
ACC 2006, Minneapolis, MN

Distributed deployment of asynchronous guards in art galleries

Anurag Ganguli Jorge Cortés Francesco Bullo

Abstract— This paper presents deployment algorithms for
multiple mobile robots with line-of-sight sensing and commu-
nication capabilities in a simple nonconvex polygonal environ-
ment. The objective of the proposed algorithms is to achieve
full visibility of the environment. We solve the problem by
constructing a novel data structure called the vertex-induced
tree and designing schemes to deploy over the nodes of this tree
by means of distributed algorithms. The agents are assumed to
have access to a local memory and their operation is partially
asynchronous.

I. I NTRODUCTION

Imagine an art gallery whose floor plan can be modeled
as a nonconvex polygon. Now consider the problem of
finding the least number of stationary guards so that each
point of the art gallery is visible to at least one guard. A
stationary guard, here, is a fixed point that can see in every
direction or equivalently, has omnidirectional vision. The
assumption here is that guards cannot see through the walls
of the environment. This is the statement of the classical Art
Gallery Problem. We can also think of this problem as that
of illuminating a polygonal environment with point lights;
see Fig. 1 for a graphical illustration of the objective.

Inspired by this and other ”illumination problem” (see
the beautiful survey [1]), we pose the following problem.
Imagine a group of mobile robots, modeled as point masses,
in a nonconvex polygonal environment. Each robot has
omnidirectional vision and also has line-of-sight wireless
communication capabilities. The problem then is to design
a distributed algorithm, copies of which run will run on
each robot and drive them to locations such that each point
of the environment is visible to at least one robot. The
algorithm is distributed in the sense that it depends only on
information obtained from local sensing and communication.
We also assume that the robots operate asynchronously. In
what follows, we shall refer to this problem as thevisibility-
based deployment problem.

This problem is related to many surveillance and pursuit-
evasion problems in unknown environments. Some related
works include [2] where an incremental heuristic for deploy-
ment is proposed (no formal analysis is presented) and [3]
in which the relevance of random walk on graphs is dis-
cussed (the environment and its graphical representation are
assumed known a priori, general strategies are evaluated via
Monte Carlo simulation). In addition, the proposed work is

Anurag Ganguli is with the Coordinated Science Laboratory,University
of Illinois at Urbana-Champaign, and with the Department of Mechanical
and Environmental Engineering, University of California atSanta Barbara,
Santa Barbara, CA 93106, USA,aganguli@uiuc.edu

Jorge Cort́es is with the Department of Applied Mathematics and Statis-
tics, University of California at Santa Cruz, Santa Cruz, CA95064, USA,
jcortes@ucsc.edu

Francesco Bullo is with the Department of Mechanical and Environmental
Engineering, University of California at Santa Barbara, Santa Barbara, CA
93106, USA,bullo@engineering.ucsb.edu

related to visibility-based pursuit-evasion problems, see [4],
[5], although these works focus on single agents and not on
distributed policies for groups of agents.

Clearly, the solution to the visibility-based deployment
problem exists only if sufficient number of robots are present
to complete the task. According to the famous Art Gallery
Theorem [6],⌊n

3 ⌋ guards are always sufficient and occasion-
ally necessary to guard a simply connected polygon with
n vertices. Fisk’s constructive proof of this theorem [7]
provides an elegant way of finding the guard locations.
However, the construction relies on complete knowledge
of the environment and is contrary to the assumptions in
our formulation of the problem. As we shall see later, the
conservativeness of this assumption leads us to an algorithm
that in the worst case requires⌊n

2 ⌋ robots as against⌊n
3 ⌋.

s

Fig. 1. A nonconvex polygon shaped like a typical floor plan: the solid
circles represent the locations ofguardswith omnidirectional vision. Note
that each portion of the environment is visible to at least oneguard. Every
colored subset is a star-shaped polygon visible from the guard located in
the interior of the polygon.

