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Monitoring Environmental Boundaries
with a Robotic Sensor Network
Sara Susca Sonia Martı́nez Francesco Bullo

Abstract—In this paper we propose and analyze an algorithm
to monitor an environmental boundary with mobile agents.
The objective is to optimally approximate the boundary with a
polygon. The mobile sensors rely only on sensed local information
to position some interpolation points and define an approximating
polygon. We design an algorithm that distributes the vertices
of the approximating polygon uniformly along the boundary.
The notion of uniform placement relies on a metric inspired
by approximation theory for convex bodies. The algorithm is
provably convergent for static boundaries and efficient for slowly-
moving boundaries because of certain input-to-state stability
properties.

I. I NTRODUCTION

Much recent attention has been given to the problem of
boundary estimation and tracking by means of robotic net-
works. The common goal is to design a distributed algorithm
that allows a limited number of mobile agents to detect the
boundary of a region of interest and estimate it as it evolves.
Boundary estimation and tracking is useful in numerous ap-
plications such as the detection of harmful algae bloom [1],
[2], oil spill [3], and fire containment [4]. In [1], Marthaler
and Bertozzi adopt the so-called “snake algorithm” (from the
computer vision literature) to detect and track the boundary of
harmful algae bloom. Each agent is equipped with a chemical
sensor that is able to measure the concentration gradient
and with a communication system that is able to exchange
information with a data fusion center. In [2], Bertozziet al.
suggest an algorithm that requires only a concentration sensor:
the agents repeatedly cross the region boundary using a bang-
bang angular velocity controller. In [3], Clark and Fierro use
a random coverage controller, a collision avoidance controller
and a bang-bang angular velocity controller to detect and
surround an oil spill. In [4], Casbeeret al. describe an al-
gorithm that allows Low Altitude Short Endurance Unmanned
Vehicles (LASEUVs) to closely monitor the boundary of a
fire. Each of the LASEUVs has an infrared camera and a
short range communication device to exchange information
with other agents and to download the information collected
onto the base station. A different approach is considered
by Zhang and Leonard in [5]. A formation of four robots
tracks at unitary speed the level sets of a field. Their relative
position changes so that they optimally measure the gradient
and they estimate the curvature of the field in the center of the
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formation. Challenges in boundary estimation using motion-
enabled sensors are discussed in [6].

In this paper we propose an algorithm to estimate and
reconstruct the boundary of a region. The objective is for a
group of mobile agents to optimally place some interpolation
points on the boundary of a simply connected planar region.
The boundary is then reconstructed by linear interpolationof
the interpolation points. We assume that (i) at initial time
the agents have an estimate of the boundary, (ii) each agent
is equipped with a limited-footprint camera-like sensor and
with algorithms to locally estimate the tangent and curvature
of the boundary, and (iii) the agents exchange information
through a ring-topology communication network. An example
scenario for these assumptions is a situation where a group of
Unmanned Air Vehicles (UAVs) with an on-board camera are
tasked to reconstruct the boundary of an oil spill or of a forest
fire.

The contribution of this paper is twofold. First, we proposea
criterion to optimally place interpolation points to reconstruct
a planar boundary. The criterion requires that the interpolation
points are uniformly distributed according to a curvature-
weighted distance function defined along the boundary; this
function is inspired by the literature on optimal approximation
of convex bodies, e.g., see the survey by Gruber [7]. Second,
combining the optimal distribution for the interpolation points
with a data structure generated by the mobile agents, we
present one of the first provably convergent algorithms to
reconstruct a planar boundary. The presented algorithm has
the following two properties: (i) our algorithm is provably
convergent for static boundaries and efficient for slowly-
moving boundaries, (ii) our algorithms leads the interpolation
points to a locally asymptotically optimal distribution along
the boundary. The optimality is local along each convex arc
of the boundary and asymptotic in the number of interpolation
points. Our convergence analysis relies upon and extends
known results from the theory of consensus algorithms; a
necessarily incomplete list of references about this subject
includes [8] and [9].

The paper is organized as follows. In Section II we review
some mathematical literature on approximation theory. In
Section III we introduce an algorithm to jointly update an
environment boundary and deploy the agents uniformly along
the boundary estimate. In Section IV we present our final
concluding remarks.

II. A PPROXIMATION THEORY FOR CONVEX BODIES

In this section we review some known useful results from
the literature on approximation of strictly convex bodies;e.g.,
see the extensive survey [7]. In the standard literature on
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convex bodies approximations, the symmetric differenceδS

between two compact, and strictly convex bodiesC, B ∈ R
d

is defined byδS(C,B) = µ(C ∪ B) − µ(C ∩ B), where
µ is the Lebesgue measure onRd. If Q is the body to be
approximated by an inscribedn-vertices polygonPn, then
δS(Q,Pn) = µ(Q) − µ(Pn). Let ∂Q be the boundary of
Q, ℓ be the arc length along∂Q, and θ be the angular
position in a polar variable parameterization of∂Q. Let ρ
and κ = ρ−1 be the curvature radius and curvature of the
boundary, respectively. Forn sufficiently large, McLure and

Vitale [10] show thatδS(Q,P ∗
n) ≈ 1

12n2

(∫ 2π

0
ρ(θ)2/3dθ

)3

=

1
12n2

(∫
∂Q

κ(ℓ)1/3dℓ
)3

, whereP ∗
n is the best approximating

polygon with n vertices inscribed inQ. To construct the
best approximating polygonP ∗

n for a strictly convex body
McLure and Vitale in [10] suggest themethod of empirical
distributions. According to this method, the positionsθi,
i ∈ {1, . . . , n}, of the vertices along∂Q have the property
that DS(i) =

