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Distributed consensus on enclosing shapes
and minimum time rendezvous

Giuseppe Notarstefano Francesco Bullo

Abstract— In this paper we introduce the notion of optimiza-  in [2]. The algorithm proposed in [2] has been extended to
tion under control and communication constraint in a robotic  yarious synchronous and asynchronous Stop-and-go Strate-
network. Starting from a general setup, we focus our attention  gieg in [3]. A related algorithm, in which connectivity con-
on the problem of achieving rendezvous in minimum time . . . .
for a network of first order agents with bounded inputs and stralnts are not 'mpos‘?dv is proposed in [4]'_ In [_5] the class
limited range communication. We propose two dynamic control  Of “circumcenter algorithms” has been studied in networks
and communication laws. These laws are based on consensusof agents whose state spaceRi§, for arbitraryd, and with
algorithms for distributed computation of the minimal enclosing  communication topology characterized by proximity graphs
ball and orthotope of a set of points. We prove that these contio - gpatigly distributed over the disk graph. In [6] the (tinTeda
laws converge to the optimal solution of the centralized problem S - . )

(i.e., when no communication constrains are enforced) as the communlgat|on) complexity O,f th!s and other algorithms has
bound on the control input goes to zero. Moreover, we give a Peen studied. All these coordination schemes are memeryles
bound for the time complexity of one of the two laws. (static feedback). In this paper we want to explore dynamic
control and communication laws in order to approximate

. INTRODUCTION . ; - .
the optimal solution of the minimum time rendezvous. In

Thg i.nteresting aspect of motion coordination consist_s 'Barticular the control and communication laws is based
gombmmg together F’“’b!e,ms from °°””,°' apd communicgs, reaching consensus on some logic variables and at the
tion Fheory. The_mam d|ff|cult_y d_eals with integrating thes me time moving toward the current estimation. A similar
sensing, computing, communication and control aspects g proach was used in [7] where the agents try to reach a
problemg involving groups of moblle agents. A well krmV\mconsensus on a set of variables called coordination vasabl
problem in control theory is optimal control. Roughly speak Studying the minimum time rendezvous problem in the

ing, it consists in finding a feedback law that minimizes SOME. tralized setting we show that, depending on the norm
cost functional under some inputs and dynamics constraig ’

. ) : ; sed to bound the control input, the optimal solution cdasis
In this paper we introduce the notion Of_ optimal control an f moving toward the center of the minimal enclosing ball
communication for a networ_k Qf r_obot|c agents_. We wan bound onL, norm) and toward the center of the minimal
to study how to solve an optimization problem, in presenc nclosing orthotope (bound on the infinity norm) of the
of both the usual motion constraints and the communicatio&)ims located at the initial position of the agents
ones. In particulgr this paper is a preliminary contributio Our main result is the design of a control and com-
towards _what_ ”?'gh_t be loosely referreq to as “distributeqly nication law based on a consensus algorithm for the
geometric optimization.” In fact many optimization protis distributed computation of the minimal enclosing ball and

for rObOt'f: networks can be shown fo b_e eguwalent to. thﬁ1e minimal enclosing orthotope of a set of points. We prove
computauon of .geo.metrlc Shapes' While in a centrahzeg]e correctness of the two consensus algorithms and provide
setting the solution is usually simple, the problem becomes,,, |4 on the time of convergence for the orthotope case.
very cc_;mplicated when it_ must be solved in a distribute hen we prove that the law that combines the consensus
way. Dlstanted computation over network has been largelyjy, the motion law converges to the optimal solution as the
stud|ed. for fixed topolqgles; €.g. see [1]. control bound goes to zero. Moreover, for the problem with
In this paper we point our attention on the well knoWninput bounded by the infinity norm (corresponding to the

rendezvous coordination task and look for solutions tha&omputation of the minimal enclosing orthotope), we prove

solve such task in minimum time. We look for dIStrIbUtGdIhat the control and communication law is a constant factor

solutions in networks of mobile agents with first Orderapproximation of the centralized optimal solution.

