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Abstract—In this paper we propose and analyze an algorithm formation. Challenges in boundary estimation using metion
to monitor an environmental boundary with mobile agents. enabled sensors are discussed in [6].
The objective is to optimally approximate the boundary with a In this paper we propose an algorithm to estimate and
polygon. The mobile sensors rely only on sensed local information . L
to position some interpolation points and define an approximating reconstruct the boundary of a_ region. The obje(?tlve IS fo.r a
polygon. We design an algorithm that distributes the vertices group of mobile agents to optimally place some interpofatio
of the approximating polygon uniformly along the boundary. points on the boundary of a simply connected planar region.
The notion of uniform placement relies on a metric inspired The boundary is then reconstructed by linear interpolatibn
by approximation theory for convex bodies. The algorithm is o internolation points. We assume that (i) at initial time
provably convergent for static boundaries and efficient for slowly . .
moving boundaries because of certain input-to-state stability .the ag_ents ha\_/e an _esFlmate of t_he bOU”daFY’ (ii) each agent
properties. is equipped with a limited-footprint camera-like sensod an
with algorithms to locally estimate the tangent and cumatu
of the boundary, and (iii) the agents exchange information
. INTRODUCTION through a ring-topology communication network. An example
i ) scenario for these assumptions is a situation where a grbup o
Much recent attention has been given to the problem g, anneq Air Vehicles (UAVS) with an on-board camera are

boundary estimation and tracking by means of robotic Neligyq to reconstruct the boundary of an oil spill or of agore
works. The common goal is to design a distributed algonthnﬂﬂre

that allows a limited number of mobile agents to detect the

boundary of a region of interest and estimate it as it evolvecsri,[erion to optimally place interpolation points to restmict

Blc_)unt_dary estlrznatlotr; ar:jd ttratc_kmg flsh use}‘u: |r: numbeirous a “planar boundary. The criterion requires that the intexpah
plications such as the detection of harmiul algae bloom [ oints are uniformly distributed according to a curvature-

[Z]a oil spill [3]aand ;ire conti':llir:jn“l‘ent |£4]' :n [.1]r'] I\{!a;thalle weighted distance function defined along the boundary; this
and Bertozzi adopt the so-called “snake algorithm” (frore thfunction is inspired by the literature on optimal approxiioa

computer vision literature) to detec;t and _track th? bounddr . of convex bodies, e.g., see the survey by Gruber [7]. Second,
harmful algag bloom. Each agent is equipped W'th. a Chem'%%mbining the optimal distribution for the interpolationipts

sensor that is able to measure the concentration gradwﬁlh a data structure generated by the mobile agents, we
and with a communication system that is able 1o eXChanB?esent one of the first provably convergent algorithms to

information with a data fu3|on_ center. In [2], Berto;anal. reconstruct a planar boundary. The presented algorithm has
suggest an algorithm that requires only a concentratiosaen the following two properties: (i) our algorithm is provably

the agents repeatedly cross the region boundary using a b vergent for static boundaries and efficient for slowly-

bangdangular velocity c<t)nt|rloller. Inll['3]', Clark_;md Fle;jrsteu moving boundaries, (ii) our algorithms leads the interpota
a rgn okr)n covbe rage con Iro e, Ia C.? |S|onta\1|0| inczct Btro ﬁﬁ?ints to a locally asymptotically optimal distributionoal
and a bang-bang anguiar velocity controller 1o detect ayg, boundary. The optimality is local along each convex arc

surround an oil spill. In [4], Casbeeat al. describe an al- of the boundary and asymptotic in the number of interpotatio

?/OEFhIm thalil;asl:gbv\s} Low Allt'IUdle Shor'F Endrl:ragce L(Jjnm"’m?eéfoints. Our convergence analysis relies upon and extends
ehicles ( s) to closely monitor the boundary o nown results from the theory of consensus algorithms; a

fire. Each of the LASEQVS has_ an infrared camera a”O! naecessarily incomplete list of references about this stibje
short range communication device to exchange informati ludes [8] and [9]

with other agents and to download the information collecte The paper is organized as follows. In Section Il we review

onto the base station. A different approach is conS|derggme mathematical literature on approximation theory. In

by Zhang and Leonard in [5]. A formation of four rObOtSSection [l we introduce an algorithm to jointly update an

trg;:iI:iSO :tcﬁgaagssggig;h;éevgl Z?T:Z"Of r?]g':;i'r(;r?ﬁg “ia(;i'environment boundary and deploy the agents uniformly along
P 9 y op y 9 e boundary estimate. In Section IV we present our final

and they estimate the curvature of the field in the centeref tconcluding remarks.