∫ θi+1

θi
ρ(θ)2/3dθ has the same value for every

consecutive pair of vertices(i, i + 1). (Here and in what
follows, we adopt the convention thatn+1 = 1.) Interpolating
polygons computed according to the method of empirical
distributions converge toP ∗

n asn → +∞.
For smooth nonconvex bodies with a finite number of

inflection points, the method of empirical distributions will
also yield a nearly optimal distribution asn → +∞ because
of the local convexity of the body away from inflection points.
We show how to do this in what follows. Since the curvature
radius may be unbounded at some point of a nonconvex
boundary, the integralDS(i) may be unbounded for somei.
We avoid this problem by considering the following general
notion of distance along a boundary. Forλ ∈ [0, 1], we define
the pseudo-distanceDλ between vertices(i, i + 1) by:

Dλ(i) = λ

∫ ℓi+1

ℓi

κ(ℓ)1/3dℓ + (1 − λ)(ℓi+1 − ℓi).

This definition is inspired by the fact that, for convex bod-
ies, we have

∫ 2π

0
ρ(θ)α =

∫
∂Q

κ(ℓ)1−αdℓ for α > 0, see
[7]. Introducing the convex combination with arc length, we
guarantee thatDλ(i) is nonzero whenever the verticesi and
i + 1 do not coincide. Note that changing the value of
the parameterλ has less noticeable impact in arcs of the
boundary with high curvature and more in the arcs with low
curvature. In what follows we develop a version of the method
of empirical distributions in which consecutive vertices are
uniformly distributed according to the pseudo-distanceDλ.

III. B OUNDARY ESTIMATION AND AGENT PURSUIT

ALGORITHM

In this section we propose and analyze an algorithm that
leads a group ofna agents to compute and constantly update
an estimate of a slowly moving boundary. The estimate is
computed in the form of an interpolating polygon; the al-
gorithm aims to place the interpolation points so that they
are uniformly distributed according to the pseudo-distance
Dλ introduced in the previous section. As discussed in the
Introduction, we assume that (i) at initial time the agents

have an estimate of the boundary, (ii) each agent can locally
estimate the tangent and curvature of the boundary, and (iii)
the agents are able to exchange information according to a
ring-topology communication service.

We let{Pi}i∈{1,...,na} be the positions of the mobile agents
and we let{pα}α∈{1,...,nip} be the vertices of the interpolating
polygon; in a practical implementation, we assume that each
agent maintains a copy of these virtual positions. Relying upon
the initial estimate of the boundary, we make the following
additional assumptions: at timet = 0, the agents have reached
a point of∂Q and the interpolation points are distributed (pos-
sibly nonuniformly) on the estimated boundary. We assume
that both the interpolation points and the agents are ordered
counterclockwise, and that the agents move counterclockwise
along the boundary with speedvi, see Figure 1.

positive direction
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Fig. 1. In the figure the solid line is the boundary∂Q, the triangles are
the agents, the circles are the interpolation points, and the dotted line is the
approximating polygon defined by the interpolation points.

The agents have two objectives: (i) update the interpolation
points such that they are uniformly distributed along∂Q
according to the estimated pseudo-distanceD̂λ, (ii) move
along the boundary equally distributed according to arc length
distance. To achieve these two objectives we propose a novel
ESTIMATE UPDATE AND PURSUIT ALGORITHM that can be
summarized as follows.

Every agent moves counterclockwise along the time-
varying ∂Q and collects estimates of the curve
∂Q and of its tangent and curvature. Using these
estimates, the agent completes the following four
actions: First, each agent updates the positions of the
interpolation points so that they take value in∂Q.
In other words, as sufficient information is available,
each interpolation pointpα, α ∈ {1, . . . , nip}, is
projected onto the measured boundary. Second, after
an interpolation pointpα has been projected, the
agent collects sufficient information so that it can
locally optimize its position along the estimate of
∂Q. Third, every agent estimates the arc length
distance between itself and its immediate clockwise
and counterclockwise neighbors and uses this infor-
mation to speed up or slow down. Fourth and last,
the updated interpolation pointpα is transmitted to
appropriate neighboring agents.
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The first two steps have the combined effect of updating the
local estimates of the boundary. The third step has the effect
of distributing the agents uniformly along the boundary. The
fourth step has the effect of maintaining correct distributed
information about the boundary estimate.

A. Algorithm description

In this section we present the ESTIMATE UPDATE AND

PURSUIT ALGORITHM in some detail and we analyze its sta-
bility. We begin by introducing some basic geometric notions
about curves and making some smoothness assumptions. In
what follows, we let‖v‖ be the Euclidean norm ofv ∈ R

n,
R+ be the set of nonnegative real numbers, andN0 be the
set of nonnegative integers. Let∂Q be the boundary of a
simply connected, and possibly nonconvex setQ in R

2. Let
γ : R+ × [0, 1] → R

2 be a parametric representation of the
time-varying boundary so that, at fixedt ∈ R+ and for all
s ∈ [0, 1], γ(t, s) describes the boundary∂Q(t). We assume
that ∂γ(t,s)

∂s = γ′(t, s) 6= 0 for all s ∈ [0, 1] and for all t,
that γ(t, 0) = γ(t, 1), and thats increases as we traverse the
curve in the counterclockwise direction. We also assume that
γ(t, s) is smooth with respect tos and t and that the length
of the boundary∂Q is upper and lower bounded uniformly in
t. The curvatureκ : [0, 1] → R̄+ of the curveγ is defined by
κ(s) = ‖γ′(s)×γ′′(s)‖

‖γ′(s)‖3 .
Now, we can begin our detailed description of our algo-

rithm; we begin with the data structure. Each agenti maintains
the following the following variables in its memory.

