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Traveling Salesperson Problems for
the Dubins vehicle

Ketan Savla Emilio Frazzoli Francesco Bullo

Abstract—In this paper we study minimum-time motion plan-
ning and routing problems for the Dubins vehicle, i.e., a non-
holonomic vehicle that is constrained to move along planar paths
of bounded curvature, without reversing direction. Motivated by
autonomous aerial vehicle applications, we consider the Traveling
Salesperson Problem for the Dubins vehicle (DTSP): givenn
points on a plane, what is the shortest Dubins tour through
these points and what is its length? First, we show that the
worst-case length of such a tour grows linearly withn and we
propose a novel algorithm with performance within a constant
factor of the optimum for the worst-case point sets. In doing
this, we also obtain an upper bound on the optimal length in the
classical point-to-point problem. Second, we study a stochastic
version of the DTSP where then targets are randomly and
independently sampled from a uniform distribution. We show
that the expected length of such a tour is of order at leastn2/3

and we propose a novel algorithm yielding a solution with length
of order n

2/3 with probability one. Third and finally, we study
a dynamic version of the DTSP: given a stochastic process that
generates target points, is there a policy that guarantees that the
number of unvisited points does not diverge over time? If such
stable policies exist, what is the minimum expected time that a
newly generated target waits before being visited by the vehicle?
We propose a novel stabilizing algorithms such that the expected
wait time is provably within a constant factor from the optimum.

I. I NTRODUCTION

In this paper we study a novel class of optimal motion
planning problems for a nonholonomic vehicle required to
visit collections of points in the plane, where the vehicle is
said tovisit a region in the plane if the vehicle goes to that
region and passes through it. This class of problem has two
main ingredients. First, the robot model is the so-called Dubins
vehicle, namely, a nonholonomic vehicle that is constrained
to move along paths of bounded curvature without reversing
direction. Second, the objective is to find the shortest pathfor
such vehicle through a given set of target points. Except for
the nonholonomic constraint, this task is akin to the classic
Traveling Salesperson Problem (TSP) and in particular to the
Euclidean TSP (ETSP), in which the shortest path between
any two target locations is a straight segment. In summary,
the focus of this paper is the analysis and the algorithmic
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design of the TSP for the Dubins vehicle; we shall refer to
this problem as to the Dubins TSP (DTSP).

A practical motivation to study the DTSP arises naturally in
robotics and Uninhabited Aerial Vehicles (UAVs) applications.
We envision applying DTSP algorithms to the setting of a
UAV monitoring a collection of spatially distributed points of
interest. In one scenario, the location of the points of interest
might be known and static. Additionally, UAV applications
motivate the study of the Dynamic Traveling Repairperson
Problem (DTRP), in which the UAV is required to visit a
dynamically changing set of targets. Such problems are exam-
ples of distributed task allocation problems and are currently
generating much interest; e.g., [4] discusses complexity issues
related to UAVs assignments problems, [5] considers Dubins
vehicles keeping under surveillance multiple mobile targets,
[6] considers missions with dynamic threats; other relevant
works include [7], [8], [9], [10].

The literature on the Dubins vehicle is very rich and
includes contributions from researchers in multiple disciplines.
The minimum-time point-to-point path planning problem with
bounded curvature was originally introduced by Markov [11]
and a first solution was given by Dubins [12]. Modern
treatments on point-to-point planning exploit the Pontryagin
Minimum Principle [13], carefully account for symmetries
in the problem [14], and consider environments with ob-
stacles [15]. The Dubins vehicle is commonly accepted as
a reasonably accurate kinematic model for aircraft motion
planning problems, e.g., see [16], and its study is included
in recent texts [17], [18].

The TSP and its variations continue to attract great interest
from a wide range of fields, including operations research,
mathematics and computer science. Tight bounds on the
asymptotic dependence of the ETSP on the number of targets
are given in the early work [19] and in the survey [20]. Exact
algorithms, heuristics as well as polynomial-time constant
factor approximation algorithms are available for the Eu-
clidean TSP, see [21], [22], [23]. A variation of the TSP with
potential robotic applications is the angular-metric problem
studied in [24]. The DTRP (without nonholonomic constraints)
was introduced in [25]. However, as with the TSP, the study
of the DTRP in context of the Dubins vehicle has eluded
attention from the research community. Finally, it is worth
remarking that, unlike other variations of the TSP, there are no
known reductions of the Dubins TSP to a problem on a finite-
dimensional graph, thus preventing the use of well-established
tools in combinatorial optimization.

The main contributions of this paper are threefold. First,
we propose an algorithm for the DTSP through a point set
P , called the ALTERNATING ALGORITHM. This algorithm is
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based on the solution to the ETSP overP and on an alternating
heuristic to assign target orientations at each target point. This
algorithm performs within a constant factor of the optimal
for a certain class of point sets. As an intermediate step in
the analysis of the algorithm, we provide an upper bound
on the point-to-point minimum length of Dubins optimal
paths. Second, we propose an algorithm for the stochastic
DTSP, called the RECURSIVE BEAD-TILING ALGORITHM.
This algorithm is based on a geometric tiling of the plane,
tuned to the Dubins vehicle dynamics, and on a strategy for
the vehicle to visit targets from each tile. The RECURSIVE

BEAD-TILING ALGORITHM is the first algorithm providing a
provable constant-factor approximation to the DTSP optimal
solution with probability one. Third, we propose an algorithm
for the DTRP in the heavy load case, called the BEAD-
TILING ALGORITHM, based on a fixed-resolution version of
the RECURSIVE BEAD-TILING ALGORITHM. We show that
the performance guarantees for the stochastic DTSP translate
into stability guarantees for the performance of the DTRP for
the Dubins vehicle in heavy load case. Specifically, we show
that the performance of BEAD-TILING ALGORITHM is within
a constant factor from the theoretical optimum.

To clarify the contributions of this paper, it is worthwhile
to compare our results with the ones existing in the literature.
While the problem of flying an aircraft through way-points
is a very standard problem in aeronautics (e.g., see [26], [5],
[27]), the formal study of the Dubins TSP (algorithmic and
performance bounds) was introduced in our early work [1],
where a constant-factor approximation algorithm for worst-
case point sets for the DTSP was proposed. Subsequently,
similar versions of this problem were also considered in [28]
and [7]. A simplified version of the problem for a different but
closely related kind of vehicle, the Reeds-Shepp vehicle, was
considered in [29]. In [2], we introduced the stochastic DTSP
and gave the first algorithm yielding, with high probability,
a solution with a cost upper bounded by a strictly sub-linear
function of the numbern of target points. Specifically, it was
shown that the lower bound on the stochastic DTSP was of
order n2/3 and that our algorithm performed asymptotically
within a (log n)1/3 factor to this lower bound with high prob-
ability. This result was improved in [30] with an algorithm for
the stochastic DTSP that asymptotically performs within any
ǫ(n) factor of the optimal with high probability, whereǫ(n) →
+∞ asn→ +∞. In [3] we designed the first algorithm that
asymptotically achieves a constant factor approximation to the
stochastic DTSP with high probability. Based on our earlier
works, this paper presents a comprehensive treatment of the
worst-case DTSP, the DTSP in the stochastic setting, and the
DTRP.

The paper is organized as follows. Section II contains
the problem formulation. The worst-case DTSP is treated in
Section III. Section IV contains the treatment of the DTSP
for the stochastic setting. Section V contains the treatment
of the dynamic version of the DTSP, namely the DTRP. We
conclude with a few remarks about future work in Section VI.
Some proofs are presented in the appendix.

II. PROBLEM SETUP: FROM THE EUCLIDEAN TO THE

DUBINS TRAVELING SALESPERSONPROBLEM

In this section we set up the main problem of the paper
and review some basic required notation. ADubins vehicle
is a planar vehicle that is constrained to move along paths
of bounded curvature, without reversing direction and with
bounded speed. Accordingly, we define afeasible curve for the
Dubins vehicleor a Dubins path, as a curveγ : [0, T ] → R

2

that is twice differentiable almost everywhere, and such that
the magnitude of its curvature is bounded above by1/ρ,
where ρ > 0 is the minimum turning radius. We also let
Length(γ) =

∫ T

0
‖γ′(t)‖dt be the length of a differentiable

curveγ : [0, T ] → R
2. We represent the vehicle configuration

by the triplet(x, y, ψ) ∈ SE(2), where(x, y) are the Cartesian
coordinates of the vehicle andψ is its heading.

Let P = {p1, . . . , pn} be a set ofn points in a compact
region Q ⊂ R

2 and Pn be the collection of all point sets
P ⊂ Q with cardinalityn. Let ETSP(P ) denote the cost of
the Euclidean TSP overP , i.e., the length of the shortest closed
path through all points inP . Correspondingly, letDTSPρ(P )
denote the cost of the Dubins TSP overP , i.e., the length of
the shortest closed Dubins path through all points inP , with
minimum turning radiusρ.

