
CDC 2006, San Diego, CA

On Traveling Salesperson Problems for a double integrator

Ketan Savla Francesco Bullo Emilio Frazzoli

Abstract— In this paper we propose some novel path planning
strategies for a double integrator with bounded velocity and
bounded control inputs. First, we study the following version of
the Traveling Salesperson Problem (TSP): given a set of points
in R

d, find the fastest tour over the point set for a double
integrator. We first give asymptotic bounds on the time taken
for to complete such a tour in the worst-case. Then, we study
a stochastic version of the TSP for double integrator where
the points are randomly sampled from a uniform distribution
in a compact environment in R

2 and R
3. We propose novel

algorithms that perform within a constant factor of the optimal
strategy with high probability. Second, we study a dynamic
TSP: given a stochastic process that generates targets, is there
a policy which guarantees that the number of unvisited targets
does not diverge over time? If such stable policies exist, what
is the minimum wait for a target? We propose novel stabilizing
algorithms whose performances are within a constant factor
from the optimum, in R

2 as well as in R
3. We also argue

that these algorithms give similar performances for a particular
nonholonomic vehicle, the Dubins vehicle.

I. I NTRODUCTION

The Traveling Salesperson Problem (TSP) with its vari-
ations is one of the most widely known combinatorial
optimization problems. While extensively studied in the
literature, these problems continue to attract great interest
from a wide range of fields, including Operations Research,
Mathematics and Computer Science. The Euclidean TSP
(ETSP) [1], [2] is formulated as follows: given a finite point
set P in R

d for d ∈ N, find the minimum-length closed
path through all points inP . It is quite natural to formulate
this problem in the context of other dynamical vehicles.
The focus of this paper is the analysis of the TSP for a
vehicle with double integrator dynamics or simply a double
integrator; we shall refer to it as DITSP. Specifically, DITSP
will involve finding the fastest tour for a double integrator
through a set of points.

Exact algorithms, heuristics and polynomial-time constant
factor approximation algorithms are available for the Eu-
clidean TSP, see [3], [4], [5]. However, unlike most other
variations of the TSP, it is believed that the DITSP cannot be
formulated as a problem on a finite-dimensional graph, thus
preventing the use of well-established tools in combinatorial
optimization. On the other hand, it is reasonable to expect
that exploiting the geometric structure of feasible paths for
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a double integrator, one can gain insight into the nature of
the solution, and possibly provide polynomial-time approxi-
mation algorithms.

The motivation to study the DITSP arises in robotics and
uninhabited aerial vehicles (UAVs) applications. In particu-
lar, we envision applying our algorithm to the setting of an
UAV monitoring a collection of spatially distributed points of
interest. Additionally, from a purely scientific viewpoint, it is
of general interest to bring together the work on dynamical
vehicles and that on TSP. UAV applications also motivate
us to study the Dynamic Traveling Repairperson Problem
(DTRP), in which the aerial vehicle is required to visit
a dynamically generated set of targets. This problem was
introduced by Bertsimas and van Ryzin in [6] and then
decentralized policies achieving the same performances were
proposed in [7]. Variants of these problems have attracted
much attention recently [7], [8], [9], [10], [11]. However,as
with the TSP, the study of DTRP in conjunction with vehicle
dynamics has eluded attention from the research community.

The contributions of this paper are threefold. First, we
analyze the minimum time taken to traverse DITSP inR

d

for d ∈ N. We show that the minimum time taken to traverse
DITSP belongs1 to O(n1− 1

2d ) and in the worst case, it also
belongs toΩ(n1− 1

d ). Second, we study thestochastic DITSP,
i.e., the problem of finding the fastest tour through a set
of target points that are uniformly randomly generated. We
show that the minimum time to traverse the tour for the
stochastic DITSP belongs toΩ(n2/3) in R

2 and Ω(n4/5)
in R

3. Drawing inspiration from our earlier work [12], we
propose two novel algorithms for the stochastic DITSP: the
RECURSIVE BEAD TILING ALGORITHM for R

