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On Traveling Salesperson Problems for a double integrator

Ketan Savla

Abstract— In this paper we propose some novel path planning
strategies for a double integrator with bounded velocity and
bounded control inputs. First, we study the following version of
the Traveling Salesperson Problem (TSP): given a set of points
in R?, find the fastest tour over the point set for a double
integrator. We first give asymptotic bounds on the time taken
for to complete such a tour in the worst-case. Then, we study
a stochastic version of the TSP for double integrator where
the points are randomly sampled from a uniform distribution
in a compact environment in R? and R3. We propose novel
algorithms that perform within a constant factor of the optimal
strategy with high probability. Second, we study a dynamic
TSP: given a stochastic process that generates targets, is the
a policy which guarantees that the number of unvisited targets
does not diverge over time? If such stable policies exist, what
is the minimum wait for a target? We propose novel stabilizing
algorithms whose performances are within a constant factor

Francesco Bullo

Emilio Frazzoli

a double integrator, one can gain insight into the nature of
the solution, and possibly provide polynomial-time apjprox
mation algorithms.

The motivation to study the DITSP arises in robotics and
uninhabited aerial vehicles (UAVS) applications. In paurti
lar, we envision applying our algorithm to the setting of an
UAV monitoring a collection of spatially distributed pogof
interest. Additionally, from a purely scientific viewpojtit is
of general interest to bring together the work on dynamical
vehicles and that on TSP. UAV applications also motivate
us to study the Dynamic Traveling Repairperson Problem
(DTRP), in which the aerial vehicle is required to visit
a dynamically generated set of targets. This problem was
introduced by Bertsimas and van Ryzin in [6] and then

decentralized policies achieving the same performances we
proposed in [7]. Variants of these problems have attracted
much attention recently [7], [8], [9], [10], [11]. Howeveas
with the TSP, the study of DTRP in conjunction with vehicle

. INTRODUCTION dynamics has eluded attention from the research community.

The Traveling Salesperson Problem (TSP) with its vari- The contributions of this paper are threefold. First, we
ations is one of the most widely known combinatoriaRnalyze the minimum time taken to traverse DITSPRif
optimization problems. While extensively studied in thefor d € N. We show that the minimum time taken to traverse
literature, these problems continue to attract great éster DITSP belongsto O(n'~22) and in the worst case, it also
from a wide range of fields, including Operations Researcielongs td2(n'~7). Second, we study tretochastic DITSP,
Mathematics and Computer Science. The Euclidean TSR., the problem of finding the fastest tour through a set
(ETSP) [1], [2] is formulated as follows: given a finite pointof target points that are uniformly randomly generated. We
set P in R4 for d € N, find the minimum-length closed show that the minimum time to traverse the tour for the
path through all points irP. It is quite natural to formulate stochastic DITSP belongs t8(n??) in R? and Q(n*/5)
this problem in the context of other dynamical vehiclesin R®. Drawing inspiration from our earlier work [12], we
The focus of this paper is the analysis of the TSP for aropose two novel algorithms for the stochastic DITSP: the
vehicle with double integrator dynamics or simply a doubléRECURSIVE BEAD TILING ALGORITHM for R* and the
integrator; we shall refer to it as DITSP. Specifically, DF'S RECURSIVE CYLINDER COVERING ALGORITHM for R®.
will involve finding the fastest tour for a double integrator We prove that these algorithms provide a constant-factor
through a set of points. approximation to the optimal DITSP solution with high

Exact algorithms, heuristics and polynomial-time constarProbability. Third, we propose two algorithms for the DTRP
factor approximation algorithms are available for the Euin the heavy load case based on the fixed-resolution versions
clidean TSP, see [3], [4], [5]. However, unlike most othe©f the corresponding algorithms for stochastic DITSP. We
variations of the TSP, it is believed that the DITSP cannot bghow that the performance guarantees for the stochastic
formulated as a problem on a finite-dimensional graph, thUgITSP translate into stability guarantees for the average
preventing the use of well-established tools in combinator performance of the DTRP problem for a double integrator.
optimization. On the other hand, it is reasonable to expe&pecifically, the performances of the algorithms for the

that exploiting the geometric structure of feasible pathrs f DTRP are within a constant factor of the optimal policies.
We contend that the successful application to the DTRP