The contribution of this paper is twofold. First, we propese
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convex bodies approximations, the symmetric differei€e have an estimate of the boundary, (ii) each agent can locally
between two compact, and strictly convex bodigsB € R? estimate the tangent and curvature of the boundary, and (iii
is defined byd®(C,B) = u(C U B) — u(C N B), where the agents are able to exchange information according to a
u is the Lebesgue measure @f. If Q is the body to be ring-topology communication service.
approximated by an inscribed-vertices polygonp,,, then We let{P;}icq1,...n,} b€ the positions of the mobile agents
§°(Q, P,) = Q) — u(P,). Let dQ be the boundary of and we let{pa faeq1,...,n;,) D€ the vertices of the interpolating
Q, ¢ be the arc length alon@Q, and # be the angular polygon; in a practical implementation, we assume that each
position in a polar variable parameterization @f). Let p agent maintains a copy of these virtual positions. Relyipgru
andx = p~! be the curvature radius and curvature of ththe initial estimate of the boundary, we make the following
boundary, respectively. For sufficiently Iarge McLure and additional assumptions: at tinie= 0, the agents have reached
Vitale [10] show thatys(Q, P¥) ~ ﬁ ( ; (0)2/3d9> = a point ofaQ and the mterpolatl_on points are distributed (pos-
3 sibly nonuniformly) on the estimated boundary. We assume
T (fa@ 0)'/3de) , where P} is the best approximating that both the interpolation points and the agents are oddere
polygon with n vertices inscribed inQ. To construct the counterclockwise, and that the agents move countercleekwi
best approximating polygo®; for a strictly convex body along the boundary with speed, see Figure 1.
McLure and Vitale in [10] suggest theethod of empirical
distributions. According to this method, the positions;, P
i € {1,...,n}, of the vertices along@Q have the property
that D9(i) = f;’“ p(0)?/3dH has the same value for every
consecutive pair of vertice$i,: + 1). (Here and in what

follows, we adopt the convention that+-1 = 1.) Interpolating P,
polygons computed according to the method of empirical
distributions converge t@; asn — +oo.
For smooth nonconvex bodies with a finite number of 3
inflection points, the method of empirical distributionsllwi P1o

also yield a nearly optimal distribution as— +oco because
of the local convexity of the body away from inflection points
We show how to do this in what follows. Since the curvature De
radius may be unbounded at some point of a nonconvex

boundary, the mtegraDS(z) may be unbounded for some Fig. 1. In the figure the solid line is the bounda®, the triangles are
We avoid this problem by considering the following gener:%l epggx‘fgt:tlrfgepa%ii zglag% 'g;etrﬁg'fg{g?pgggfn gglﬁgned line is the
notion of distance along a boundary. Fok [0, 1], we define

the pseudo-distancP, between vertice$i,i + 1) by:

positive direction

The agents have two objectives: (i) update the interpaiatio
N : 1/3 B -, points such that they are uniformly distributed alofi@
Da(i) = )‘/(,_ R0l + (1= A) (i = ) according to the estimated pseudo-distareg, (i) move
) along the boundary equally distributed according to argtlen
This definition |s |nsp|red by the fact that, for convex bOdd|stance To achieve these two objectives we propose a novel

1
ies, we have[’" p = Joor “dt for a > 0, Se€ EqrivaTE UPDATE AND PURSUIT ALGORITHM that can be
[7]. Introducing the convex combmatlon with arc length, W& mmarized as follows.

guarantee thaD, () is nonzero whenever the verticesand

i + 1 do not coincide. Note that changing the value of
the parameter\ has less noticeable impact in arcs of the
boundary with high curvature and more in the arcs with low
curvature. In what follows we develop a version of the method
of empirical distributions in which consecutive verticee a
uniformly distributed according to the pseudo-distaiize

Every agent moves counterclockwise along the time-
varying 9@) and collects estimates of the curve
0@ and of its tangent and curvature. Using these
estimates, the agent completes the following four
actions: First, each agent updates the positions of the
interpolation points so that they take valuedq).
In other words, as sufficient information is available,
each interpolation poinp,, o € {1,...,np}, is
projected onto the measured boundary. Second, after
an interpolation pointp, has been projected, the
In this section we propose and analyze an algorithm that agent collects sufficient information so that it can
leads a group ofi; agents to compute and constantly update locally optimize its position along the estimate of
an estimate of a slowly moving boundary. The estimate is 0Q. Third, every agent estimates the arc length
computed in the form of an interpolating polygon; the al- distance between itself and its immediate clockwise
gorithm aims to place the interpolation points so that they and counterclockwise neighbors and uses this infor-
are uniformly distributed according to the pseudo-distanc  mation to speed up or slow down. Fourth and last,
D, introduced in the previous section. As discussed in the the updated interpolation poimpt, is transmitted to
Introduction, we assume that (i) at initial time the agents appropriate neighboring agents.

IIl. BOUNDARY ESTIMATION AND AGENT PURSUIT
ALGORITHM



The first two steps have the combined effect of updating thelLet us illustrate the meaning of the variables in Figure 2.
local estimates of the boundary. The third step has the teff@he curve of points represents the approximaBoIFFERARC
of distributing the agents uniformly along the boundaryeThof 0Q) as seen by agerit while the solid line represent$()
fourth step has the effect of maintaining correct distglout as known through the interpolation poinis, ..., pp and the
information about the boundary estimate. tangent vectorsy, . .. ,'yi’p before any update takes place. The
agent is represented by a triangle. The white circles are the
interpolation points before the update, and the black esrcl
represent the interpolation points after the update; thigewh