2 and the
RECURSIVE CYLINDER COVERING ALGORITHM for R

3.
We prove that these algorithms provide a constant-factor
approximation to the optimal DITSP solution with high
probability. Third, we propose two algorithms for the DTRP
in the heavy load case based on the fixed-resolution versions
of the corresponding algorithms for stochastic DITSP. We
show that the performance guarantees for the stochastic
DITSP translate into stability guarantees for the average
performance of the DTRP problem for a double integrator.
Specifically, the performances of the algorithms for the
DTRP are within a constant factor of the optimal policies.
We contend that the successful application to the DTRP
problem does indeed demonstrate the significance of the
DITSP problem from a control viewpoint. As a final minor
contribution, we also show that the results obtained for

1For f, g : N → R, we say thatf ∈ O(g) (respectively,f ∈ Ω(g))
if there existN0 ∈ N and k ∈ R+ such that|f(N)| ≤ k|g(N)| for all
N ≥ N0 (respectively,|f(N)| ≥ k|g(N)| for all N ≥ N0). If f ∈ O(g)
andf ∈ Ω(g), then we use the notationf ∈ Θ(g).



stochastic DITSP carry over to the stochastic TSP for the
Dubins vehicle, i.e., for a nonholonomic vehicle moving
along paths with bounded curvature, without reversing di-
rection. We present all proofs in a technical report available
at http://arxiv.org/abs/cs.RO/0609097.

This work completes the generalization of the known
combinatorial results on the ETSP and DTRP (applicable to
systems with single integrator dynamics) to double integra-
tors and Dubins vehicle models. It is interesting to compare
our results with the setting where the vehicle is modeled by
a single integrator; this setting corresponds to the so-called
Euclidean case in combinatorial optimization. The resultsare
summarized as follows:

Single Double Dubins
integrator integrator vehicle

Min. time for Θ(n1− 1

d ) [2] Ω(n1− 1

d ), Θ(n) [13]
TSP tour O(n1− 1

2d ) (d = 2, 3)
(worst-case)

Exp. min. time Θ(n1− 1

d ) [2] Θ(n1− 1

2d−1 ) Θ(n1− 1

2d−1 )
for TSP tour w.h.p. w.h.p.
(stochastic) (d = 2, 3) (d = 2, 3)
System time Θ(λd−1) [6] Θ(λ2(d−1)) Θ(λ2(d−1))
for DTRP (d = 1) (d = 2, 3) (d = 2, 3)

Remarkably, the differences between these various bounds
for the TSP play a crucial role when studying the DTRP
problem; e.g., stable policies exist only when the mini-
mum time taken for traversing the TSP tour grows strictly
sub-linearly with n. For the DTRP problem we propose
novel policies and show their stability for a uniform target-
generation process with intensityλ. It is clear from the table
that motion constraints make the system much more sensitive
to increases in the target generation rateλ.

II. SETUP AND WORST-CASE DITSP

For d ∈ N, consider a double integrator dynamics:

p̈(t) = u(t), ‖u(t)‖ ≤ rctr, ‖ṗ(t)‖ ≤ rvel, (1)

wherep ∈ R
d andu ∈ R

d are the position and control input
of the vehicle,rvel ∈ R+ and rctr ∈ R+ are the bounds on
the attainable speed and control inputs. LetQ ⊂ R

d be the
region of interest. LetP be a set ofn points inQ andPn be
the collection of all point setsP ⊂ Q with cardinalityn. Let
ETSP(P ) denote the minimum time for the Euclidean TSP
over P and letDITSP(P ) denote the minimum time of the
TSP for a double integrator overP , i.e., the time taken to
traverse the fastest closed path for a double integrator through
all points in P . We assumervel and rctr to be constant and
we study the dependence of DITSP: Pn → R+ on n.

Lemma 2.1: (Worst-case lower bound on the DITSP) For
rvel, rctr ∈ R+ andd ∈ N, there exists a point setP ∈ Pn in
Q ⊂ R

d such thatDITSP(P ) belongs toΩ(n1− 1

d ).

We now propose a simple strategy for the DITSP and
analyze its performance. The STOP-GO-STOP strategy can
be described as follows: The vehicle visits the points in the
same order as in the optimal ETSP tour over the same set of
points. Between any pair of points, the vehicle starts at the
initial point at rest, follows the shortest-time path to reach
the final point with zero velocity.

