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Distributed algorithms for polygonal approximation of convexcontours

Sara Susca Sonia Martı́nez Francesco Bullo

Abstract— We propose algorithms that compute polygon
approximations for convex contours. This geometric problem
is relevant in interpolation theory, data compression, and
has potential applications in robotic sensor networks. The
algorithms are based on simple feedback ideas, on limited
nearest-neighbor information, and amount to gradient descent
laws for appropriate cost functions. The approximations are
based on intuitive performance metrics, such as the area of the
inner, outer, and “outer minus inner” approximating polygons.

I. I NTRODUCTION

In applications such as monitoring of environmental pro-
cesses it is important to be able to approximate the contour
of the region of interest. For some specific monitoring tasks
such as the containment of a region of interest (e.g., an
oil spill) or the specification of an initial condition for
the prediction of certain environmental phenomenon it is
meaningful to obtain contour approximations that resemble
as much as possible the region to be determined. Finding
efficient or optimal approximating polygons is also relevant
in other applications like solving interpolation problemsor
data compression. It is useful in fact to be able to represent
a contour for which no concise mathematical expression is
known by only using a few points. It turns out that con-
structing an optimal polygonal approximation of a contour
has been a research subject for mathematicians and engineers
across the last three centuries. Still interesting problems
continue to remain unsolved especially for the general setting
of non-convex bodies. Arguably, the extension of polygonal
approximation to non-convex and time-varying contours will
provide a novel challenging problem in boundary estimation,
tracking, and surveillance.

In this paper we investigate distributed algorithms enabling
a robotic sensor network to generate an approximating
polygon for any given convex planar contour. As a key
modeling assumption, the nodes of the sensor network are
the vertices of the approximating polygon. We require that
the approximating polygon minimizes a certain meaningful
metric. Boundary estimation and tracking is also a relevant
problem in computer vision; the so-called “snake algorithms”
was introduced in the seminal paper [1]. Some references
on the boundary estimation problem for robotic sensor net-
works include [2], [3], [4], [5]. A different and interesting
application of boundary estimation and tracking is presented
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in [6]; here a feedback law is proposed to steer the tip
of an atomic force microscope so that the imaging time is
drastically reduced.

As pointed out by the authors in [7], in the XIX century it
was known how to geometrically characterize the polygon,
enclosed into a given convex body, that minimizes the area
difference between itself and the enclosing convex body. On
the other hand, the geometric characterization of a polygon,
enclosing a given convex body, that again minimizes the
difference of the areas is more complex and less intuitive;
to the best of our knowledge, the earliest reference on this
matter appeared only in 1949 by Trost, see [8]. Sometime
in the XX century it was also proved that for a planar
body the approximation error, for various useful metrics,
goes to zero asC/n2, wheren is the number of vertices
of the interpolating polygon. For example, in 1975 McClure
and Vitale [9] give sharp estimate for the constantC using
support functions. They also suggest two different methods
to construct asymptotically efficient approximating polygon,
even though both approaches are not suited to a distributed
implementation. For a more detailed list of references we
refer to the beautiful surveys [10] and [11]. Finally, a recent
reference related to our work is [12].

Given n points on a convex contour, it is possible and
natural to define an encloded (i.e., inscribed) polygon and
an enclosing (i.e., circumscribed) polygon to the contour.
Here the faces of the enclosing polygon are subsets of
the tangent lines to the convex contour. We adopt three
geometrically-motivated error metrics that the approximating
polygon can minimize. They are described as follows. The
first two metrics we considered are the difference between
the area enclosed in the contour and the following areas:
the inner polygon area and the outer polygon area. The
third metric is the sum of the previous two metrics. We
derive the expressions, two of which are novel contributions
of this paper, of the error metrics as functions of the
vertex positions of the approximating polygon. We propose
three feedback laws to dynamically construct the optimal
approximating polygon using gradient descent. These feed-
back laws rely only on local information about the contour
and about the immediate neighboring vertices. We analyze
the dynamical system behavior of these feedback laws and
present simulation results. Even though the algorithms are
designed for smooth convex contours they can be extended
to non-smooth convex contours. We also present discrete-
time feedback laws that allows the nodes to reach locally
optimal configurations for two of the metrics introduced.