This material is based upon work supported in part by ONR YIPproblem does indeed demonstrate the significance of the
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from the optimum, in R? as well as inRR®. We also argue
that these algorithms give similar performances for a particular
nonholonomic vehicle, the Dubins vehicle.

IFor f,g : N — R, we say thatf € O(g) (respectively,f € Q(g))
if there existNg € N andk € R such that|f(N)| < k|g(V)] for all
N > Ny (respectively, f(N)| > k|g(N)| for all N > No). If f € O(g)
and f € Q(g), then we use the notatiofi € ©(g).



stochastic DITSP carry over to the stochastic TSP for the Theorem 2.2: (Upper bound on the DITSP) For any point
Dubins vehicle, i.e., for a nonholonomic vehicle movingsetP € P, in @ C R? andrey > 0, 7vel > 0 andd € N,
along paths with bounded curvature, without reversing dibITSP(P) belongs toO(n'~21).

rection. We present all proofs in a technical report avégélab Il THE STOCHASTICDITSP
athttp://arxiv.org/abs/cs. RO 0609097. '

This work Comp|etes the genera“zation of the known The results in the preViOUS section showed that based
combinatorial results on the ETSP and DTRP (applicable @& simple strategy, the STOP-GO-STOP strategy, we are
Systems with Sing]e integrator dynamics) to double integr@.lready guaranteed to have sublinear minimum time for tour
tors and Dubins vehicle models. It is interesting to comparéaversal for the case when the point sets are considered on
our results with the setting where the vehicle is modeled bgn individual basis. However, it is reasonable to argue that
a single integrator; this setting corresponds to the steetal there might be better algorithms when one is dealing with

Euclidean case in combinatorial optimization. The resales average performance. In particular, one can expect that when
summarized as follows: n target points are stochastically generateddraccording

Single Double Dubins to a uniform probability distribution function, the minimu
integrator integrator vehicle time for the DITSP should be lower than the one given by the
Min. time for | ©(n'=%) [2] | Q(nl~ 1), O(n) [13] STOP-GO-STOP strategy. We shall refer to the problem of
TSP tour O(n'~31) (d=2,3) studying the average performance of DITSP over this class
(worst-case) of point sets as stochastic DITSP. In this section, we ptesen
Exp. min. time| ©(n1=7) [2] | O(n'~2@1) | O(n!~21) novel algorithms for stochastic DITSP and then establish
for TSP tour w.h.p. w.h.p. bounds on their performances.
(stochastic) (d=2,3) (d=2,3) We make the following assumptions: iR?, Q is a
System time | ©(AT1) [6] | ©(\21-D) | ©(\2d-D) rectangle of widthiW and heightH with W > H; in R3,
for DTRP (d=1) (d=2,3) (d=2,3) Q is a rectangular box of widthl, height H and depthD

Remarkably, the differences between these various boundgh W > H > D. Different choices for the shape @
for the TSP play a crucial role when studying the DTRRaffect our conclusions only by a constant. The axes of the
problem; e.g., stable policies exist only when the minireference frame are parallel to the sides@f The points
mum time taken for traversing the TSP tour grows stricth® = {pi1,...,pn} are randomly generated according to a
sub-linearly withn. For the DTRP problem we propose uniform distribution inQ.
novel policies and show their stability for a uniform target
generation process with intensily It is clear from the table

that motion constraints make the system much more sensitiveFirst we provide lower bounds on the expected length of
to increases in the target generation rate the stochastic DITSP for the 2 and 3 dimensional cases.