Variable #1: a counterNOW taking values in{1, . . . , nip},
when necessary we will useNOWi to indicate the value
of the counterNOW for agenti;

Variable #2: a buffer BUFFERARC containing a collection
of triplets {oj , γ̂′(oj), κ̂(oj)}, where oj is a point on
∂Q, γ̂′(oj) and κ̂(oj) are tangent vector and curvature
at the pointoj , respectively, andj takes value in an
index set{1, . . . , no}. It is also convenient to letO =
{oj}j∈{1,...,no};

Variable #3: a boundary estimate given by interpolation
pointsp1, . . . , pip, tangent vectors at interpolation points
γ′
1, . . . , γ

′
ip, and pairwise pseudo-distance between inter-

polation pointsD̂λ(pα, pα+1), α ∈ {1, . . . , nip}.

These variables are initialized as follows:NOW is set equal
to the index of the interpolation point that is immediately
counterclockwise fromPi(0), BUFFERARC is empty, and the
boundary estimate is given by assumption.

Remark 1 (Interpretation): The positionsO are points that
an individual agent has recently visited while moving along
∂Q and are an arbitrarily accurate discretization of a portion
of ∂Q; these points reside in the memory of every individual
agent. On the contrary, the interpolation pointsp1, . . . , pip

are a coarser discretization of a portion of∂Q and are
communicated among agents. The idea is that the agent moves
and gathers sufficient information to update the interpolation
point pNOW with the set of observations inBUFFERARC, that is,
to projectpNOW onto the discretized representationBUFFERARC

of ∂Q. •

Let us illustrate the meaning of the variables in Figure 2.
The curve of points represents the approximationBUFFERARC

of ∂Q as seen by agenti, while the solid line represents∂Q
as known through the interpolation pointsp1, . . . , pip and the
tangent vectorsγ′

1, . . . , γ
′
ip before any update takes place. The

agent is represented by a triangle. The white circles are the
interpolation points before the update, and the black circles
represent the interpolation points after the update; the white
arrows denote the projection of the interpolation points onto
the recently measured boundary and the black arrow denotes
the locally optimal repositioning of the interpolation points.

pNOW+1

pNOW

pNOW−1

Pi(t)

pNOW−2

Fig. 2. Mobile agent moving along boundary, projecting (white arrow) and
locally updating (black arrow) interpolation points.

In what follows, we need to provide rules to perform the
various data management tasks:
Rule #1: how to maintain the data inBUFFERARC, i.e., how

long should the buffer be;
Rule #2: when and how to project onto∂Q the next outstand-

ing interpolation pointpNOW;
Rule #3: when and how to locally optimize the updated

interpolation pointpNOW−1; and
Rule #4: when and what to communication and to whom.

Rule #1: If agent i is in the process of projecting interpo-
lation pointpNOW, thenBUFFERARCmust contain information
about∂Q starting from interpolation pointpNOW−2 up to the
agent position.

Rule #2: In most cases, the projection takes place when the
agent crosses the lineℓNOW that passes throughp−NOW and is
perpendicular toγ̂′(p−NOW). To be specific,p−NOW denotes the
interpolation point about to be updated, andγ̂′(p−NOW) denotes
the corresponding tangent vector. We can therefore definep+

NOW

to be the point where the mobile agent trajectoryPi(t) crosses
ℓNOW, and γ̂′(p+

NOW) to be the tangent to∂Q at p+
NOW. This is

indeed the correct definition if the agent does cross thisℓNOW.
This projection operation is illustrated in Figure 3.

pNOW−1

p−NOW

p+
NOW

pNOW−2

p−NOW−1

Pi(t)

ℓNOW

Fig. 3. Mobile agent projecting interpolation point onto the observed
boundary

We therefore amend the algorithm to act as follows.
If sufficient time has elapsed without the agent crossing
ℓNOW, e.g., if no crossing has happened at timet such that
D̂λ(pNOW−1, P (t)) = 2D̂λ(p−NOW−1, p

−
NOW), then p+

NOW is set
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equal to the point onO that is closest top−NOW. The corre-
sponding definition is also employed for̂γ′(p+

NOW). In both
cases, this projection is well defined and has the following
properties. If∂Q is time-invariant, thenp−NOW = p+

NOW, if ∂Q
is slowly time-varying, thenp+

NOW is close to the orthogonal
projection ofp−NOW onto ∂Q.

Rule #3: The local optimization ofpNOW−1 takes place
immediately after the update ofpNOW. Using the data in
BUFFERARC, the agent computes the Voronoi cell insideO
of the interpolation pointpNOW−1 and movespNOW−1 to the
center of this cell. This operation is illustrated in Figure4.

Pi(t)

move towards center of Voronoi cell

pNOW−2
p+

NOW

p+

NOW−1

oℓ
ou

Fig. 4. Mobile agent locally optimizing interpolation pointpNOW−1 along
the observed boundary, after projectingpNOW

To describe this local optimization accurately, let us intro-
duce some notation. The Voronoi cell{oℓ, . . . , ou} ⊂ O of
the interpolation pointpNOW−1 is defined implicitly by

D̂λ(pNOW−2, oℓ) = D̂λ(oℓ, pNOW−1) =
D̂λ(pNOW−2, pNOW−1)

2
,

D̂λ(pNOW−1, ou) = D̂λ(ou, p+
NOW) =

D̂λ(pNOW−1, p
+
NOW)

2
.