The key objective of this paper is the design of an algorithm
that provides a provably good approximation to the optimal
solution of the Dubins TSP. To establish what a “good ap-
proximation” might be, let us recall what is known about the
ETSP. First, given a compact setQ, there exists [20] a finite
constantα(Q) such that, for allP ∈ Pn,

ETSP(P ) ≤ α(Q)
√
n. (1)

This upper bound is constructive in the sense that there exist
algorithms that generate closed paths through the pointsP
with length of order

√
n [20]. In the stochastic case, where

then points inP are independently chosen from a distribution
ϕ with compact supportQ ⊂ R

2, the following deterministic
limit holds [19]:

lim
n→+∞

ETSP(P )√
n

= β

∫

Q

√

ϕ̄(q) dq, with probability 1,

whereϕ̄ is a probability density function corresponding to the
absolutely continuous part ofϕ, andβ is a constant, which
has been evaluated asβ = 0.712± 0.0001, e.g., see [31]. The
fact that the dependence of the ETSP is sub-linear inn is very
important in the study of the DTRP, i.e., the problem in which
the point setP is not given a priori, but is generated over time
by a point process; see Section V.

Motivated by the results available in the Euclidean case, this
paper shows that the DTSP grows withn for the worst-case
point sets and withn2/3 in the stochastic case (as both lower
and upper bounds) with probability one. Additionally, this
paper proposes novel algorithms for the DTSP in the worst-
case and stochastic settings, whose performances are within a
constant factor of the optimal solution in the asymptotic limit
asn→ +∞. Finally, this paper uses these results to introduce
the first stabilizing policy for the Dubins DTRP.

We conclude this section with some notation that is the
standard concise way to state asymptotic properties. Forf, g :
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N → R, we say thatf ∈ O(g) (respectively,f ∈ Ω(g)) if
there existN0 ∈ N andk ∈ R+ such that|f(N)| ≤ k|g(N)|
for all N ≥ N0 (respectively,|f(N)| ≥ k|g(N)| for all N ≥
N0). If f ∈ O(g) and f ∈ Ω(g), then we use the notation
f ∈ Θ(g). Finally, we say thatf ∈ o(g) asN → +∞ if
limN→+∞ f(N)/g(N) = 0 or, for functionsf, g : R → R,
we say thatf ∈ o(g) asx→ 0 if limx→0 f(x)/g(x) = 0.

III. T HE DTSP IN THE WORST CASE

Here we study the DTSP for worst-case point setsP , i.e.,
when the pointsP are chosen in an adversarial fashion.

A. Lower bound

We first give a lower bound onDTSPρ(P ) for the worst-
case point sets. Given any point setP ∈ Pn with n ≥ 2 and
ρ > 0, it is immediate to see thatDTSPρ(P ) ≥ ETSP(P ).
This bound is improved in the following theorem, whose proof
is reported in the appendix.

Theorem 3.1: (Worst-case lower bound on the TSP for the
Dubins vehicle)Givenρ > 0, there exists a point setP ∈ Pn,
n ≥ 2, such that

DTSPρ(P ) ≥ ETSP(P ) + 2
⌊n

2

⌋

πρ.

Remark 3.2:Theorem 3.1 implies that, forP ∈ Pn and in
the worst case,DTSPρ(P ) ∈ Ω(n). �

B. The Alternating Algorithm

Here we propose a novel algorithm, the ALTERNATING

ALGORITHM, that approximates the solution of the DTSP.
The underlying principle of the algorithm is the following
observation: since the optimal Dubins path between two
configurations has been characterized in [12], a solution for
the DTSP consists of (i) determining the order in which the
Dubins vehicle visits the given set of points, and (ii) assigning
headings for the Dubins vehicle at the points. The algorithm
builds on the knowledge of the optimal solution of the ETSP
for the same point set, and provides a sub-optimal DTSP tour.

The ALTERNATING ALGORITHM works as follows. Com-
pute an optimal ETSP tour ofP and label the edges on the
tour in order with consecutive integers. A DTSP tour can be
constructed by retaining all odd-numbered (except thenth)
edges, and replacing all even-numbered edges with minimum-
length Dubins paths preserving the point ordering. In other
words, the algorithm consists of the following steps:

(i) set (a1, . . . , an) := optimal ETSP ordering ofP
(ii) set ψ1 := orientation of segment froma1 to a2

(iii) for i ∈ {2, . . . , n− 1}, do
if i is even, then setψi := ψi−1, else setψi :=

orientation of segment fromai to ai+1

(iv) if n is even, then setψn := ψn−1, else setψn :=
orientation of segment froman to a1

(v) return the sequence of configurations
{(ai, ψi)}i∈{1,...,n}.

We illustrate the output of the ALTERNATING ALGORITHM in
Figure 1.

Fig. 1. An application of the ALTERNATING ALGORITHM. Left figure: a
graph representing the solution of ETSP over a givenP . Right figure: a
graph representing the solution given by the ALTERNATING ALGORITHM on
P where the alternate segments of ETSP are retained.

C. Analysis of the algorithm

In this section we analyze the performance of the ALTER-
NATING ALGORITHM to obtain an upper bound onDTSPρ(P )
and then show that the algorithm performs within a constant
factor of the optimal for the worst-case point sets. To obtain an
upper bound on the length of the path traversed by the Dubins
vehicle while executing the ALTERNATING ALGORITHM, we
first obtain an upper bound on the optimal point-to-point
problem for the Dubins vehicle.

Problem 3.3:Given an initial configuration
(xinitial , yinitial , ψinitial) and a final configuration
(xfinal, yfinal, ψfinal), find an upper bound on the length
of the shortest Dubins path going from initial to final
configuration. �

To tackle this problem, we introduce some prelimi-
nary definitions. Without loss of generality, we assume
(xinitial , yinitial , ψinitial) = (0, 0, 0). Let Cρ : SE(2) → R+

associate to a configuration(x, y, ψ) the length of the shortest
Dubins path from(0, 0, 0) to (x, y, ψ). DefineF0 : ]0, π[ ×
]0, π[ → ]0, π[, F1 : ]0, π[ → R andF2 : ]0, π] → R by

F0(ψ, θ) =2 tan−1
( sin(ψ/2) − 2 sin(ψ/2 − θ)

cos(ψ/2) + 2 cos(ψ/2 − θ)

)

,

F1(ψ) =ψ + sin
(F0(ψ,ψ/2 − α(ψ))

2

)

+ 4 cos−1
( sin((ψ − F0(ψ,ψ/2 − α(ψ)))/2)

2

)

,

(2)

F2(ψ) =2π − ψ + 4 cos−1
( sin(ψ/2)

2

)

, (3)

where α(ψ) = π/2 − cos−1( sin(ψ/2)
2 ). The proof of the

following result is postponed to the appendix.
Theorem 3.4 (Upper bound on optimal point-to-point length):

For ψ ∈ [0, 2π[, (x, y) ∈ R
2, andρ > 0,

Cρ(x, y, ψ) ≤
√

x2 + y2 + κπρ,

where κ ∈ [2.657, 2.658] is defined by κ =
1
π max{F2(π), supψ∈]0,π[ min{F1(ψ), F2(ψ)}}.

It is a conjecture thatκ = 7/3; we provide some numerical
evidence in Appendix D. Next, we letLAA,ρ(P ) denote
the length of Dubins path as given by the ALTERNATING



4

ALGORITHM for a point setP . The following lemma es-
tablishes bounds on the performance of the ALTERNATING

ALGORITHM.
Lemma 3.5: (Upper bound on the performance of theAL-

TERNATING ALGORITHM) For anyP ∈ Pn with n > 2 and
ρ > 0,

LAA,ρ(P ) ≤ ETSP(P ) + κ
⌈n

2

⌉

πρ.

Additionally, if there exists η > 0 such that
mini,j∈{1,...,n}, i 6=j ‖pi − pj‖ > ηρ, then forn > 3

LAA,ρ(P ) ≤
(

1 +
5κπ

6η

)

ETSP(P ).

Proof: The first statement follows from Theorem 3.4.
The second statement follows from the first by noting that
mini,j∈{1,...,n}, i 6=j ‖pi − pj‖ > ηρ implies thatETSP(P ) >

nηρ.
Remark 3.6: (i) The first statement of Lemma 3.5 im-

plies that for any point setP ∈ Pn with n ≥ 2 andρ >
0, ETSP(P ) ≤ DTSPρ(P ) ≤ ETSP(P ) + κ

⌈

n
2

⌉

πρ.
An important consequence of this result is the following
fact: given a point set, for small enoughρ, the order of
points in the optimal path for the Euclidean TSP is the
same as in the optimal path for the Dubins TSP.