Theorem 2.2: (Upper bound on the DITSP) For any point
set P ∈ Pn in Q ⊂ R

d and rctr > 0, rvel > 0 and d ∈ N,
DITSP(P ) belongs toO(n1− 1

2d ).

III. T HE STOCHASTICDITSP

The results in the previous section showed that based
a simple strategy, the STOP-GO-STOP strategy, we are
already guaranteed to have sublinear minimum time for tour
traversal for the case when the point sets are considered on
an individual basis. However, it is reasonable to argue that
there might be better algorithms when one is dealing with
average performance. In particular, one can expect that when
n target points are stochastically generated inQ according
to a uniform probability distribution function, the minimum
time for the DITSP should be lower than the one given by the
STOP-GO-STOP strategy. We shall refer to the problem of
studying the average performance of DITSP over this class
of point sets as stochastic DITSP. In this section, we present
novel algorithms for stochastic DITSP and then establish
bounds on their performances.

We make the following assumptions: inR2, Q is a
rectangle of widthW and heightH with W ≥ H; in R

3,
Q is a rectangular box of widthW , heightH and depthD
with W ≥ H ≥ D. Different choices for the shape ofQ
affect our conclusions only by a constant. The axes of the
reference frame are parallel to the sides ofQ. The points
P = {p1, . . . , pn} are randomly generated according to a
uniform distribution inQ.

A. Lower bounds

First we provide lower bounds on the expected length of
the stochastic DITSP for the 2 and 3 dimensional cases.

Theorem 3.1: (Lower bounds on stochastic DITSP) For
a double integrator (1), the expected minimum time for a
stochastic DITSP visiting a set ofn uniformly-randomly-
generated points satisfies the following inequalities:

lim
n→+∞

E[DITSP(P ⊂ Q ⊂ R
2)]

n2/3
≥ 3

4

( 6WH

rvelrctr

)1/3

, and

lim
n→+∞

E[DITSP(P ⊂ Q ⊂ R
3)]

n4/5
≥ 5

6

(20WHD

πrvelr2
ctr

)1/5

.

B. Constructive upper bounds

In this section, we first recall our earlier work from [12]
and use it to propose novel algorithms for the stochastic
DITSP: the RECURSIVEBEAD TILING ALGORITHM for R

2

and RECURSIVE CYLINDER COVERING ALGORITHM for
R

3. The algorithms’ performances will be shown to be within
a constant factor of the optimal with high probability.

In [12], we studied stochastic versions of the TSP for
Dubins vehicle. Here, afeasible curve for the Dubins vehicle
or aDubins path is a curve that is twice differentiable almost
everywhere and such that the magnitude of its curvature is
bounded above by1/ρ, whereρ > 0 is the minimum turn
radius. Feasible curves for a Dubins vehicle and for a double
integrator are related as follows.

Lemma 3.2: (Trajectories of Dubins and double integra-
tors) A feasible curve for Dubins vehicle with minimum turn
radius ρ > 0 is a feasible curve for a double integrator



(modeled in equation (1)) moving with a constant speed√
ρrctr. Conversely, a feasible curve for a double integrator

moving with a constant speeds ≤ rvel is a feasible curve for
Dubins vehicle with minimum turn radiuss

2

rctr
.

In [12], we proposed a novel algorithm, the RECURSIVE

BEAD TILING ALGORITHM for the stochastic version of the
Dubins TSP (DTSP) inR2; we showed that this algorithm
performed within a constant factor of the optimal with high
probability. In this paper, taking inspiration from those ideas,
we propose algorithms to compute feasible curves for a
double integrator moving with the constant speedrvel. Note
that moving at the maximum speedrvel is not necessarily
the best strategy since it restricts the maneuvering capability
of the vehicle. Nonetheless, this strategy leads to efficient
algorithms. Next, we proceed towards devising strategies
which perform within a constant factor of the optimal for
stochastic DITSP inR

2 as well asR
3, both with high

probability.
1) The basic geometric construction: Here we define

useful geometric objects and study their properties. Given
the constant speedrvel for the double integrator letρ =

r2

vel
rctr

;
from Lemma 3.2 this constant corresponds to the minimum
turning radius of theanalogous Dubins vehicle. Consider two
pointsp− andp+ on the plane, with̀ = ‖p+ − p−‖2 ≤ 4ρ,
and construct the beadBρ(`) as detailed in Figure 1.