dynamics, bounded inputs and limited-range communication In Section Il we introduce a formal model of robotic
The “multi-agent rendezvous” problem and a “circumcen-

¢ lorithm” h b introduced by And d K network inspired by the one introduced in [6]. Moreover,
er aigorithm™have been Introduced by AnCo and COWOTKEIR,e gefine the optimal control and communication problem.
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Section V-C and Section VI we show simulations and drawlescribing the dynamics aoth agent;Ecym : X™ — I x I
the conclusions with future perspectives. For space cainstr is called thecommunication edge map
all proofs are omitted in this paper and can be found in [8]. The robotic network evolves according to a discrete-time
communication and motion model.
Il. PRELIMINARY DEVELOPMENTS Definition 2.1 (Control and communication lawhet S
In this section we recall the concepts of network of€ a robotic network. Aluniform, synchronous, dynamic)
robotic agents, coordination tasks and complexity measurecontrol and communication lawC for S consists of the
and introduce the notion of optimization under motion angets:

communication constraints. (i) L, a set containing thenul | element, called the
) communication languageelements ofL are called
A. Notation messages

We let N, Ng, and R, denote the natural numbers, the (ii) W, set of values of sombgic variablesw!®, i € T;
non-negative integer numbers, and the positive real nusnber(ii) Wy C W, subsets otllowable initial values
respectively. We IetHie{1 o} S; denote the Cartesian and of the maps:

product of setsSy, ..., S,. Forp € R, we let[p] and [p] (i) msg: X x W x I — L, message-generation function
denote the floor and ceil of. Forr € Ry andp € R?, iy stf . IV x L — W/, calledstate-transition function
we let B(p,r) denote the closed ball centered matwith (iii) ctl : X x W x L™ — U, calledcontrol function [J
radiusr, i.e., B(p,r) = {¢ € R? | |p —ql2 < r} and " Royghly speaking this definition has the following mean-
C(p,r) denote the closed hypercube centeredpawith jng: for all i € I, to theith physical agent corresponds a
sides of length and parallel to the coordinate axes, i.€.jqgic process, labeled] that performs the following actions.
Clp,r) ={g € R | |Ip—qlloc <7} _ First, at each communication round thigh logic process
For f,g : N — R, we say thatf € O(g) (respectively, sends to each of its neighbors in the communication graph a
f € Qg)) if there existng € N andk € Ry such that message (possibly theul | message) computed by applying
[f(n)| < klg(n)| for all n > no (respectively,|f(n)| =  the message-generation function to the current valued’of
klg(n)| for all n. > no). If f € O(g) and f € Q(g), then we g il After a negligible period of time, theth logic
use the notatiorf € ©(g). o process resets the value of its logic variahlé$ by applying
Next, we briefly review some useful proximity graphs.the state-transition function to the current valueudf, and
Given remm € Ry, the disk graphGais(remm), respectively o the messages received at timéetween communication
the cube graphGeupe(remm), is the state dependent graphinstants, the motion of theth agent is determined by
on R? defined by the following statement: for any set ofapplying the control function to the current valuesdf, and

points {p[”,...,p[”l]} C R, the pair (i,j) is an edge the current value ofvl’). This idea is formalized as follows.
in %d]isk(rcmn[w)]' ({p,.. ,P[”]_})g respectivelyGeuoe(remm) - Definition 2.2 (Evolution of a robotic network):et S be
({p",...,p™}), if and only if i # j and a robotic network an@C be a control and communication
[ _ ), <y e Pl — Ul € B0y ’ law for S. The evolutionof (S,CC) from initial conditiqns
[P =P 2 < Tomm pe=r (0a; emm) 2 e X andw! € Wy, i € 1, is the set of curves!i :
respectively N — X andwl : N — W, i € I, satisfying
||p[z] — pm Hoc < Temm pm — p[J] S C(Od, Tcmm)- 'TM (t + 1) = f(‘r[l] (f)a Ctl(.ﬁCM (t)7 w[l] (t + 1)7 y[Z] (t)))v
Another useful graph is the complete gra@hn, i.e., the where, fori € I,
graph with edges between any pair of nodes. Wl (t+1)= Stf(w[i] (t) yli (1)