(ii) Theorem 3.1 and Lemma 3.5 imply that there exists a
point setP ∈ Pn such thatETSP(P ) + 2

⌊

n
2

⌋

πρ ≤
DTSPρ(P ) ≤ ETSP(P ) + κ

⌈

n
2

⌉

πρ, that is, in the
worst-case,DTSPρ(P ) belongs toΘ(n).

(iii) The second statement of Lemma 3.5 implies that if
the minimal inter-target distance is lower bounded, then
DTSPρ(P ) is within a constant factor ofETSP(P ).
In that case the ALTERNATING ALGORITHM provides
1 + 5κπ

6η factor approximation to the optimal. Moreover,
this constant factor is comparable to the one derived
in [7] under the stricter assumptionη = 2. Also, once
the conjecture thatκ = 7/3, as stated in Appendix D, is
proven, it will decrease the constant factor of1+ 5κπ

6η for
the ALTERNATING ALGORITHM. However, note that in
a bounded environment the minimal inter-target distance
must vanish asn → +∞ and, therefore, the ALTER-
NATING ALGORITHM is a constant factor approximation
algorithm only for finite point sets with lower bounded
inter-target distance. �

Having established bounds on the performance of the AL-
TERNATING ALGORITHM, we now show that it performs
within a constant factor of the optimal for the worst-case point
sets.

Theorem 3.7: (Performance of theALTERNATING ALGO-
RITHM for the worst-case point sets) For n ≥ 2, P ∈ Pn and
ρ > 0,

DTSPρ(P ) ≤ LAA,ρ(P )

≤ ETSP(P ) + κ⌈n/2⌉πρ sup
P∈Pn

DTSPρ(P )

ETSP(P ) + 2⌊n/2⌋πρ.

Furthermore,

lim sup
n→+∞

LAA,ρ(P )

supP∈Pn
DTSPρ(P )

≤ κ

2
.

Proof: The first statement follows from the simple fact
that LAA,ρ(P ) ≥ DTSPρ(P ), and from the results in
Lemma 3.5 and Theorem 3.1. To prove the second statement,
we take the limit asn → +∞ in the first statement and we
use the bound in equation (1).

Remark 3.8:For P ∈ Pn, Lemma 3.5 implies that
LAA,ρ(P ) belongs toO(n) and Theorem 3.7 implies that
in the worst case,DTSPρ(P ) belongs toΘ(n) and that
the ALTERNATING ALGORITHM performs within κ2 factor of
the optimal for the worst-case point sets. The computational
complexity of the ALTERNATING ALGORITHM is of ordern.
�

IV. STOCHASTIC DTSP

The discussion in the previous section showed that the
ALTERNATING ALGORITHM performs well when the points
to be visited by the tour are chosen in an adversarial manner.
However, this algorithm is not a constant-factor approximation
algorithm in the general case. Moreover, this algorithm might
not perform very well when dealing with a random distribution
of the target points. In particular, we will show that whenn
points are chosen randomly and independently, the cost of
the DTSP increases sub-linearly withn, i.e., that the average
length of the path between two points decreases asn increases.
In this section, we consider the scenario whenn target points
are stochastically generated inQ according to a uniform
probability distribution function. We present a novel algorithm,
the RECURSIVE BEAD-TILING ALGORITHM, to visit these
points and establish bounds on its performance.

We make the following assumptions:Q is a rectangle of
width W and heightH with W ≥ H; different choices for
the shape ofQ affect our conclusions only by a constant. The
two axes of the reference frame are parallel to the sides of
Q. In what follows,P = {p1, . . . , pn} is a random variable,
indicating a set ofn points randomly and independently
generated according to a uniform distribution inQ.

A. Lower bound

We begin with a result from [32] that provides a lower
bound on the expected length of the stochastic DTSP.

Theorem 4.1 (Lower bound on stochastic DTSP):Let P ∈
Pn be uniformly, randomly and independently generated in
the rectangle of widthW and heightH. For anyρ > 0,

lim inf
n→+∞

E[DTSPρ(P )]

n2/3
≥ 3

4
3
√

3ρWH.

Remark 4.2:Theorem 4.1 implies thatE[DTSPρ(P )] be-
longs toΩ(n2/3). �

B. The basic geometric construction

Here we define a useful geometric object and study its
properties. Consider two pointsp− andp+ on the plane, with
ℓ = ‖p+ − p−‖2 ≤ 4ρ, and construct the regionBρ(ℓ) as
detailed in Figure 2. We refer to such a region as abeadof
length ℓ. The regionBρ(ℓ) enjoys the following asymptotic
properties as(ℓ/ρ) → 0+:
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ρ

p
−

p+

Bρ(ℓ)

ℓ

Fig. 2. Construction of the “bead”Bρ(ℓ). The figure shows how the upper
half of the boundary is constructed, the bottom half is symmetric.

(P1) Its maximum “thickness” is

w(ℓ) = 4ρ

(

1 −
√

1 − ℓ2

16ρ2

)

=
ℓ2

8ρ
+ ρ · o

(

ℓ3

ρ3

)

.

(P2) Its area is

Area(Bρ(ℓ)) =
ℓw(ℓ)

2
=

ℓ3

16ρ
+ ρ2 · o

(

ℓ4

ρ4

)

.

(P3) For anyp ∈ Bρ(ℓ), there is at least one Dubins pathγp
through the points{p−, p, p+}, entirely contained within
Bρ(ℓ). The length of any such path satisfies

Length(γp) ≤ 4ρ arcsin

(

ℓ

4ρ

)

= ℓ+ ρ · o
(

ℓ3

ρ3

)

.

These facts are verified using elementary planar geometry.
Finally, the bead has the property that the plane can be period-
ically tiled1 by identical copies ofBρ(ℓ), for any ℓ ∈ ]0, 4ρ].
This fact is illustrated in Figure 3 below.

Next, we study the probability of targets belonging to a
given bead. Consider a beadB entirely contained inQ and
assumen points are randomly and independently generated
according to a uniform distribution inQ. The probability that
the ith point is sampled inB is

µ(ℓ) =
Area(Bρ(ℓ))

Area(Q)
.

Furthermore, the probability that exactlyk out of then points
are sampled inB has a binomial distribution, i.e., indicating
with nB the total number of points sampled inB,

Pr[nB = k| n samples] =

(

n

k

)

µk(1 − µ)n−k.

If the bead lengthℓ is chosen as a function ofn in such a
way thatν = n · µ(ℓ) is a constant, then the limit for largen
of the binomial distribution is [33] the Poisson distribution of
meanν, that is,

lim
n→+∞

Pr[nB = k| n samples] =
νk

k!
e−ν .

1A tiling of the plane is a collection of sets whose intersection has measure
zero and whose union covers the plane.

C. The Recursive Bead-Tiling Algorithm

In this section, we design a novel algorithm that computes a
Dubins path through a point set inQ. The proposed algorithm
consists of a sequence of phases; during each phase, a Dubins
tour (i.e., a closed path with bounded curvature) is constructed
that “sweeps” the setQ. We begin by considering a tiling of
the plane such thatArea(Bρ(ℓ)) = WH/(2n); in such a case,
µ(ℓ(n)) = 1/(2n), ν = 1/2, and

ℓ(n) = 2
(ρWH

n

)
1
3

+ o
(

n−
1
3

)

, (n→ +∞).

(Note that this implies thatn must be large enough in order
that ℓ(n) ≤ 4ρ.) Furthermore, the tiling is chosen in such a
way that it is aligned with the sides ofQ, see Figure 3. In the
first phase of the algorithm, a Dubins tour is constructed with
the following properties:

(i) it visits all non-empty beads once,
(ii) it visits all rows2 in sequence top-to-down, alternating

between left-to-right and right-to-left passes, and visiting
all non-empty beads in a row,

(iii) when visiting a non-empty bead, it visits at least one
target in it.

In order to visit the targets outstanding after the first phase,
a second phase is initiated. Instead of considering single beads,
we now consider “meta-beads” composed of two beads each,
as shown in Figure 3, and proceed in a way similar to the first
phase, i.e., a Dubins tour is constructed with the following
properties:

(i) the tour visits all non-empty meta-beads once,
(ii) it visits all (meta-bead) rows in sequence top-to-down,

alternating between left-to-right and right-to-left passes,
and visiting all non-empty meta-beads in a row,

(iii) when visiting a non-empty meta-bead, it visits at least
one target in it.

This process is iterated⌈log2 n⌉ times, and at each phase,
meta-beads composed of two neighboring meta-beads from the
previous phase are considered; in other words, the meta-beads
at theith phase are composed of2i−1 neighboring beads. After
the last recursive phase, the leftover targets are visited using
the ALTERNATING ALGORITHM.