The paper is organized as follows. In Section II we
define some notation and the three performance metrics
used through the paper. In Sections III and IV we present



the continuous time gradient descent algorithms and their
respective discrete time versions to construct the best inner
and outer approximating polygon, while in Section V we
present an algorithm to construct the polygon minimizing
the outer minus inner area.

II. N OTATION AND PROBLEM STATEMENT

Let Q ⊆ R
2 be a bounded, convex body and∂Q its bound-

ary. Let T ⊆ R
2 denote the unit circle. We parametrize∂Q

by a mapγ : T → ∂Q, and represent its signed curvature by
κ : T → R. We assume thatκ remains positive as we traverse
the curveγ in a counter-clockwise manner corresponding
with the parameters increasing. We alternatively use the
notation t(s) ≡ γ′(s), ∀s ∈ T, and definen : T → R

2 so
that n(s) is the unit outward normal vector atγ(s) ∈ ∂Q
for all s ∈ T. With a slight abuse of notation, we sometimes
refer to the particular tangent and normal vectors at a point
pi ∈ ∂Q asti andni, i ∈ {1, . . . , N}.

Let p1, . . . , pN be the positions ofN agents constrained
to be on ∂Q and let P(R2) denote the parts ofR2; i.e.
the collection of all subsets ofR2. Since Q is a convex
set, the set-valued mapPI : (∂Q)N → P(R2), that assigns
to a tuple (z1, . . . , zn) ∈ (∂Q)N the polygon generated
by the vertices{z1, . . . , zn}, satisfiesIm PI ⊆ P(Q). In
other words,PI(z1, . . . , zN ) is the convex hull of the set
{z1, . . . , zN}.

Let H denote the set-valued mapH : ∂Q → P(R2) such
that for anyp ∈ ∂Q, with p = γ(s), n = n(s), for some
s ∈ T, we haveH(p) = {z ∈ R

2 | (p − z) · n ≤ 0}. That is,
H(p) is the half-plane containingQ and with boundary given
by the line passing throughp and tangent to∂Q, as shown
in Figure 1. Now we can define the functionPE : (∂Q)N →
P(R2) as followsPE(z1, . . . , zN ) = H(z1) ∩ · · · ∩ H(zN ).

∂Q
`(pi)

+

`(pi)
−

ni

ti

H(pi)

pi

Q

Fig. 1. H(pi) and its boundarỳ(pi) = `(pi)
+ ∪ `(pi)

−.

The intersection of half-planes defines a convex region of
the spaceR2 containingQ, but not in general a polygon. To
generate a polygon some constraints on the half-planes have
to be imposed. Let̀(pi) = ∂H(pi) be the line that passes
throughpi and is the boundary ofH(pi). Let us denote by
`(pi)

+ = {z ∈ R
2|z = pi +λti , λ ≥ 0} and`(pi)

− = {z ∈
R

2|z = pi + λti , λ ≤ 0}, then`(pi) = `(pi)
+ ∪ `(pi)

−. If
the intersections̀(pi)

+ ∩ `(pi+1)
− 6= ∅ for any consecutive

nodes, thenPE(p1 . . . , pN ) defines anexterior polygon, as
shown in Figure 2, whose edges lie in`(pi), i ∈ {1, . . . , N},
and contains bothQ andPI(p1, . . . , pN ).
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Fig. 2. From the left to the right: three points defining an outer polygon,
three points not defining an outer polygon.

We quantify the approximation error ofQ through dif-
ferent measures of area that we specify in the following.
The inner set approximation error metric is defined as
E I(Q,P ) = Area(Q \ P ), where P ⊂ Q. Equivalently,
the outer set approximating error metric is defined as
EO(Q,P ) = Area(P \ Q) whereQ ⊆ P . Now, given sets
P1 ⊆ Q ⊆ P2 we can define thesymmetric difference error
metric asES(Q,P1, P2) = P1∆P2 = (P2 \P1)∪ (P1 \P2).

III. I NNER-POLYGON APPROXIMATION ALGORITHMS

In the following sections we present distributed descent
algorithms for the approximation of smooth convex bodies.
The algorithms of this section are based on the interpolation
error E I .