Finally, given a graphg (even not state dependent), we
denote with dis§(i, j) the topological distance between with the conventions that!(¢,) = xg] andwli (tg) = w([)i],
andj, i.e., the minimum number of agents to go frérto j  ; < I. Here, the functiony!”! : N — L" (describing the
in the graphG. We definediamg, the diameterof G, to be messages received by agéphas components
the maximum topological distance, qist, j), for all (i, ).

i) — msgz (), wl(2),7), i (i.)) € Bomm

B. Modeling a network of robotic agents Yj nul |, otherwise

We describe a (uniform) network of robotic agents using In the paper we consider the following network. Each
the formal model introduced in [6] modified for the discreteagenti occupies a locationl!) € R, d € N, and moves
time case. The network is modeled as a tuglgA, Ecmm). according to the first order discrete-time integrator
I = {1,...,n} is the set of unique identifiers (UIDg) [4] [4] [4]

T . t+1) = t t). 1

A = {AWYie, = {(X,U, Xo, f)}ics is called theset of PRt 1) =pi(0) + () @
physical agent&nd is a set of control systems consisting ofThe communication edge map can be either the one arising
a differentiable manifoldX (state space), a compact subseaccording to thedisk graph Egisk, Or the one according
U of R™ (input space), a subséf, of X (set of allowable to the cube graph E.u.ne Each controlul’ takes values in
initial states) and a (sufficiently smooth) map X xU — X  a bounded subset dk?, that can be eithe?3(0,7¢) or



C(0,7cy), i.e., |Juld||a < rer or |Jul?]|so < 7er. Notice that, cost functional, if it solves the above optimal control and
in general, the type of communication edge map and thr@mmunication problem.
type of control bound are not related. Finally the control We callCC a centralizedoptimal control and communica-
and communication law will be defined depending on th&on law if it solves the optimization problem for a network o
coordination task. robotic agents that communicate according to the complete
graph, i.e., the communication edge mapFignp.

Remark 2.6:The centralized solution of an optimal con-
We are ready to define the notion of task and of tasfo| and communication problem is the classical solution of

achievement by a robotic network. _ the optimal control problem for the whole network system
Definition 2.3 (Coord|nat|0n taSk)Let S be a robotic without communication constraints. O

network. A (static) coordination taskior S is a map7 :

X" — {true, f al se}. Additionally, letCC a control and IIl. CENTRALIZED MINIMUM TIME RENDEZVOUS

communication law foiS. The lawCC achieveshe taskT if, In this section we study the rendezvous problem for a

for all initial conditionng] € Xo andw([f] € Wy, i € I, the robotic network of first order agents with communication

corresponding network evolutioh — (z(t),w(t)) has the edge mapFyisk of Equne and look for a control and commu-

property that there exist§ € N such that7{z(t)) =true nication law that solves the problem in minimum time.

forallt>T. O More formally, letS = (I, A, Ecmm) be a uniform robotic
We are finally ready to define the notion of time com-network. The (exact) rendezvous tasHing,s : X" —

plexity as the minimum number of communication roundgt r ue, f al se} for S is the static task defined by

needed by the agents to achieve the taskith CC. ]
Definition 2.4 (Time complexity)tet S be a robotic net- true, if 2z =2V,

work and let7 be a coordination task fof. Let CC be a  Zmdzvd(@) = for all (i, ) € Ecmm(z),

control and communication law fof compatible with7. fal se, otherwise

The time complexity to achievé with CC from zy € X is

C. Coordination tasks and time complexity

for x = («IY,... zl").

