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On the Dubins Traveling Salesperson Problems:
novel approximation algorithms

Ketan Savla1, Emilio Frazzoli2, Francesco Bullo1

Abstract— In this paper we study minimum-time motion plan-
ning and routing problems for the Dubins vehicle, i.e., a non-
holonomic vehicle that is constrained to move along planar paths
of bounded curvature, without reversing direction. Motivated by
autonomous aerial vehicle applications, we consider the Traveling
Salesperson Problem for the Dubins vehicle (DTSP): givenn
points on a plane, what is the shortest Dubins tour through
these points and what is its length? Specifically, we study a
stochastic version of the DTSP where then targets are randomly
sampled from a uniform distribution. We show that the expected
length of such a tour is of order at leastn2/3 and we propose
a novel algorithm yielding a solution with length of order n

2/3

with high probability. Additionally, we study a dynamic version
of the DTSP: given a stochastic process that generates target
points, is there a policy which guarantees that the number of
unvisited points does not diverge over time? If such stable policies
exist, what is the minimum expected time that a newly generated
target waits before being visited by the vehicle? We propose a
novel stabilizing algorithm such that the expected wait time is
provably within a constant factor from the optimum.

I. I NTRODUCTION

In this paper we study a novel class of optimal motion
planning problems for a nonholonomic vehicle required to
visit collections of points in the plane. This class of problem
has two main ingredients. First, the robot model is the so-
called Dubins vehicle, namely, a nonholonomic vehicle that
is constrained to move along paths of bounded curvature
without reversing direction. Second, the objective is to find
the shortest path for such vehicle through a given set of target
points. Except for the nonholonomic constraint, this task is
akin to the classic Traveling Salesperson Problem (TSP) andin
particular to the Euclidean TSP (ETSP), in which the shortest
path between any two target locations is a straight segment.
In summary, the focus of this paper is the analysis and the
algorithmic design of the TSP for the Dubins vehicle; we
shall refer to this problem as to the Dubins TSP (DTSP).
Specifically, we study a stochastic version of the DTSP, which
we refer to as the stochastic DTSP, where then targets are
randomly sampled from a uniform distribution.

A practical motivation to study the DTSP arises naturally in
robotics and uninhabited aerial vehicles (UAVs) applications.
We envision applying DTSP algorithms to the setting of a
UAV monitoring a collection of spatially distributed points of
interest. In one scenario, the location of the points of interests
might be known and static. Additionally, UAV applications
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motivate the study of the Dynamic Traveling Repairperson
Problem (DTRP), in which the UAV is required to visit a
dynamically changing set of targets. Such problems are exam-
ples of distributed task allocation problems and are currently
generating much interest; e.g., [1] discusses complexity issues
related to UAVs assignments problems, [2] considers Dubins
vehicles surveilling multiple mobile targets, [3] considers mis-
sions with dynamic threats, other relevant works include [4],
[5], [6], [7].

The literature on the Dubins vehicle is very rich and
includes contributions from researchers in multiple disciplines.
The minimum-time point-to-point path planning problem with
bounded curvature was originally introduced by Markov [8]
and a first solution was given by Dubins [9]. Modern treat-
ments on point-to-point planning exploit the Pontryagin Min-
imum Principle [10], carefully account for symmetries in the
problem [11], and consider environments with obstacles [12].
The Dubins vehicle is commonly accepted as a reasonably ac-
curate kinematic model for aircraft motion planning problems,
e.g., see [13], and its study is included in recent texts [14],
[15].

The TSP and its variations continue to attract great interest
from a wide range of fields, including operations research,
mathematics and computer science. Tight bounds on the
asymptotic dependence of the ETSP on the number of targets
are given in the early work [16] and in the survey [17]. Exact
algorithms, heuristics as well as polynomial-time constant fac-
tor approximation algorithms are available for the Euclidean
TSP, see [18], [19], [20]. A variation of the TSP with potential
robotic applications is the angular-metric problem studied
in [21]. The DTRP (without nonholonomic constraints) was
introduced in [22]. However, as with the TSP, the study of the
DTRP in context of the Dubins vehicle has eluded attention
from the research community. Finally, it is worth remarking
that, unlike other variations of the TSP, the Dubins TSP cannot
be formulated as a problem on a finite-dimensional graph, thus
preventing the use of well-established tools in combinatorial
optimization.