In order to find a characterization of the configurations
{p1, . . . , pN} ⊆ ∂Q which minimize the inner set approxi-
mation error metric, observe that:

E I(Q,PI(p1, . . . , pN )) = Area(Q)−Area(PI(p1, . . . , pN )) .

Assume that the set of points{p1, . . . , pN} is ordered in
a counter-clockwise direction.1 Then, an expression for the
Area(PI(p1, . . . , pN )) can be obtained as

Area(PI(p1, . . . , pN )) =
1

2

N
∑

k=1

(xkyk+1 − xk+1yk) , (1)

wherepk = (xk, yk) are the coordinates of thekth point.
The dynamical system defined as the gradient descent ofE I

ṗi = −
∂ E I

∂pi

, i ∈ {1, . . . , N} ,

guarantees that thepi converge to the set of critical points
of E I . This dynamical system can be rewritten as follows:

ṗi = proj∂Q

(

∂Area(PI(p1, . . . , pN ))

∂pi

)

=

(

ti ·
∂Area(PI(p1, . . . , pN ))

∂pi

)

ti ,

(2)

1In what follows we use the identification0 ≡ N and N + 1 ≡ 1 for
the indicesi ∈ {1, . . . , N}.



where proj∂Q means the projection on the vectorti tangent
to the contour∂Q at pi. Substituting (1) in (2), we obtain

ṗi = proj∂Q

([

1

2
(yi+1 − yi−1)

1

2
(xi−1 − xi+1)

])

=

(

1

2
t
T
i

[

yi+1 − yi−1

xi−1 − xi+1

])

ti, i ∈ {1, . . . , N}.

(3)

As it can be seen,̇pi depends onpi−1, pi+1, and ti, i ∈
{1, . . . , N}. This requires that every agent has knowledge
of the positions of its immediate clockwise and counter-
clockwise neighbors and of the gradient of the contour
at its position. Equation (2) (and hence (3)) describes the
gradient flow of the area of the approximating polygon and
it guarantees that the agents positions converge to a set of
critical points so that

ti ·

[

yi+1 − yi−1

xi−1 − xi+1

]

= 0 , ∀ i ∈ {1, . . . , N} , (4)

or, equivalently,ti is parallel to (pi+1 − pi−1), for i ∈
{1, . . . , N}. Unfortunately we can not say that every critical
point is an extremum. Consider the situation whereQ has the
shape of an equilateral triangle with smoothed-out corners
(see Figure 3). Despite the configuration shown in the figure
satisfies condition (4), it is not a local minimum. As the
figure shows, this is a saddle-point configuration, since we
can grow or diminish the error by moving the nodes in
appropriate ways.

Fig. 3. From left to right: saddle point configuration, configuration
that increases the errorE I , configuration that decreases the errorE I ,
configuration corresponding to a minimum error configuration.

The characterization (4) of critical points was already
obtained in the XIX century according to [7]. The paper [7]
additionally shows how the critical-point configurations sat-
isfy the condition that points remain closer in regions of
higher mean curvature, which is a desirable condition for
shape representation. It is believed [10] that as the number
of nodes increases, the type of configurations that satisfy (4)
correspond only to global error minima.

Simulations inner-polygon approximation algorithm: Fig-
ure 4 shows the results of the implementation of the inner-
polygon approximation algorithm. The eleven nodes are on
the contour described by, forθ ∈ [0, 1):

γ(θ) = (2.1 + sin(2πθ))

(

cos(2πθ)
sin(2πθ)

)

. (5)

A. Discrete-time inner-polygon approximation algorithms

Here we present two discrete-time versions of the algo-
rithm of the previous section. The first algorithm exploits an
a priori labelling of nodes and requires that each agent has
available the position of its closest two neighbors along the
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Fig. 4. Implementation of inner-polygon approximation algorithm

contour. The second algorithm does not require an a-priori
labelling of nodes but each agent is required to have some
knowledge about a subarc of the contour.
Algorithm 1. Assume each nodepi has knowledge about its
own label numberi ∈ {1, . . . , N}. At each discrete time
instant that we index byk ∈ N we define:

pi(k + 1) =

{

q(pi−1(k), pi+1(k)) , if i ≡ k mod N,

pi(k), if i 6= k mod N ,
(6)

where q(pi−1(k), pi+1(k)) is the closest point topi(k) on
the arc in∂Q from pi−1(k) to pi+1(k) such that its tangent
at ∂Q is parallel to the linepi−1(k)pi+1(k).