In this section we present thesEIMATE UPDATE AND arrows denote the projection of the interpolation pointsoon
PURSUIT ALGORITHM in some detail and we analyze its stathe recently measured boundary and the black arrow denotes
bility. We begin by introducing some basic geometric nagiorthe locally optimal repositioning of the interpolation pts.
about curves and making some smoothness assumptions. In
what follows, we let||v|| be the Euclidean norm af € R™, _}.
R, be the set of nonnegative real numbers, ahdbe the ) T e Yy
set of nonnegative integers. Léx) be the boundary of a ‘
simply connected, and possibly nonconvex €etn R2. Let
v: Ry x [0,1] — R? be a parametric representation of the
time-varying boundary so that, at fixede R, and for all
s € 10,1], v(t,s) describes the bounda@Q(t). We assume Fig. 2. Mobile agent moving along boundary, projecting (whirrow) and
that awétf) _ ’y’(t,s) 7& 0 for all s e [07 1] and for all t, locally updating (black arrow) interpolation points.
that~(t,0) = ~(¢,1), and thats increases as we traverse the
curve in the counterclockwise direction. We also assume tha In what follows, we need to provide rules to perform the
~(t,s) is smooth with respect te and¢ and that the length Various data management tasks:
of the boundand(Q is upper and lower bounded uniformly inRule #1: how to maintain the data iBUFFERARG i.e., how

A. Algorithm description

Prow-+1

Prow-2 Prow-1

t. The curvatures: [0,1] — R, of the curvey is defined by long should the buffer be;
K(s) = W Rule #2: when and how to project oni@( the next outstand-
y(s

Now, we can begin our detailed description of our algo- INg interpolation pointyow; o
rithm; we begin with the data structure. Each agemiintains Rule #3: when and how to locally optimize the updated
the following the following variables in its memory. interpolation pointpyow-1; and o

. ) . . Rule #4: when and what to communication and to whom.
Variable #1: a counterNow taking values in{1,...,nij},

when necessary we will useow’ to indicate the value Rule #1: If agenti is in the process of projecting interpo-
of the countemow for agenti; lation pointpyow, thenBUFFERARC must contain information

Variable #2: a buffer BUFFERARC containing a collection @P0utdQ starting from interpolation poinpyow-2 up to the
= n agent position.

of triplets {0;,7'(0;),k(0;)}, whereo; is a point o : o
Q. v'(0;) and #(o;) are tangent vector and curvature Rule #2: In most cases, the projection takes place when the

at the pointo;, respectively, andj takes value in an 398Nt crosses the lingow that passes throughiow and is

index set{1,...,n,}. It is also convenient to lep — Perpendicular 0y (pyow). To be specificpyon denotes the

{0,}jer0 ' N ’ interpolation point about to be updated, afifpyon) denotes
el,....,no g . .

Variable #3: a boundary estimate given by interpolatiofj© corresponding tangent vector. We can therefore define

pointsp; . .., pp, tangent vectors at interpolation point 0 be the point where the mobile agent trajectd¥yt) crosses

Y, ..., and pairwise pseudo-distance between intefyow: and ' (piow) t0 be the tangent t9Q at pyow- This is

polation pointsf),\(pa,paﬂ), ae {1, nph indeed the correct definition if the agent does cross 4hig.

This projection operation is illustrated in Figure 3.
These variables are initialized as followsow is set equal
to the index of the interpolation point that is immediately
counterclockwise fromP;(0), BUFFERARC s empty, and the
boundary estimate is given by assumption.

Remark 1 (Interpretation): The positionsD are points that
an individual agent has recently visited while moving along
0@ and are an arbitrarily accurate discretization of a portion
of 0Q); these points reside in the memory of every individual
agent. On the contrary, the interpolation points...,pip Fig. 3.  Mobile agent projecting interpolation point ontoe tobserved
are a coarser discretization of a portion 8¢) and are boundary
communicated among agents. The idea is that the agent moves
and gathers sufficient information to update the interpamtat We therefore amend the algorithm to act as follows.
point pyow With the set of observations BUFFERARG, that is, If sufficient time has elapsed without the agent crossing
to projectpyow Onto the discretized representat®oFFERARC  {yow, €.9., if no crossing has happened at timsuch that
of Q). *  Di(pnow-1,P(t)) = 2Dx(Pyow—1,Prow), then Prow IS set

Prow-1



equal to the point orO that is closest tQyoy. The corre- assumption does not hold, i.e., if agent 1 is ready to apply
sponding definition is also employed far (piow). In both Rule #2 before agenthas applied Rule #4, then agent 1
cases, this projection is well defined and has the followingill have to keep collecting data in its buffeuFFERARCuntil

properties. If0Q is time-invariant, themyow = Prow, if 0Q agenti transmits the new position @fyow—1. °
is slowly time-varying, themyo, is close to the orthogonal Remark 3 (Extensions): In the interest of simplicity, we
projection ofpyow ONt0 Q). have omitted two possible generalization that might beulsef

Rule #3: The local optimization ofpyow—1 takes place in practice. First, each agent does not need to know all
immediately after the update gfyow. Using the data in interpolation points; it would suffice for it to know only the
BUFFERARG the agent computes the Voronoi cell insi@e interpolation points located ahead of its position and teefo
of the interpolation poinfpyow—1 and movespyow—1 to the the position of the preceding agent. Second, each agerd coul
center of this cell. This operation is illustrated in Figyre  locally optimize not only a single interpolation point, biit

could store a longer buffer and locally optimize arrays of

Dnow—2 4 interpolation points. °
Lo, pNO:V\W This completes our description of the estimate update algo-
l Plowt Pi(t) riFhm and we now focus on the pursuit objective. To uniformly
or g™ distribute the agents along the bound&g according to arc
U Ou length, we use the following update law for their velocities
move towards center of Voronoi cell 0it) = v0 + korop(L(Ps Prst) — L(Pr1, Py)),