The contributions of this paper are threefold. First, we
propose an algorithm for the stochastic DTSP through a
point set P , called the RECURSIVE BEAD-TILING ALGO-
RITHM, based on a geometric tiling of the plane, tuned to
the Dubins vehicle dynamics, and a strategy for the ve-
hicle to service targets from each tile. Second, we obtain
an upper bound on the stochastic performance of the pro-
posed algorithm and thus also establish a similar bound on
the stochastic DTSP. The upper bound on the performance
of the RECURSIVEBEAD-TILING ALGORITHM belongs to
O(n2/3) with high probability, and it is known that the lower



bound on the achievable performance belongs toΩ(n2/3).
The algorithm we introduce in this paper is the first known
algorithm providing a provable constant-factor approximation
to the DTSP optimal solution. Third, we propose an algorithm
for the DTRP in the heavy load case, called the BEAD-
TILING ALGORITHM, based on a fixed-resolution version of
the RECURSIVE BEAD-TILING ALGORITHM. We show that
the performance guarantees for the stochastic DTSP translate
into stability guarantees for the average performance of the
DTRP for the Dubins vehicle in heavy load case. Specifically,
we show that the performance of BEAD-TILING ALGORITHM

is within a constant factor from the theoretical optimum.
To clarify the contributions of this paper, it is worthwhile

to compare our results with the ones existing in literature.
While the problem of flying an aircraft through waypoints
is a very standard problem in aeronautics, the formal study
of the Dubins TSP (algorithmic and performance bounds)
was introduced in our early work [23], where a constant-
factor approximation algorithm for the worst-case settingof
the DTSP was proposed. Subsequently, similar versions of this
problem were also considered in [24] and [4]. A simplified
version of the problem for a different but closely related kind
of vehicle, the Reeds-Shepp vehicle, was considered in [25].
In [26], we introduced the stochastic DTSP and gave the first
algorithm yielding, with high probability, a solution witha cost
upper bounded by a strictly sublinear function of the number
n of target points. Specifically, it was shown that the lower
bound on the stochastic DTSP was of ordern2/3 and that
our algorithm performed asymptotically within a(log n)1/3

factor to this lower bound with high probability. This result
was improved in [27] with an algorithm for the stochastic
DTSP that asymptotically performs within anyε(n) factor
of the optimal with high probability, whereε(n) → +∞ as
n → +∞. In this paper we propose the first algorithm that
asymptotically achieves a constant factor approximation to the
stochastic DTSP with high probability.

Notation

In this section we setup the main problem of the paper
and review some basic required notation. ADubins vehicle
is a planar vehicle that is constrained to move along paths
of bounded curvature, without reversing direction and main-
taining a constant speed. Accordingly, we define afeasible
curve for the Dubins vehicleor a Dubins path, as a curve
γ : [0, T ] → R

2 that is twice differentiable almost everywhere,
and such that the magnitude of its curvature is bounded above
by 1/ρ, whereρ > 0 is the minimum turning radius.

Let P = {p1, . . . , pn} be a set ofn points in a compact
region Q ⊂ R

2 and Pn be the collection of all point sets
P ⊂ Q with cardinality n. Let ETSP(P ) denote the cost of
the Euclidean TSP overP , i.e., the length of the shortest closed
path through all points inP . Correspondingly, letDTSPρ(P )
denote the cost of the Dubins TSP overP , i.e., the length of
the shortest closed Dubins path through all points inP with
minimum turning radiusρ. For the stochastic DTSP,p1, . . . , pn

will be assumed to be randomly and independently sampled
from a uniform distribution overQ.

The key objective of this paper is the design of an algorithm
that provides a provably good approximation to the optimal
solution of the stochastic Dubins TSP. To establish what a
“good approximation” might be, let us recall what is known
about the ETSP in the stochastic setting. First, given a compact
set Q and a point-setP whosen points are independently
chosen from a distributionϕ with compact supportQ ⊂ R

2,
the following deterministic limit holds [16]:

lim
n→+∞

ETSP(P )√
n

= β

∫

Q

√

ϕ̄(q) dq, with probability 1,

whereϕ̄ is a probability density function corresponding to the
absolutely continuous part ofϕ, and β is a constant, which
has been evaluated asβ = 0.712± 0.0001, e.g., see [28]. The
fact that the dependence of the ETSP is sublinear inn is very
important in the study of the DTRP, i.e., the problem in which
new locations are continuously added to the set of outstanding
pointsP ; see Section III.

Motivated by the Euclidean case, this paper shows that
the DTSP grows withn2/3 in the stochastic case (as both
lower and upper bounds). Additionally, this paper proposes
novel algorithms for the DTSP in the stochastic setting, whose
performances are within a constant factor of the optimal
solution in the asymptotic limit asn → +∞. Finally, this
paper uses these results in the DTRP.