In other words, the pointoℓ is the midpoint betweenpNOW−2

and pNOW−1, while ou is the midpoint betweenpNOW−1 and
p+

NOW after the latter was projected on∂Q. We now implicitly
define the centerok ∈ O of the Voronoi cell by

D̂λ(oℓ, ok) = D̂λ(ok, ou)

=
D̂λ(pNOW−2, pNOW−1) + D̂λ(pNOW−1, p

+
NOW)

4
. (1)

Thus, the new position ofpNOW−1 is p+
NOW−1 = ok. As

a consequencêDλ(pNOW−2, pNOW−1) and D̂λ(pNOW−1, pNOW)
have changed, but we can easily calculate their new values:

bDλ(pNOW−2, p+

NOW−1
) = bDλ(pNOW−2, oℓ) + bDλ(oℓ, p

+

NOW−1
)

=
bDλ(pNOW−2, pNOW−1)

2
+

bDλ(pNOW−2, pNOW−1) + bDλ(pNOW−1, p+
NOW)

4
,

similarly, the value forD̂λ(p+
NOW−1, pNOW) can be calculated.

Rule #4: Transmission rule: after locally optimizing the
position of the interpolation pointpNOW−1 and updating
the corresponding datâγ′(pNOW−1) andD̂λ(pNOW−2, pNOW−1),
agenti transmits this information to agenti − 1. We assume
the transmission is reliable. After this local optimization is
performed, the counterNOW is updated toNOW + 1 and Rule
#1 is applied again, i.e., the bufferBUFFERARC is updated by
dropping all observationsoj betweenpNOW−2 andpNOW−1.

Remark 2 (Synchronization assumption): We assume that
when agenti is relocating and transmitting information about
pNOW−1 agent(i − 1) has not yet projectedNOW − 2. If this

assumption does not hold, i.e., if agenti− 1 is ready to apply
Rule #2 before agenti has applied Rule #4, then agenti − 1
will have to keep collecting data in its bufferBUFFERARCuntil
agenti transmits the new position ofpNOW−1. •

Remark 3 (Extensions): In the interest of simplicity, we
have omitted two possible generalization that might be useful
in practice. First, each agent does not need to know all
interpolation points; it would suffice for it to know only the
interpolation points located ahead of its position and before
the position of the preceding agent. Second, each agent could
locally optimize not only a single interpolation point, butit
could store a longer buffer and locally optimize arrays of
interpolation points. •

This completes our description of the estimate update algo-
rithm and we now focus on the pursuit objective. To uniformly
distribute the agents along the boundary∂Q according to arc
length, we use the following update law for their velocities:

vi(t) = v0 + kprop(L̂(Pi, Pi+1) − L̂(Pi−1, Pi)),

with kprop, v0 > 0 and L̂(Pn, Pm) =
∑NOWm

α=NOWn+1(‖pα−1 −
pα‖), for all n,m ∈ {1, . . . , na}. Here, recall that
pNOWn , pNOWn+1 , . . . , pNOWm are the interpolation points sep-
arating agentn and agentm, with n < m, and thereforêL is
the estimated arc length of the portion of∂Q that has to be
traversed to go from the agentn to the agentm. The agents
have only local information of∂Q but still they have to esti-
mate the distance, along∂Q, from their clockwise and coun-
terclockwise neighbors in order to calculate their speed. The
estimateL̂(Pn, Pm) is obtained from the approximating poly-
gon formed by the interpolation points. In practice, any agent
will speed up if it is closer to the agent behind it, and slow
down if closer to the agent in front of it. With a saturation-
like function: sat(vi(t)) = max{vmin,min{vi(t), vmax}}, we
additionally impose that0 < vmin ≤ vi(t) ≤ vmax for all t.

Remark 4 (Partial knowledge): The pursuit objective of the
proposed algorithm requires more knowledge than the bound-
ary estimation objective. In fact, to calculatevi(t), agent i
needs to know the position not only of all the interpolation
points between itself andPi+1, but also of the ones between
itself andPi−1. Therefore, in addition to the data transmitted
according to Rule #4, we require that agenti transmitsp+

NOW

andpNOW+1 to i − 1 and the counterNOW + 1 to i + 1. •

Now we summarize the discussion in this section with a
pseudo-code description of the algorithm in Table I.

B. Algorithm analysis

Some steps of the algorithm are affected by noise and error:
(i) γ̂′ and κ̂ are only estimate of the true values, (ii)L̂ is an
approximation ofL, (iii) the setO is a discretization of the
subset of∂Q that agenti is visiting, therefore, the center of the
Voronoi cell of the interpolation pointpNOWi−1 might not be
calculated exactly. Let̂D(t) andL(t) be the column vectors:

D̂(t) =
[
D̂λ(p1(t),p2(t)), . . . ,

D̂λ(pnip−1(t), pnip(t)), D̂λ(pnip(t), p1(t))
]T

,
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TABLE I
ESTIMATE UPDATE AND PURSUIT ALGORITHM

Goal: Uniformly distribute the interpolation points according to
the pseudo-distancebDλ, and the agents according to the
arc lengthbL.

Data: Location of the interpolation points, unitary tangent vec-
tor at ∂Q at those points, last value ofbDλ between any
two consecutive interpolation points, local tangent and
local curvature of the boundary∂Q.

Requires: At t0 = 0, pi lie on ∂Q, bDλ between any two
interpolation points is known, andoq = ∅.