Fig. 1. Construction of the “bead”Bρ(`). The figure shows how the upper
half of the boundary is constructed, the bottom half is symmetric.The figure
shows the rectangleefgh which is used to construct the ”cylinder”Cρ(`).

Associated with the bead is also the rectangleefgh.
Rotating this rectangle about the line passing throughp− and
p+ gives rise to a cylinderCρ(`). The regionsBρ(`) andCρ(`)
enjoy the following asymptotic properties as(l/ρ) → 0+:
(P1) The maximum “thickness” ofBρ(`) is equal to

w(`) = 4ρ

(

1 −
√

1 − `2

16ρ2

)

=
`2

8ρ
+ ρ · o

(

`3

ρ3

)

.

The radius of cross-section ofCρ(`) is w(`)/4 and the
length ofCρ(`) is `.

(P2) The area ofBρ(`) is equal to

Area(Bρ(`)) =
`w(`)

2
=

`3

16ρ
+ ρ2 · o

(

`4

ρ4

)

.

The volume ofCρ(`) is equal to

Volume[Cρ(`)] = π
(w(`)

4

)2 `

2
=

π`5

2048ρ2
+ρ3·o

(

`6

ρ6

)

.

(P3) For anyp ∈ Bρ, there is at least one feasible curve
γp through the points{p−, p, p+}, entirely contained
within Bρ. The length of any such path is at most

Length(γp) ≤ 4ρ arcsin

(

`

4ρ

)

= ` + ρ · o
(

`3

ρ3

)

.

Analogously, for anyp̃ ∈ Cρ, there is at least one
feasible curveγp̃ through the points{p−, p̃, p+}, en-
tirely contained within the region obtained by rotating
Bρ(`) about the line passing throughp− andp+. The
length ofγp̃ satisfies the same upper bound as the one
established forγp.

The geometric shapes introduced above can be used to
cover R

2 and R
3 in an organized way. The plane can be

periodically tiled2 by identical copies ofBρ(`), for any
` ∈]0, 4ρ]. The cylinder, however does not enjoy any such
special property. For our purpose, we consider a particular
covering ofR3 by cylinders described as follows.

Fig. 2. A typical layer of cylinders formed by stacking rows ofcylinders

A row of cylinders is formed by joining cylinders end
to end along their length. A layer of cylinders is formed by
placing rows of cylinders parallel and on top of each other as
shown in Figure 2. For coveringR3, these layers are arranged
next to each other and with offsets as shown in Figure 3(a),
where the cross section of this arrangement is shown. We
refer to this construction as thecovering of R

3.

(a) (b)

Fig. 3. (a): Cross section of the arrangement of the layers of cylinders
used for coveringQ ⊂ R

3, (b): The relative position of the bigger cylinder
relative to smaller ones of the prior phase during the phase transition.

2) The 2D case: The RECURSIVE BEAD TILING ALGO-
RITHM (RECBTA): Consider a tiling of the plane such that
Area[Bρ(`)] = Area[Q ⊂ R

2]/(2n) = WH/(2n); to obtain

2A tiling of the plane is a collection of sets whose intersection has
measure zero and whose union covers the plane.



this equality we assumè to be a decreasing function ofn
such that`(n) ≤ 4ρ. Furthermore, we assume the tiling is
chosen to be aligned with the sides ofQ ⊂ R

2, see Figure 4.
The proposed algorithm consists of a sequence of phases;

during each of these phases, a feasible curve will be con-
structed that “sweeps” the setQ. In the first phase, a feasible
curve is constructed with the following properties:

(i) it visits all non-empty beads once,
(ii) it visits all rows in sequence top-to-down, alternating

between left-to-right and right-to-left passes, and vis-
iting all non-empty beads in a row,

(iii) when visiting a non-empty bead, it services at least
one target in it.