We conclude this section with some notation that is the
standard concise way to state asymptotic properties. Forf, g :
N → R, we say thatf ∈ O(g) (respectively,f ∈ Ω(g)) if
there existN0 ∈ N andk ∈ R+ such that|f(N)| ≤ k|g(N)|
for all N ≥ N0 (respectively,|f(N)| ≥ k|g(N)| for all N ≥
N0). If f ∈ O(g) and f ∈ Ω(g), then we use the notation
f ∈ Θ(g). Finally, we say thatf ∈ o(g) as N → +∞ if
limN→+∞ f(N)/g(N) = 0 or, for functionsf, g : R → R,
we say thatf ∈ o(g) asx → 0 if limx→0 f(x)/g(x) = 0.

II. STOCHASTIC DTSP

In [23], a simple heuristics, the ALTERNATING ALGO-
RITHM for the Dubins TSP for a given point set was proposed.
The length of tour generated by this algorithm was also
characterized and it was shown that it belongs toΩ(

√
n) and

O(n). It was also shown that this simple policy performs well
when the points to be visited by the tour are chosen in an
adversarial manner. However, this algorithm is not a constant-
factor approximation algorithm in the general case. Moreover,
this algorithm might not perform very well when dealing with
a random distribution of the target points. In this section,we
consider the scenario whenn target points are stochastically
generated inQ according to a uniform distribution. A novel
algorithm was proposed in [26] to service these points in such
a way that its tour length grew sub-linearly with the number
of points asymptotically with high probability, where an event
is said to occur with high probability if the probability of its
occurrence approaches1 as n → +∞. Here, we present a
novel version of this strategy in the form of the RECURSIVE

BEAD-TILING ALGORITHM and characterize its performance.
We make the following assumptions:Q is a rectangle of

width W and heightH with W ≥ H; different choices for



the shape ofQ affect our conclusions only by a constant.
The two axes of the reference frame are parallel to the sides
of Q. The pointsP = (p1, . . . , pn) are randomly generated
according to a uniform distribution inQ.

A. A lower bound

We begin with a result from [29], that provides a lower
bound on the expected length of the stochastic DTSP.

Theorem 2.1: (Lower bound on stochastic DTSP)For all
ρ > 0, the expected cost of the DTSP for a setP of n
uniformly-randomly-generated points in a rectangle of width
W and heightH satisfies

lim
n→+∞

E[DTSPρ(P )]

n2/3
≥ 3

4
3
√

3ρWH.

Remark 2.2:Theorem 2.1 implies thatE[DTSPρ(P )] be-
longs toΩ(n2/3). �

B. The basic geometric construction

Here we define a useful geometric object and study its
properties. Consider two pointsp− = (−`, 0) andp+ = (`, 0)
on the plane, withl ≤ ρ, and construct the regionBρ(`) as
detailed in Figure 1. We refer to such regions as abead of

ρ

2l

p
−

p+

Bρ(l)

Fig. 1. Construction of the “bead”Bρ(`). The figure shows how the upper
half of the boundary is constructed, the bottom half is symmetric.

length `. The regionBρ(`) enjoys the following asymptotic
properties as(l/ρ) → 0+:

(P1) Its maximum “thickness” is

w(`) = 4ρ

(

1 −
√

1 − `2

16ρ2

)

=
`2

8ρ
+ ρ · o

(

`3

ρ3

)

.

(P2) Its area is

Area(Bρ(`)) =
`w(`)

2
=

`3

16ρ
+ ρ2 · o

(

`4

ρ4

)

.

(P3) For anyp ∈ Bρ(`), there is at least one Dubins pathγp

through the points{p−, p, p+}, entirely contained within
Bρ(`). The length of any such path satisfies

Length(γp) ≤ 4ρ arcsin

(

`

4ρ

)

= ` + ρ · o
(

`3

ρ3

)

.

These facts are verified using elementary planar geometry.
Finally, the bead has the property that the plane can be
periodically tiled1 by identical copies ofBρ(`), for any ` ∈
]0, 4ρ]. This fact is illustrated in Figure 2 below.

Next, we study the probability of targets belonging to a
given bead. Consider a beadB entirely contained inQ and
assumen points are uniformly randomly generated inQ. The
probability that theith point is sampled inB is

µ(`) =
Area(Bρ(`))

Area(Q)
.

Furthermore, the probability that exactlyk out of then points
are sampled inB has a binomial distribution, i.e., indicating
with nB the total number of points sampled inB,

Pr[nB = k| n samples] =

(

n

k

)

µk(1 − µ)n−k.

If the bead length̀ is chosen as a function ofn in such a
way thatν = n ·µ(`(n)) is a constant, then the limit for large
n of the binomial distribution is [30] the Poisson distribution
of meanν, that is,

lim
n→+∞

Pr[nB = k| n samples] =
νk

k!
e−ν .

