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Distributed algorithms for polygonal approximation of conventours

Sara Susca Sonia Marez Francesco Bullo

Abstract—We propose algorithms that compute polygon in [6]; here a feedback law is proposed to steer the tip
approximations for convex contours. This geometric problem of an atomic force microscope so that the imaging time is
is relevant in interpolation theory, data compression, and drastically reduced

has potential applications in robotic sensor networks. The . . . .
algorithms are based on simple feedback ideas, on limited ~ AS Pointed out by the authors in [7], in the XIX century it

nearest-neighbor information, and amount to gradient descent Was known how to geometrically characterize the polygon,
laws for appropriate cost functions. The approximations are enclosed into a given convex body, that minimizes the area

based on intuitive performance metrics, such as the area of the (difference between itself and the enclosing convex body. On
inner, outer, and “outer minus inner” approximating polygons.  he other hand, the geometric characterization of a polygon
enclosing a given convex body, that again minimizes the
I. INTRODUCTION difference of the areas is more complex and less intuitive;
o o ) to the best of our knowledge, the earliest reference on this
In applications such as monitoring of environmental promatter appeared only in 1949 by Trost, see [8]. Sometime
cesses it is important to be able to approximate the CONtoly the XX century it was also proved that for a planar
of the region of interest. For some specific monitoring taskgody the approximation error, for various useful metrics,
such as the containment of a region of interest (e.g., Ybes to zero a€'/n?, wheren is the number of vertices
oil spill) or the specification of an initial condition for ¢ ipe interpolating polygon. For example, in 1975 McClure
the prediction of certain environmental phenomenon it ignq vitale [9] give sharp estimate for the constahusing
meaningful to obtain contour approximations that resemblg,snort functions. They also suggest two different methods
as much as possible the region to be determined. FindiRg construct asymptotically efficient approximating payg
efficient or optimal approximating polygons is also relévangyen though both approaches are not suited to a distributed
in other applications like solving interpolation problems jmplementation. For a more detailed list of references we
data compression. It is useful in fact to be able to represepdfer to the beautiful surveys [10] and [11]. Finally, a nece
a contour for which no concise mathematical expression [gference related to our work is [12].
known by only using a few points. It turns out that con-  Gjyen » points on a convex contour, it is possible and
structing an optimal polygonal approximation of a contoupaqral to define an encloded (i.e., inscribed) polygon and
has been a research subject for mathematicians and ergjinggy{ enclosing (i.e., circumscribed) polygon to the contour.
across the last three centuries. Still interesting proBlenyere the faces of the enclosing polygon are subsets of
continue to remain_unsolved especially for the generahgett e tangent lines to the convex contour. We adopt three
of non-convex bodies. Arguably, the extension of polygonajeometrically-motivated error metrics that the approsting
approximation to non-convex and time-varying contours W"polygon can minimize. They are described as follows. The
provide a novel challenging problem in boundary estimatiofirst two metrics we considered are the difference between
tracking, and surveillance. the area enclosed in the contour and the following areas:
In this paper we investigate distributed algorithms ema@pli the inner polygon area and the outer polygon area. The
a robotic sensor network to generate an approximatingird metric is the sum of the previous two metrics. We
polygon for any given convex planar contour. As a keyjerive the expressions, two of which are novel contribigion
modeling assumption, the nodes of the sensor network a§¢ this paper, of the error metrics as functions of the
the vertices of the approximating polygon. We require thajgrtex positions of the approximating polygon. We propose
the approximating polygon minimizes a certain meaningfuhee feedback laws to dynamically construct the optimal
metric. Bpundary estir_n{;\tion and tracking is also a r?|eVar§pproximating polygon using gradient descent. These feed-
problem in computer vision; the so-called “snake algor#hm pack laws rely only on local information about the contour
was introduced in the seminal paper [1]. Some referencggq apout the immediate neighboring vertices. We analyze
on the boundary estimation problem for robotic sensor nefhe dynamical system behavior of these feedback laws and
works include [2], [3], [4], [S]. A different and interestn present simulation results. Even though the algorithms are
application of boundary estimation and tracking is present gesigned for smooth convex contours they can be extended

. - ) to non-smooth convex contours. We also present discrete-
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the continuous time gradient descent algorithms and their N
respective discrete time versions to construct the begrinn
and outer approximating polygon, while in Section V we
present an algorithm to construct the polygon minimizing
the outer minus inner area.