Proposition 3.1: The dynamical system (6) is a descent
algorithm forE I and convergent to the set of critical points
of E I .

Proof: Let Pk be the area of the polygon generated by
p1(k), . . . , pN (k) and let i be congruent mod N with k.
We have thatPk = Tk + P̄k, whereTk is the area of the
triangle generated bypi−1(k), pi(k) and pi+1(k), and P̄k

is the area of the polygon generated by the complementary
set of nodes. Since∂Q is convex, it is easy to see that
Tk ≤ T̄k+1, where T̄k+1 is the area of the new triangle
with verticespi−1(k), pi(k + 1), pi+1(k). In this way, one
can obtain:

Pk = Tk + P̄k ≤ T̄k+1 + P̄k = Pk+1 ,

the area of the inner polygon is maximized and the errorE I

is minimized. Clearly, only when a set of critical points is
reached, the algorithm leaves the nodes stationary.

Remark 3.2: It is easy to envision extensions of Algo-
rithm 1 to a setting where alternating but spanning sets of
independent nodes alternate their motion. •
Algorithm 2. The following is an algorithm that does not
require a labelling of agents, but requires knowledge about
part of the contour. For eachk ∈ N define:

pi(k + 1) =

{

q(pi−1(k), pi+1(k)) , pi(k) /∈ Vi,

pi(k), otherwise,
(7)



for i ∈ {1, . . . , N}, and whereVi is given by the
union of certain arcs on∂Q as we describe next. Let
(z1, z2) denote the arc on∂Q going from z1 to z2 in a
counter-clockwise direction, for anyz1, z2 ∈ ∂Q. Given
i ∈ {1, . . . , N}, consider the arc(pi−2, pi+2) which contains
the points q(q(pi, pi+2), pi−1), q(q(pi−2, pi), q(pi+2, pi))
and q(q(pi−2, pi), pi+1). Going from pi−2 towards
pi+2 we can define arcs with q(q(pi−2, pi), pi+1)
and q(pi−1(k), pi+1(k)), with q(q(pi, pi+2), pi−1) and
q(pi−1(k), pi+1(k)), and with q(q(pi−2, pi), q(pi+2, pi))
and q(pi−1(k), pi+1(k)) as extremes respectively.
With a slight abuse of notation, let us denote these
arcs by (q(q(pi−2, pi), pi+1), q(pi−1(k), pi+1(k))),
(q(q(pi, pi+2), pi−1), q(pi−1(k), pi+1(k))) and
(q(q(pi−2, pi), q(pi+2, pi)), q(pi−1(k), pi+1(k))). The
set Vi is the union of these three arcs along the contour.
Because of convexity, a nodepi can detect if it belongs
to any of the above defined arcs by knowing the arc
(pi−2, pi+2). Basically, the statementpi /∈ Vi is equivalent
to the following statement: movingpi towards the
positions q(pi−1(k), pi+1(k)), q(q(pi−2, pi), q(pi+2, pi)),
q(q(pi, pi+2), pi−1) andq(q(pi, pi+2), pi−1) requires thatpi

moves in the same counter-clockwise or clockwise direction.
It can be checked thatVi is in fact a connected arc along
the contour∂Q.

Here is our main analysis result in this section. We omit
the proof for space reasons and we refer to a forthcoming
technical report.

Theorem 3.3: The dynamical system (7) is a descent
algorithm forE I .