We now present a summary of our approach and contribu-
tion. In what follows we shall use the term agents to refer to
robots or guards. First, given a simple nonconvex polygonal
environment and one of its vertices, we describe a procedure
to incrementally partition the environment into star-shaped
polygons. This induces a new graph, associated to the
nonconvex polygon and to the given vertex, called the vertex-
induced tree; each star-shaped polygon is a node and an edge
exists between two nodes if and only if the corresponding
star-shaped polygons share an edge. Second, we design local
navigation algorithms to move between neighboring nodes of
the vertex-induced tree. Third, we present asynchronous and
distributed global algorithms for multiple agents to deploy
over the nodes of the vertex-induced tree, and thereby solve
the visibility-based deployment problem. The algorithms
are based on information obtained from local sensing and
communication, and also on some limited local memory.

Notation: We begin by introducing some basic notation.
We let R andR+ represent the set of real numbers and the
set of nonnegative real numbers respectively. Forp ∈ R

2, let
Br(p) denote theclosed ballcentered atp of radiusr ∈ R+.
Also, we let N refer to the set of natural numbers. Given

two points x, y ∈ R
2, we let [x, y] represent theclosed

segmentbetweenx and y. Similarly, (x, y) represents the
open segmentbetweenx and y, [x, y) represents the set
(x, y)∪{x} and (x, y] represents the set(x, y)∪{y}. Given
a finite setX, let |X| represent the cardinality of the set.

Now let us turn our attention to the polygonal environ-
ment. LetQ be a polygon, possibly nonconvex. A polygon
is said to be simple if it does not contain any hole. Let
Ve(Q) = (v1, . . . , vn) be the list of vertices ofQ ordered
counterclockwise. A reflex vertex is a vertex ofQ where
the internal angle is greater thanpi radians. A pointq ∈ Q
is visible fromp ∈ Q if [p, q] ⊂ Q. The visibility polygon
S(p) ⊂ Q from a pointp ∈ Q is the set of points inQ visible
from p. Also, we shall useP to refer to tuples of elements in
R

2 of the form(p1, . . . , pN). With a slight abuse of notation,
we shall useP interchangeably with a point set of the form
{p1, . . . , pN}.

II. N ETWORK MODELING AND PROBLEM DESCRIPTION

In this section, we describe in detail the sensing and com-
munication capabilities that define a visually-guided agent.
Each agent has a unique identifier (UID),i ∈ {1, . . . , N}.
Furthermore, it is equipped with an omnidirectional line-of-
sight range sensor. Thus, agenti located atpi can measure
the relative position of any other agent or of a point on
the environment boundary that lies in its visibility polygon
S(pi). An agent can also communicate with any other agent
visible to it and at a distance less than the communication
radius ri > 0. The communication is assumed to be UDP
based. Thus, the communication region can be denoted by
C(pi) = S(pi)∩Bri

(pi). We also assume here thatri can be
chosen freely by an agent but cannot exceed a certain upper
bound, sayR. Whenever agenticommunicates, it sends a
BROADCASTi(i,Mi) message containing its UIDi and
the contents of its memoryMi. We assume here that there
is a variable but bounded time delay between sending and
receiving of messages. Letδ > 0 denote this upper bound.

To any agenti, we associate a sequence(T i)k of wake-
up instants. LetT 1

0 = . . . , TN
0 = t0. The agent performs the

following actions betweenT i
l andT i

l+1 for any l:

(i) BROADCASTi(i,Mi) at timest = T i
l + kδ, where

k ∈ N∪{0}, as long as the agent is not moving;
(ii) LISTEN for broadcasts during the time interval

[T i
l , T

i
l + λi

l), λi
l ≥ δ;

(iii) Continue to LISTEN and PROCESS states in its mem-
ory during the interval[T i

l + λi
l, T

i
l + λi

l + ρi
l);

(iv) MOVE during the time interval[T i
l +λi

l +ρi
l, T

i
l+1). If

the robot decides not to move thenT i
l+1 = T i

l +λi
l+ρi

l.

Remarks 2.1: (i) Note that the sequenceT i is not
prespecified. Given any wake-up instantT i

l , the next
wake-up instantT i

l+1 is decided based upon the time
the agent spends in each of the states in between the
two wake-up instants.

(ii) An agent is capable of receiving broadcasts always
except when it is moving.