II. NOTATION AND PROBLEM STATEMENT

Let Q C R? be a bounded, convex body afi its bound- J
ary. LetT C R? denote the unit circle. We parametrig€) (et
by amapy: T — 9Q, and repres_ent Its ,Sl,gned curvature byFig. 2. From the left to the right: three points defining aneouiolygon,
K: T — R We assume tha{ remains pOSItIVG as we traversethree points not deﬁning an outer po|ygon_
the curvey in a counter-clockwise manner corresponding
with the parameter increasing. We alternatively use the

notationt(s) = +'(s), Vs € T, and definen: T — R? so We quantify the approximation error @ through dif-

thatn(s) is the unit outward normal vector at(s) € 0Q  ferent measures of area that we specify in the following.

for all s € T. With a slight abuse of notation, we sometimesrhe inner st approximation error metric is defined as

refer to the particular tangent and normal vectors at a poi@I(Q,p) = Area(Q \ P), where P C Q. Equivalently,

pi € 9Q ast; andn;, i € {1,...,N}. the outer set approximating error metric is defined as
Let py,...,pn be the positions ofV agents constrained g, (Q, P) = Area P \ Q) whereQ C P. Now, given sets

to be ondQ and let P(R?) denote the parts oR”; i.e. p, C Q C P, we can define theymmetric difference error

the collection of all subsets dR?. Since @ is a convex metric asEg(Q, P, Py) = PLAP, = (P, \ P) U (P, \ P»).

set, the set-valued map;: (9Q)" — P(R?), that assigns

to a tuple (z1,...,2,) € (0Q)N the polygon generated m

by the vertices{z1,...,z2,}, satisfiesim P; C P(Q). In

other words,Py(z1,...,2n) is the convex hull of the set |n the following sections we present distributed descent

{z1,...,2n} algorithms for the approximation of smooth convex bodies.
Let H denote the set-valued map: 9Q — P(R?) such The algorithms of this section are based on the interpaiatio

that for anyp € 0Q, with p = v(s), n = n(s), for some errorE;.

s €T, we haveH(p) = {z € R*| (p— 2) - n < 0}. That is, In order to find a characterization of the configurations

H(p) is the half-plane containing@ and with boundary given {p1,...,pn} C dQ which minimize the inner set approxi-

by the line passing through and tangent t@(), as shown mation error metric, observe that;

in Figure 1. Now we can define the functidt : (0Q)Y —

P(R?) as follows Pg(z1,...,2x) = H(z1) N---NH(zn).  E(Q,Pr(p1,...,pn)) = AredQ)—Area P;(py,...,pN)) .

. I NNER-POLYGON APPROXIMATION ALGORITHMS

Upi)* Assume that the set of pointg;,...,px} is ordered in
a counter-clockwise directiohThen, an expression for the
Area Py (p1,...,pn)) can be obtained as

Q

N
1
AreaPr(p1,-..,pPN)) = 3 E (TrYkt1 — Tht1ye), (1)
k=1

wherep, = (z,yx) are the coordinates of the’® point.
The dynamical system defined as the gradient descelt of

Fig. 1. H(p:) and its boundary(p;) = £(p;)™ U £(p;)~. OE;
pi = - ) )
Pi

ie{l,...,N},

The intersection of half-planes defines a convex region of
the spac&? containing@®, but not in general a polygon. To guarantees that the, converge to the set of critical points
generate a polygon some constraints on the half-planes haweE ;. This dynamical system can be rewritten as follows:
to be imposed. Lef(p;) = OH(p;) be the line that passes

throughp; and is the boundary df{(p;). Let us denote by i = Projag <8Area(P1(p1, . ,pzv)))