At every sensing instant, the agent at positionPi(t) = P (t) performs:

1: updateBUFFERARC+ :=
BUFFERARC∪ {ono+1, bγ′(ono+1), bκ(ono+1), bDλ(ono , ono+1)}

2: if oq = ∅, then
3: if onoono+1 ∩ ℓNOW 6= ∅, then
4: oq := argminoj∈{ono ,ono+1}

‖onoono+1 ∩ ℓNOW − oj‖
5: else
6: if onoono+1 ∩ ℓNOW = ∅ and

bDλ(pNOW−1, ono+1) > 2 bDλ(pNOW−1, pNOW), then
7: oq := argminoj∈{pNOW−1,...,ono+1}⊂O ‖oj − pNOW‖
8: end if
9: end if

10: end if
11: if oq 6= ∅ andpNOWi 6= pNOWi+1−2, then
12: update the interpolation pointpNOW by projecting it onto∂Q:

p+
NOW := oq

13: calculateok as in (1) and updatepNOW−1 by: p+

NOW−1
:= ok

14: communicate to agenti − 1: transmitpNOW+1, p+
NOW, p+

NOW−1
,

bγ′(p+

NOW−1
), bDλ(pNOW−2, p+

NOW−1
)

15: communicate with agenti + 1: transmitNOW + 1
16: update the setBUFFERARC and the counterNOW:

BUFFERARC+ := {ok, . . . , ono+1}, NOW+ := NOW + 1

17: end if
18: calculatevi(t): vi(t) := sat(v0+kprop(bL(Pi, Pi+1)−bL(Pi−1, Pi)))

L(t) =
[
L(P1(t),P2(t)), . . . ,

L(Pna−1(t), Pna
(t)), L(Pna

(t), P1(t))
]T

.

Consider the disagreement vectorsd(t) andδL(t) defined by:

d(t) = D̂λ(t) −
1

T
D̂λ(t)

nip
1, (2)

δL(t) = L(t) −
1

T
L(t)

na
1. (3)

Note that they are orthogonal to the vector1, i.e., the column
vector inR

n with all entries equal to1.
We now establish that the dynamics ofd andδL are input-

to-state stable (ISS) where the inputs are the errors and noises
above discussed. Because of the ISS property we can conclude
that, if the errors are bounded, then the statesd and δL are
within a bounded distance from the origin.

Theorem 1: (ISS of the dynamics of the interpolation points
distances) If the boundary is slowly time-varying and ift 7→
L(∂Q(t)) is upper and lower bounded uniformly int, then,
under the ESTIMATE UPDATE AND PURSUIT ALGORITHM,
there exists a sequence of instantsτk, for k ∈ N0, and a
sequence of ergodic and doubly stochastic matricesA(k), for
k ∈ N0, such that

d(τk+1) = A(k)d(τk) + δu(τk), k ∈ N0,

whereδu(τk) = u(τk) − 1
T
u(τk)
nip

1, andu(τk) is a bounded
vector taking into account the effect of the estimation errors
and of the boundary deformation during the interval[τk, τk+1].
Furthermore, the dynamics ofd are input-to-state stable with
input δu.

Proof: In what follows we identifyτ0 ≡ 0 and τk ≡ k.
Let us suppose that∂Q(t) is time-invariant, and thatO is
a continuous (and not discrete) representation of∂Q, i.e.,
u(k) = 0 for all k ∈ N0. Then, because of Rule #2,pNOW

is projected onto itself and, because of Rule #3,pNOW−1

is moved exactly to the center if its Voronoi cell. Suppose
that an agent has passed by the pointpNOW, and then it
can optimally placepNOW−1. As a consequence, the pseudo-
distancesD̂λ(pNOW−2, pNOW−1) and D̂λ(pNOW−1, pNOW) will
take new values that can be expressed as follows, (recall
Figure 4):

D̂λ(pNOW−2, pNOW−1)
+ =

3

4
D̂λ(pNOW−2, pNOW−1) +

1

4
D̂λ(pNOW−1, pNOW),

D̂λ(pNOW−1, pNOW)+ =

1

4
D̂λ(pNOW−2, pNOW−1) +

3

4
D̂λ(pNOW−1, pNOW),

where the superscript+ indicates the new values of the
pseudo-distances afterpNOW−1 has been optimally placed.
For α ∈ {1, . . . , nip}, define the doubly stochastic matrix
Aα ∈ R

nip×nip by

(Aα)jh =






3/4, if j = h = α, or j = h = α − 1,

1/4, if j = α − 1 andh = α, or viceversa,

δjh, otherwise.

Therefore,Aα, for α ∈ {1, . . . , nip}, are the matrices de-
termining the dynamic system̂Dλ(t2) = AαD̂λ(t1), where
t2 > t1 is the time when the interpolation pointα is moved
by an agent to its new Voronoi center and where we are
assuming that betweent1 and t2 no other interpolation point
has been moved. If at the same instant more interpolation
points are relocated, then the matrix describing the dynamics
is the product of all theAα that correspond to the relocated
interpolation points. The order of the matrix multiplication is
irrelevant as one can show that these matrices commute. Let
us now derive the dynamics of̂Dλ when∂Q is slowly time-
varying, whileO is still a continuous representation of∂Q.
By assumptionγ(t, s) is smooth in both its arguments and, as
argued above, the projection of the interpolation points iswell
defined and unique.

Let tk+1
α be thek + 1-th time thatpα is optimally placed

by an agent. Before optimally placingpα, the agent will
project pα+1. It can be proved that right before placing
pα, because the boundary has changed, the pseudo-distance
D̂λ(pα, pα+1, t

k+1
α ) will differ from D̂λ(pα, pα+1, t

k
α+1)

+ by
some noiseg(tk+1

α − tkα+1) which is a continuous function
of tk+1

α − tkα+1 andg(0) = 0. With D̂λ(pα, pα+1, t
k
α+1)

+ we
denote the pseudo-distance betweenpα and pα+1 right after
pα+1 has been optimally placed for thekth time. Therefore,
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the system is evolving according to:

D̂λ(pα, pα+1, t
k+1
α )+ =

Aα

(
D̂λ(pα, pα+1, t

k
α+1) + eα+1g(tk+1

α − tkα+1)
)

, (4)

where eα is the column vector with null entries but the
α-th component that is equal to1, and the subscript+

indicates that the interpolation pointpα has just been optimally
placed. Let∆T = supt∈R+