Theorem 3.1: (Lower bounds on stochastic DITSP) For
a double integrator (1), the expected minimum time for a
stochastic DITSP visiting a set of uniformly-randomly-
generated points satisfies the following inequalities:

E[DITSP(P C Q C R?)] _ 3 /GWH /3

> —
n2/3 — 4 (rvemctr) and

E[DITSP(P C Q CR¥)] _ §(20WHD>1/5

A. Lower bounds

[I. SETUP AND WORSFCASEDITSP
For d € N, consider a double integrator dynamics:

pt) = u(t), BN < rver, (1)
wherep € R? andu € R are the position and control input _lim

of the vehicle,r € Ry andrqy € Ry are the bounds on e
the attainable speed and control inputs. t- R? be the >
region of interest. LeP be a set of: points inQ andP,, be nt/> 6
the collection of all point set® c O with cardinalityn. Let B. Constructive upper bounds
ETSP(P) denote the minimum time for the Euclidean TSP | this section, we first recall our earlier work from [12]
over P and letDITSP(P) denote the minimum time of the 5nq yse it to propose novel algorithms for the stochastic
TSP for a double integrator ove?, i.e., the time taken t0 p|TSP: the RRCURSIVEBEAD TILING ALGORITHM for R2
traverse the fastest closed path for a double integratoutfit  5nd RecURSIVE CYLINDER COVERING ALGORITHM for
all points in P. We assumee andre to be constant and s The algorithms’ performances will be shown to be within
we study the dependence of DITSP, — R, onn. a constant factor of the optimal with high probability.
Lemma 2.1: (Worst-case lower bound on the DITSP) For In [12], we studied stochastic versions of the TSP for
Tvel, Terr € Ry andd € N, there exists a point sét € P, in - pybins vehicle. Here, feasible curve for the Dubins vehicle
Q C R? such thatDITSP(P) belongs toQ(n'~ ). or aDubins path is a curve that is twice differentiable almost
We now propose a simple strategy for the DITSP andverywhere and such that the magnitude of its curvature is
analyze its performance. The STOP-GO-STOP strategy capunded above by/p, wherep > 0 is the minimum turn
be described as follows: The vehicle visits the points in theadius. Feasible curves for a Dubins vehicle and for a double
same order as in the optimal ETSP tour over the same setinfegrator are related as follows.
points. Between any pair of points, the vehicle starts at the Lemma 3.2: (Trajectories of Dubins and double integra-
initial point at rest, follows the shortest-time path toaglea tors) A feasible curve for Dubins vehicle with minimum turn
the final point with zero velocity. radius p > 0 is a feasible curve for a double integrator

[u@)] < e,

lim
n—-+4oo

2
TTvel'ctr



(modeled in equation (1)) moving with a constant spee@P3) For anyp € B,, there is at least one feasible curve
Vprer- Conversely, a feasible curve for a double integrator ~p through the points{p_,p,p}, entirely contained

moving with a constant speed< r is a feasible curve for within B,. The length of any such path is at most
Dubins vehicle with minimum turn radiu%. , 03

In [12], we proposed a novel algorithm, theeRURSIVE Length(y,) < 4parcsin <4> =l+p-o0 <3> )
BEAD TILING ALGORITHM for the stochastic version of the p P
Dubins TSP (DTSP) irR?; we showed that this algorithm Analogously, for anyp € C,, there is at least one
performed within a constant factor of the optimal with high feasible curvey; through the pointp_,p, p+}, en-
probability. In this paper, taking inspiration from thoskeas, tirely contained within the region obtained by rotating
we propose algorithms to compute feasible curves for a  B,(¢) about the line passing through andp.. The
double integrator moving with the constant speggl Note length of+; satisfies the same upper bound as the one
that moving at the maximum speed is not necessarily established fory,.