C. The Recursive Bead-Tiling Algorithm

In this section, we design a novel algorithm that computes a
Dubins path through a point set inQ. The proposed algorithm
consists of a sequence of phases; during each phase, a Dubins
tour (i.e., a closed path with bounded curvature) is constructed
that “sweeps” the setQ. We begin by considering a tiling of
the plane such thatArea(Bρ(`)) = WH/(2n); in such a case,
µ(`(n)) = 1/(2n), ν = 1/2, and

`(n) = 2
(ρWH

n

)
1
3

+ o
(

n− 1
3

)

, (n → +∞).

(Note that this implies thatn must be large enough in order
that ` ≤ 4ρ.) Furthermore, the tiling is chosen in such a way
that it is aligned with the sides ofQ, see Figure 2.

In the first phase of the algorithm, a Dubins tour is con-
structed with the following properties:

(i) it visits all non-empty beads once,
(ii) it visits all rows2 in sequence top-to-down, alternating

between left-to-right and right-to-left passes, and visiting
all non-empty beads in a row,

(iii) when visiting a non-empty bead, it services at least one
target in it.

1A tiling of the plane is a collection of sets whose intersection has measure
zero and whose union covers the plane.

2A row is a maximal sequence of horizontally-aligned beads withnon-
empty intersection withQ.



In order to visit the targets outstanding after the first phase,
a second phase is initiated. Instead of considering single beads,
we now consider “meta-beads” composed of two beads each,
as shown in Figure 2, and proceed in a way similar to the first
phase, i.e., a Dubins tour is constructed with the following
properties:

(i) the tour visits all non-empty meta-beads once,
(ii) it visits all (meta-bead) rows in sequence top-to-down,

alternating between left-to-right and right-to-left passes,
and visiting all non-empty meta-beads in a row,

(iii) when visiting a non-empty meta-bead, it services at least
one target in it.

This process is iterateddlog2 ne times, and at each phase,
meta-beads composed of two neighboring meta-beads from
the previous phase are considered; in other words, the meta-
beads at theith phase are composed of2i−1 neighboring beads.
After the last recursive phase, the leftover targets are visited
using the ALTERNATING ALGORITHM [23].

D. Analysis of the algorithm

In this section, we calculate an upper bound on the length
of Dubins path as given by the RECURSIVE BEAD-TILING

ALGORITHM. By comparing this upper bound with the lower
bound established earlier, we will conclude that the algo-
rithm provides a constant factor approximation to the optimal
stochastic DTSP with high probability. Due to lack of space,
we refer the reader to [31] for the missing proofs in this
section. We begin with a key result about the number of
outstanding targets after the execution of thedlog2 ne recursive
phases; the proof of this result is based upon techniques similar
to those developed in [32].

Theorem 2.3 (Targets remaining after recursive phases):
Let P ∈ Pn be uniformly randomly generated inQ. The
number of unvisited targets after the last recursive phase of
the RECURSIVE BEAD-TILING ALGORITHM over P is less
than 24 log2 n with high probability, i.e., with probability
approaching one asn → +∞.

Proof: Associate a unique identifier to each bead, letb(t)
be the identifier of the bead in which thetth target is sampled,
and leth(t) ∈ N be the phase at which thetth target is visited.
Without loss of generality, assume that targets within a single
bead are visited in the same order in which they are generated,
i.e., if b(t1) = b(t2) andt1 < t2, thenh(t1) < h(t2). Let vi(t)
be the number of beads that contain unvisited targets at the
inception of theith phase, computed after the insertion of the
tth target. Furthermore, letmi be the number ofith phase meta-
beads (i.e., meta-beads containing2i−1 neighboring beads)
with a non-empty intersection withQ. Clearly,vi(t) ≤ vi(n),
mi ≤ 2mi+1, andv1(n) ≤ n ≤ m1/2 with certainty. Thetth

target will not be visited during the first phase if it is sampled
in a bead that already contains other targets. In other words,

Pr
[

h(t) ≥ 2| v1(t)
]

=
v1(t)

m1
≤ v1(n)

2n
≤ 1

2
.

Similarly, thetth target will not be visited during theith phase
if (i) it has not been visited before theith pass, and (ii) it

belongs to a meta-bead that already contains other targets not
visited before theith phase:

Pr
[

h(t) ≥ i + 1| (vi(t − 1), vi−1(t − 1), v1(t − 1))
]

= Pr
[

h(t) ≥ i + 1| h(t) ≥ i, vi(t − 1)
]

· Pr
[

h(t) ≥ i| (vi−1(t − 1), . . . , v1(t − 1))
]

≤ vi(t − 1)

mi
Pr[h(t) ≥ i| (vi−1(t − 1), . . . , v1(t − 1))]

=

i
∏

j=1

vj(t − 1)

mj
≤

i
∏

j=1

2j−1vj(n)

2n
=

(

2
i−3
2

n

)i i
∏

j=1

vj(n).