D. Analysis of the algorithm

In this section, we calculate an upper bound on the length
of Dubins path as given by the RECURSIVE BEAD-TILING

ALGORITHM. By comparing this upper bound with the lower
bound established earlier, we will conclude that the algo-
rithm provides a constant factor approximation to the optimal
stochastic DTSP with high probability. We begin with a
key result about the number of outstanding targets after the
execution of the⌈log2 n⌉ recursive phases; the proof of this
result is based upon techniques similar to those developed in
[34].

Theorem 4.3 (Targets remaining after recursive phases):
Let P ∈ Pn be uniformly, randomly and independently

2A row is a maximal sequence of horizontally-aligned beads withnon-
empty intersection withQ.
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Fig. 3. Sketch of “meta-beads” at successive phases in the recursive bead tiling algorithm. From left to right: phase 1, phase 2 and phase 3. Note that for
phase 2 (and for all subsequent even-numbered phases), the vehicle will have to visit every row of meta-beads twice, once tovisit targets in the meta-beads
with the darker shade and once to visit targets in the meta-beads with the lighter shade.

generated inQ. The number of unvisited targets after the
last recursive phase of the RECURSIVE BEAD-TILING

ALGORITHM over P is less than 24 log2 n with high
probability, i.e., with probability approaching one as
1 − log2 2n

n2 .

Proof: Associate a unique identifier to each bead, let
b(t) be the identifier of the bead in which thetth target is
sampled, and leth(t) ∈ N be the phase at which thetth

target is visited. Without loss of generality, assume that targets
within a single bead are visited in the same order in which
they are generated, i.e., ifb(t1) = b(t2) and t1 < t2, then
h(t1) < h(t2). Note that we assume here that only one target
per bead is visited at each phase. The resultant analysis will
give an upper bound on the path length for the RECURSIVE

BEAD-TILING ALGORITHM. Let vi(t) be the number of beads
that contain unvisited targets at the inception of theith phase,
computed after the insertion of thetth target. Furthermore,
let mi be the number ofith phase meta-beads (i.e., meta-
beads containing2i−1 neighboring beads) with a non-empty
intersection withQ. Clearly,vi(t) ≤ vi(n), mi ≤ 2mi+1, and
v1(n) ≤ n ≤ m1/2 with certainty. Thetth target will not be
visited during the first phase if it is sampled in a bead that
already contains other targets. In other words,

Pr
[

h(t) ≥ 2| v1(t− 1)
]

=
v1(t− 1)

m1
≤ v1(n)

2n
≤ 1

2
.

Similarly, thetth target will not be visited during theith phase
if (i) it has not been visited before theith pass, and (ii) it
belongs to a meta-bead that already contains other targets not
visited before theith phase:

Pr
[

h(t) ≥ i+ 1| (vi(t− 1), vi−1(t− 1), . . . , v1(t− 1))
]

= Pr
[

h(t) ≥ i+ 1| h(t) ≥ i, vi(t− 1)
]

· Pr
[

h(t) ≥ i| (vi−1(t− 1), . . . , v1(t− 1))
]

≤ vi(t− 1)

mi
Pr[h(t) ≥ i| (vi−1(t− 1), . . . , v1(t− 1))]

=
i
∏

j=1

vj(t− 1)

mj
≤

i
∏

j=1

2j−1vj(n)

2n
=

(

2
i−3
2

n

)i i
∏

j=1

vj(n).

Given a sequence{βi}i∈N ⊂ R+ and given a fixedi ≥ 1,
define a sequence of binary random variables

Yt(i) =

{

1, if h(t) ≥ i+ 1 andvi(t− 1) ≤ βin,

0, otherwise.

In other words,Yt(i) = 1 if the tth target is not visited
during the firsti phases even though the number of beads still
containing unvisited targets at the inception of theith phase is
less thanβin. Even though the random variableYt(i) depends
on the targets generated before thetth target, the probability
that it takes the value 1 is bounded by

Pr[Yt(i) = 1| b(1), b(2), . . . , b(t− 1)] ≤ 2
i(i−3)

2

i
∏

j=1

βj =: qi,

regardless of the actual values ofb(1), . . . , b(t − 1). It is
known [34] that if the random variablesYt(i) satisfy such
a condition, the sum

∑

t Yt(i) is stochastically dominated by
a binomially distributed random variable, namely,

Pr

[

n
∑

t=1

Yt(i) > k

]

≤ Pr[B(n, qi) > k],

whereB(n, qi) denotes a binomially distributed random vari-
able with parametersn andqi. In particular,

Pr

[

n
∑

t=1

Yt(i) > 2nqi

]

≤ Pr[B(n, qi) > 2nqi] < 2−nqi/3,

(4)
where the last inequality follows from Chernoff’s Bound [33].
Now, it is convenient to define{βi}i∈N by

β1 = 1, βi+1 = 2qi = 2
i(i−3)

2 +1
i
∏

j=1

βj = 2i−2 β2
i ,

which leads toβi = 21−i. In turn, this implies that equation (4)
can be rewritten as

Pr

[

n
∑

t=1

Yt(i) > βi+1n

]

< 2−βi+1n/6 = 2−
n

3·2i ,

which is less than1/n2 for i ≤ i∗(n) := ⌊log2 n −
log2 log2 n − log2 6⌋ ≤ log2 n. Note thatβi ≤ 12 log2 n

n , for
all i > i∗(n).

Let Ei be the event thatvi(n) ≤ βin. Note that if Ei
is true, thenvi+1(n) ≤ ∑n

t=1 Yt(i): the right hand side
represents the number of targets that will be visited after the
ith phase, whereas the left hand side counts the number of
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beads containing such targets. We have, for alli ≤ i∗(n):

Pr
[

vi+1(n) > βi+1n| Ei
]

· Pr[Ei]

≤ Pr

[

n
∑

t=1

Yt(i) > βi+1n

]

≤ 1

n2
,

that is,Pr [¬Ei+1| Ei] · Pr[Ei] ≤
1

n2
, and thus (recall thatE1

is true with certainty):

Pr [¬Ei+1]

= Pr [¬Ei+1| Ei] · Pr[Ei] + Pr [¬Ei+1| ¬Ei] · Pr[¬Ei]

≤ 1

n2
+ Pr[¬Ei] ≤

i

n2
.

In other words, for alli ≤ i∗(n), vi(n) ≤ βin with high
probability.

Let us now turn our attention to the phases such that
i > i∗(n). The total number of targets visited after the(i∗)th

phase is dominated by a binomial variableB(n, 12 log2 n/n);
in particular,

Pr
[

vi∗+1(n) > 24 log2 n| Ei∗
]

· Pr[Ei∗ ]

≤ Pr
[

n
∑

t=1

Yt(i) > 24 log2 n
]

≤ Pr
[

B(n, 12 log2 n/n) > 24 log2 n
]

≤ 2−12 log2 n.

Dealing with conditioning as before, we obtain

Pr [vi∗+1(n) > 24 log2 n] ≤ 1

n12
+Pr[¬Ei∗ ] ≤

1

n12
+

log2 n

n2
.

(5)
In other words, the number of unvisited targets after the
(i∗)th phase is bounded by a logarithmic function ofn with
high probability. Equation (5) also shows that this probability
approaches one as1 − log2 2n

n2 .
In summary, Theorem 4.3 says that after a sufficiently large

number of phases, almost all targets will be visited, with
high probability. A simple application of the Borel-Cantelli
Lemma [35] to the upper bound in equation (5) gives the
following corollary.

Corollary 4.4: With probability one, the number of unvis-
ited targets after the last recursive phase of the RECURSIVE

BEAD-TILING ALGORITHM over P is less than24 log2 n
asymptotically.

We also observe that (i) the length of the first phase is of
ordern2/3 and (ii) the length of each phase is decreasing at
such a rate that the sum of the lengths of the⌈log2 n⌉ recursive
phases remains bounded and proportional to the length of the
first phase. (Since we are considering the asymptotic case in
which the number of targets is very large, the length of the
beads will be very small; in the remainder of this section we
will tacitly consider the asymptotic behavior asℓ/ρ→ 0+.)

Lemma 4.5 (Path length for the first phase):Consider a
tiling of the plane with beads of lengthℓ. For anyρ > 0 and
for any set of target points, the lengthL1 of a path visiting
once and only once each bead with a non-empty intersection
with a rectangleQ of width W and lengthH satisfies

L1 ≤ 16ρWH

ℓ2

(

1 +
7

3
π
ρ

W

)

+ ρ · o
(ρ

ℓ

)

.

Proof: A path visiting each bead once can be constructed
by a sequence of passes, during which all beads in a row are
visited in a left-to-right or right-to-left order. In each row, there
are at most⌈W/ℓ⌉ + 1 beads with a non-empty intersection
with Q. Hence, the cost of each pass is at most:

Lpass
1 ≤W + 2ℓ+ ρ · o

(

ℓ2

ρ2

)

.