the best strategy since it restricts the maneuvering chfyabi The geometric shapes introduced above can be used to
of the vehicle. Nonetheless, this strategy leads to efficie@over R2 and R? in an organized way. The plane can be
algorithms. Next, we proceed towards devising strategigseriodically tiled? by identical copies ofB,(¢), for any
which perform within a constant factor of the optimal fory €]0,4p]. The cylinder, however does not enjoy any such
stochastic DITSP inR*> as well asR? both with high special property. For our purpose, we consider a particular

probability. covering of R? by cylinders described as follows.
1) The basic geometric construction: Here we define

useful geometric objects and study their properties.2 Given
the constant speed,, for the double integrator let = %j'
from Lemma 3.2 this constant corresponds to the minimum
turning radius of thenal ogous Dubins vehicle. Consider two
pointsp_ andp, on the plane, witll = ||p, — p_||2 < 4p,

and construct the beal,(¢) as detailed in Figure 1.

' ' Fig. 2. A typical layer of cylinders formed by stacking rowsayfinders

“:-p:' A row of cylinders is formed by joining cylinders end
f [ \ to end along their length. A layer of cylinders is formed by
' e ' placing rows of cylinders parallel and on top of each other as
shown in Figure 2. For covering?, these layers are arranged
next to each other and with offsets as shown in Figure 3(a),

where the cross section of this arrangement is shown. We

Fig. 1. Construction of the “beads, (¢). The figure shows how the upper refer to this construction as thevering of R?.
half of the boundary is constructed, the bottom half is symim&tne figure
shows the rectanglefgh which is used to construct the "cylinde€), (¢).

Associated with the bead is also the rectanglgh. KKK
Rotating this rectangle about the line passing througland ’)‘(g‘(g’(g*(g‘lg‘l’

P+ gives rise to a cylindet,,(¢). The regiond3, (¢) andC,(¢) <>
enjoy the following asymptotic properties 85p) — 07:

(P1) The maximum “thickness” dB,(¢) is equal to

02 02 A

O=dpl1—J1-=—)=—+p-0(=).
wlf) =4 62 ) "8 00 <p3> @)
The radius of cross-section 6f,(¢) is w(¢)/4 and the Fig. 3. (a): Cross section of the arrangement of the layersyliricters
Iength Opr(f) is ¢. used_ for covering? C R3, (b): Th(_a relative posiﬁion of the bigg_er cylinder

(PZ) The area OB,,(E) is equal to relative to smaller ones of the prior phase during the phasssition.
Area(B,(0)) = tw(t) £ + o0 (54) 2) The 2D case: The RECURSIVE BEAD TILING ALGO-
r 2 16p pt)’ RITHM (RECBTA): Consider a tiling of the plane such that

The volume ofC,(¢) is equal to Area[B,(()] = Area[Q C R?]/(2n) = WH/(2n); to obtain

5 6
Volume[Cp(E)] F(“’(Z))Qf _ ml 3. ( ) 2A tiling of the plane is a collection of sets whose intersettihas

4 2 2048p2 " measure zero and whose union covers the plane.



this equality we assuméto be a decreasing function af with high probability
such that{(n) < 4p. Furthermore, we assume the tiling is 1/3
. ; ; 2 ; Tr WH Trr2
chosen to be aligned with the sides@fc R?, see Figure 4. lim LRecBTA oy ( ) <1 + ve|> .
The proposed algorithm consists of a sequence of phases; "—+> n?s = TvelTctr . 3W . _
during each of these phases, a feasible curve will be con-Remark 3.6: Theorems 3.1 and 3.5 imply that, with high

Trr,

structed that “sweeps” the sé In the first phase, a feasible probability, the RECBTA is a 32 (1 + 3rdr{;})-factor ap-

curve is constructed with the following properties: proximation (with respect ta) to the optimal stochastic
(i) it visits all non-empty beads once, DITSP in R? and thatE[DITSP(P C Q C R?)] belongs