Given a sequence{βi}i∈N ⊂ R+ and given a fixedi ≥ 1,
define a sequence of binary random variables

Yt =

{

1, if h(t) ≥ i + 1 andvi(t − 1) ≤ βin,

0, otherwise.

In other words,Yt = 1 if the tth target is not visited during the
first i phases even though the number of beads still containing
unvisited targets at the inception of theith phase is less than
βin. Even though the random variableYt depends on the
targets generated before thetth target, the probability that it
takes the value 1 is bounded by

Pr[Yt = 1| b(1), b(2), . . . , b(t − 1)] ≤ 2
i(i−3)

2

i
∏

j=1

βj =: qi,

regardless of the actual values ofb(1), . . . , b(t − 1). It is
known [32] that if the random variablesYt satisfy such a
condition, the sum

∑

t Yt is stochastically dominated by a
binomially distributed random variable, namely,

Pr

[

n
∑

t=1

Yt > k

]

≤ Pr[B(n, qi) > k].

In particular,

Pr

[

n
∑

t=1

Yt > 2nqi

]

≤ Pr[B(n, qi) > 2npi] < 2−nqi/3, (1)

where the last inequality follows from Chernoff’s Bound [30].
Now, it is convenient to define{βi}i∈N by

β1 = 1, βi+1 = 2qi = 2
i(i−3)

2 +1
i
∏

j=1

βj = 2i−2 β2
i ,

which leads toβi = 21−i. In turn, this implies that equation (1)
can be rewritten as

Pr

[

n
∑

t=1

Yt > βi+1n

]

< 2−βi+1n/6 = 2−
n

3·2i ,

which is less than1/n2 for i ≤ i∗(n) := blog2 n −
log2 log2 n − log2 6c ≤ log2 n. Note thatβi ≤ 12 log2 n

n , for
all i > i∗(n).

Let Ei be the event thatvi(n) ≤ βin. Note that if Ei is
true, thenvi+1(n) ≤

∑n
t=1 Yt: the right hand side represents

the number of targets that will be visited after theith phase,



Fig. 2. Sketch of “meta-beads” at successive phases in the recursive bead tiling algorithm. From left to right: phase 1, phase 2 and phase 3.

whereas the left hand side counts the number of beads con-
taining such targets. We have, for alli ≤ i∗(n):

Pr
[

vi+1 > βi+1n| Ei

]

·Pr[Ei] ≤ Pr

[

n
∑

t=1

Yt > βi+1n

]

≤ 1

n2
,

that is, Pr [¬Ei+1| Ei] ≤
1

n2 Pr[Ei]
, and thus (recall thatE1

is true with certainty):

Pr [¬Ei+1] ≤
1

n2
+ Pr[¬Ei] ≤

i

n2
.

In other words, for alli ≤ i∗(n), vi(n) ≤ βin with high
probability.

Let us now turn our attention to the phases such that
i > i∗(n). The total number of targets visited after the(i∗)th

phase is dominated by a binomial variableB(n, 12 log2 n/n);
in particular,

Pr
[

vi∗+1 > 24 log2 n| Ei∗

]

· Pr[Ei∗ ]

≤ Pr
[

n
∑

t=1

Yt > 24 log2 n
]

≤ Pr
[

B(n, 12 log2 n/n) > 24 log2 n
]

≤ 2−12 log2 n.

Dealing with conditioning as before, we obtain

Pr [vi∗+1 > 24 log2 n] ≤ 1

n12
+ Pr[¬Ei∗ ] ≤

1

n12
+

log2 n

n2
.

In other words, the number of targets that are left unvisited
after the(i∗)th phase is bounded by a logarithmic function of
n with high probability.

In summary, Theorem 2.3 says that after a sufficiently large
number of phases, almost all targets will be visited, with high
probability. The second key point is to recognize that (i) the
length of the first phase is of ordern2/3 and (ii) the length
of each phase is decreasing at such a rate that the sum of
the lengths of thedlog2 ne recursive phases remains bounded
and proportional to the length of the first phase. (Since we
are considering the asymptotic case in which the number of
targets is very large, the length of the beads will be very small;
in the remainder of this section we will tacitly consider the
asymptotic behavior as̀/ρ → 0+.)

Lemma 2.4 (Path length for the first phase):Consider a
tiling of the plane with beads of length̀. For anyρ > 0 and
for any set of target points, the lengthL1 of a path visiting

once and only once each bead with a non-empty intersection
with a rectangleQ of width W and lengthH satisfies

L1 ≤ 16ρWH

`2

(

1 +
7

3
π

ρ

W

)

+ ρ · o
(ρ

`

)

.