Fig. 4. Mobile agent locally optimizing interpolation poiptow—1 along . ; T o Now™
the observed boundary, after projectingow with Kprop, vo > 0 and L(Py, Py,) = Z(y:NOW"-{—l(”pa—l -
pall), for all n,m € {1,...,na}. Here, recall that

To describe this local optimization accurately, let usdntr PNow" > Prowr 1, - - -, Pnow are. the interpolation points Sep-
duce some notation. The Voronoi ceib, ou} C O of arating agent, and agentn, with n < m, and therefore. is
: e

- . . . . . J the estimated arc length of the portion that has to be
the interpolation poinpyow-1 is defined implicitly by traversed to go from t%}e agenttc? the aﬁm The agents

5 _ B B f)A(pNow,g,pNow,l) have only local information 0d() but still they have to esti-

A(Prow—2,0¢) = Dx(0r, Prow-1) = 9 ' mate the distance, along, from their clockwise and coun-

R N D + terclockwise neighbors in order to calculate their spedte T
. oy A (Pnow—1, Prow) . =~ . . . :

D (Pnow—1,0u) = Dx(0u, Pyow) = B) . estimateL(P,, P,,) is obtained from the approximating poly-

gon formed by the interpolation points. In practice, anyrdage
will speed up if it is closer to the agent behind it, and slow
down if closer to the agent in front of it. With a saturation-
like function: sat(v;(t)) = max{vmin, min{v;(t), vmax}}, we
additionally impose tha < vmin < v;(t) < vmax for all ¢.

In other words, the poind, is the midpoint betweepyow_2
and pyow—1, While o, is the midpoint betweemyow_1 and
priow after the latter was projected @iQ. We now implicitly
define the centeo;, € O of the Voronoi cell by

EA(%%) _ BA(Ok,Ou) Remark 4 (Partial knowledge): The pursuit objective of the
~ ~ N proposed algorithm requires more knowledge than the bound-
_ Dx(Pnow—2, Prow-1) +DA(pN°W*1’pNOW). (1) ary estimation objective. In fact, to calculate(t), agenti
4 needs to know the position not only of all the interpolation
Thus, the new position Ofpwow_1 IS Pioy_; = ox. As points between itself and?;, 1, but also of the ones between

a ConsequenCéj)\(pNowfbpNowfl) and D (puow—1, prow)  Itself andP;_y. Therefore, in addition to the data transmitted

have changed, but we can easily calculate their new valuesiccording to Rule #4, we require that ageritansmitspyo,,

andpyow+1 to i — 1 and the countenow +1toi+1. e
Now we summarize the discussion in this section with a

3] 3 3 —+ .. . .
_ D)\(pNOW—QypNOW—l)+D)\(pNOW—27pNOW—1) + Dx(pvow-1,Pvow)  pseudo-code description of the algorithm in Table 1.
2 4 ’

D/\(pNOW72ap3—OW,1) = D (pnow—2,0¢) + DA(027PN+0W71)

similarly, the value forD (p;,,_1, vow) Can be calculated.

Rule #4: Transmission rule: after locally optimizing theg  a|gorithm analysis
position of the interpolation pointyow-1 and updating ) ) _
the corresponding dat# (prow—1) and Dy (Prow—2, Prow—1), Some steps of the algorithm are affected by noise and error:

agenti transmits this information to agent- 1. We assume () 7" @ndx are only estimate of the true values, (li)is an
the transmission is reliable. After this local optimizatics @PProximation ofZ, (iii) the setO is a discretization of the
performed, the countevow is updated tavow + 1 and Rule subset 0D(Q that agent is visiting, therefore, the center of the
#1 is applied again, i.e., the buffeuFFERARCIs updated by Voronoi cell of the interpolation poinpyow: 1 mMight not be
dropping all observations; betweenpyow_» and pyow_1. calculated exactly. LeD(¢) andL(¢) be the column vectors:
Remark 2 (Synchronization assumption): We assume that -~ = -~
when agent is relocating and transmitting information aboup(t) o [D*(pl(t)’pf(t))’ e R .
Pnow—1 agent(i — 1) has not yet projectedow — 2. If this D(prip—1(t), Pry (t)), Da(pny (1), 01 (1)) ],



TABLE |
ESTIMATE UPDATE AND PURSUIT ALGORITHM

Goal: Uniformly distribute the interpolation points according to
the pseudo-distancP,, and the agents according to the
arc lengthL.

Data: Location of the interpolation points, unitary tangent vec

tor at9Q at those points, last value @b, between any
two consecutive interpolation points, local tangent and
local curvature of the bounda@Q.

Requires: At t9 = 0, p; lie on 9Q, D, between any two
interpolation points is known, ane, = 0.