(i) it visits all rows in sequence top-to-down, alternatin to ©(n?/?).
between left-to-right and right-to-left passes, and vis- 3) The 3D case: The RECURSIVECYLINDER COVERING

iting all non-empty beads in a row, ALGORITHM (RECCCA): Consider a covering o C R?
(iii) when visiting a non-empty bead, it services at leasby cylinders such thatVolume[C,(¢)] = Volume[Q C
one target in it. R3]/(4n) = WHD/(4n) (Again implying thatn is suffi-

Icg;ently large). Furthermore, the covering is chosen in sach

In order to visit the outstanding targets, a new phase e ) ) .
g 'arg P way that it is aligned with the sides @ c R3.

initiated. In this phase, instead of considering singledsea Th d alaorith i st of ¢
we will consider “meta-beads” composed of two beads each € !orop(r)]seh agOT;I m w ¢ ‘;‘}F’S'S g a sequen;g (')I
as shown in Figure 4, and proceed in a similar way as the ﬁrgpases, each phase will Consist ot Tive Sub-phases, afiesimi

phase, i.e., a feasible curve is constructed with the fotigw in nature. For the first sub-phase of the first phase, a feasibl
proper’tiés"’ curve is constructed with the following properties:

: - (i) it visits all non-empty cylinders once,
(i) the curve visits all non-empty meta-beads once, (ii) it visits all rows of cylinders in a layer in sequence

(i '; visits Ita” (Tete:)-btead) rIO\?tlst n iteq“(ejn?ehtt?og'lt?' top-to-down in a layer, alternating between left-to-right
own, & erga]n_(:[:]_ evl\:een € 'Ot'”g tanb rlg -lorle and right-to-left passes, and visiting all non-empty
passes, and visiting all non-empty meta-beads inarow, . i-dercin o row,

(i) when visiting a non-empty meta-bead, it services at(iii) it visits all layers in sequence from one end of the

least one target in it. region to the other

This process is iterated at moktg,n + 1 times, and (iv) when visiting a non-empty cylinder, it services at leas
at each phase meta-beads composed of two neighboring one target in it.
meta-beads from the previous phase are considered; i? othey, subsequent sub-phases, instead of considering single
words, the meta-beads at théh phase are composedf " cyjinders, we will consider “meta-cylinders” composed2of
neighboring beads. After the last phase, the leftover targey g and 16 beads each for the remaining four sub-phases,
will be visited using, for example, a greedy strategy. as shown in Figure 5, and proceed in a similar way as the

The following result is related to a similar result in [14]. i st sub-phase, i.e., a feasible curve is constructed wigh t

Theorem 3.3 (Targets remaining after recursive phases): following properties:

; ) 5
Let P € P, be unllfo.rmly randomly generated Q@ E_R j (i) the curve visits all non-empty meta-cylinders once,
The number of unvisited targets after the last recursivs@ha (ii) it visits all (meta-cylinder) rows in sequence top-to-

of the RECBTA s less thar24 log, n with high probability, down in a (meta-cylinder) layer, alternating between
L.e., with probability approaching one as— +oo. left-to-right and right-to-left passes, and visiting all
At this point we know that, after a sufficiently large non-empty meta-cylinders in a row,
number of phases, almost all targets will be visited witthhig (iii) it visits all (meta-cylinder) layers in sequence frame
probability. The key point is that the length of each phase end of the region to the other,
is decreasing at such a rate that the sum of the lengths d¢fv) when visiting a non-empty meta-cylinder, it servicés a
all the phases remains bounded. We first state the following  least one target in it.
result which characterizes the path length for trecBTA, A meta-cylinder at the end of the fifth sub-phase, and
which we denote arecpTa,,(P). hence at the end of the first phase will consist of 16 nearby
Theorem 3.4 (Path length for the RECBTA): Let P € cylinders. After this phase, the transitioning to the nendige
Pn be uniformly randomly generated in the rectangle ofuill involve enlarging the cylinder t82 times its current size
width W and heightfi. For anyp > 0, with high probability by increasing the radius of its cross section by a factot of
L p . and doubling its length as outlined in Figure 3(b). It is easy
lim Lieenra o(P) _ 24(pWH)Y/3 (1 + W) , to see that this bigger cylinder will contain the union of
nteo n?/3 B 3w 32 nearby smaller cylinders. In other words, we are forming
In order to obtain an upper bound on thETSP(P), the objectC,(2¢) using a conglomeration 82 C,(¢) objects.
we derive the expression for time takefg..zTa, by the This whole process is repeated at mlogt, n+2 times. After
RECBTA to execute the path of lengthgrecara,,(P). the last phase, the leftover targets will be visited using, f
Theorem 3.5: (Upper bound on the total time in R?) Let example, a greedy strategy.
P € P,, be uniformly randomly generated in the rectangle The same analysis method as for thedBTA allows us
of width W and heightH. For any double integrator (1), to study the timeZgr..cca taken to execute the RCCA.
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Fig. 4. Sketch of “meta-beads” at successive phases in thesiee bead tiling algorithm.