Two passes are connected by a U-turn maneuver, in which
the direction of travel is reversed, and the path moves to the
next row, at distance equal to one half the width of a bead.
Since the length of the shortest path to reverse the heading
of a Dubins vehicle with co-located initial and final points is
(7/3)πρ, the length of the U-turn satisfies

LU−turn
1 ≤ 7

3
πρ+

1

2
w(ℓ) ≤ 7

3
πρ+

ℓ2

16ρ
+ ρ · o

(

ℓ3

ρ3

)

.

The total number of passes, i.e., the total number of rows of
beads with non-empty intersection withQ, satisfies

Npass
1 ≤

⌈

2H

w(ℓ)

⌉

+ 1 ≤ 16ρH

ℓ2
+ 2 + o

(ρ

ℓ

)

.

A simple upper bound on the cost of closing the tour is given
by

Lclose
1 ≤ (W + 2ℓ) + (H + 2w(ℓ)) + 2πρ

= W +H + 2πρ+ 2ℓ+ ρ · o(ℓ/ρ).
In summary, the total length of the path followed during the
first phase is

L1 ≤Npass
1

(

Lpass
1 + LU−turn

1

)

+ Lclose

≤
(

16ρH

ℓ2
+ 2 + o

(ρ

ℓ

)

)

·
(

W + 2ℓ+
7

3
πρ+

ℓ2

16ρ
+ ρ · o

(

ℓ2

ρ2

))

+W +H + 2πρ+ 2ℓ+ ρ · o(ℓ/ρ)

≤ 16ρWH

ℓ2

(

1 +
7

3
π
ρ

W

)

+ ρ · o
(ρ

ℓ

)

.

Based on this calculation, we can estimate the length of
the paths in generic phases of the algorithm. Since the total
number of phases in the algorithm depends on the number of
targetsn, as does the length of the beadsℓ, we will retain
explicitly the dependency on the phase number.

Lemma 4.6 (Path length at odd-numbered phases):
Consider a tiling of the plane with beads of lengthℓ. For any
ρ > 0 and for any set of target points, the lengthL2j−1 of
a path visiting once and only once each meta-bead with a
non-empty intersection with a rectangleQ of width W and
lengthH at phase number(2j − 1), j ∈ N, satisfies

L2j−1 ≤ 25−j

[

ρWH

ℓ2

(

1 +
7

3

πρ

W

)

+ ρ · o
(ρ

ℓ

)

]

+ 32
ρH

ℓ
+ ρ · o

(ρ

ℓ

)

+ 2j
[

3ℓ+ ρ · o
(

ℓ

ρ

)]

.

Proof: During odd-numbered phases, the number of beads
in a meta-bead is a perfect square and the considerations made
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in the proof of Lemma 4.5 can be readily adapted. The length
of each pass satisfies

Lpass
2j−1 ≤

(

W + 2jℓ
)

[

1 + o

(

ℓ

ρ

)]

.

The length of each U-turn maneuver is bounded as

LU−turn
2j−1 ≤ 7

3
πρ+ 2j−2w(ℓ)

≤ 7

3
πρ+ 2j−2

[

ℓ2

8ρ
+ ρ · o

(

ℓ3

ρ3

)]

,

from which

Lpass
2j−1+LU−turn

2j−1 = W+
7

3
πρ+o

(

ℓ

ρ

)

+2j
[

ℓ+ ρ · o
(

ℓ

ρ

)]

.

The number of passes satisfies:

Npass
2j−1 ≤ 25−j

[

ρH

ℓ2
+ o

(ρ

ℓ

)

]

+ 2.

Finally, the cost of closing the tour is bounded by

Lclose
2j−1 ≤W +H + 2πρ+ 2j [ℓ+ ρ · o(ℓ/ρ)] .

Therefore, a bound on the total length of the path is

L2j−1 =Npass
2j−1(L

pass
2j−1 + LU−turn

2j−1 ) + Lclose
2j−1

≤ 25−j

[

ρWH

ℓ2

(

1 +
7

3

πρ

W

)

+ ρ · o
(ρ

ℓ

)

]

+ 32
ρH

ℓ
+ ρ · o

(ρ

ℓ

)

+ 2j
[

3ℓ+ ρ · o
(

ℓ

ρ

)]

.

Lemma 4.7 (Path length at even-numbered phases):
Consider a tiling of the plane with beads of lengthℓ.
For any ρ > 0, a rectangleQ of width W and lengthH
and any set of target points, paths in each phase of the
RECURSIVEBEAD-TILING ALGORITHM can be chosen such
thatL2j ≤ 2L2j+1, for all j ∈ N.

Proof: Consider a generic meta-beadB2j+1 traversed in
the (2j + 1)th phase, and letl3 be the length of the path
segment withinB2j+1. The same meta-bead is traversed at
most twice during the(2j)th phase; letl1, l2 be the lengths of
the two path segments of the(2j)th phase withinB2j+1. By
convention, fori ∈ {1, 2, 3}, we let li = 0 if the ith path does
not intersectB2j+1. Without loss of generality, the order of
target points can be chosen in such a way thatl1 ≤ l2 ≤ l3,
and hencel1 + l2 ≤ 2l3. Repeating the same argument for all
non-empty meta-beads, we prove the claim.

Finally, we can summarize these intermediate bounds into
the main result of this section. We letLRBTA,ρ(P ) denote
the length of the Dubins path computed by the RECURSIVE

BEAD-TILING ALGORITHM for a point setP .
Theorem 4.8: (Path length for theRECURSIVE BEAD-

TILING ALGORITHM) Let P ∈ Pn be uniformly, randomly
and independently generated in the rectangle of widthW and
heightH. For anyρ > 0, with probability one,

lim sup
n→+∞

DTSPρ(P )

n2/3
≤ lim sup

n→+∞

LRBTA,ρ(P )

n2/3

≤ 24 3
√

ρWH

(

1 +
7

3
π
ρ

W

)

.

Proof: For simplicity we let LRBTA,ρ(P ) = LRBTA.
Clearly, LRBTA = L′

RBTA + L′′
RBTA, where L′

RBTA

is the path length of the first⌈log2 n⌉ phases of the
RECURSIVEBEAD-TILING ALGORITHM and L′′

BTA is the
length of the path required to visit all remaining targets. An
immediate consequence of Lemma 4.7 is that

L′
RBTA =

⌈log2(n)⌉
∑

i=1

Li ≤ 3

⌈log2(n)/2⌉
∑

j=1

L2j−1.

The summation on the right hand side of this equation can be
expanded using Lemma 4.6 yielding

L′
RBTA

≤ 3







[

ρWH

ℓ2

(

1 +
7

3

πρ

W

)

+ ρ · o
(

ρ2

ℓ2

)] ⌈log2(n)/2⌉
∑

j=1

25−j

+

(

32
ρH

ℓ
+ ρ · o

(ρ

ℓ

)

)⌈

log2 n

2

⌉

+ [3ℓ+ ρ · o(ℓ/ρ)]
⌈log2(n)/2⌉
∑

j=1

2j







.

Since
∑k
j=1 2−j ≤ ∑+∞

j=1 2−j = 1, and
∑k
j=1 2j = 2k+1 −

2 ≤ 2k+1, the previous equation can be simplified to

L′
RBTA

≤ 3

{

32

[

ρWH

ℓ2

(

1 +
7

3

πρ

W

)

+ ρ · o
(ρ

ℓ

)

]

+

(

32
ρH

ℓ
+ ρ · o

(ρ

ℓ

)

)⌈

log2 n

2

⌉

+ [3ℓ+ ρ · o(ℓ/ρ)] · (4
√
n)
}

.

L′
RBTA

≤ 3

{

32

[

ρWH

ℓ2

(

1 +
7

3

πρ

W

)

+ ρ · o
(ρ

ℓ

)

]

+

(

32
ρH

ℓ
+ ρ · o

(

ℓ

ρ

))⌈

log2 n

2

⌉

+ [3ℓ+ ρ · o(ℓ/ρ)] · (4
√
n)
}

.

Recalling thatℓ = 2(ρWH/n)1/3 + o(n−1/3) for largen, the
above can be rewritten as

L′
RBTA ≤ 24 3

√

ρWHn2

(

1 +
7

3
π
ρ

W

)

+ o(n2/3).

Now it suffices to show thatL′′
RBTA is negligible with respect

toL′
RBTA for largen with probability one. From Corollary 4.4,

we know that asymptotically, with probability one, there
will be at most24 log2 n unvisited targets after the⌈log2 n⌉
recursive phases. Lemma 3.5 would then imply that, with
probability one, the length of a ALTERNATING ALGORITHM

tour through these points asymptotically satisfies

L′′
RBTA ≤ κ⌈12 log2 n⌉πρ+ o(log2 n).
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Next, we state a result for the concentration ofDTSPρ(P )
around its mean, which will let us compare the lower bound
in Theorem 4.1 with the upper bound in Theorem 4.8.