See Fig. 2 for a schematic illustration of the above schedule.
Agent i, in the MOVE state, is capable of moving at any

time t ∈ [T i
l + λi

l + ρi
l, T

i
l+1) according to the following

T i
l

T i
l+1

LISTEN

PROCESS MOVE

T i
l + λi

l
T i

l + λi
l + ρi

l

BROADCASTi(i,Mi) BROADCASTi(i,Mi)

δ δ δ

≥ δ

Fig. 2. Sequence of actions performed by an agenti in between two
wake-up instants. Note that a BROADCAST(i,Mi) is an instantaneous
event taking place where there is a vertical pulse, where as the PROCESS,
LISTEN and MOVE actions take place over an interval. The MOVEinterval
might be empty if the agent does not move.

discrete-time control system:

pi(t + ∆t) = pi(t) + ui, (1)

where the control is a function of the action that the agent
performs at timet, the memoryMi(t), and the information
obtained from communication and sensing. Also, note that
this model of visually-guided agents is similar in spirit to
the partially asynchronous modeldescribed in [8].

Having described the model, we are now in a position to
formally describe the visibility-based deployment problem.

Given a polygonal environment Q, let
p1(t0), . . . , pN (t0) ∈ Q represent the initial
positions of an asynchronous network ofN
visually-guided agents as described in Section II.
The visibility-based deployment problem is solved
if the agent dynamics dictated by a suitable control
law as described in (1) causes the positions of
the agents to converge to a setW ⊂ (2Q)N

with the property that∪N
i S(pi) = Q for all

(p1, . . . , pN) ∈ W .

III. T HE VERTEX-INDUCED TREE

Let us start by describing a procedure to partition∗ a
simple polygonal environment,Q, into star-shaped subsets.
To begin constructing this partition, we require a starting
vertex which we calls ∈ Ve(Q). The procedure is as follows:

Let v = s andX = Q

1: Compute the set of all vertices ofX visible from v
2: Let Ptemp be the polygon defined by the set of vertices

and insert it into the listP
3: Insertv into another listN
4: Find all edges ofPtemp that are diagonals ofX and

insert them into listG. We call these diagonals asgaps.
5: for all gaps inG do
6: Find a vertex v′ across the gap at a minimum

distance from the mid-point of the diagonal and from
which the complete gap is visible

7: Perform steps 1- 4 (withv = v′ and X being the
environment across the gap)

8: end for

See Fig. 3 (left) for a graphical description of the algorithm.

∗Recall that a partition of any setX is a collection of closed and
connected subsetsXi with mutually disjoint interiors such thatX = ∪i Xi.

In the procedure just described,P is the list comprising of
star-shaped polygons composing the partition andN as the
list of kernel† points of the star-shaped polygons. In other
words, if Pi be theith element ofP, all points ofPi are
visible from the vertexNi. Henceforth, givenQ and a vertex
s ∈ Q, we shall refer to this partition asPQ(s) and to the
list N asNQ(s). Finally, we refer toPQ(s) as thevertex-
induced partition.

s

v′

v′′

d′′

d′

s

Fig. 3. The figure on the left shows the incremental way in which
the vertex-induced partition is constructed. Starting from the vertexs, the
polygon defined by all the vertices visible froms is constructed. This is
represented by the dark shaded polygon. The thick edges of this polygon
are diagonals,d′ and d′′, of the environment.v′ and v′′ are vertices of
the environment on the other side of the diagonals at a minimum distance
from the mid-point of the diagonals. The lighter shaded polygons are the
sets of vertices visible fromv′ andv′′ on the other side ofd′ andd′′. This
procedure is repeated until the entire environment is partitioned. The figure
on the right shows the partition. The vertex-induced tree isalso shown. The
solid circles represent the vertices of the tree and the dashed lines represent
the edges. The root of the tree is denoted by the vertexs.

As an outcome of the algorithm,P is the list of star-
shaped polygons which partitionQ. In addition, all points
of Pi are visible from the vertexNi. With some abuse of
notation, henceforth, givenQ and a vertexs ∈ Q, we shall
refer to this partition asPQ(s) and to the node list asNQ(s).
Finally, we refer toPQ(s) as thevertex-induced partition.
The following lemma summarizes the important properties
of the vertex-induced partition.