L(∂Q(t))
vmin

. Note that∆T < +∞
since by assumption the length of the boundary∂Q(t) is
uniformly upperbounded. This means that at most after∆T
any interpolation point is updated at least once. Any time that
an agent updates any interpolation pointpα the vectorD̂λ

evolves according to (4), wheretk+1
α − tkα+1 is upperbounded

by ∆T . Since∆T is finite, there exists a sequence of instants
τk, with k ∈ N0, such that across the interval[τk, τk+1] every
interpolation point has been updated at least once by an agent,
and:

D̂λ(k + 1) = A(k)D̂λ(k) + u(k), k ∈ N0. (5)

The matrixA(k) is the product of a finite numberM(k) of
matricesAα, i.e., A(k) = Π

M(k)
β=1 Aαβ

, αβ ∈ {1, . . . , nip}.
The value of the indexαβ depends on the order in which
the interpolation points are updated. It is easy to see that
nip ≤ M(k) ≤ nanip. Note thatA(k) is doubly stochastic
because it is the product of doubly stochastic matrices. Since
across the interval[τk, τk+1] every interpolation point has been
updated at least once by an agent, the graph associated with
A(k) is connected and thereforeA(k) is ergodic (see [11]).
Furthermore,sup(τk+1 − τk) ≤ ∆T < +∞, and (by [8]) we
claim that, if u(k) ≡ 0, thenD̂λ(k) converges exponentially

fast to 1
T bDλ(k)

nip
1. Consider now the disagreement vector

d(k) defined in (2). Recalling (5), and thatA(k) is doubly
stochastic, we can derive the update law ofd(k):

d(k + 1) = A(k)d(k) + δu(k), k ∈ N0, (6)

where δu(k) = u(k) − 1
T
u(k)
nip

1. Given the properties of
the matrix A(k), the origin of the unforced system (6) is
exponentially stable. Since the inputδu enters linearly, we
conclude that the system is input-to-state stable ([12]). This
implies thatD̂λ will asymptotically reach a ball centered at
1

T bDλ(k)
nip

1 (the equilibrium of the unforced system) and with
radius that is a classK function of the input, see [12]. This
also holds if we now relax the assumption that no errors affect
the calculation of the Voronoi centers, because this error enters
linearly in the system (6).

Theorem 2 (ISS of the dynamics of the interagent distances):
If the boundary is slowly time-varying and ift 7→ L(∂Q(t))
is upper and lower bounded uniformly int, then, under
the ESTIMATE UPDATE AND PURSUIT ALGORITHM,

˙δL(t) = kpropA(c1(t), . . . , cna(t))
(
δL(t)+δw1(t)

)
+δw2(t),

where δw1(t) = w1(t) − 1
T
w1(t)
na

1, δw2(t) = w2(t) −

1
T
w2(t)
na

1, and

(A(c1(t), . . . ,cna(t)))jh =





−ci(t) − ci+1(t), if j = h = i,

ci+1(t), if j = i andh = i + 1,

ci(t), if j = i andh = i − 1,

0, otherwise.

with ci(t) ∈ [β(t), 1] for all i ∈ {1, . . . , na}, and β(t) =
min{vmax−v0,v0−vmin}

kpropL(∂Q(t)) . The variablew2(t) ∈ R
na×1 expresses

the change in the arc length distance between any two
consecutive agents due to the deformation of∂Q(t), while
w1(t) = L(t)− L̂(t) ∈ R

na×1 is the error due to the fact that
the agents do not know exactlyL, the arc length distance
between them and their neighbors, but only an estimate
through the interpolation pointŝL. Furthermore, the dynamics
of δL is input-to-state stable witht 7→ δw1(t) andt 7→ δw2(t)
as inputs.

Proof: Let us suppose that the∂Q(t) is time-invariant
and that the agents can actually compute without error the
arc length distance between them and their clockwise and
counterclockwise neighbors, i.e.,w1(t) = w2(t) = 0

for all t ≥ 0. The dynamics forL(t) can be written as
L̇(Pi(t), Pi+1(t)) = vi+1 − vi, where vi+1 = sat(v0 +
kprop(L (Pi+1, Pi+2) − L (Pi, Pi+1))) and vi = sat(v0 +
kprop(L (Pi, Pi+1) − L (Pi−1, Pi))). Therefore, if the satura-
tion on the speeds is not active, we have:

L̇(Pi(t),Pi+1(t)) =

kprop

(
L (Pi+1, Pi+2) − 2L (Pi, Pi+1) + L (Pi−1, Pi)

)
,

which in matrix form becomes:

L̇(t) = kprop





−2 1 0 . . . 1
1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 1 −2 1
1 0 . . . 1 −2




L(t)

= kpropALL(t).

If, for agenti, the saturation is active, then we have thatvi =
v0 +k′

i (L(Pi, Pi+1) − L(Pi−1, Pi)), wherek′
i = kpropci, ci ≤

1. In other words, we can think of the saturation function as
a change in the gain in the control law. Ifvi = vmax, then

k′
i =

vmax− v0

(L(Pi, Pi+1) − L(Pi−1, Pi))
≥

vmax− v0

L(∂Q(t))

=⇒ ci =
k′

i

kprop
≥

1

kprop

vmax− v0

L(∂Q(t))
> 0.

If vi = vmin, then

k′
i =

v0 − vmin

(L(Pi, Pi+1) − L(Pi−1, Pi))
≥

v0 − vmin

L(∂Q(t))

=⇒ ci =
k′

i

kprop
≥

1

kprop

v0 − vmin

L(∂Q(t))
> 0,

in any caseci ∈ [β(t), 1] andβ(t) = min{vmax−v0,v0−vmin}
kpropL(∂Q(t)) .
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Clearly then, if we introduce the saturation on the speeds
vi, the dynamics ofL becomes:

L̇(t) = kpropA(c1(t), . . . , cna(t))L(t). (7)

Note thatβ(t) is constant because we are still considering
∂Q time-invariant. Using the properties of Metzler matrices,
it can be proved (see Lemma 2 in [13]) that the new matrices
A(c1(t), . . . , cna(t)), like AL, are negative semidefinite. The
unique zero eigenvalue is associated with the eigenvector1.