Lemma 4.9 (Concentration around the mean):Let P ∈
Pn be uniformly, randomly and independently generated in
the rectangle of widthW and heightH. For anyρ > 0, with
probability one,

|DTSPρ(P ) − E[DTSPρ(P )]| ∈ O(
√

n log n).

Proof: The proof presented here closely follows the one
for the Long Common Sub-sequence Problem in Chapter 1
of [36]. We use Doob’s method to construct a martingale from
the random variableDTSPρ(P ). First letFk = σ(p1, . . . , pk),
that is,Fk is the sigma-field generated by the firstk elements
of P = {p1, . . . , pn}, and then we set

di = E[DTSPρ(P )|Fi] − E[DTSPρ(P )|Fi−1].

The sequence{di} can be easily checked to be a martingale-
difference sequence adapted to the increasing sequence of
sigma-fields{Fi}. Moreover,di’s are related to the original
variables via the following relation:

DTSPρ(P ) − E[DTSPρ(P )] =

n
∑

i=1

di.

Consider a new sequence of independent random variables
{p̂i} with the same distribution as the original{pi}. Accord-
ingly, defineP̂i := {p1, . . . , pi−1, p̂i, pi+1, . . . , pn}. SinceFi
has no information about̂pi, we have

E[DTSPρ(P )|Fi−1] = E[DTSPρ(P̂i)|Fi],

and this representation then lets us rewrite the expressionfor
di in terms of a single conditional expectation:

di = E[DTSPρ(P ) − DTSPρ(P̂i)|Fi].

From Theorem 3.4, one can easily check that

|DTSPρ(P ) − DTSPρ(P̂i)| ≤ 2 diam(Q) + 2κπρ =: c.

Since conditional expectations cannot increase the upper
bound, we have|di| ≤ c for all i ∈ {1, . . . , n}. Finally, by
Azuma’s Inequality, we have the useful tail bound:

Pr
[

|DTSPρ(P )−E[DTSPρ(P )]| ≥ t
]

≤ 2 exp
(

−t2/(2nc2)
)

.

A straightforward application of the Borel-Cantelli Lemma
with t =

√

2c2n(log n)(1 + ǫ), where ǫ is some positive
constant, gives us the desired result.

Remark 4.10:Lemma 4.9 implies that, with probability
one,

lim
n→+∞

(DTSPρ(P )

n2/3
− E[DTSPρ(P )]

n2/3

)

= 0.

This statement together with Theorems 4.1 and 4.8 implies
that, with probability one, the RECURSIVE BEAD-TILING

ALGORITHM is a (32/
3
√

3)
(

1+
7

3
π
ρ

W

)

factor approximation

(with respect ton) to the optimal DTSP and thatDTSPρ(P )
belongs toΘ(n2/3). The computational complexity of the
RECURSIVEBEAD-TILING ALGORITHM is of ordern. �

2 4 6 8 10 12

2
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12

14
log(LRBTA,ρ(P ))

log(n)

Fig. 4. Plot oflog(LRBTA,ρ(P )) vs. log(n)

E. Numerical Results

In this section we present numerical results for the RECUR-
SIVE BEAD-TILING ALGORITHM.The results are summarized
in the form of a logarithmic plot in Figure 4. The points
comprising the setP are randomly and independently gen-
erated according to a uniform distribution in a rectangle of
width W = 10 and heightH = 8. The minimum turning
radius for the Dubins vehicle isρ = 1. Each point represents
the mean of Dubins path length as given by the RECURSIVE

BEAD-TILING ALGORITHM, taken over 10 instances of the
experiment for the corresponding values ofn. The lower
solid line represents the functionlog

(

Cln
2/3
)

whereCl is
the value of the quantity34

3
√

3ρWH corresponding to the
lower bound in Theorem 4.1. Similarly, the upper solid line
represents the functionlog

(

Cun
2/3
)

, with Cu being the value
of 24 3

√
ρWH

(

1 + 7
3π

ρ
W

)

corresponding to the upper bound
in Theorem 4.8. From the simulations we gather the following
qualitative observations. First, the lower bound toDTSPρ(P )
established in Theorem 4.1 is fairly conservative when con-
sidered as a lower bound toLRBTA,ρ(P ). Second, the upper
bound toLRBTA,ρ(P ) established in Theorem 4.8 becomes
less conservative and the data conforms more accurately with
the 2/3 exponent asn grows.

V. THE DTRP FOR THEDUBINS VEHICLE

We now turn our attention to the Dynamic Traveling Re-
pairperson Problem (DTRP) that was introduced by Bertsimas
and van Ryzin in [25]. When compared with previous work,
the novel feature of the following work is the focus on the
Dubins vehicle.

A. Model and problem statement

In this subsection we describe the vehicle and sensing model
and the DTRP definition. The key aspect of the DTRP is
that the Dubins vehicle is required to visit a dynamically
growing set of targets, generated by some stochastic process.
We assume that the Dubins vehicle has unlimited range and
target-servicing capacity and that it moves at a unit speed with
minimum turning radiusρ > 0.

Information about the outstanding targets representing the
demand at timet is described by a finite set of positions
D(t) ⊂ Q, with n(t) := card(D(t)). Targets are generated,
and inserted intoD, according to a homogeneous (i.e., time-
invariant) spatio-temporal Poisson process, with time intensity
λ > 0, and uniform spatial density inside the rectangleQ of
width W and heightH. In other words, given a setS ⊆ Q,
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the expected number of targets generated inS within the time
interval [t, t′] is

E
[

card(D(t′) ∩ S) − card(D(t) ∩ S)
]

= λ(t′ − t)Area(S).

(Strictly speaking, the above equation holds when targets are
not being removed from the queueD.) Servicing of a target
and its removal from the setD are achieved when the Dubins
vehicle moves to the target position.

A feedback control policy for the Dubins vehicle is a map
Φ assigning a control input to the vehicle as a function of
its configuration and of the current outstanding targets. We
also consider policies that compute a control input based on
a snapshot of the outstanding target configurations at certain
time sequences. LetTΦ = {tk}k∈N be a strictly increasing
sequence of times at which such computations are started:
with some abuse of terminology, we say thatΦ is a receding
horizon strategyif it is based on the most recent target data
Drh(t), where

Drh(t) = D(max{trh ∈ TΦ | trh ≤ t}).

The (receding horizon) policyΦ is a stable policy for the
DTRP if, under its action,

nΦ = lim sup
t→+∞

E[n(t)| ṗ = Φ(p,Drh)] < +∞,

that is, if the Dubins vehicle is able to visit targets at a rate
that is, on average, at least as fast as the rate at which new
targets are generated. LetTj be the time that thejth target
spends within the setD, i.e., the time elapsed from the time
thejth target is generated to the time it is visited. If the system
is stable, then we can write the balance equation (known as
Little’s Formula [37]):

nΦ = λTΦ,

whereTΦ := limj→+∞ E[Tj ] is the steady-state system time
for the DTRP under the policyΦ. Our objective is to minimize
the steady-state system time over all possible feedback control
policies, i.e., to minimize

TDTRP = inf{TΦ | Φ is a stable control policy}.

B. Lower and constructive upper bounds

In what follows, we design a control policy that provides
a constant-factor approximation of the optimal achievable
performance. Consistently with the theme of the paper, we
consider the case ofheavy load, i.e., the problem as the time
intensityλ → +∞. We first review from [32] a lower bound
for the system time, and then present a novel approximation
algorithm providing an upper bound on the performance.

Theorem 5.1: (Lower bound on the system time for the
DTRP)For anyρ > 0, the system timeTDTRP for the DTRP
in a rectangle of widthW and heightH satisfies

lim inf
λ→+∞

TDTRP

λ2
≥ 81

64
ρWH.

Remark 5.2:Theorem 5.1 implies that the system time for
the Dubins vehicle depends quadratically on the time intensity

λ, whereas in the Euclidean case it depends only linearly on
it, e.g., see [25]. �

We now propose a simple strategy, the BEAD-TILING

ALGORITHM, based on the concepts introduced in the previous
section. The strategy consists of the following steps:

(i) Tile the plane with beads of lengthℓ :=
min{CBTA/λ, 4ρ}, where

CBTA =
7 −

√
17

4

(

1 +
7

3
π
ρ

W

)−1

. (6)

(ii) UpdateD to contain information of all (and only) the
outstanding targets.

(iii) Visit all non-empty beads once, visiting one target per
non-empty bead.

(iv) Repeat step (ii).

The following result characterizes the system time for the
closed loop system induced by this algorithm and is based on
the bound derived in Lemma 4.5.