Lemma 3.1:Given a simple polygonQ without holes and
any vertexs ∈ Ve(Q), the following are true:

(i) PQ(s)i is a star-shaped polygon for alli; and
(ii) for any pi ∈ NQ(s), we have thatPQ(s)i ⊂ S(pi).
We now define a graph using this partition. We assume

that the reader is familiar with standard notions of graph
theory.

Definition 3.2: Given a simple polygonQ and a vertex
s ∈ Ve(Q), thevertex-induced treeGQ(s), is the graph such
that the vertex list isNQ(s) and an edge exists between any
two verticesNi,Nj ∈ NQ(s) if and only if there exists a
segment[x, y] = Pi ∩ Pj with x, y distinct.
Note that by virtue of the construction of the vertex-induced
tree, any segment[x, y] = Pi∩Pj is such thatx, y ∈ Ve(Q),
or in other words,[x, y] is a diagonal ofQ. Note also that
N1 = s. We refer tos as the root ofGQ(s). Some important
properties of the vertex-induced tree are as follows.

Lemma 3.3:Given a simple polygonQ and any vertex
s ∈ Ve(Q), the following statements are true:

(i) the graphGQ(s) is a rooted tree;

†The kernel of a star-shaped polygon is the set of points from which the
entire polygon is visible.

(ii) no two nodes sharing an edge are visible to each other;
(iii) |NQ(s)| ≤ n

2 wheren = |Ve(Q)|.

IV. D EPLOYMENT ALGORITHMS

In this section, we present algorithms to solve a relaxed
version of the visibility-based deployment problem. The
additional assumptions we make here are that the agents
have memory and that the initial positions of all the agents
are the same. We also assume here that the environment has
no holes. These algorithms are a result of local navigation
algorithms and global deployment schemes.

A. Local navigation algorithms

Here we design algorithms to plan paths between neigh-
boring nodes of the vertex-induced tree. Let us first state
a lemma which characterizes the shortest path between any
two neighboring nodes.

Lemma 4.1:Given a simple polygonQ without holes
and any vertexs ∈ Ve(q), let NQ(s)i,NQ(s)j represent
two neighboring nodes of the vertex-induced treeGQ(s).
Let [v′, v′′] = PQ(s)i ∩ PQ(s)j where v′, v′′ ∈ Ve(Q)
and v′ 6= v′′. Then the shortest path betweenNq(s)i

and Nq(s)j is given by the shorter of the two paths,
[Nq(s)i, v

′]∪[v′,Nq(s)j] and [Nq(s)i, v
′′]∪[v′′,Nq(s)j].

Any node of the vertex-induced tree has neighbors of
possibly two types: parent or child. The following is an
informal description of the MOVE-TO-PARENT routine to
travel from a node to its parent:

MOVE-TO-PARENT
1: compute the shortest path between the node and the

parent based on Lemma 4.1
2: go to the reflex vertex which is a part of the shortest

path
3: from the nonconvex vertex, go to the vertex represent-

ing the parent node

Next, we present an informal description of the MOVE-TO-
CHILD routine to travel from a node to a child.

MOVE-TO-CHILD
1: compute the mid-point of the gap between the node

and the child
2: go to the mid-point
3: compute the nearest vertex from which the entire gap

is visible and which is across the gap
4: go to that vertex

The formal descriptions of these routines appear in Tables II
and III in the Appendix. See Fig. 4 for a graphical illustration
of the paths between nodes and the respective parents and
children.

Note that the algorithms described in this section require
the knowledge of the relative locations of the parentpparent

and the verticesv′, v′′ defining the gap between the node
and its parent, or the gap between the node and a child. All
this information is obtained using local sensing and commu-
nication. This distributed information processing capability
is in-built into the global deployment schemes described in
the following section.

s s

Fig. 4. The figure on the left shows the planned paths from nodes to their
parent in the vertex-induced tree. The figure on the right shows the planned
paths from nodes to their respective children in the vertex-induced tree.

B. Global deployment schemes

Note that by virtue of the construction in Section III and
the methods to navigate between one node of the vertex-
induced tree to a neighboring node, we have converted the
original problem into a problem of deployment over a graph.