At every sensing instant, the agent at positigf{t) = P(t) performs:
1: updateBUFFERARCT = R

BUFFERARCU {0n, 41,7 (0ng+1), B(0ny+1), Da(0n,, 0ne+1)}
i if og = 0, then
if n,0n,+1 N Invow # 0, then

Oq = argminoj €{ony:0n,41} H0n00n0+1 N now — OJ”
else

if On,0n,+1 N Lnow = 0 and

D (prnow—1,0ny+1) > 2D (Pnow—1, Prnow), then

7 0q = argmino]e{pNow_1 ,,,,, Ong41}CO [loj — Prnowl]
8: end if

9: endif
10: end if
11:if o4 # 0 andpyoyi # Puyowi+1 2. then
12:  update the interpolation poipkow by projecting it ontodQ:

QRN RAR®WN

Prnow = Oq )
13: calculateoy, as in (1) and updatgnow—1 by: pN+OW_1 = o
14: communicate to agent— 1: transmit puow-+1, Priow pNJrOW_ly
’Yl(pxow__l)x D)\'(pNOW—27pIOW_1) .
15: communicate with agent+ 1:  transmitNow + 1
16: update the s&@UFFERARC and the countenow:

BUFFERARCY := {op,...,0n 41}, NOWT := NOW + 1

17: end if R R
18: calculatev; (t): Vi (t) = Sat(v()-|—]<,‘p|f0p(L(F>i7 Pi+1) _L(Pi—h Pl)))

L(t) = [L(P,(t),Ps(t)), .,
L(Py,-1(8), Pa. (1)), L(Pa, (), P (8))] "

Consider the disagreement vectdr@) anddL(t) defined by:

d(t) = Dyft) - 120 @
Nip
SL(t) = L(t) — @1. 3)

Note that they are orthogonal to the veclgri.e., the column
vector inR™ with all entries equal td.

We now establish that the dynamicsdfandiL are input-
to-state stable (ISS) where the inputs are the errors arsg$10

where du(r) = u(ry) — %1 andu(7y) is a bounded
vector taking into account the effect of the estimation iro
and of the boundary deformation during the inteffval 75 11].
Furthermore, the dynamics df are input-to-state stable with
input du.

Proof: In what follows we identifyry = 0 and 7, = k.
Let us suppose thalQ(¢) is time-invariant, and tha© is
a continuous (and not discrete) representationo¢, i.e.,
u(k) = 0 for all & € Ny. Then, because of Rule #2yow
is projected onto itself and, because of Rule #3ow_1
is moved exactly to the center if its Voronoi cell. Suppose
that an agent has passed by the pagiRtw, and then it
can optimally placepyow-1. As a consequence, the pseudo-
distances D (pnow—2, Pvow—1) @nd D (pnow—1, Prnow) Wil
take new values that can be expressed as follows, (recall
Figure 4):

D, (pNOW—27 pNOW—1)+ =

3~ 1~
ZDA (pNow—27pNow—1) + ZD/\(I?Now—lapNow)a

ﬁ)\(pNow—lapNow)Jr
1~ 3~

ZDA (Pnow—2, Prnow—1) + ZD/\ (Pnow—1, Pnow)s

where the superscript” indicates the new values of the

pseudo-distances afteryow_1 has been optimally placed.

For a € {1,...,njp}, define the doubly stochastic matrix

A, € R™>™p by

3/4, fj=h=«a,0rj=h=a-1,
(Aa)jn =1<1/4, if j=a—1andh = «, or viceversa,
Ojn,s otherwise.

Therefore, A,, for a € {1,...,njp}, are the matrices de-
termining the dynamic systerﬁ),\(tg) = Aaf)A(tl), where

to > t; is the time when the interpolation point is moved

by an agent to its new Voronoi center and where we are
assuming that between andt, no other interpolation point
has been moved. If at the same instant more interpolation
points are relocated, then the matrix describing the dyosmi
is the product of all thed,, that correspond to the relocated
interpolation points. The order of the matrix multiplicatiis
irrelevant as one can show that these matrices commute. Let
us now derive the dynamics @, whendqQ is slowly time-
varying, while O is still a continuous representation t).

above discussed. Because of the ISS property we can conclBe@Ssumptiony (¢, s) is smooth in both its arguments and, as

that, if the errors are bounded, then the statesnd /L are
within a bounded distance from the origin.

Theorem 1. (1SS of the dynamics of the interpolation points
distances) If the boundary is slowly time-varying and if—
L(0Q(t)) is upper and lower bounded uniformly in then,
under the BSTIMATE UPDATE AND PURSUIT ALGORITHM,
there exists a sequence of instamfs for £k € Ny, and a
sequence of ergodic and doubly stochastic matri¢€s), for
k € Ny, such that

d(Tk+1) = A(/ﬂ)d(Tk) + (511(7%), ke No,

argued above, the projection of the interpolation poiniged
defined and unique.

Let tk+! be thek + 1-th time thatp, is optimally placed
by an agent. Before optimally placing,, the agent will
project p,+1. It can be proved that right before placing
Pa, because the boundary has changed, the pseudo-distance
Dx(pas Pat1, thh) will differ from Di(pa,pa+t1,th1)" by
some noiseg(tk+t1 — ¢& ) which is a continuous function
of tht1 — ¢k and g(0) = 0. With Dy (pa, pat1, ;)T we
denote the pseudo-distance betwegnand p,. 1 right after
pat1 has been optimally placed for thgh time. Therefore,



the system is evolving according to: 1T+:(t)1, and

]/j)\(pavpa+lvtl(§¢+l)+ = (Aler(t), - ena(t)))jn =
~ _it)_ci 1(t) |f]:h:7
Aq (DA Do Pt 151 1) + eqp1g(thtt — ¢k ) . (4 ci( +1(1), ,
( +1 a+1) +1 ( « a+1) ( ) cH_l(t)’ if j:z andh:z‘+17
where e, is the column vector with null entries but the ci(t), if j=dandh=1i—1,
a-th component that is equal té, and the subscript 0, otherwise.