In order to visit the outstanding targets, a new phase is
initiated. In this phase, instead of considering single beads,
we will consider “meta-beads” composed of two beads each,
as shown in Figure 4, and proceed in a similar way as the first
phase, i.e., a feasible curve is constructed with the following
properties:

(i) the curve visits all non-empty meta-beads once,
(ii) it visits all (meta-bead) rows in sequence top-to-

down, alternating between left-to-right and right-to-left
passes, and visiting all non-empty meta-beads in a row,

(iii) when visiting a non-empty meta-bead, it services at
least one target in it.

This process is iterated at mostlog2 n + 1 times, and
at each phase meta-beads composed of two neighboring
meta-beads from the previous phase are considered; in other
words, the meta-beads at thei-th phase are composed of2i−1

neighboring beads. After the last phase, the leftover targets
will be visited using, for example, a greedy strategy.

The following result is related to a similar result in [14].
Theorem 3.3 (Targets remaining after recursive phases):

Let P ∈ Pn be uniformly randomly generated inQ ∈ R
2.

The number of unvisited targets after the last recursive phase
of the RECBTA is less than24 log2 n with high probability,
i.e., with probability approaching one asn → +∞.

At this point we know that, after a sufficiently large
number of phases, almost all targets will be visited with high
probability. The key point is that the length of each phase
is decreasing at such a rate that the sum of the lengths of
all the phases remains bounded. We first state the following
result which characterizes the path length for the RECBTA,
which we denote asLRecBTA,ρ(P ).

Theorem 3.4 (Path length for the RECBTA): Let P ∈
Pn be uniformly randomly generated in the rectangle of
width W and heightH. For anyρ > 0, with high probability

lim
n→+∞

LRecBTA,ρ(P )

n2/3
≤ 24(ρWH)1/3

(

1 +
7πρ

3W

)

.

In order to obtain an upper bound on theDITSP(P ),
we derive the expression for time taken,TRecBTA, by the
RECBTA to execute the path of lengthLRecBTA,ρ(P ).

Theorem 3.5: (Upper bound on the total time in R
2) Let

P ∈ Pn be uniformly randomly generated in the rectangle
of width W and heightH. For any double integrator (1),

with high probability

lim
n→+∞

TRecBTA

n2/3
≤ 24

(

WH

rvelrctr

)1/3(

1 +
7πr2

vel

3W

)

.

Remark 3.6: Theorems 3.1 and 3.5 imply that, with high
probability, the RECBTA is a 32

3
√

6

(

1 +
7πr2

vel
3rctrW

)

-factor ap-
proximation (with respect ton) to the optimal stochastic
DITSP in R

2 and thatE[DITSP(P ⊂ Q ⊂ R
2)] belongs

to Θ(n2/3).
3) The 3D case: The RECURSIVECYLINDER COVERING

ALGORITHM (RECCCA): Consider a covering ofQ ⊂ R
3

by cylinders such thatVolume[Cρ(`)] = Volume[Q ⊂
R

3]/(4n) = WHD/(4n) (Again implying thatn is suffi-
ciently large). Furthermore, the covering is chosen in sucha
way that it is aligned with the sides ofQ ⊂ R

3.
The proposed algorithm will consist of a sequence of

phases; each phase will consist of five sub-phases, all similar
in nature. For the first sub-phase of the first phase, a feasible
curve is constructed with the following properties:

(i) it visits all non-empty cylinders once,
(ii) it visits all rows of cylinders in a layer in sequence

top-to-down in a layer, alternating between left-to-right
and right-to-left passes, and visiting all non-empty
cylinders in a row,

(iii) it visits all layers in sequence from one end of the
region to the other,

(iv) when visiting a non-empty cylinder, it services at least
one target in it.

In subsequent sub-phases, instead of considering single
cylinders, we will consider “meta-cylinders” composed of2,
4, 8 and 16 beads each for the remaining four sub-phases,
as shown in Figure 5, and proceed in a similar way as the
first sub-phase, i.e., a feasible curve is constructed with the
following properties:

(i) the curve visits all non-empty meta-cylinders once,
(ii) it visits all (meta-cylinder) rows in sequence top-to-

down in a (meta-cylinder) layer, alternating between
left-to-right and right-to-left passes, and visiting all
non-empty meta-cylinders in a row,

(iii) it visits all (meta-cylinder) layers in sequence fromone
end of the region to the other,

(iv) when visiting a non-empty meta-cylinder, it services at
least one target in it.