1) Deploying over the vertex-induced tree:In this section,
we design algorithms for multiple agents to deploy over the
nodes of the vertex-induced tree under the assumption that
all agents are initially located at the root of the tree. We
present two deployment algorithms. It must be noted that
these algorithms may not be optimal in terms of performance
measures such as required time. Our main aim is to provide
a solution to the visibility-based deployment problem. Per-
formance issues will be the subject of future research.

Let us first informally describe the deployment algorithms.
Each agent repeatedly performs the following tasks
whenever it is located at a node of the vertex-
induced tree:
(i) Find the maximum UID among all agents
located at the same node; (ii) If this UID is less
than its own UID, then stay else move; (iii) If the
decision is to move then decide upon the next node
to be visited and move to it.

To decide upon the next node to be visited, two different
methods are described: (i) depth-first deployment, and (ii)
randomized deployment. The essential difference between
the two methods is that in the depth-first deployment, the next
node to be visited is decided in a deterministic way while
in the randomized deployment the decision is random. We
formally describe the depth-first and randomized deployment
routines in Table IV in the Appendix.

To ensure that sufficient information is present to imple-
ment the algorithms, we propose the following communica-
tion region and memory for agenti. See also Lemmas 4.2
and 4.3.

(i) The communication region specified byC(pi) =
S(pi) ∩ Bpi

(r), where r = min{R, 1
2 min{‖pi −

v‖, v ∈ Ve(S(pi))}}, if pi ∈ Ve(Q). This ensures that
communication broadcasts reach only agents located at
the same node asi.

(ii) The memoryMi(t) = {pparent, plast, v
′, v′′} comprising

of four points inQ. The four points refer to the relative
locations of the parent node, the last way point (a node
or mid-point of a gap), the two vertices defining the
gap between the current node and the parent. We let
Mi(t)k refer to thekth element of the list.

(iii) The list buffer-uidi whose elements are natural
numbers.

(iv) The list buffer-memoryi whose elements are lists
of the typeM.

We are now in a position to formally describe the various
actions performed by an agent in between two wake-up
instants; see Table I. Note that the depth-first and randomized
deployment routines are invoked during PROCESS.

TABLE I

DESCRIPTION OF VARIOUS ACTIONS TO DEPLOY OVER NODES OFGQ(s)

Assumes: p1(t0) = . . . = pN (t0) = s ∈ Ve(Q)

0: Assumek s.t.Nk = pi

0: buffer-uidi = ∅; buffer-memoryi = ∅
0: Mi(t0) = {pi(t0), pi(t0)}
0: move-decision :=stay
Any agenti, executes the following actions according to the schedule in
Section II at any timet between any two wake up instants:
SPEAK
1: BROADCASTi(i,Mi(t))

LISTEN
1: RECEIVEi(j,Mj(t − τ)), where0 ≤ τ ≤ δ
2: if j already exists inbuffer-uidi then
3: Swap olderMj(t

′) in buffer-memoryi with newerMj(t−τ)
4: else
5: Appendj to buffer-uidi

6: AppendMj(t − τ) to buffer-memoryi
7: end if

PROCESS
1: run Depth-first or Randomized deployment

MOVE
1: switch move-decision
2: casestay: Stay atNk

3: caseto-child: buffer-uidi = ∅; buffer-messagei = ∅;
run MOVE-TO-CHILD(Mi(t))

4: caseto-parent: buffer-uidi = ∅; buffer-messagei =
∅; run MOVE-TO-PARENT(Mi(t))

5: end switch

The following lemma characterizes the set of agents whose
messages are present in the buffer of any given agent.

Lemma 4.2:For any agent i at any time t, if
buffer-uidi 6= ∅, then pi(t) ∈ NQ(s) and there exists
τj with 0 ≤ τj ≤ δ such thatpj(t − τj) = pi(t) for all
j ∈ buffer-uidi.

In what follows we shall refer to the depth-first deploy-
ment routine together with the local navigation algorithmsby
Adfd. Similarly we shall useArd to refer to the randomized
deployment routine. The following lemma captures the fact
that in the algorithmsAdfd andArd, there is always enough
information to successfully execute the depth-first and ran-
domized deployment algorithms.