indicates that the interpolation poipt has just been optimally
placed. LetAT = sup, . =20 Note thatAT < oo With ci(t) fif(_?ﬂ] for all i € {1,...,na}, and 5(t) =
since by assumption the length of the bounda&g(t) is L] - The variablews(t) € R"*! expresses
uniformly upperbounded. This means that at most aftigt the change in the arc length distance between any two
any interpolation point is updated at least once. Any tins thconsecutive agents due to the deformationdgf(t), while
an agent updates any interpolation pojnt the vectorD, Wwi(t) = L(t) — L(t) € R"*" is the error due to the fact that
evolves according to (4), wher&*! *t§+1 is upperbounded the agents do not know exactly, the arc length distance
by AT. SinceAT is finite, there exists a sequence of instanféetween them and their neighbors, but only an estimate
Tk, With k € Ny, such that across the intenal,, 7. 1] every through the interpolation points. Furthermore, the dynamics
interpolation point has been updated at least once by art,ag€hdL is input-to-state stable with— dw (t) andt — dwa(t)
and: as inputs.
Proof: Let us suppose that th@Q(t) is time-invariant
Dy(k+1) = A(k)f)k(k;) +u(k), ke Ny. (5) and that the agents can actually compute without error the
arc length distance between them and their clockwise and
The matrix. A(k) is the product of a finite numbe¥/ (k) of counterclockwise neighbors, i.ew(t) = wy(t) = 0
matrices A, i.e., A(k) = I} Aq,, as € {1,...,mp}. for all ¢t > 0. The dynamics forL(t) can be written as
The value of the indexys depends on the order in whichL(P;(t), Piv1(t)) = viy1 — vi, Where vy = sat(vo +
the interpolation points are updated. It is easy to see thatop (L (Pit1, Piy2) — L (P, Piy1))) and v; = sat(vg +
nip < M(k) < nanip. Note that.A(k) is doubly stochastic kprop (L (P, Pi+1) — L (Pi—1, P;))). Therefore, if the satura-
because it is the product of doubly stochastic matricesceSirtion on the speeds is not active, we have:
across the intervaty,, 7,.1] every interpolation point has been.
updated at least once by an agent, the graph associated Wit (), Pigr () =
A(k) is connected and therefotd(k) is ergodic (see [11]). k‘prop(L (Pit1, Piys) — 2L (P, Piy1) + L (Pi717pi)>7
Furthermoresup(7x4+1 — 7x) < AT < +oo, and (by [8]) we
claim that, ifu(k) = 0, thenD, (k) converges exponentially which in matrix form becomes:

fast to %@“ﬁ)l. Consider now the disagreement vector 9 1 0o ... 1
d(k) defined in (2). Recalling (5), and that(k) is doubly 1 -2 1 ... 0
stochastic, we can derive the update lawdok): L) =koop| ¢ . . . | L@
d(k +1) = A(k)d(k) + du(k), ke Ny, (6) o ... 1 -2 1
1 o ... 1 =2
where du(k) = u(k) — IT%"J(’“)L Given the properties of = kpropALL(?).

the matrix A(k), the origin of the unforced system (6) is ) o )
exponentially stable. Since the inpdii enters linearly, we 'f for /agentz, the saturation is active, then/ we have that
conclude that the system is input-to-state stable ([12f)s T vo+k; (L(Py; Pig1) — L(Pi1, Pi)), wherekj = Kpropci, ¢; <

implies thatD, will asymptotically reach a ball centered atl- In other words, we can think of the saturation function as

71“2*(’“)1 (the equilibrium of the unforced system) and witH change in the gain in the control law.df = vmax then

radius that is a clas& function of the input, see [12]. This

L — Umax — Vo > Umax — V0
also holds if we now relax the assumption that no errors &ffec C(L(P;, Piyy) — L(Pi_1, Py)) — L(0Q(t))
the calculation of the Voronoi centers, because this emtare k! 1 Umax— o
linearly in the system (6). n = =2 > 0.

y y kiprop — Kprop L(0Q())

Theorem 2 (ISS of the dynamics of the interagent distances):
If the boundary is slowly time-varying and if— L(8Q(t)) ! vi = vmin, then
is upper and lower bounded uniformly ity then, under

k= Vo — Umin V0 — Umin

the ESTIMATE UPDATE AND PURSUIT ALGORITHM, i _(L(Pi P1)— L(P_1,P)) — L(OQ(t))
. K} 1 wvo— vmi

OL(t) = propA(c1 (1), - e (1)) (SL() + w1 (1)) +dwa (1), = a=p- 2t

where dwi (1) = wi(t) — 22101, Gwa(t) = wo(t) — inany casey € [(¢), 1] and 5(t) = R, sl



. . . Initial Configuration Final Configuration
Clearly then, if we introduce the saturation on the speeds ! S

v;, the dynamics ol becomes:

L(t) = kpropA(c1(t), - -, cna(1))L(2). 7

Note that3(¢) is constant because we are still considering
0@ time-invariant. Using the properties of Metzler matrices,
it can be proved (see Lemma 2 in [13]) that the new matrices
A(er(t), ... en,(t)), like A, are negative semidefinite. Therig. 5. This figure shows initial and final configuration afta®
unique zero eigenvalue is associated with the eigenvdctor seconds simulation obtained by the implementation of theIZATE