Up)t ={2€R%lz=p;+At;, A\ >0} andl(p;)~ ={z € Ipi ?)
R?|z = p; + \t;, A < 0}, thenl(p;) = ((p;)* U L(p:)~. If _ <t» OArea(Pr(py, - . . mzv))) ¢

the intersectiong(p;)™ N ¢(p;11)~ # () for any consecutive A\ Ip; ks

nodes, thenPg(p; ..., pn) defines arexterior polygon, as

shown in Eigure 2, whose edges liefifp;), i € {1,..., N}, !In what follows we use the identification = N and N + 1 = 1 for
and contains botl® and Pr(p1,...,pnN)- the indicesi € {1,...,N}.



. . . Initial node configuratio Final node _configuration
where proj,, means the projection on the vectgrtangent i g i 9

to the contourd@ at p;. Substituting (1) in (2), we obtain
1

p =g (| 0012000 ])

1 ” v ©))
= (=tD| STl g e {1,...,N}.
(2‘[$i—1—9€i+1 ' { } o~ LN
As it can be seenp; depends omp;_1, piy1, andt,, i € Maximization of polygon area

{1,...,N}. This requires that every agent has knowledge
of the positions of its immediate clockwise and counter-
clockwise neighbors and of the gradient of the contour
at its position. Equation (2) (and hence (3)) describes the
gradient flow of the area of the approximating polygon and
it guarantees that the agents positions converge to a set of
critical points so that

e (sécy ¢ ¢ *

t;- [ g”l B ziil } =0, vie{l,...,N}, (4) Fig. 4. Implementation of inner-polygon approximation altioni
1—1 = L1

or, equivalently,t; is parallel to (p;+1 — pi—1), for i € ) ) o

{1,..., N}. Unfortunately we can not say that every Critica|conto.ur. The second algorithm dogs not require an a-priori

point is an extremum. Consider the situation wh@rbas the labelling of nodes but each agent is required to have some

shape of an equilateral triangle with smoothed-out cornek§owledge about a subarc of the contour. _

(see Figure 3). Despite the configuration shown in the figurd90rithm 1. Assume each nodg; has knowledge about its

satisfies condition (4), it is not a local minimum. As the@Wn label number € {1,..., N}. At egch discrete time

figure shows, this is a saddle-point configuration, since wi@stant that we index by € N we define:

can grow or diminish the error by moving the nodes in a(pi_1(k),pis1(k)), ifi=k mod N,

appropriate ways. pi(k+1) { pi(k), if i~k mod N,
(6)

(7 where ¢(p;—1(k), pix1(k)) is the closest point tg;(k) on
N’ N the arc in0Q from p;_1 (k) to p,11(k) such that its tangent
at 9Q is parallel to the linep;_1(k)pi+1 (k).

Proposition 3.1: The dynamical system (6) is a descent

Fig. 3. From left to right: saddle point configuration, comfigtion algorithm forE ; and convergent to the set of critical points

that increases the errde ;, configuration that decreases the erioy, of E;.

configuration corresponding to a minimum error configuration. Proof: Let P, be the area of the polygon generated by
p1(k),...,pn(k) and leti be congruent mod N with k.

The characterization (4) of critical points was alread¥ye have thatP, = T, + P, whereT}, is the area of the
obtained in the XIX century according to [7]. The paper [7lriangle generated by;_; (k), p:(k) and p;.1(k), and Py
addltlonally shows how the Crlth&'-pOlnt Conflguratlonﬁ-s is the area of the polygon generated by the complementary
iSfy the condition that pOintS remain closer in regions Of;et of nodes. S|ncé}Q is convex, it is easy to see that
higher mean curvature, which is a desirable condition foy; < Trwt1, Where Ty, is the area of the new triangle

shape representation. It is believed [10] that as the numbgith verticesp;_1 (k), pi(k + 1), pis1 (k). In this way, one
of nodes increases, the type of configurations that sa#§fy (can obtain:

correspond only to global error minima. _ _ _

Smulations inner-polygon approximation algorithm: Fig- Py =Ty + Py < Thot1 + P = Pryr,
ure 4 shows the results of the implementation of the innethe area of the inner polygon is maximized and the efror
polygon approximation algorithm. The eleven nodes are 0o minimized. Clearly, only when a set of critical points is

the contour described by, fér € [0, 1): reached, the algorithm leaves the nodes stationary. m
cos(276) Remark 3.2: It is easy to envision extensions of Algo-
7(0) = (2.1 + sin(270)) <sin(27r9)) (5)  rithm 1 to a setting where alternating but spanning sets of
independent nodes alternate their motion. °
Algorithm 2. The following is an algorithm that does not
A. Discrete-time inner-polygon approximation algorithms require a labelling of agents, but requires knowledge about
Here we present two discrete-time versions of the algdrart of the contour. For eadhe N define:
rithm of the previous section. The first algorithm exploits a ) , , )
a priori labelling of nodes and requires that each agent has p;(k+ 1) = {q(p’_l(k)’pﬁl(k))’ pi(k) ¢. Vi (7)
available the position of its closest two neighbors alorgy th pi(k), otherwise



for ¢« € {1,...,N}, and whereV; is given by the
union of certain arcs orv@ as we describe next. Let
(21,22) denote the arc o@@ going from z; to 22 in a
counter-clockwise direction, for any,, zo € 9Q. Given
i €{1,...,N}, consider the ar€p; o, p;+2) which contains
the points q(q(ps, pit2),pi-1), a(@(Pi—2,p:), q(Piv2,Di))
and q(q(pi—2,pi),pi+1). Going from p; » towards
pire We can define arcs withq(q(pi—2,pi), pit1)
and q<pi71(k)’pi+l(k))’ with q(q(pi7pi+2)’pifl) and Fig. 5. Assumptions (i) and (ii) on every three nodes, 1, p; andp;1

q(pi-1(k), pi+1(K)), and with q(q(pi-2,pi), 4(pit2,p:)) for formula (8) to be applicable.
and q(pi—1(k),pix1(k)) as extremes respectively.

With a slight abuse of notation, let us denote these
arcs by (q(q(pi-2,pi),piv1); 4i1(F), piv1(K))),  Let p; A; (resp. B;p;) denote the length of the segment

(q(q(pi; Pit2), Pi-1), a(Pi-1(k), pit1(k))) and  gefined byp; and A; (resp. byp; and B;). An expression
(Q((J(pi_—z,pi)yQ(I?i+27pi))aQ(pi—1(k),pi+1(k)))- The  for the above partial derivative is given by:

set); is the union of these three arcs along the contour.

Because of convexity, a node can detect if it belongs OAredT;) 0&; (pi Ai — Bipi) AiB; 0¢; 9
to any of the above defined arcs by knowing the arc  §¢,  ap;,  2sinésin&_;  Op; ©)

(pi—2,pito). Basically, the statement; ¢ V; is equivalent That is, the critical configuration fop; that falls under
to the following statement: movingp; towards the assumptions (i) and (ii) must satisy; p; = p; A;. Alterna-
positions q(p;_1(k),pir1(k)), q(q(pi—2,p:),a(pise,ps)), lively, we have the expression:

q(q(pi; pi+2), pi-1) andq(q(pi, pi+2), pi—1) requires thap;

Pit1 —pi) Mip1 (i —Pie1) D1

moves in the same counter-clockwise or clockwise direction B;p; = t = c =p;A;.
It can be checked tha; is in fact a connected arc along i Mitl it M1
the contourd@. In the following, we make use of Theorem 4.1 to design