Lemma 4.3:For any agent,i, let pi(t) represent the posi-
tion of the agent at any timet ∈ T i, say t = T i

l . Then the
following statements are true:

(i) pi(t) ∈ NQ(s), saypi(t) = NQ(s)k;
(ii) Ml(t − τl)1 represents the location of the parent of

NQ(s)k, say NQ(s)j , where l = max({j | j ∈
buffer-uidi}, i);

(iii) [Ml(t−τl)3,Ml(t−τl)4] = NQ(s)k∩NQ(s)j , where
l is as defined above;

(iv) Mi(t)2 ∈ NQ(s)k ∩NQ(s)j whereNQ(s)j is the last
node ofGQ(s) occupied by agenti.

2) Convergence analysis:In this section, we analyze
the convergence properties of the algorithms described in
Section IV-B. We also give an upper bound on the time to
completion of the task.

Theorem 4.4 (Depth-first deployment):Given a simple
polygonQ, let p1(t0) = . . . = pN (t0) = s ∈ Ve(Q), be the
initial positions of an asynchronous network ofN visually-
guided agents as described in Section II. Let the behavior
of the agents be governed by the algorithmAdfd. Then the
following are true:

(i) there exists a finite timet∗dfd after which there is at
least one agent onmin{|NQ(s)|, N} nodes ofGQ(s);

(ii) if N ≥ n
2 , then the visibility-based deployment prob-

lem is solved in finite time.
We now present a run-time analysis ofAdfd. But before that,
let us introduce some notation regarding the lengths of paths
between two nodes of the vertex-induced tree. Note from
Fig. 4 the path from a node to its parent is shorter than the
path from the parent to the node.

Definition 4.5: Given a simple polygonal environmentQ,
we define the following:

(i) Lfwd(GQ(s))i, the length of the path from a node to
the child which are part of the edgei;

(ii) Lbwd(GQ(s))i, the length of the path from a node to
its parent which are part of the edgei;

(iii) the forward length of the graphGQ(s), Lfwd(GQ(s)) =
∑|NQ(s)|−1

i=1 Lfwd(GQ(s))i;
(iv) the backward length of the graphGQ(s)

Lbwd(GQ(s)) =
∑|NQ(s)|−1

i=1 Lbwd(GQ(s))i.

Proposition 4.6 (Run-time analysis):If there exist bounds
λmax andρmax such thatλi

l ≤ λmax andρi
l ≤ ρmax for all

i ∈ {1, . . . , N} and l ∈ N ∪ {0}, then t∗dfd ≤ Tmotion +
Tcomm/sens/proc; where

Tmotion ≤
1

v

“

2
`

Lfwd(GQ(s)) + Lbwd(GQ(s))
´

− min{Lfwd(GQ(s))i | i ∈ {1, . . . , |NQ(s)| − 1}}
”

,

Tcomm/sens/proc≤ 2(λmax + ρmax) (|NQ(s)| − 1) ,

and v is the speed with which the agents move. Moreover,
asN and |Ve(Q)| → +∞, if the diameter ofQ is bounded,
then t∗dfd ∈ Θ(min{N, |Ve(Q)|}).
In other words, in the worst case, the run-time is uni-
formly upper and lower bounded by constant multiples of
min{N, |Ve(Q)|}.

Theorem 4.7 (Randomized deployment):Given a simple
polygonQ, let p1(t0) = . . . = pN (t0) = s ∈ Ve(Q), be the
initial positions of an asynchronous network ofN visually-
guided agents as described in Section II. Let the behavior
of the agents be governed by the algorithmArd. Then the
following are true:

(i) with high probability in finite time, there is at least one
agent onmin{|NQ(s)|, N} nodes ofGQ(s);

(ii) if N ≥ n
2 , then the visibility-based deployment prob-

lem is solved in finite time with high probability.