Consider the disagreemefiL. as described by (3), then ~ UPDATE AND PURSUITALGORITHM With na = 3, nip = 30, v0 =1,
kprop = 0.05, A = 17. 0Q) is time invariant. The agents position is

5L(t) = kpropA(c1(t), - . ., Cna())OL(2). (8) represented by the triangles and are initialized to be on the boundary
0Q. In the last frame also the approximating polygon is shown.
Let V(6L(t)) = SL”(t)6L(t) be the candidate Lyapunov
function for the system (8), then we have tHatsL(t)) = i
UpropdL(t) A(c1(t), - .., en())0L(t) < 0, where the equality Sincel is orthogonal toyL(t), éwy(t), anddws(t) we have:
holds only if the entries oeﬁL(t) are all zero. Since; belong SL(t) = KpropA(t)OL(t) + kpropA(t)dw1 (t) + dwa(t).  (9)
to a compact set, the matrice$(c (¢),...,cn.(t)) belong ) _ o
to a compact set, and since the eigenvalues of a matrix ard N System described by equation (9) is input-to-state
continuous functions of its entries (see [14]), then thetste Stable with inputsiw, (#) and ow(t) because (i) the origin
an upperbound-p < 0 for the eigenvalues that are differenf the unforced system is exponentially stable, and (i) the
from zero and as a consequentcésL(t)) < —p||SL(t)]2. nght—hgnq-&de of (9) is differentiable and uniformly ghdly
We can then conclude that for the system (8) the origin {dPSChitz indL, dw, (¢) anddwy(t), (see [12]).
exponentially stable and therefore, for the system (7), theThe ISS property guarantees thawii andw, are bTOLU?ed'
equilibrium L) q s exponentially stable. then L will asymptotically reach a ball centered étﬁ()l
"2 n@he equilibrium of the unforced system) and with radiug tha

Let us now assume that the boundary is slowly-varyi s ) ;
and that instead ofL(P;, Pi,;) the agents use only thelS @ classK function of the input, see [12]. The larger, is

approximationL(P;, P, 1), i.e., w1 (t), wa(t) # 0. Then, the and the slower the deformation 6f) is, then the smallew
variation in time of the vectolL(¢) is due, not only to the andw, are, and the closer 10 the disagreemendL will be

fact that the agents speed up and slow down, but also to fRyMPptotically. u
deformation ofoQ:
] R C. Smulations
L(t) = kpropA(t)L(t) + w2(t) In this section we present results of two different simu-
= kpropA() (L(t) + w1(t)) + wa(t), lations obtained with the implementation of thesHMATE
—~ UPDATE AND PURSUIT ALGORITHM. In the first simulation
where A(t) = A(ci(t),. .., en, (1), wit) = L =L, and e noundanp( is time invariant, while in the second is time
wo(t) expresses the deformation @fQ(t). In particular varying
. . O [Sit+1 '
the i-th entry of w(t) is equal tog [ [[7/(s,t)lds — 1) Time-invariant boundary: In this simulation we use, =

FpropAi () (Li(t) + w1 (t)), where A;(t) is the i-th row of 3 50ents to have an approximation of the nonconvex boundary
A(t). Note thate;(t) € [8(t), 1]} for all i € {1,...,na}, and 8Q described by:
that 5(t) = min{vma—vo.v0—vmn} g jndeed uniformly upper

kpropL (0Q (1)) . cos(2m0)
bounded even whef( is time-varying because we assumed ~(f) = (2 + cos(10m6) + 0.5 sin(47r9)) { . } .
that L(0Q(t)) is upper and lower bounded uniformly inThe sin(2r6)

vector wy is bounded because by assumption the boudaryTiee outcome is shown in Figure 5. In order to calculate their
smooth and slowly time-varying. Using the change of vagabl speeds, the agents uge= 1, andkp,op = 0.05. The saturation
in equation (3), and recalling that(¢)1 = 0, for all ¢, we function for the speed has lower limit,, = 0.5 and upper
have: limit vmax = 2. The number of interpolation pointsiig, = 30,
) 1T ws(t) while A = %. The simulation time is50 seconds and the
L(t) = kpropA(t)OL(t)+kpropA(t)ow1 (t)+0ws(t)+————=1, sampling time).01 seconds. The plots in Figure 5 corresponds
"'a to the positions of the interpolation points and the agettisea
wheresws () = wal(t) — Twa(t) 1 |t is easy to see that Weinitigl and final configL_Jration. The_int_erpolgtion poim§qwi
o 1TL () _ fori € {1,...,na} at timet = 0 coincide with the positions
= 0L(t) + —;7~1 and therefore: of the agents. The other interpolation points are randomly
171() distributed on the boundary. In the last frame one can also se
- 1 = kpropA(t)IL(t) + kpropA(t)dw (t)+ the approximating polygon and how close it is to the actual
a boundary.
+ owa(t) + 1" wy(t) 1. Since the pseudo-distande, and the arc lengtl. can be
Na calculated after the simulation is completed, we iise and

can writeL(t)

OL(t) +
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Fig. 6. ESTIMATE UPDATE AND PURSUIT ALGORITHM This plots t
refers to the case oHQ being time-invariant. In the first plot
from right it is shown the erromaxic(i,. npy Da(pispit1) —
Minie(1,...,np} DA (Pi, pi+1) VS time. The second plot shows the arc
length distances between the three agents.

