d,0,¢) < d+ pFi(1h),

where F'; (¢) is as defined in equation (2).

From the definition, it follows that for(z,y) # (0,0),
(x,y) € Vi(y) implies (z,y) € Vi(y). This observation
along with Lemma A.1 and Lemma A.2 leads to the next
lemma.

Lemma A.4:For ¢ € 10,7, (z,y) € Vi(¢), (d,0) =
polar(x,y) andp > 0,

Cp(da 0} 7/)) S d + PF2(¢)7
where F»(v) is as defined in equation (3).

Combining Lemma A.3 and Lemma A.4, one gets the follow-
ing result.

Lemma A.5:For ¢ € 10,7, (z,y) € Vi(y), (d,0) =
polar(x,y) andp > 0,

Co(d,0,9) < d+ pmax{Fy(r), b [min{Fl(w)» Fa()}}
Ye|0,m

=d+ kmp.

Similarly, one can prove that far €], 27|, (z,y) € Va(v),
(d,8) = polar(z,y) andp > 0, we haveC,(d,0,v) < d +
kmp. Combining this with Lemma A.2 and Lemma A.5, we
can state that fop €0, 27|, (z,y) € R?, (d,0) = polar(z,y)
andp > 0,

Cp(d,0,v) < d+ kmp. (13)

It now remains to prove a similar bound @h(d,§,0) for
which we state the following lemma.
Lemma A.6:For (z,y) € R?, (d,0) = polar(z,y) andp >
01
C,(d,0,0) < d+2mp.

Lemma A.6 combined with equation (13) completes the
proof for Theorem 3.4. It is easy to check that i6r]0, 7|,
F1(¢) is a monotonically increasing function af and F; (1))
is a monotonically decreasing function ©f Therefore, there
exists a unique)* such thatFy (¢v*) = Fy(1*). By numerical
calculations one can find that~ 2.6575.

D. Numerical Results

The length of the optimal Dubins patld,(d, 6,v), was
calculated for numerous sets of final configuratigrst, )
starting with an initial configuration of0,0,0) and the cor-
responding values of the quantiﬁf% were evaluated
for each of the instances. The results suggest that thesesval
are bounded by;. Moreover, it appears that the value f
is achieved only when the Dubins vehicle makes a transition