A meta-cylinder at the end of the fifth sub-phase, and
hence at the end of the first phase will consist of 16 nearby
cylinders. After this phase, the transitioning to the next phase
will involve enlarging the cylinder to32 times its current size
by increasing the radius of its cross section by a factor of4
and doubling its length as outlined in Figure 3(b). It is easy
to see that this bigger cylinder will contain the union of
32 nearby smaller cylinders. In other words, we are forming
the objectCρ(2`) using a conglomeration of32 Cρ(`) objects.
This whole process is repeated at mostlog2 n+2 times. After
the last phase, the leftover targets will be visited using, for
example, a greedy strategy.

The same analysis method as for the RECBTA allows us
to study the timeTRecCCA taken to execute the RECCCA.



Fig. 4. Sketch of “meta-beads” at successive phases in the recursive bead tiling algorithm.

Fig. 5. Starting from top left in the left-to-right, top-to bottom direction, sketch of projection of “meta-cylinders” on the corresponding side ofQ ⊂ R
3

at second, third, fourth and fifth sub-phases of a phase in therecursive cylinder covering algorithm.

Theorem 3.7: (Upper bound on the total time in R
3) Let

P ∈ Pn be uniformly randomly generated in the rectangular
box of width W , height H and depthD. For any double
integrator (1), with high probability

lim
n→+∞

TRecCCA

n4/5
≤ 61

(

WHD

r2
ctrrvel

)1/5(

1 +
7πr2

vel

3Wrctr

)

.

Remark 3.8: Theorems 3.1 and 3.7 imply that, with high
probability, the RECCCA is a 50

(

1 +
7πr2

vel
3rctrW

)

-factor ap-
proximation (with respect ton) to the optimal stochastic
DITSP in R

3 and thatE[DITSP(P ⊂ Q ⊂ R
3)] belongs

to Θ(n4/5).

IV. T HE DTRP FOR A DOUBLE INTEGRATOR

We now turn our attention to the Dynamic Traveling
Repairperson Problem (DTRP) that was introduced in [6]
and that we here tackle for a double integrator.

A. Model and problem statement

In the DTRP the double integrator is required to visit
a dynamically growing set of targets, generated by some
stochastic process. We assume that the double integrator
has unlimited range and target-servicing capacity and thatit
moves at a unit speed with minimum turning radiusρ > 0.

Information about the outstanding targets representing the
demand at timet is described by a finite setn(t) of positions
D(t). Targets are generated, and inserted intoD, according
to a time-invariant spatio-temporal Poisson process, with
time intensityλ > 0, and uniform spatial density inside the
regionQ, which we continue to assume to be a rectangle for
two dimensions and a rectangular box for three dimensions.
Servicing of a target and its removal from the setD, is
achieved when the double integrator moves to the target

position. A control policyΦ for the DTRP assigns a control
input to the vehicle as a function of its configuration and
of the current outstanding targets. The policyΦ is a stable
policy for the DTRP if, under its action

nΦ = lim
t→+∞

E[n(t)| ṗ = Φ(p,D)] < +∞,

that is, if the double integrator is able to service targets at a
rate that is, on average, at least as fast as the rate at which
new targets are generated.

Let Tj be the time elapsed from the time thejth target
is generated to the time it is serviced and letTΦ :=
limj→+∞ E[Tj ] be the steady-state system time for the
DTRP under the policyΦ. (Note that if the system is stable,
then it is known [15] thatnΦ = λTΦ.) Clearly, our objective
is to design a policyΦ with minimal system timeTΦ.

B. Lower and constructive upper bounds

In what follows, we design control policies that provide
constant-factor approximation of the optimal achievable per-
formance. Consistently with the theme of the paper, we
consider the case ofheavy load, i.e., the problem as the
time intensity λ → +∞. We first provide lower bounds
for the system time, and then present novel approximation
algorithms providing upper bound on the performance.