Based on this calculation, we can estimate the length of
the paths in generic phases of the algorithm. Since the total
number of phases in the algorithm depends on the number of
targetsn, as does the length of the beads`, we will retain
explicitly the dependency on the phase number.

Lemma 2.5 (Path length at odd-numbered phases):
Consider a tiling of the plane with beads of length`. For any
ρ > 0 and for any set of target points, the lengthL2j−1 of
a path visiting once and only once each meta-bead with a
non-empty intersection with a rectangleQ of width W and
lengthH at phase number(2j − 1), j ∈ N satisfies

L2j−1 ≤ 25−j

[

ρWH

`2

(

1 +
7

3

πρ

W

)

+ ρ · o
(ρ

`

)

]

+ 32
ρH

`
+ ρ · o

(ρ

`

)

+ 2j

[

3` + ρ · o
(

`

ρ

)]

.

Lemma 2.6 (Path length at even-numbered phases):
Consider a tiling of the plane with beads of length`.
For any ρ > 0, a rectangleQ of width W and length
H and any set of target points, paths in each phase of
the BEAD-TILING ALGORITHM can be chosen such that
L2j ≤ 2L2j+1, for all j ∈ N.

Finally, we can summarize these intermediate bounds into
the main result of this section. We letLRBTA,ρ(P ) denote
the length of the Dubins path computed by the RECURSIVE

BEAD-TILING ALGORITHM for a point setP .
Theorem 2.7 (Path length for the algorithm):Let P ∈ Pn

be uniformly randomly generated in the rectangle of widthW
and heightH. For anyρ > 0, with high probability

lim
n→+∞

DTSPρ(P )

n2/3
≤ lim

n→+∞
LRBTA,ρ(P )

n2/3

≤ 24 3
√

ρWH

(

1 +
7

3
π

ρ

W

)

.

Proof: For simplicity we letLRBTA,ρ(P ) = LRBTA.
Clearly, LRBTA = L′

RBTA + L′′
RBTA, where L′

RBTA

is the path length of the firstdlog2 ne phases of the
RECURSIVEBEAD-TILING ALGORITHM and L′′

BTA is the
length of the path required to visit all remaining targets. An



immediate consequence of Lemma 2.6, is that

L′
RBTA =

dlog2(n)e
∑

i=1

Li ≤ 3

dlog2(n)/2e
∑

j=1

L2j−1.

The summation on the right hand side of this equation can be
expanded using Lemma 2.5, yielding

L′
RBTA

≤ 3







[

ρWH

`2

(

1 +
7

3

πρ

W

)

+ ρ · o
(

ρ2

`2

)] dlog2(n)/2e
∑

j=1

25−j

+

(

32
ρH

`
+ ρ · o

(ρ

`

)

)⌈

log2 n

2

⌉

+ [3` + ρ · o(`/ρ)]

dlog2(n)/2e
∑

j=1

2j







.

Since
∑k

j=1 2−j ≤
∑+∞

j=1 2−j = 1, and
∑k

j=1 2j = 2k+1 −
2 ≤ 2k+1, the previous equation can be simplified to

L′
RBTA ≤ 3

{

32

[

ρWH

`2

(

1 +
7

3

πρ

W

)

+ ρ · o
(ρ

`

)

]

+

(

32
ρH

`
+ ρ · o

(

`

ρ

))⌈

log2 n

2

⌉

+ [3` + ρ · o(`/ρ)] · (4
√

n)
}

.

Recalling that̀ = 2(ρWH/n)1/3 + o(n−1/3) for largen, the
above can be rewritten as

L′
RBTA ≤ 24 3

√

ρWHn2

(

1 +
7

3
π

ρ

W

)

+ o(n2/3).

Now it suffices to show thatL′′
RBTA is negligible with respect

to L′
RBTA for largen with high probability. From Theorem 2.3,

we know that with high probability there will be at most
24 log2 n unvisited targets after thedlog2 ne recursive phases.
From [23] we know that, with high probability, the length
of a ALTERNATING ALGORITHM tour through these points
satisfies

L′′
RBTA ≤ κd12 log2 neπρ + o(log2 n).

Remark 2.8:Theorems 2.1 and 2.7 imply that, with high
probability, the RECURSIVE BEAD-TILING ALGORITHM is
32
3√3

(

1 + 7
3π ρ

W

)

-factor approximation (with respect ton) to

the optimal DTSP and thatDTSPρ(P ) belongs toΘ(n2/3).
The computational complexity of the RECURSIVE BEAD-
TILING ALGORITHM is of ordern. �

III. T HE DTRP FOR DUBINS VEHICLE

We now turn our attention to the Dynamic Traveling Re-
pairperson Problem (DTRP) that was introduced by Bertsimas
and van Ryzin in [22]. When compared with previous work,
the novel feature of the following work is the focus on the
Dubins vehicle.