Fig. 5. Starting from top left in the left-to-right, top-tatiom direction, sketch of projection of “meta-cylindersi the corresponding side @@ C R3
at second, third, fourth and fifth sub-phases of a phase imettigrsive cylinder covering algorithm.

Theorem 3.7: (Upper bound on the total time in R3) Let  position. A control policy® for the DTRP assigns a control
P € P, be uniformly randomly generated in the rectangulamput to the vehicle as a function of its configuration and
box of width W, height H and depthD. For any double of the current outstanding targets. The polidyis a stable

integrator (1), with high probability policy for the DTRP if, under its action
1/5 . .
lim TRCCCCA < 61 WHD / 1+ 77T7ﬂ\%(—:‘l ) ne = tl}+mooE[n(t)| p= (I)(pa D)] < H-o00,
n—too nd/5 rervel 3Wrey

that is, if the double integrator is able to service targéta a

. . T rate that is, on average, at least as fast as the rate at which
probability, the RECCCA is a 50 (1 + Wm{;})-factor ap-  new targets are generated.
proximation (with respect to) to the optimal stochastic [ gt T, be the time elapsed from the time th# target
DITSP in R? and thatE[DITSP(P C Q C R?)] belongs js generated to the time it is serviced and B :—
to O(n*/?). lim;_, ;. E[T;] be the steady-state system time for the
IV. THE DTRPEOR A DOUBLE INTEGRATOR DTRP under the policyp. (Note that if the system is stable,

We now turn our attention to the Dynamic Traveling.tlzig gé;grr]]c’;vgo[ﬁci]t;w:ﬁ:n rﬁi\? g;iﬁ"t?#;bblecwe

Repairperson Problem (DTRP) that was introduced in [é
and that we here tackle for a double integrator. B. Lower and constructive upper bounds

Remark 3.8: Theorems 3.1 and 3.7 impl2y that, with high

A. Model and problem statement In what follows, we design control policies that provide
In the DTRP the double integrator is required to visi constant-factor a.pprOX|mat.|on of the optimal achievalsle p
. . ormance. Consistently with the theme of the paper, we
a dynamically growing set of targets, generated by some . .
: X onsider the case dfeavy load, i.e., the problem as the
stochastic process. We assume that the double integrafor

L I ; . Ime intensity A\ — +o0o0. We first provide lower bounds
has unlimited range and target-servicing capacity andithat . L
: . S s . for the system time, and then present novel approximation
moves at a unit speed with minimum turning radps- 0.