Theorem 4.1 (Lower bound on the DTRP system time):
For anyρ > 0, the system timeTDTRP,2 and TDTRP,3 for
the DTRP in two and three dimensions satisfy

lim
λ→∞

TDTRP,2

λ2
≥ 81

32

WH

rvelrctr
, lim

λ→∞

TDTRP,3

λ4
≥ 7813

972

WHD

rvelr2
ctr

.

We now propose simple strategies, the BEAD TILING

ALGORITHM (for R
2) and the CYLINDER COVERING AL-

GORITHM (for R
3), based on the concepts introduced in the



previous section. The BEAD TILING ALGORITHM (BTA)
strategy consists of the following steps:

(i) Tile the plane with beads of length̀ :=
min{CBTA/λ, 4ρ}, where

CBTA = 0.5241rvel

(

1 +
7πρ

3W

)−1

.

(ii) Traverse all non-empty beads once, visiting one target
per non-empty bead. Repeat this step.

The CYLINDER COVERING ALGORITHM (CCA) strat-
egy is akin to the BTA, where the region is covered
with cylinders constructed from beads of length` :=
min{CCFA/λ, 4ρ}, where

CCCA = 0.1615rvel

(

1 +
7πρ

3W

)−1

.

The policy is then to traverse all non-empty cylinders once,
visiting one target per non-empty cylinder. The following
result characterizes the system time for the closed loop
system induced by these algorithms and is based on the
bounds derived to arrive at Theorems 3.5 and 3.7.

Theorem 4.2 (Upper bound on the DTRP system time):
For anyρ > 0 andλ > 0, the BTA and the CCA are stable
policies for the DTRP and the resulting system timesTBTA

andTCFA satisfy:

lim
λ→∞

TDTRP,2

λ2
≤ lim

λ→∞

TBTA

λ2
≤ 70.5

WH

rvelrctr

(

1 +
7πr2

vel

3Wrctr

)3

,

lim
λ→∞

TDTRP,3

λ4
≤ lim

λ→∞

TCFA

λ4
≤ 2 · 107 WHD

rvelr2
ctr

(

1+
7πr2

vel

3Wrctr

)5

.

Remark 4.3: Note that the achievable performances of the
BTA and the CCA provide a constant-factor approximation
to the lower bounds established in Theorem 4.1.

V. EXTENSION TO THETSPS FOR THEDUBINS VEHICLE

In our earlier works [13], [16], [12], we have studied the
TSP for the Dubins vehicle in the planar case. In [13], we
proved that in the worst case, the time taken to complete
a TSP tour by the Dubins vehicle will belong toΘ(n).
One could show that this result holds true even inR

3.
In [16], the first known algorithm with strictly sublinear
asymptotic minimum time for tour traversal was proposed
for the stochastic DTSP inR2. This algorithm was modified
in [12] to give a constant factor approximation to the optimal
with high probability. This naturally lead to a stable policy
for the DTRP problem for the Dubins vehicle inR2 which
also performed within a constant factor of the optimal with
high probability. The RECCCA developed in this paper can
naturally be extended to apply to the stochastic DTSP inR

3.
It follows directly from Lemma 3.2 that in order to use the
RECCCA for a Dubins vehicle with minimum turning radius
ρ, one has to simply compute feasible curves for double
integrator moving with a constant speed

√
ρrctr. Hence the

results stated in Theorem 3.7 and Theorem 4.2 also hold true
for the Dubins vehicle.

This equivalence between trajectories makes the RECCCA
the first known strategy with a strictly sublinear asymptotic

minimum time for tour traversal for stochastic DTSP in
R

3. The fact that it performs within a constant factor of
the optimal with high probability and that it gives rise to
a constant factor approximation and stabilizing policy for
DTRP for Dubins vehicle inR3 is also novel.

VI. CONCLUSIONS

In this paper we have proposed novel algorithms for
various TSP problems for vehicles with double integrator
dynamics. Future directions of research include extensive
simulations to support the results obtained in this paper, study
of centralized and decentralized versions of the DTRP, and
more general task assignment and surveillance problems for
vehicles with nonlinear dynamics.
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