C. Simulations

In this section we present simulation results for the al-
gorithms,Adfd and Ard, described earlier. The algorithms
have been implemented inMATLAB. The environment,Q,

the roots and the vertex-induced treeGQ(s) are as shown
in Fig. 3 (right). Note thatQ is chosen to represent a typical
floor plan. Figs. 5 and 6 show results for the algorithms
Adfd andArd respectively. The nodes of the vertex-induced
tree of the environment in the simulations are precisely the
locations where the agents in Fig. 5 are located at the end
of the simulation. In Fig. 6, there are more agents than the
number of nodes in the vertex-induced tree. Hence, the extra
agents keep exploring the graph without coming to rest.

Fig. 5. From left to right and top to bottom, evolution of a network
implementing the algorithmAdfd; see Table IV. The number of vertices of
the environment isn = 46 and the number of agents isN = 13 < ⌊ 46

3
⌋.

Each point of the environment is visible at the end of the simulation.

Fig. 6. From left to right and top to bottom, evolution of a network
implementing the algorithmArd; see Table IV. The number of vertices of
the environment isn = 46 and the number of agentsN = 15 < ⌊ 46

3
⌋. The

vertex-induced tree has13 nodes, so the2 extra agents continue to explore
the vertex-induced tree. Each point of the environment is visible at the end
of the simulation.

V. CONCLUSIONS

In this paper, we introduce the visibility-based deployment
problem and provide a solution to it under the assumption
that all agents are initially collocated. This problem is closely
related to the classical Art Gallery Problem. We introduce a
new graph to represent a given simple polygonal environment
called the vertex-induced tree. We then demonstrate that
with limited memory and based on information obtained
through line-of-sight sensing and communication, multiple
agents operating asynchronously can deploy over the nodes
of this tree. Note that once the visibility-based deployment
problem is solved and visibility information from all the
nodes is fused, the task of building a map of the environment
or planning a path between two points of the environment
becomes trivial. Other possible extensions of this work
include the design of algorithms that are guaranteed to work
even if the agents do not start at the same location. Another

direction is to investigate the algorithms for robustness to
agent arrivals and failures.

VI. A CKNOWLEDGMENT

This material is based upon work supported in part by
AFOSR through Award F49620-02-1-0325, by ONR through
YIP Award N00014-03-1-0512, and by NSF through CA-
REER Award ECS-0546871.

REFERENCES

[1] T. C. Shermer, “Recent results in art galleries,”IEEE Proceedings,
vol. 80, no. 9, pp. 1384–1399, 1992.

[2] A. Howard, M. J. Mataríc, and G. S. Sukhatme, “An incremental
self-deployment algorithm for mobile sensor networks,”Autonomous
Robots, vol. 13, no. 2, pp. 113–126, 2002.

[3] J. Grace and J. Baillieul, “Stochastic algorithms for autonomous robotic
surveillance,” inIEEE Conf. on Decision and Control and European
Control Conference, Seville, Spain, Dec. 2005, pp. 2200–2205.

[4] L. Guilamo, B. Tovar, and S. M. LaValle, “Pursuit-evasionin an unkown
environment using gap navigation trees,” inIEEE/RSJ Int. Conf. on
Intelligent Robots & Systems, Sendai, Japan, Sept. 2004, pp. 3456–
3462.

[5] V. Isler, S. Kannan, and S. Khanna, “Randomized pursuit-evasion in a
polygonal environment,”IEEE Transactions on Robotics, vol. 5, no. 21,
pp. 864–875, 2005.

[6] V. Chvátal, “A combinatorial theorem in plane geometry,”Journal of
Combinatorial Theory. Series B, vol. 18, pp. 39–41, 1975.

[7] S. Fisk, “A short proof of Chv́atal’s watchman theorem,”Journal of
Combinatorial Theory. Series B, vol. 24, p. 374, 1978.

[8] D. P. Bertsekas and J. N. Tsitsiklis,Parallel and Distributed Computa-
tion: Numerical Methods. Belmont, MA: Athena Scientific, 1997.

VII. A PPENDIX

A. Local navigation algorithms

The MOVE-TO-PARENT and MOVE-TO-CHILD algo-
rithms are described in Tables II and III respectively.