Theorem 5.3: (System time for theBEAD-TILING ALGO-
RITHM) For any ρ > 0 and λ > 0, the BEAD-TILING

ALGORITHM is a stable policy for the DTRP and the resulting
system timeTBTA satisfies:

lim sup
λ→+∞

TDTRP

λ2
≤ lim sup

λ→+∞

TBTA

λ2
≤ 71 ρWH

(

1 +
7

3
π
ρ

W

)3

.

Proof: Consider a generic beadB, with non-empty in-
tersection withQ. Target points withinB will be generated
according to a Poisson process with rateλB satisfying

λB = λ
Area(B ∩Q)

WH
≤ λ

Area(B)

WH
=

C3
BTA

16ρWHλ2
+o

(

1

λ2

)

.

The vehicle will visitB at least once everyL1 time units,
whereL1 is the bound on the length of a path through all
beads, as computed in Lemma 4.5. As a consequence, targets
in B will be visited at a rate no smaller than

µB =
C2

BTA

16ρWHλ2

(

1 +
7

3
π
ρ

W

)−1

+ o

(

1

λ2

)

.

In summary, the expected timeTB between the appearance
of a target inB and its visit by the vehicle is no more than
the system time in a queue with Poisson arrivals at rateλB,
and deterministic service rateµB . Such a queue is called a
M/D/1 queue in the literature [37], and its system time is
known to be

TM/D/1 =
1

µB

(

1 +
1

2

λB
µB − λB

)

.

Using the computed bounds onλB and µB , and taking the
limit as λ→ +∞, we obtain

lim sup
λ→+∞

TB

λ2
≤ lim sup

λ→+∞

TM/D/1

λ2

≤ 16ρWH

C2
BTA

(

1 + 7
3π

ρ
W

)−1

(

1 +
1

2

CBTA
(

1 + 7
3π

ρ
W

)−1 − CBTA

)

.

(7)

Since equation (7) holds forany bead intersectingQ, the
bound derived forTB holds for all targets and is therefore
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a bound onTBTA. The expression on the right hand side
of (7) is a constant that depends on problem parametersρ,
W , andH, and on the design parameterCBTA, as defined in
equation (6). Stability of the queue is established by noting
that CBTA < (1 + 7/3 π ρ/W )−1. Additionally, the choice
of CBTA in equation (6) minimizes the right hand side of (7)
yielding the numerical bound in the statement.

Remark 5.4:The achievable performance of the BEAD-
TILING ALGORITHM provides a constant-factor approxima-
tion to the lower bound established in Theorem 5.1. Also, there
exists no stable policy for the DTRP when the targets are gen-
erated in an adversarial worst-case fashion withλ ≥ (πρ)−1.
This fact is a consequence of the linear lower bound on the
DTSP for worst-case point sets derived in Theorem 3.1.�

VI. CONCLUSIONS

In this paper, we have studied the TSP for vehicles that
follow paths of bounded curvature in the plane. For the worst-
case and the stochastic settings, we have obtained upper
bounds that are within a constant factor of the lower bound;
the upper bounds are constructive in the sense that they are
achieved by novel algorithms. It is interesting to compare our
results with the Euclidean setting (i.e., the setting in which
vehicle paths do not have curvature constraints). For a given
compact set and a point setP of n points, it is known [19],
[20] that theETSP(P ) belongs toΘ(

√
n). This is true for both

stochastic and worst-case settings. In this paper, we showed
that, given a fixedρ > 0, the worst-caseDTSPρ(P ) belongs
to Θ(n) and thestochasticDTSPρ(P ) belongs toΘ(n2/3)
with high probability.

Remarkably, the differences between these various bounds
play a crucial role when studying the DTRP; e.g., stable
policies exist only when the TSP cost grows strictly sub-
linearly with n. For the DTRP we have proposed the novel
policy and shown its stability for a uniform target-generation
process with intensityλ. It is known [32] that the system
time for the DTRP for the Dubins vehicle belongs toΩ(λ2);
the policy proposed in this paper shows that the system time
belongs toO(λ2). Thus, the system time of the DTRP for
the Dubins vehicle belongs toΘ(λ2). This result differs from
the result in the Euclidean case, where it is known [25] that
the system time belongs toΘ(λ). Therefore, our analysis
rigorously establishes the following intuitive fact: bounded-
curvature constraints make the system much more sensitive to
increases in the target generation rate.

Future directions of research include finding asinglealgo-
rithm which would provide constant factor approximation to
the DTSP for the worst caseas well asthe stochastic setting.
It is also interesting to consider thenon-uniformstochastic
DTSP when the points to be visited are sampled according
to a non-uniform probability distribution. Other avenues of
future research are to use the tools developed in this paper
to study Traveling Salesperson Problems for other dynamical
vehicles, study centralized and decentralized versions ofthe
DTRP and general task assignment and surveillance problems
for multi-Dubins (and other dynamical) vehicles.
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APPENDIX

We first present a sketch of the proof of Theorem 3.1; a
more detailed proof is presented in [38].

A. Proof of Theorem 3.1

We first describe the construction of the setP ∈ Pn for
which the statement holds true. LetCr be a circle of radius
r < ρ with center at the origin. Fori ∈ {1, . . . , n}, define the
ith point bi by

bi =
(

r cos(2πi/n), r sin(2πi/n)
)

.

This definition ensures thatbi 6= bj for i 6= j. Let P (r) =
{b1, . . . , bn}. Let F = (f1, . . . , fn) be the (possibly, subopti-
mal) order of points which the Dubins vehicle will go through
while executing any algorithm (not necessarily the optimal
algorithm) overP (r). Let τ denote the closed path followed
by the Dubins vehicle. LetDr be a closed disk of radiusr
with center at the origin.

Length(τ) = Length(τ insideDr) + Length(τ outsideDr).

Replacingτ by segments to join then points inP (r) gives
the following inequality:

Length(τ insideDr)

> Length(τ insideDr replaced by segments)

=

n−1
∑

i=1

‖fi − fi+1‖ + ‖fn − f1‖

− Length(τ outsideDr replaced by segments).

Therefore, the total length ofτ can be lower bounded as
follows:

Length(τ) ≥
n−1
∑

i=1

‖fi − fi+1‖ + ‖fn − f1‖

+ Length(τ outsideDr)

− Length(τ outsideDr replaced by segments)
(8)

Let v be the number of point-to-point paths contained
in that part of τ which lies outside Dr. Since the
length of the longest segment lying entirely inDr is 2r,
Length(τ outsideDr replaced by segments) will then be up-
per bounded by2vr. Also,

∑n−1
i=1 ‖fi − fi+1‖ + ‖fn − f1‖

is lower bounded by the length of the ETSP tour overP (r).
This together with equation (8) gives that

Length(τ) > ETSP(P (r)) + Length(τ outsideDr) − 2vr.
(9)

From [12] it follows that under the minimum radius of
curvature constraint, for its optimality,τ is composed of line
segments and arcs of circle of radiusρ. Let{ζ1, . . . , ζv} denote
the angular displacements of the vehicle as it travels alongτ
outsideDr along itsv point-to-point sections. Then,

Length(τ outsideDr) >

v
∑

i=1

ζiρ. (10)

From equations (9) and (10) it follows that

Length(τ) > ETSP(P (r)) +

v
∑

i=1

ζiρ− 2vr. (11)

Now, we use the fact that asr → 0, ζi → 2π for all i. By
taking the limit in (11) asr → 0+, we obtain

Length(τ) > ETSP(P (r)) + 2πvρ. (12)

The inequality (12) holds true forany algorithm over the set
P . Therefore, it holds true for the optimal algorithm whenv
attains its minimum value of⌊n/2⌋. Substituting this value of
v in (12) we obtain the desired lower bound.
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B. Dubins classification of optimal curves

Following [12], the minimum length feasible curve for the
Dubins vehicle is either (i) an arc of a circle of radiusρ,
followed by a line segment, followed by an arc of a circle
of radius ρ, or (ii) a sequence of three arcs of circles of
radius ρ, or (iii) a sub-path of a path of path type (i) or
(ii). To specify the type of these minimum length feasible
curves for the Dubins path we follow the notations used in
[14]. Three elementary motions are considered: turning to the
left, turning to the right (both along a circle of radiusρ),
and straight line motionS. Three operators are introduced:
Lv (for left/counterclockwise turn of lengthv > 0), Rv
(for right/clockwise turn of lengthv > 0), Sv (for straight
motion of lengthv > 0). The operatorsLv, Rv, and Sv,
transform an arbitrary configuration(x, y, ψ) ∈ SE(2) into
its corresponding image point inSE(2) by

(x+ sin(ψ + v) − sinψ, y − cos(ψ + v) + cosψ,ψ + v),

(x− sin(ψ − v) + sinψ, y + cos(ψ − v) − cosψ,ψ − v),

(x+ v cosψ, y + v sinψ,ψ),

respectively. Thus, theDubins setD which is the domain for
the type of the minimum length feasible curve for a Dubins
vehicle between a given initial and final configuration is given
by D = {LSL,RSR,RSL,LSR,RLR,LRL}. One may re-
fer to [12] for a detailed discussion on the construction of these
path types between a given initial and final configuration. One
may note that there are sets of initial and final configurations
for which all the path types may not be feasible between those
configurations.