: : . algorithms providing upper bound on the performance.
Information about the outstanding targets representing th Theorem 4.1 (Lower bound on the DTRP system time):

demand at time is described by a finite set(t) of positions For anyp > 0, the system tim& e and Torre.s for

D(b). Targgts are genera}ted, and msertgd incaccording .we DTRP in two and three dimensions satisfy
to a time-invariant spatio-temporal Poisson process, wit

time intensityA > 0, and uniform spatial density inside the |, | ToTrP,2 S 81 WH im Tprrp,3 S 7813 WHD
region Q, which we continue to assume to be a rectangle fok—occ A2 = 327yercr A—oo AL T 972 ryerd,
two dimensions and a rectangular box for three dimensions.We now propose simple strategies, theM® TILING
Servicing of a target and its removal from the €@t is ALGORITHM (for R?) and the GLINDER COVERING AL-
achieved when the double integrator moves to the targerITHM (for R3), based on the concepts introduced in the




minimum time for tour traversal for stochastic DTSP in
R3. The fact that it performs within a constant factor of
the optimal with high probability and that it gives rise to
a constant factor approximation and stabilizing policy for
DTRP for Dubins vehicle irR? is also novel.

previous section. The BAD TILING ALGORITHM (BTA)

strategy consists of the following steps:

(i) Tile the plane with beads of
min{Cpra /A, 4p}, where

length?

3 VI. CONCLUSIONS

. I In this paper we have proposed novel algorithms for
(i) Traverse all non-empty beads once, visiting one target,_ . ; . .
. various TSP problems for vehicles with double integrator
per non-empty bead. Repeat this step.

7 —1
Cora = 0.5241 7 (1 + 7rp> .

dynamics. Future directions of research include extensive
The CYLINDER COVERING ALGORITHM (CCA) strat-

with cylinders constructed from beads of length :=
min{Ccra /A, 4p}, where

77rp) -t
C = 0.1615rye | 1 + —— .
CCA vel ( 3W i
The policy is then to traverse all non-empty cylinders once,
visiting one target per non-empty cylinder. The following [2]
result characterizes the system time for the closed loop
system induced by these algorithms and is based on thﬁ]
bounds derived to arrive at Theorems 3.5 and 3.7.
Theorem 4.2 (Upper bound on the DTRP system time):
For anyp > 0 and A > 0, the BTA and the CCA are stable
policies for the DTRP and the resulting system tirffgga
and Tcpa Satisfy:

(4]

T T WH T, \°
I DTRP.2 - ; BTA 705 14 el N
A—o00 )\2 A—o00 )\2 TvelTctr ?)Wrctr
5
. IpTrP3 . Tcra » WHD TTT gy 6
lim “2ERPS <) <2-10 1 vel ) [6]
e VIR e D VR vz T 3 Wrey

Remark 4.3: Note that the achievable performances of the;
BTA and the CCA provide a constant-factor approximation
to the lower bounds established in Theorem 4.1. i8]

V. EXTENSION TO THETSPS FOR THEDUBINS VEHICLE

In our earlier works [13], [16], [12], we have studied the [9]
TSP for the Dubins vehicle in the planar case. In [13], we
proved that in the worst case, the time taken to complete
a TSP tour by the Dubins vehicle will belong ©(n). [10]
One could show that this result holds true evenRA.

In [16], the first known algorithm with strictly sublinear [11)
asymptotic minimum time for tour traversal was proposed
for the stochastic DTSP iR2. This algorithm was modified

in [12] to give a constant factor approximation to the optimay12]
with high probability. This naturally lead to a stable pyglic

for the DTRP problem for the Dubins vehicle B which

also performed within a constant factor of the optimal with
high probability. The RCCCA developed in this paper can [13]
naturally be extended to apply to the stochastic DTSR3n

It follows directly from Lemma 3.2 that in order to use theyi4]
RECCCA for a Dubins vehicle with minimum turning radius

p, one has to simply compute feasible curves for doubIﬁS]
integrator moving with a constant spegrc,. Hence the
results stated in Theorem 3.7 and Theorem 4.2 also hold trliél
for the Dubins vehicle.

This equivalence between trajectories makes the@CA
the first known strategy with a strictly sublinear asymmtoti

- - s simulations to support the results obtained in this papedys
egy is akin to the BTA, where the region is coveredyt centralized and decentralized versions of the DTRP, and
more general task assignment and surveillance problems for
vehicles with nonlinear dynamics.
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