Consider the disagreementδL as described by (3), then

˙δL(t) = kpropA(c1(t), . . . , cna(t))δL(t). (8)

Let V (δL(t)) = δLT (t)δL(t) be the candidate Lyapunov
function for the system (8), then we have thatV̇ (δL(t)) =
2kpropδL(t)A(c1(t), . . . , cna(t))δL(t) ≤ 0, where the equality
holds only if the entries ofδL(t) are all zero. Sinceci belong
to a compact set, the matricesA(c1(t), . . . , cna(t)) belong
to a compact set, and since the eigenvalues of a matrix are
continuous functions of its entries (see [14]), then there exists
an upperbound−ρ < 0 for the eigenvalues that are different
from zero and as a consequenceV̇ (δL(t)) ≤ −ρ‖δL(t)‖2.
We can then conclude that for the system (8) the origin is
exponentially stable and therefore, for the system (7), the
equilibrium 1

T
L(t)
na

1 is exponentially stable.
Let us now assume that the boundary is slowly-varying

and that instead ofL(Pi, Pi+1) the agents use only the
approximationL̂(Pi, Pi+1), i.e., w1(t), w2(t) 6= 0. Then, the
variation in time of the vectorL(t) is due, not only to the
fact that the agents speed up and slow down, but also to the
deformation of∂Q:

L̇(t) = kpropA(t)L̂(t) + w2(t)

= kpropA(t)(L(t) + w1(t)) + w2(t),

where A(t) = A(c1(t), . . . , cna(t)), w1(t) = L − L̂, and
w2(t) expresses the deformation of∂Q(t). In particular
the i-th entry of w2(t) is equal to ∂

∂t

∫ si+1

si
‖γ′(s, t)‖ds −

kpropAi(t)(L(t) + w1(t)), where Ai(t) is the i-th row of
A(t). Note thatci(t) ∈ [β(t), 1] for all i ∈ {1, . . . , na}, and
that β(t) = min{vmax−v0,v0−vmin}

kpropL(∂Q(t)) is indeed uniformly upper
bounded even when∂Q is time-varying because we assumed
thatL(∂Q(t)) is upper and lower bounded uniformly int. The
vectorw2 is bounded because by assumption the boudary is
smooth and slowly time-varying. Using the change of variables
in equation (3), and recalling thatA(t)1 = 0, for all t, we
have:

L̇(t) = kpropA(t)δL(t)+kpropA(t)δw1(t)+δw2(t)+
1

T
w2(t)

na
1,

whereδw2(t) = w2(t) −
1

T
w2(t)
na

1. It is easy to see that we

can writeL̇(t) = δL̇(t) + 1
T
L̇(t)
na

1 and therefore:

δL̇(t) +
1

T
L̇(t)

na
1 = kpropA(t)δL(t) + kpropA(t)δw1(t)+

+ δw2(t) +
1

T
w2(t)

na
1.

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3
Initial Configuration

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3
Final Configuration

Fig. 5. This figure shows initial and final configuration after50
seconds simulation obtained by the implementation of the ESTIMATE
UPDATE AND PURSUIT ALGORITHM with na = 3, nip = 30, v0 = 1,
kprop = 0.05, λ = 10

11
. ∂Q is time invariant. The agents position is

represented by the triangles and are initialized to be on the boundary
∂Q. In the last frame also the approximating polygon is shown.

Since1 is orthogonal toδL(t), δw1(t), andδw2(t) we have:

δL̇(t) = kpropA(t)δL(t) + kpropA(t)δw1(t) + δw2(t). (9)

The system described by equation (9) is input-to-state
stable with inputsδw1(t) and δw2(t) because (i) the origin
of the unforced system is exponentially stable, and (ii) the
right-hand-side of (9) is differentiable and uniformly globally
Lipschitz in δL, δw1(t) andδw2(t), (see [12]).

The ISS property guarantees that ifw1 andw2 are bouded,
then L will asymptotically reach a ball centered at1

T
L(t)
na

1

(the equilibrium of the unforced system) and with radius that
is a classK function of the input, see [12]. The largernip is
and the slower the deformation of∂Q is, then the smallerw1

andw2 are, and the closer to0 the disagreementδL will be
asymptotically.

C. Simulations

In this section we present results of two different simu-
lations obtained with the implementation of the ESTIMATE

UPDATE AND PURSUIT ALGORITHM. In the first simulation
the boundary∂Q is time invariant, while in the second is time
varying.

1) Time-invariant boundary: In this simulation we usena =
3 agents to have an approximation of the nonconvex boundary
∂Q described by:

γ(θ) =
(
2 + cos(10πθ) + 0.5 sin(4πθ)

) [
cos(2πθ)
sin(2πθ)

]
.

The outcome is shown in Figure 5. In order to calculate their
speeds, the agents usev0 = 1, andkprop = 0.05. The saturation
function for the speed has lower limitvmin = 0.5 and upper
limit vmax = 2. The number of interpolation points isnip = 30,
while λ = 10

11 . The simulation time is50 seconds and the
sampling time0.01 seconds. The plots in Figure 5 corresponds
to the positions of the interpolation points and the agents at the
initial and final configuration. The interpolation pointspNOWi

for i ∈ {1, . . . , na} at time t = 0 coincide with the positions
of the agents. The other interpolation points are randomly
distributed on the boundary. In the last frame one can also see
the approximating polygon and how close it is to the actual
boundary.