In the remaining part of the paper we will need to frequently
use the curves of typeLRL andRLR starting with the initial
configuration(0, 0, 0) and the final configuration(0, 0, ψ). We
introduce some additional notations to facilitate presentation
of the same. We introduce notations for the path typeLRL.
For ψ 6= 0, let Cp1(ψ) be a circle with centerOCp1

:= (0, ρ)
and radiusρ, and letCp2(ψ) be a circle with centerOCp2

:=
(−ρ sinψ, ρ cosψ) and radiusρ. Note thatψ 6= 0 implies that
Cp1(ψ)∩Cp2(ψ) is either a point or 2 points. Then letCm1

(ψ)
andCm2

(ψ) be two circles with radiusρ that are tangent to
bothCp1(ψ) andCp2(ψ), see Figure 5 and Figure 6.
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Fig. 5. LRL curves returning to
the origin forψ ∈ [0, π].
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Fig. 6. LRL curves returning to
the origin forψ ∈ ]π, 2π[.

By construction,Cp1(ψ) intersectsCm1
(ψ) andCm2

(ψ) at
one point each: letP1(ψ) be the first of these two points that is
reached moving left from the originO alongCp1(ψ). Without

loss of generality, assumeP1(ψ) ∈ Cm1
(ψ). LetOCm1

be the
center ofCm1

. Let P2(ψ) = Cm1
(ψ) ∩ Cp2(ψ). In order to

remove ambiguity, we shall pick that heading of the tangent
line to a circle at a given point which is consistent with the
orientation of that circle to bethe orientation of the tangent
to that circle at that point. Let the orientation of the Dubins
vehicle atP1 be along the orientation of the tangent toCp1 at
P1. Similarly, let the orientation of the Dubins vehicle atP2

be along the orientation of the tangent toCp2 at P2. Let the
vehicle configuration atP1 andP2 be denoted byJp1 , Jp2 ∈
SE(2), respectively. Lett1, t2, t3 be such thatLt1(0, 0, 0) =
Jp1 , Rt2(Jp1) = Jp2 andLt3(Jp2) = (0, 0, ψ). Let LRLO(ψ)
andRLRO(ψ) be the minimum length curves of typesLRL
andRLR respectively from the configuration(0, 0, 0) to the
configuration(0, 0, ψ).

For ψ 6= 0, we defineforbidden conesV1, V2 : [0, 2π[→
R

2 to be the open, positive cones with symmetry axes
(d, ψ/2)d∈R+

and(d, π+ψ/2)d∈R+
, respectively, and half an-

gle for both of them given byα(ψ) = π/2− cos−1( sin(ψ/2)
2 ).

We also writeV c1 (ψ) = R
2 \V1(ψ) andV c2 (ψ) = R

2 \V2(ψ).

C. Proof of Theorem 3.4

We begin with some preliminary results. To keep the pre-
sentation simple in this section, we either sketch the proofs or
omit them altogether. We refer to [38] for detailed proofs.

We start by providing bounds on the Dubins path length
starting and ending at the same points. One can prove that
for d = 0, the minimal length feasible curve for the Dubins
vehicle is of typeLRL or RLR.

Lemma A.1 (Optimal path length returning to the origin):
Let d = 0 andθ ∈ [0, 2π[.

(i) if ψ ∈]0, π], then LRLO(ψ) is the optimal path and

Cρ(0, θ, ψ) = ρψ + 4ρ cos−1
( sin(ψ/2)

2

)

,

(ii) if ψ ∈]π, 2π[, thenRLRO(ψ) is the optimal path and

Cρ(0, θ, ψ) = ρ(2π − ψ) + 4ρ cos−1
( sin(ψ/2)

2

)

.

Therefore, for allψ ∈ [0, 2π[ andρ > 0,

Cρ(0, 0, ψ) ≤ Cρ(0, 0, π) =
7

3
πρ.

Next, we start to analyze the general case where(x, y) 6=
(0, 0). In what follows, we let(d, θ) = polar(x, y) be the
polar coordinates of(x, y) 6= (0, 0) and, with a slight abuse
of notation, we letCρ(d, θ, ψ) = Cρ(x, y, ψ).

Lemma A.2: (Upper bound on the optimal length via
LRLO andRLRO) For ψ ∈]0, 2π[, and(d, θ) = polar(x, y),

(i) if (x, y) ∈ V c1 (ψ), then Cρ(d, θ, ψ) ≤ d +
Length(LRLO(ψ)),

(ii) if (x, y) ∈ V c2 (ψ), then Cρ(d, θ, ψ) ≤ d +
Length(RLRO(ψ)).

Therefore, for (d, θ) = polar(x, y) and (x, y) ∈
(

⋃

ψ∈]0,π] V
c
1 (ψ)

)

∪
(

⋃

ψ∈]π,2π[ V
c
2 (ψ)

)

,

Cρ(d, θ, ψ) ≤ d+ Cρ(0, θ, ψ) ≤ d+
7

3
πρ.

It now remains to obtain a bound onCρ(d, θ, ψ) when
(x, y) ∈ V1(ψ) or (x, y) ∈ V2(ψ) where(d, θ) = polar(x, y).
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To this effect, let the vehicle start moving at timet = 0 at unit
speed alongCp1 in the counterclockwise direction and keep
updating the parametersd, θ, ψ as if the coordinate system was
moving along with the vehicle. ConsequentlyV1(ψ) keeps
shrinking and there is a time instantt = t∗ when the final
configuration is such that(x, y) /∈ V1(ψ). This construction
along with Lemma A.2 gives the following result.

Lemma A.3:For ψ ∈]0, π[, (x, y) ∈ V1(ψ), (d, θ) =
polar(x, y) andρ > 0,

Cρ(d, θ, ψ) ≤ d+ ρF1(ψ),

whereF1(ψ) is as defined in equation (2).

From the definition, it follows that for(x, y) 6= (0, 0),
(x, y) ∈ V1(ψ) implies (x, y) ∈ V c2 (ψ). This observation
along with Lemma A.1 and Lemma A.2 leads to the next
lemma.

Lemma A.4:For ψ ∈ ]0, π], (x, y) ∈ V1(ψ), (d, θ) =
polar(x, y) andρ > 0,

Cρ(d, θ, ψ) ≤ d+ ρF2(ψ),

whereF2(ψ) is as defined in equation (3).

Combining Lemma A.3 and Lemma A.4, one gets the follow-
ing result.

Lemma A.5:For ψ ∈ ]0, π], (x, y) ∈ V1(ψ), (d, θ) =
polar(x, y) andρ > 0,

Cρ(d, θ, ψ) ≤ d+ ρmax{F2(π), sup
ψ∈]0,π[

min{F1(ψ), F2(ψ)}}

= d+ κπρ.

Similarly, one can prove that forψ ∈]π, 2π[, (x, y) ∈ V2(ψ),
(d, θ) = polar(x, y) and ρ > 0, we haveCρ(d, θ, ψ) ≤ d +
κπρ. Combining this with Lemma A.2 and Lemma A.5, we
can state that forψ ∈]0, 2π[, (x, y) ∈ R

2, (d, θ) = polar(x, y)
andρ > 0,

Cρ(d, θ, ψ) ≤ d+ κπρ. (13)

It now remains to prove a similar bound onCρ(d, θ, 0) for
which we state the following lemma.

Lemma A.6:For (x, y) ∈ R
2, (d, θ) = polar(x, y) andρ >

0,
Cρ(d, θ, 0) ≤ d+ 2πρ.

Lemma A.6 combined with equation (13) completes the
proof for Theorem 3.4. It is easy to check that forψ ∈]0, π[,
F1(ψ) is a monotonically increasing function ofψ andF2(ψ)
is a monotonically decreasing function ofψ. Therefore, there
exists a uniqueψ∗ such thatF1(ψ

∗) = F2(ψ
∗). By numerical

calculations one can find thatκ ≃ 2.6575.

D. Numerical Results

The length of the optimal Dubins path,Cρ(d, θ, ψ), was
calculated for numerous sets of final configurations(d, θ, ψ)
starting with an initial configuration of(0, 0, 0) and the cor-
responding values of the quantityCρ(d,θ,ψ)−d

πρ were evaluated
for each of the instances. The results suggest that these values
are bounded by73 . Moreover, it appears that the value of7

3
is achieved only when the Dubins vehicle makes a transition

from a state of the form(0, 0, 0) to a state of the form(0, 0, π)
according to our setup. Hence, we conjecture that the value
of κ, which is the upper bound for the quantityCρ(d,θ,ψ)−d

πρ ,
is 7

3 .