TABLE II

MOVE-TO-PARENT

Name: MOVE-TO-PARENT ({pparent, plast, v
′, v′′})

Goal: Go from nodeNQ(s)i to its parent,
sayNQ(s)j

Assumes: (i)[v′, v′′] = PQ(s)i ∩ PQ(s)j ,
(ii)pparent= NQ(s)j .

1: plast := NQ(s)i

2: p := NQ(s)i

3: Compute shortest path fromp to NQ(s)j , say [p, v]∪[v,NQ(s)j]
wherev is eitherv′ or v′′

4: while p 6= NQ(s)j do
5: if plast 6= v then
6: Compute shortest path from p to NQ(s)j , say

[p, v]∪[v,NQ(s)j] wherev is eitherv′ or v′′

7: u =
min(smax,‖v−p‖)

‖v−p‖
(v − p)

8: if u = 0 then
9: plast = v

10: end if
11: else
12: u =

min(smax,‖NQ(s)j−p‖)

‖NQ(s)j−p‖
(NQ(s)j − p)

13: end if
14: p = p + u
15: end while
16: return : {pparent, plast, v

′, v′′}

B. Depth-first and randomized deployment algorithms

TABLE III

MOVE-TO-CHILD

Name: MOVE-TO-CHILD ({pparent, plast, v
′, v′′})

Goal: Go from nodeNQ(s)i to its child,
sayNQ(s)j

Assumes: [v′, v′′] = PQ(s)i ∩ PQ(s)j

1: plast := NQ(s)i

2: p := NQ(s)i

3: ptemp = v′+v′′

2

4: while p 6= ptemp OR plast 6=
v′+v′′

2
do

5: if ptemp = v′+v′′

2
then

6: u =
min(smax,‖ptemp−p‖)

‖ptemp−p‖
(ptemp− p)

7: if u = 0 then
8: ptemp = arg min{‖v − (v′ +

v′′)/2‖ | [v′, v′′] is visible fromv, v is a vertex ofQ
across the gap[v′, v′′] from plast}

9: plast =
v′+v′′

2
10: end if
11: else
12: u =

min(smax,‖ptemp−p‖)
‖ptemp−p‖

(ptemp− p)

13: end if
14: p = p + u
15: end while
16: return : {pparent, plast, v

′, v′′}

TABLE IV

DEPLOYMENT ALGORITHMS

1: l = max{j | j ∈ buffer-uidi}
2: if l < i then
3: return : stay
4: end if
5: Mi(t)k = Ml(t − τl)k for k ∈ {1, 3, 4}
6: if |Mi(t)| = 2 then
7: Compute polygonX defined by the set of vertices ofQ visible

from pi

8: else
9: Compute polygonX defined by the set of vertices ofQ visible

from pi which arenot across the gap[Mi(t)3,Mi(t)4]
10: end if
11: Compute the list of gaps ofX excluding [Mi(t)3,Mi(t)4],

say {[v′
i1

, v′′
i1

], . . . , [v′
ik

, v′′
ik

]} such that the list of vertices
{pi, v

′
i1

, v′′
i1

, . . . , v′
ik

, v′′
ik
} is ordered counter-clockwise.

Depth-first deployment Randomized deployment
1: if k = 0 or (Mi(t)2 ∈

[v′
ik

, v′′
ik

] and |Mi(t)| >
2) then

2: return : to-parent
3: else
4: Mi(t)1 = pi

5: if Mi(t)2 ∈
[Mi(t)3,Mi(t)4]
then

6: Mi(t)3 = v′
i1

;
Mi(t)4 = v′′

i1
7: else
8: if Mi(t)2 ∈

[v′
im

, v′′
im

] then
9: Mi(t)3 = v′

im+1
;

Mi(t)4 = v′′
im+1

10: end if
11: end if
12: return : to-child
13: end if

1: Generate a random number,
saya (uniformly distributed
over the interval[0, 1])

2: Let a ∈ [m
k

, m+1
k

) where
m ∈ {0, . . . , k − 1}

3: if [v′
im

, v′′
im

] =
[Mi(t)3,Mi(t)4] then

4: return : to-parent
5: else
6: Mi(t)1 = pi

7: Mi(t)3 = v′
im

;
Mi(t)4 = v′′

im
8: return : to-child
9: end if