TC(7,CC,x0) = inf{T € N | T(x(t)) =true, Vt>T} Thus, given the uniform networl§ = (I, A, E¢nm), the

wheret — (x(t),w(t)) is the evolution of(S,CC) from the m.inimum time rendezvou§ problefnr first order agents

initial condition (o, wo). ywth I|m!ted-range commyplcatlon and bounded control inpu
The time complexity to achievé with CC, TC(7,CC), is is obtained from Definition 2.5 as f_olloyvs: the cost is

the maximumTC(7,CC, x,) over all initial conditionsz. la(r), u(r)) = 1 andg(z(T)) = 0; U is either 5(0, rer)

or C(0,7ey); f(PI(1),ul?(t)) = pld(t) + wll(¢); and the

D. Optimal control and communication in robotic networkscommunication edge mafemm is either Egisk of Fcupe
Having defined a coordination task for a robotic networkFinally the task is the rendezvous o= Zrdzvs

we can ask whether such task can be accomplished minimiz-We refer to the minimum time rendezvous problem

ing some cost functional. In what follows we will introduceWith communication edge mafcmm and input setU as

the notion ofoptimal control and communication problem M7 R(Ecmm, U).

and of optimal control and communication laas solution ~ Next, we provide some preliminary results for

of the problem. the centralized setting of the above problem, that
Definition 2.5 (Optimal control and communication): 1S, for MTR(Ecmpi, U). Let MEB(pl!).-.pl") and

Given a taskZ and a cost functional/(u(),z(T),T), an MEO(pl! .- pl"l) the minimal enclosing ball and orthotope

optimal control and communication problem is the following of points (p!!---pl"l), and let MBC(pl'l -- - pl"l) and

MOC(plt ... pl"l) the centers of MEB(p!!---pl"!) and

minimize, ) »(0).«(r),r J(u(-),2(T),T) MEO(pl!) - plnl), respectively. We present the following
J(u(), 2(T),T) = Zf:o(l(ﬂf(T)vu(T)) + g(2(T)), Lheecczrjsrr; g;nsltglggetzgng?;;tzésed on geometric arguments
subj. to Theorem 3.1:For all 7y € Ry, p([)i] eRY ie{l,...,n}
(i) (z(-),u(-)) is an input-state trajectory of,, the solution of MTR(Eemp, U), U = B(0,7¢r) Or U =
A= {AD} e C(0, rerr), is not unique (the problem is not normal). If
(i) 7 andj can communicate if and only if ull € B(0,rer), i € {1,...,n}, then
(i,5) € Ecmm(x[l] (t),... ax[n] (), (i) p(T) = prndavs, disk= MBC(p[l] (0),... 7p[n] (0)),

(i) T(z(t))=trueforallt>T,T €N.

wherel : X" x U" — R is a sufficiently smooth and
nonnegative-valued function, callestage cost and g

u[i] (t) = min{rctra Hprndzvs_ p[i] (t)||2}
- Vers (prndzvs_ p[i] (t)>7 i€ {17 cees n}a

X" — R has the same properties ply$x) = 0 for all is a solution ofMTR(Ecmm,B((),rctr));
x € X" such that7(z) = t rue (for an admissiblecC). O (i) if Vi € {1,...,n}, |[pl! — MBC(pll...p)|, <
We say that a control and communication &€ is rer, then the solution of MTR(Ecmpl, B(0, 7crr))

optimal with respect to the coordination task and the is given by p(T) = Dmdzs, disk Prdzvs, disk €



Lemma 4.1 (MEB properties)et Q,, a set ofn points.
The following statements hold.

(i) there exists a subsé&); C @,, of d+ 1 elements such
that MEB(Q4) = MEB(Q+,);
(i) for all Q,,,Qn, C Q. with Q,, C Qn,, then
MBR(Q,,) < MBR(Qy,,);
(i) if MBR(Q,,) = MBR(Q,,), then MBC(Q,,) =
. MBC(Qn,);
Rur =] |:MOC(p[1] 0),...,p™(0)) = =(Imax— la),  (iv) the number of possible values MBR(Q,,, ), for all
p 2 Qn, C Q. is finite. 0
1 - 1 Remark 4.2:An important implication of Lemma 4.1(i) is
MOC(p! (0),...,p"(0)) + §(lmax_ la) | - that MEBpnary({q1, - - - , ¢»}) has at mostl + 1 points, then
the number of packets in the message sent and stored by
each agent is at most+ 1 and does not depend on O
The algorithm is described formally in the following table.