L instead of their estimat®, and L to show the algorithm
performance. Figure 6 does indeed show the convergenceFigf 7. This figure shows four different instants of tBe0 seconds
the algorithm. In the first plot we can see that the consens}\@”'a“on obtained by implementing thesSBMATE UPDATE AND

. URSUIT ALGORITHM With nq = 4, nip = 35, vo = 1, kprop = 0.05,
on the pseudo-distanch) (pi; pi+1), between any two con- 10 The boundanyQ is slowly time-varying in this case. The

secutive interpolation points, is reached. The quantity agents positions are represented by triangles and initialized to be
Da( ) . Di( ) on the boundanp@. The last frame also shows the approximating
max - min
ety A PasPagt) = AW AP Pat polygon.
does not vanish because of numerical errors in the estimate . maxDy —min Dy Arc length distances

Dy. The second plot shows how the agents get uniformly
spaced along the boundary. The steady state values of the ar
length distances oscillates aroutd which is the target value.
The noise is again due to the fact that the agents only estimat
the arc length using the positions of the interpolation tsin 4 N
2) Sowly time-varying boundary: In this simulation we

1
£
]
(]
o0sf ®
L]
o

© “tirhe"(sécy ¢ 7 ©" tirhe(secy T

usedn, = 4 agents to have an approximation of the nonconvex
boundaryoQ(t) described by: Fig. 8. ESTIMATE UPDATE AND PURSUIT ALGORITHM. This figure
refers to the case a?@ being slowly time-varying. In the first plot
~(0,t) = from the right we shown the erranax;eq, ..., nip} Da(pi, pit1) —

o " (270 minge 1, ny} Da(pi, pi+1) Vs time. The second plot shows the arc
9_ 24 (2 + cos(1076) + 0.5 Sin(4ﬂ9)) - Cf)b( )| length distances between the four agents.
ty ty) [sin(270) |’
with 6 € [0,1), t; = 200 seconds as shown in Figure 7. ) ) )
The values ofv, Fprop: Umin, Umax @nd A are respectively1, in the' second plot of Figure 8. The four distances increase
0.05, 0.5, 2, and 1. The simulation time i200 seconds, the with time because..(0Q)), the total length of the boundary,
sampling time0.01 seconds. The plots in Figure 7 correspontficréases with time. Clearly the variablesandnip are design

to the positions of the interpolation points and the agents \@'1ables and are results of two different trade-offs. loidiag
four different instantsz = 0, ¢ = 50, ¢ — 100, and¢ — the number of agents, the speed with which the boundary

200 seconds respectively. The algorithm is initialized wite thchanges and the maximum speed at which the robots can
agents on the boundary. The interpolation pojnis,: at time MOve play an important role. If the bound'ary. changes very fas
¢ = 0 coincide with the positions of the agents. The othéthd the maximum speed of the robots is fixed, then a larger
interpolation points are randomly distributed. In the kaame "eWwork will guarantee better performances. If the boupdar
we can also see the approximating polygon and how close®{32nges slowly, then few robots (1 or 2) might suffice. In
the actual boundary is. From the frames in Figure 7 it is cledfCiding the number of interpolation points, on the otherha
that the agents can adapt @@ changes. the most important role is played by thg com.plexny. of the
The pseudo-distanch, is well defined only if the interpo- boundary measured by the num_ber of inflection points. To
lation points belong to the boundafy). Since the boundary havg 9009' perfo_rmanca,-p should Increase as the number of
changes with time, the interpolation points are only for sontn€ inflection points of the boundary increases.
time on the boundary after an agents has projected them. So,
we consider as pseudo-distance between any two consecutive IV. CONCLUSIONS AND FUTURE WORK
interpolation points in a certain time the pseudo-distance In this paper we have addressed the problem of boundary
between their radial projection onti) (7). The disagreement estimation and tracking by means of robotic sensors. We
in the placement of the interpolation points, whellg is have presented an algorithm to position interpolation {soin
redefined as just explained, is shown in the first plot of Fegualong a time-varying boundary in such a way as to obtain an
8. The arc length between any two consecutive agents is shapproximating polygon with some optimality features.



Each mobile agent is equipped with (1) a sensor that prae]
vides only local information about the tangent and cuneatur
of the boundary, and (2) a communication device that enab
information exchanges between clockwise and counterelock
wise neighbors along the boundary. The algorithm allows tiel
agents to place a set of interpolation points uniformly eriac[13]
according to the estimate of the pseudo-distafite The
vertices of the approximating polygon are the interpotatio
point positions. The algorithm is proved to converge even if
the boundary is slowly-moving. Tools from consensus amaly$14]
allow us to prove the correctness of the algorithm.

An important problem for future research concerns the
possible and realistic occurrence of boundary splits. heiot
words, it would be of interest to consider problems where
the region enclosed in the boundary can split into two or
more separate regions. Therefore, it will be valuable, éaid-r
time implementation, to investigate how to enable the agent
to detect splitting events and how to modify theTEMATE
UPDATE AND PURSUIT ALGORITHM so that the agents can
estimate the boundaries of the regions. Experimental work
could also suggest further modification to the algorithm to
improve its performances. Additionally, we plan to devise
algorithms to monitor 3-dimensional regions, such as doud
of chemical pollutants and to extend the presented algorith
to monitor buildings with camera-like networks.
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