Here is our main analysis result in this section. We omia control law that asymptotically leads the nodes to a local
the proof for space reasons and we refer to a forthcominginimum configuration forEo. Unlike [8], we handle the

technical report. _ _ cases where th&g(p1,...,pn) IS not necessarily bounded
Theorem 3.3: The dynamical system (7) is a descentand where Assumptions (i) and (i) are not necessarily met.
algorithm forE ;. Lemma 4.2: Let p; = v(s1), p2 = (s2) € 9Q, with

Remark 3.4: Stationary configurations of (7) are not nec-s; < s, The angle¢ = £(t;,t;) can be obtained as:
essarily critical points of ;. A nodep; might become stuck
at a position such thap; € V; andt; is not parallel to &2 = atan2(ts) — atan2(t;) = atan2(nz) — atan2(n; ),
Di—1Pbir1- The reason for this is that eithgy_; or p; ., are ) . .
themsglves stationary. A set of nodes could be “unlocked?€r€ the functionatan2: R? - R is defined by
by running a leader-election algorithm between neighbor%tan?(v) = £((1,0),v), for v € R". _
and giving priority of motion to the consensual leader. This 2Let Qr, Qu, Qur and Qv denote the four quadrants in
operation respects the descent nature of the algorithm ahd: DEfine the sets; = (QruQu) \ (9(QrUQn)) and

_ _ 1 2 2
guarantees that we reach a desired critical configuratien. S2e;acr21m t’JteQN. Observe that foxv = (v, %) € R*\ {0},
w write:
IV. OUTER-POLYGON APPROXIMATION ALGORITHMS

2 .
Following [8], one can obtain a geometric characterization arctan { ;7 ), if vebs,
fth f i in 90 that id i atan2(v) = ) ]
of the configurationg, ..., py in dQ that provide an opti- arctan (%) + 7, if ve S

mal outer polygon approximation that minimizEs,, when

Q is strictly convex. This characterization is establishedherefore we can defing; = £(t;,t;11) as the function

through the corresponding unit tangent vecttys...,ty, ¢;: R? x R? — R such that:

the anglest; = £L(t;,t;41), ¢ € {1,...,N} (measured in ,

. t: t2

counter-clockwise order), and assumes that: arctan ( t;“) — arctan (71) ,

M) Lpi=1)™ N Lpisa)~ # 0, I £ b0t € 1 OF £y, bigr €
(i) the tangent ap,; forms a triangle, as shown in Figure 5'6(t' bi01) = e LR bl = e
We briefly summarize the result in the following. b Yl 2 .
Theorem 4.1: ([8]) Under conditions (i) and (ii), define arctan (t?i) _ arctan (7) ¥

the trianglesZ; = A;B;C; whose vertices are given by the if t+ eS8t e 5’2 or vice-versa

intersectionsB; = {(pix1)” N €(pi)T, C; = L(piz1)~ N " o

f(pi_1|)+harllg A; = L(p;)” NL(p;—1)". Then, the following The function&;(t,, t; 1) is discontinuous in the regions:

ormula holds:

9 oArea(T;) Dy = {(ti,tit1) € R* x R? | t; € 51, tiy1 € 0(Q1UQu)},

op; Eo(Q Pe(pr,--.pn)) = opi ® Dy = {(ti,tir1) € B2 xR |t € A(QuUQu), tir1 € S} -




Initial node configuratio Final node configuration

Since¢;(t;,t;+1) is discontinuous, its gradient is not well
defined everywhere. However, the gradient admits a contin-
uous extension t®R? x R2:

¢, -
f?(twtm) = (2,~t}),  tity R ‘ /
! 3 2 1 0 T 2

.Minimization of polygon area

Let us use this information to define our control law. Denote
by R = [~o0, +00] and define the following values fqr;,
XeR,ie{l,... N}

(Pz‘ *pi—l) ‘N1

_ y ti “N;_q 7é O7
Hi = ti-m; g . Fig. 6. Implementation of outer-polygon approximation altfori.
+ 0, otherwise
A. Discrete-time outer-polygon approximation algorithms
(Pit1 — Pi) - Mg t om0 It is easy to prove that an algorithm analogous to Algo-
i = t; - ’ i Mi1 ’ rithm 1 in the previous section guarantees convergence to a
+ 00, otherwise local extremum offp. We state the analogous results here

omitting the corresponding proof.
Algorithm 3. Assume each nodg; has knowledge about its
own label numberi € {1,...,N}. At each discrete time