Nie{1,...,n} B(P[i]yrctr), and Um(t) = Prmdzvs, disk —
pr(d).

Alternatively, if ul’l € C(0,7¢y), i € {1,...,n}, then

(i) p(T) = Prndzvs, cube Prdzvs, cube € Rwmr, Uam t) =
min{rctn ‘prndzvs,a_ Pa (i (t)|} Sign(prndzvs,a_ Pa (i (t))!
i € {1,...,n}, a € {1,...,d} is a solution of
MTR(Eempi, C(0,7¢yr)), Where

Imax is the largest side oMEO(p['(0),...,pl"(0))
and !, is the side in direction;

if Vie{l,...,n} [|pll —MOC(pM .- pl)| o < rey
the solution of MTR(Ecmpi, C(0,7¢r)) iS given by

(iv)

pﬁ“) = Dmndzvs pm?_z]vs € Nicf1,...n) C(p“],rctr), and Name: FloodMEB algorithm.

Ut) = —p(¢t). O

w0 = Pz PE(E) Goal: Solve the problem of computing min-

IV. DISTRIBUTED CONSENSUS ON MINIMAL ENCLOSING imal enclosing ball of a set of points|
BALL AND ORTHOTOPE Logic state: wll = (Plpngry, pg]);

In the previous section we have shown that minimal
enclosing shapes play a key role in the solution of minimum
time rendezvous. In fact if the agents could know the center |nitialization:
of such shapes (ball or orthotope) the solution of minimum
time rendezvous would be just a control law that drives each
agent to this point. Therefore, in this section, we want tq
explore two consensus algorithms to compute the minima
enclosing ball and the minimal enclosing orthotope of a set 1: acquirew!! t), j € N@@)
of given points inR? in a distributed way. 2: compute

Here is an informal description of what we shall refer to P[i]bndry(t + 1) = MEBpnary(Wrs) (1)),
as theFloodMEB algorithm: Wiy (t) = {wbl(t) | j e N(@) Ui}

[Informal description] Each agent initializes the ) i _ (pli 4]
minimal enclosing ball to its initial position, then, ¥ updatew[ ](t D= (P[ ]bndry(t + 1.0’ (2))
at each communication round, performs the fol-

msqx[i]’ w!] ,1) = wlil

Plilhngn(0) = {p1(0)},
Py (0) = pl(0).

Msg function:

[forie {1,...,n}, agenti; executes at each timec N:

lowing tasks: (i) it acquires from its neighbors
(a message represented by) the coordinates of the
minimum set of points describing the boundary of
their minimal enclosing ball and the coordinates of
their initial position; (ii) it computes the minimal
enclosing ball of the point set comprised of its and
its neighbors’ set of points and its initial position

Remark 4.3:For the algorithm to converge it is important

that each agent keeps in memory the coordinates of itslinitia

position and thus computes the minimal enclosing ball on the
points received from its neighbors together with the point
located in its initial position. In fact a point on the boungla
on the minimal enclosing ball of; points is not ensured to
be on the boundary of the ball ef < n; points. This means

(that it maintains in memory); (iii) it updates its that the coordinates of the agents on the boundary could be
logic variables and message as in (i). taken out from the logic variables during the first iterasion
Before describing the algorithm more formally, we need his does not happen, for example, for the minimal enclosing