A. Model and problem statement

In this subsection we describe the vehicle and sensing model
and the DTRP definition. The key aspect of the DTRP is
that the Dubins vehicle is required to visit a dynamically
growing set of targets, generated by some stochastic process.
We assume that the Dubins vehicle has unlimited range and
target-servicing capacity and that it moves at a unit speed with
minimum turning radiusρ > 0.

Information about the outstanding targets representing the
demand at timet is described by a finite set of positions
D(t) ⊂ Q, with n(t) := card(D(t)). Targets are generated,
and inserted intoD, according to a homogeneous (i.e., time-
invariant) spatio-temporal Poisson process, with time intensity
λ > 0, and uniform spatial density inside the rectangleQ of
width W and heightH. In other words, given a setS ⊆ Q,
the expected number of targets generated inS within the time
interval [t, t′] is

E
[

card(D(t′) ∩ S) − card(D(t) ∩ S)
]

= λ(t′ − t)Area(S).

(Strictly speaking, the above equation holds when targets are
not being removed from the queueD.) Servicing of a target
and its removal from the setD, is achieved when the Dubins
vehicle moves to the target position.

A feedback control policy for the Dubins vehicle is a map
Φ assigning a control input to the vehicle as a function of
its configuration and of the current outstanding targets. We
also consider policies that compute a control input based on
a snapshot of the outstanding target configurations at certain
time sequences. LetTΦ = {tk}k∈N be a strictly increasing
sequence of times at which such computations are started: with
some abuse of terminology, we will say thatΦ is a receding
horizon strategy if it is based on the most recent target data
Drh(t), where

Drh(t) = D(max{trh ∈ TΦ | trh ≤ t}).

The (receding horizon) policyΦ is a stable policy for the
DTRP if, under its action

nΦ = lim
t→+∞

E[n(t)| ṗ = Φ(p,Drh)] < +∞,

that is, if the Dubins vehicle is able to service targets at a
rate that is, on average, at least as fast as the rate at which
new targets are generated. LetTj be the time that thejth target
spends within the setD, i.e., the time elapsed from the time the
jth target is generated to the time it is serviced. If the system
is stable, then we can write the balance equation (known as
Little’s formula [33]):

nΦ = λTΦ,

whereTΦ := limj→+∞ E[Tj ] is the steady-state system time
for the DTRP under the policyΦ. Our objective is to minimize
the steady-state system time, over all possible feedback control
policies, i.e.,

TDTRP = inf{TΦ | Φ is a stable control policy}.



B. Lower and constructive upper bounds

In what follows, we design a control policy that provides
a constant-factor approximation of the optimal achievable
performance. Consistently with the theme of the paper, we
consider the case ofheavy load, i.e., the problem as the time
intensityλ → +∞. We first review from [29] a lower bound
for the system time, and then present a novel approximation
algorithm providing an upper bound on the performance that
holds with high probability.

Theorem 3.1: (Lower bound on the system time for the
DTRP)For anyρ > 0, the system timeTDTRP for the DTRP
in a rectangle of widthW and heightH satisfies

lim
λ→+∞

TDTRP

λ2
≥ 81

64
ρWH.

Remark 3.2:Theorem 3.1 implies that the system time for
the Dubins vehicle depends quadratically on the time intensity
λ, whereas in the Euclidean case it depends only linearly on
it, e.g., see [22]. �

We now propose a simple strategy, the BEAD-TILING

ALGORITHM, based on the concepts introduced in the previous
section. The strategy consists of the following steps:

(i) Tile the plane with beads of length` :=
min{CBTA/λ, 4ρ}, where

CBTA =
7 −

√
17

4

(

1 +
7

3
π

ρ

W

)−1

. (2)

(ii) Traverse all non-empty beads once, visiting one target
per non-empty bead.

(iii) Repeat step (ii).
The following result characterizes the system time for the

closed loop system induced by this algorithm and is based on
the bound derived in Lemma 2.4.

Theorem 3.3: (System time for theBEAD-TILING ALGO-
RITHM) For any ρ > 0 and λ > 0, the BEAD-TILING

ALGORITHM is a stable policy for the DTRP and the resulting
system timeTBTA satisfies:

lim
λ→+∞

TDTRP

λ2
≤ lim

λ→+∞

TBTA

λ2
≤ 70.5 ρWH

(

1 +
7

3
π

ρ

W

)3

.