Since the pseudo-distanceDλ and the arc lengthL can be
calculated after the simulation is completed, we useDλ and
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Fig. 6. ESTIMATE UPDATE AND PURSUIT ALGORITHM This plots
refers to the case of∂Q being time-invariant. In the first plot
from right it is shown the errormaxi∈{1,...,nip} Dλ(pi, pi+1) −

mini∈{1,...,nip} Dλ(pi, pi+1) vs time. The second plot shows the arc
length distances between the three agents.

L instead of their estimatêDλ and L̂ to show the algorithm
performance. Figure 6 does indeed show the convergence of
the algorithm. In the first plot we can see that the consensus
on the pseudo-distanceDλ(pi, pi+1), between any two con-
secutive interpolation points, is reached. The quantity

max
α∈{1,...,nip}

Dλ(pα, pα+1) − min
α∈{1,...,nip}

Dλ(pα, pα+1)

does not vanish because of numerical errors in the estimate
D̂λ. The second plot shows how the agents get uniformly
spaced along the boundary. The steady state values of the arc
length distances oscillates around8.3 which is the target value.
The noise is again due to the fact that the agents only estimate
the arc length using the positions of the interpolation points.

2) Slowly time-varying boundary: In this simulation we
usedna = 4 agents to have an approximation of the nonconvex
boundary∂Q(t) described by:

γ(θ, t) =
(

2 −
2t

tf
+

(
2 + cos(10πθ) + 0.5 sin(4πθ)

) t

tf

)[
cos(2πθ)
sin(2πθ)

]
,

with θ ∈ [0, 1), tf = 200 seconds as shown in Figure 7.
The values ofv0, kprop, vmin, vmax and λ are respectively:1,
0.05, 0.5, 2, and 10

11 . The simulation time is200 seconds, the
sampling time0.01 seconds. The plots in Figure 7 correspond
to the positions of the interpolation points and the agents at
four different instants,t = 0, t = 50, t = 100, and t =
200 seconds respectively. The algorithm is initialized with the
agents on the boundary. The interpolation pointspNOWi at time
t = 0 coincide with the positions of the agents. The other
interpolation points are randomly distributed. In the lastframe
we can also see the approximating polygon and how close to
the actual boundary is. From the frames in Figure 7 it is clear
that the agents can adapt as∂Q changes.

The pseudo-distanceDλ is well defined only if the interpo-
lation points belong to the boundary∂Q. Since the boundary
changes with time, the interpolation points are only for some
time on the boundary after an agents has projected them. So,
we consider as pseudo-distance between any two consecutive
interpolation points in a certain timeτ the pseudo-distance
between their radial projection onto∂Q(τ). The disagreement
in the placement of the interpolation points, whereDλ is
redefined as just explained, is shown in the first plot of Figure
8. The arc length between any two consecutive agents is shown
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Fig. 7. This figure shows four different instants of the200 seconds
simulation obtained by implementing the ESTIMATE UPDATE AND
PURSUIT ALGORITHM with na = 4, nip = 35, v0 = 1, kprop = 0.05,
λ = 10

11
. The boundary∂Q is slowly time-varying in this case. The

agents positions are represented by triangles and initialized to be
on the boundary∂Q. The last frame also shows the approximating
polygon.
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Fig. 8. ESTIMATE UPDATE AND PURSUIT ALGORITHM. This figure
refers to the case of∂Q being slowly time-varying. In the first plot
from the right we shown the errormaxi∈{1,...,nip} Dλ(pi, pi+1) −
mini∈{1,...,nip} Dλ(pi, pi+1) vs time. The second plot shows the arc
length distances between the four agents.

in the second plot of Figure 8. The four distances increase
with time becauseL(∂Q), the total length of the boundary,
increases with time. Clearly the variablesna andnip are design
variables and are results of two different trade-offs. In deciding
the number of agents, the speed with which the boundary
changes and the maximum speed at which the robots can
move play an important role. If the boundary changes very fast
and the maximum speed of the robots is fixed, then a larger
network will guarantee better performances. If the boundary
changes slowly, then few robots (1 or 2) might suffice. In
deciding the number of interpolation points, on the other hand,
the most important role is played by the complexity of the
boundary measured by the number of inflection points. To
have good performance,nip should increase as the number of
the inflection points of the boundary increases.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have addressed the problem of boundary
estimation and tracking by means of robotic sensors. We
have presented an algorithm to position interpolation points
along a time-varying boundary in such a way as to obtain an
approximating polygon with some optimality features.
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Each mobile agent is equipped with (1) a sensor that pro-
vides only local information about the tangent and curvature
of the boundary, and (2) a communication device that enables
information exchanges between clockwise and counterclock-
wise neighbors along the boundary. The algorithm allows the
agents to place a set of interpolation points uniformly spaced
according to the estimate of the pseudo-distanceDλ. The
vertices of the approximating polygon are the interpolation
point positions. The algorithm is proved to converge even if
the boundary is slowly-moving. Tools from consensus analysis
allow us to prove the correctness of the algorithm.

An important problem for future research concerns the
possible and realistic occurrence of boundary splits. In other
words, it would be of interest to consider problems where
the region enclosed in the boundary can split into two or
more separate regions. Therefore, it will be valuable, for real-
time implementation, to investigate how to enable the agents
to detect splitting events and how to modify the ESTIMATE

UPDATE AND PURSUIT ALGORITHM so that the agents can
estimate the boundaries of the regions. Experimental work
could also suggest further modification to the algorithm to
improve its performances. Additionally, we plan to devise
algorithms to monitor 3-dimensional regions, such as clouds
of chemical pollutants and to extend the presented algorithm
to monitor buildings with camera-like networks.
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