to introduce some notation and state some properties @fthotope. The result is a simplified consensus algoritim.
the minimal enclosing ball. Given a set of points We are now ready to prove the algorithm’s correctness.
{q1,...,qn} C R? in generic positions, we denote with Theorem 4.4 (CorrecWlEB computation):Let S be a
MEBbnary({¢1, - - -, gm }) the minimum set of points on the robotic network such that the agents can communicate ac-
boundary ofMEB({q1, - - ., ¢ }) that uniquely identify such cording to some communication edge m&g.m. For anyCC
boundary. When the points are not in generic positiorsuch that the graph remains connected along the evolution,
we let MEBpnary({¢1, - --,¢m}) denotea minimum set of the FloodMEB algorithm achieves consensus on minimal
points on the boundary oMEB({¢i,...,q»}) that iden- enclosing ball. O
tify such boundary. Moreover, givefigi,...,qn} C RY, Remark 4.5:1f we admit that the agents have different
let MBR({¢1,...,qm}) be the radius of the minimal ball priority, the initial positions of the agents can be shargd b
enclosing these points. all the agents in time of orde®(n?). The algorithm is the



following. Each agent sends the position of the agent witminimum number of communication rounds given by

higher (or equivalently lower) priority that he has in memor _ . o . .

Each position takes tim@(n) to spread in the network, Trioodmeo = aell X gy iefnl,?fn}{dlsb(l’Zm'”'a)’dlsb(l’zmax's)}’
. ; 5 . .

therefore the total time complexity 8(n*). Even if we did Where imina and imaxa are the agents that characterize the

not p_rovide any bounql fortr_le time complexity_lélbodMEB boundary of the orthotope in directian and minimize the
algorithm, however simulations suggest that it should be %pological distance frond

order ©(n). Moreover, while the algorithm for sharing the 110 ime complexity of the algorithm is of ordé¥(n).C]
initial position needs to store a number of packets of order |\ 1o following lemma we give, for botRloodMEB and
©(n), the FloodMEB algorithm needs to store only + 2 FloodMEOalgorithms, a bound on the time needed by each

packets.. . - - agent to decide that the algorithm has reached consensus.
Here is an informal description of what we shall refer to Lemma 4.7 (Termination conditionfConsider a network
as theFIoodMEOaIgor!thm. L S, where theFloodMEB (FloodMEQ) algorithm is running.
[Informal description] Each agent initializes the Each agent can decide that the algorithm has reached con-
minimal enclosing orthotope to its initial position, sensus if the value of iSIEB (MEO) has not changed after
then, at each communication round, performs the diamg communication rounds. 0

following tasks: (i) it acquires from its neigh-

bors a message represented by the coordinates of V. CONSTANT FACTOR APPROXIMATION OF MINIMUM

their current minimal enc|osing Orthotope; (“) it TIME RENDEZVOUS CONTROL AND COMMUNICATION LAW
computes the minimal of its and its neighbors’ The centralize solution for minimum time rendezvous and
enclosing orthotopes; (jii) it Stores as new message the consensus algorithms studied in the previous section
the coordinates of the minimal enclosing orthotope  suggest a dynamic control and communication law that plays

computed at the previous step. a key role in the minimum time rendezvous problem.
A more formal description of the algorithm is given in the Here is an informal description of what we shall refer to as
following table. the move-towardMBC (MOC) control and communication
law, CCves (CCMEo):
Name: FloodMEO algorithm. Each agent initializes its logic variables to its

initial position, then, at each communication round,
performs the following tasks: (i) it acquires from its

Goal: Solve the problem of computing min

imal enclosing orthotope of a set of neighbors a message given by their logic variables
points. and positions; (ii) it runs, as state transition func-
Logic state:  wl! = {wg]}ae{l,_,,,d} tion, theFloodMEB(MEO)algorithm; (iii) it moves
= {(piﬁm,a,pﬁﬁm,a)}ae{l,.“,d} toward the center of the current ball (orthotope)
o ] o] while maintaining connectivity.
Msg function:  msgz*®,w*, 1) = w Next, we formally define the law as follows. First we
Initialization: p[i]‘ (0) :pgi] (0), assume that each agent operates ac.cordi‘ng to the stan-
G [i] dard message-generation function, that is &g w!, i) =
Pimaz,a(0) = e’ (0) (z!,wl1). Second, before th&loodMEB (or FloodMEQ
algorithm reach consensus, connectivity is maintained by
Fori e {1,...,n}, agenti executes at each timee N: restricting the allowable motion of each agent in some
1: acquirewl’!, j € N(i) appropriate manner. The exact algorithm can be found for

example in [6].