Proof: Consider a generic beadB, with non-empty
intersection withQ. Target points withinB will be generated
according to a Poisson process with rateλB satisfying

λB = λ
Area(B ∩Q)

WH
≤ λ

Area(B)

WH
=

C3
BTA

16ρWHλ2
+o

(

1

λ2

)

.

The vehicle will visit B at least once everyL1 time units,
where L1 is the bound on the length of a path through all
beads, as computed in Lemma 2.4. As a consequence, targets
in B will be visited at a rate no smaller than

µB =
C2

BTA

16ρWHλ2

(

1 +
7

3
π

ρ

W

)−1

+ o

(

1

λ2

)

.

In summary, the expected timeTB between the appearance of
a target inB and its servicing by the vehicle is no more than
the system time in a queue with Poisson arrivals at rateλB ,
and deterministic service rateµB . Such a queue is called a

M/D/1 queue in the literature [33], and its system time is
known to be

TM/D/1 =
1

µB

(

1 +
1

2

λB

µB − λB

)

.

Using the computed bounds onλB and µB , and taking the
limit as λ → +∞, we obtain

lim
λ→+∞

TB

λ2
≤ lim

λ→+∞

TM/D/1

λ2

≤ 16ρWH

C2
BTA

(

1 + 7
3π ρ

W

)−1

(

1 +
1

2

CBTA
(

1 + 7
3π ρ

W

)−1 − CBTA

)

.

(3)

Since equation (3) holds forany bead intersectingQ, the
bound derived forTB holds for all targets and is therefore
a bound onTBTA. The expression on the right hand side
of (3) is a constant that depends on problem parametersρ,
W , andH, and on the design parameterCBTA, as defined in
equation (2). Stability of the queue is established by noting
that CBTA < (1 + 7/3 π ρ/W )−1. Additionally, the choice
of CBTA in equation (2) minimizes the right hand side of (3)
yielding the numerical bound in the statement.

Remark 3.4:The achievable performance of the BEAD-
TILING ALGORITHM provides a55.7

(

1 + 7
3π ρ

W

)3
-factor ap-

proximation to the lower bound established in Theorem 3.1.
Also, there exists no stable policy for the DTRP when the
targets are generated in an adversarial worst-case fashionwith
λ ≥ (πρ)−1. This fact is a consequence of the linear lower
bound on the worst-case DTSP derived in [23]. �

IV. CONCLUSIONS

In this paper, we have studied the TSP problem for vehicles
that follow paths of bounded curvature in the plane. For the
stochastic setting, we have obtained upper bounds that are
within a constant factor of the lower bound established in
literature [29]; the upper bounds are constructive in the sense
that they are achieved by novel algorithm. Similar analysishas
been done for a vehicle modeled as a double integartor in [34].
The same paper extends the results to the three dimensional
case too. It is interesting to compare our results with the
Euclidean setting (i.e., the setting in which curves do not
have curvature constraints). The results are summarized inthe
following table, whered ∈ N is the dimension of the space.

Simple Dubins
vehicle vehicle

Length of Θ(n1− 1
d ) [17] Θ(n)

TSP tour (d = 2, 3)
(worst case) [23]

Exp. Length of Θ(n1− 1
d ) [17] Θ(n1− 1

2d−1 )
TSP tour w.h.p.

(stochastic) (d = 2, 3)
System time Θ(λd−1) [22] Θ(λ2(d−1))
for DTRP (d = 1) (d = 2, 3)

Remarkably, the differences between the various TSP
bounds play a crucial role when studying the DTRP problem;



e.g., stable policies exist only when the TSP cost grows strictly
sub-linearly withn. For the DTRP problem we have proposed
the novel BEAD-TILING ALGORITHM and shown its stability
for a uniform target-generation process with intensityλ. It is
known that the system time for the DTRP problem for Dubins
vehicle belongs toΩ(λ2) and based on the new policy, we have
shown that the system time belongs toO(λ2). Thus the system
time of the DTRP problem for Dubins vehicle belongs to
Θ(λ2). This result differs from the result in the Euclidean case,
where it is known that the system time belongs toΘ(λ). As a
consequence, bounded-curvature constraints make the system
much more sensitive to increases in the target generation rate.

Future directions of research include finding asinglealgo-
rithm which would provide constant factor approximation to
the DTSP for the worst caseas well asthe stochastic setting.
It is also interesting to consider thenon-uniformstochastic
DTSP when the points to be serviced are sampled according
to a non-uniform probability distribution. Other avenues of
future research are to use the tools developed in this paper
to study Traveling Salesperson Problems for other dynamical
vehicles, study centralized and decentralized versions ofthe
DTRP and general task assignment and surveillance problems
for multi-Dubins (and other dynamical) vehicles.
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