The distances:; and \; are graphically shown in Figure 5. instant that we index by € N we define:

Observe that becausg is strictly convex,u; and)\; can not
be both+occ. Now, by means of\; and 1.;, we define the 1) = q(pi-1(k),pi+1(k)), if i=k mod N,
dynamical system: pi ) pilk), if i £k mod N,

where g(p;—1(k), pi+1(k)) is the closest point te;(k) on
the arc in0Q from p;_1 (k) to p;11 (k) such that its tangent

Di = _Satv(Ui —Ai) ti, i€ {17 cee 7N}7 (10) at 9Q satisfies\; = p;.

V. OUTER MINUS INNER POLYGON APPROXIMATION

where the functiorsat, : R — R, defined for some positive ALGORITHMS

saturation valuey € (0, +00), is given by: An alternative cost function that quantifies the approxi-
mation of the boundary of a convex bod); is provided by
the measuré’s (Pg(p1, . - - ,pN)Jz](ph ...,DN)). Here we

establish new computations £, i € {1,..., N}, when
x, |z] <w : Opi o
saty(z) =< the outer polygon is well defined. This will lead to a new
Te] ¥ x| > v. type of gradient decent algorithm.

Lemma 5.1: Let p;, pi+1 € 0Q. Assume that;; x t; #
0. Then, the aread of the triangle formed by the lines

We use the convention + oo| = +oo, and the usual Passingthroughi,,—pi, £(p;) and¢(p;11) can be expressed
operations inR. as:
Theorem 4.3: Let the number of nodesN be A= 1 @i @i = pir1)) @i - (i = piv)) (11)
N > 3. The control law (10) decreases monotonically 2 (n; X Mit1) - 3
Eo(Q, Pg(p1,...,pn)). A critical point (p],...,p;) wherees = (0,0,1) andn; x n;; is interpreted as a vector
satisfies\! = pf forall i € {1,...,N}. in R3.
Again, we omit the proof of this result for space reasons and -t US denote byd(p;, pi11, ni, ;1) = A; the area (11)
we refer to a forthcoming technical report. corresponding t®;, p;+1. We can write our cost function as
Smulations of outer-polygon approximation algorithm: Es(Pg(p1,..-,pn), Pr(p1,-.-PN))
Figure 6 shows the result of the implementation of the outer- N
polygon approximation algorithm. The eleven nodes are on = ZA(pi,piH,ni,niH)-

the contour described by (5). 1
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If we considerp;, n;, as functions depending on the param-

eters € [0, 1], we have that .

OEs(Pe(p1,...,pN), Pr(p1,...,pN))  0A;  0A; 4 ’ N
= —+ s 05

Js 0s 0s // °

where we have used the shorthand notatidp ¢ € S

3 3 2 1 0 1 2 3

{1,...,n}. Now for example, we can develop the expression Minjmization of area djfference
for 241 as follows:
0A;—1  0A;_1 Op; n 0A;_1 On;
ds  Op; Os On; Os | ' o
On the other hand, the Frenet-Serret equations imply "
dt dn Fig. 7. Implementation of inner/outer-polygon approximatagorithm
—  ==k(so)n(so), —— = r(s0)t(s0),
ds [so ds |so

VI. CONCLUSIONS

where t and n are tangent and normal vectors such that We have discussed various geometric optimization prob-
t x n points towards the reader. Therefore, the expression {@ms and corresponding gradient flows. Future works will

the partial derivative of4;,_, admits the following rewriting: focus on nonsmooth contours such as polygons, non-convex
sets, and more general algorithms for optimal interpatatio

8A} of boundaries.
.
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Figure 7 show the results of inner/outer polygon approxima-
tion. The eleven nodes are on the contour described by (5).