2: computeva € {1,...,d . .
P a€d ' The state transition function implements tRéeoodMEB

i ]
pmin,a(t +1) = mmJEN(”U{Z}{p%”v“(t)} andFloodMEO algorithms respectively, with logic variables
Pmaz,a(t + 1) = max;en)uqiy {Pmaz,a(t)} as defined in the two tables above.

3: updateva € {1,...,d} . Define the control function ctiR? x R% x L — R? for
me (t+1)= (pmm’a(t + 1),p£ﬂam’a(t + 1)) each agent € {1,...,n} by:
Ctl(pm ) w[l] 3 y[l]) = maX{A* : (prndzvs(w[i] ) y[l]) - pm)7 Tctr}
In the following theorem we prove the correctness of this vers(Pradzvs (Wl y1) — plil),
algorithm, together with the fact that it reaches conseisus with
minimum time. pmdws(w[i]’y[i]) _ MBC(w[i]vy[i]) )

Theorem 4.6 (CorrecMIEO computation):Let S be a
robotic network such that the agents can communicate aand ). is chosen in order to maintain connectivity until
cording to some communication edge mg,n. For anyCC  consensus is reached.
such that the graph remains connected along the evolution,In a network with communication edge mé&Rmm = Fcube
then theFloodMEO algorithm achieves consensus on minithe procedure described above is applied separately iy ever
mal enclosing orthotope. Moreover, it achieves consensusdirectiona € {1,...,d}.



The correctness of the two control and communication -6
laws is proven in the following lemma.

Lemma 5.1 (Correctness 6 yeg and CCyeo): On the -4
network S with communication edge ma@ha Or Ecupe
and bound on theth control inputul! € B(0,ry) or —2f
uld € C(0,r¢), the control and communication lawW€yes
andCCyeo achieve rendezvous AMBC(p!*(0), . .., p™(0)) Of
andMOC(pl'(0), ..., pl"(0)), respectively. O )
A. Time complexity afCyeg and CCveo

In the previous lemma we have proven that the control and 4r
communication law€Cyeg and CCueo achieve consensus.

Now we ask how fast these laws are depending on the control
boundr¢ and the number of agents.

Theorem 5.2:For Temm € R+' d € N, consider the Fig. 1. Evolution of the network (in filled blue) according €€ megg with
network S with communication edge map eithéfgsx Or  evolution of FloodMEB (green circles connected by dashed red line)
E.ue The following statements hold:

(i) for ull € B(0,re), i € {1,...,n}, the control and o _

communication lawCCyves asymptotically converges The FloodMEB law converges in five steps, while the

to the minimum time rendezvous centralized solutiofendeézvous is achieved dt = 58. As it clearly appears
MTR(Eemp, B(0, reyr)) asrey — 0 (for all fixedn). 1N the figure, once the consensus on the minimal enclosing
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(i) for ull € C(0,r4), i € {1,...,n}, the con- ballisreached, all the agents move toward the center.
trol and communication lawCCyeo converges to VI]. CONCLUSIONS
the minimum time rendezvous centralized solution . .
MTR(Egmpl, C(0, 7)) for 7 — 0% (for all fixed We have presented some simple algorithms to compute

optimal enclosing shapes for sets of points via distributed
computation. These algorithms are then used to provide
efficient solutions to distributed rendezvous problems for
synchronous robotic networks. For future work we envision
characterizing the time complexity of tHdoodMEB algo-

n). Moreover, it is a constant factor approximation

of MTR(EcmPh C(O, Tctr))' i.e.,TC(deZVS, CCMEo) €

9(%:") for rer — 07 andn — +oo. O
Next lemma is useful for the proof of the theorem.
Lemma 5.3 ([9]): For all sets of pointd?; C P, we have

MBC(P;) € MEB(P) and MOC(P,) € MEO(P) 0 rithm and, in turn, of the move-towadEBC control and
Remark 5.4:The previous theorem confirms the intuitiveCOMMmunication law.
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