Remark 3.4: Stationary configurations of (7) are not nec-
essarily critical points ofE I . A nodepi might become stuck
at a position such thatpi ∈ Vi and ti is not parallel to
pi−1pi+1. The reason for this is that eitherpi−1 or pi+1 are
themselves stationary. A set of nodes could be “unlocked”
by running a leader-election algorithm between neighbors
and giving priority of motion to the consensual leader. This
operation respects the descent nature of the algorithm and
guarantees that we reach a desired critical configuration.•

IV. OUTER-POLYGON APPROXIMATION ALGORITHMS

Following [8], one can obtain a geometric characterization
of the configurationsp1, . . . , pN in ∂Q that provide an opti-
mal outer polygon approximation that minimizesEO, when
Q is strictly convex. This characterization is established
through the corresponding unit tangent vectorst1, . . . , tN ,
the anglesξi = ](ti, ti+1), i ∈ {1, . . . , N} (measured in
counter-clockwise order), and assumes that:

(i) `(pi−1)
+ ∩ `(pi+1)

− 6= ∅,
(ii) the tangent atpi forms a triangle, as shown in Figure 5.
We briefly summarize the result in the following.
Theorem 4.1: ([8]) Under conditions (i) and (ii), define

the trianglesTi ≡ AiBiCi whose vertices are given by the
intersectionsBi = `(pi+1)

− ∩ `(pi)
+, Ci = `(pi+1)

− ∩
`(pi−1)

+ andAi = `(pi)
− ∩ `(pi−1)

+. Then, the following
formula holds:

∂

∂pi

EO(Q,PE(p1, . . . , pN )) = −
∂Area(Ti)

∂pi

. (8)

ξi

pi

Bi

Ai

Ci

µi

ξi−1

λi

Ti

pi+1

Q

pi−1

Fig. 5. Assumptions (i) and (ii) on every three nodes,pi−1, pi andpi+1

for formula (8) to be applicable.

Let pi Ai (resp. Bi pi) denote the length of the segment
defined bypi and Ai (resp. bypi and Bi). An expression
for the above partial derivative is given by:

−
∂Area(Ti)

∂ξi

∂ξi

∂pi

= −

(

pi Ai − Bi pi

)

AiBi

2 sin ξi sin ξi−1

∂ξi

∂pi

. (9)

That is, the critical configuration forpi that falls under
assumptions (i) and (ii) must satisfyBi pi = pi Ai. Alterna-
tively, we have the expression:

Bipi =
(pi+1 − pi) · ni+1

ti · ni+1

=
(pi − pi−1) · ni−1

ti · ni−1

= piAi .

In the following, we make use of Theorem 4.1 to design
a control law that asymptotically leads the nodes to a local
minimum configuration forEO. Unlike [8], we handle the
cases where thePE(p1, . . . , pN ) is not necessarily bounded
and where Assumptions (i) and (ii) are not necessarily met.

Lemma 4.2: Let p1 = γ(s1), p2 = γ(s2) ∈ ∂Q, with
s1 < s2. The angleξ = ](t1, t2) can be obtained as:

ξ2 = atan2(t2) − atan2(t1) = atan2(n2) − atan2(n1) ,

where the function atan2: R
2 → R is defined by

atan2(v) = ]((1, 0),v), for v ∈ R
2.

Let QI, QII, QIII and QIV denote the four quadrants in
R

2. Define the setsS1 = (QI ∪QII) \ (∂(QI ∪QII)) and
S2 = QIII ∪QIV. Observe that forv = (v1, v2) ∈ R

2 \ {0},
we can write:

atan2(v) =







arctan
(

v2

v1

)

, if v ∈ S1,

arctan
(

v2

v1

)

+ π, if v ∈ S2.

Therefore we can defineξi = ](ti, ti+1) as the function
ξi : R

2 × R
2 → R such that:

ξi(ti, ti+1) =



































arctan
(

t2
i+1

t1
i+1

)

− arctan
(

t2
i

t1
i

)

,

if ti, ti+1 ∈ S1 or ti, ti+1 ∈ S2 ,

arctan
(

t2
i+1

t1
i+1

)

− arctan
(

t2
i

t1
i

)

+ π,

if ti+1 ∈ S1, ti ∈ S2 or vice-versa.

The functionξi(ti, ti+1) is discontinuous in the regions:

D1 = {(ti, ti+1) ∈ R
2 × R

2 | ti ∈ S1, ti+1 ∈ ∂(QI ∪QII)} ,

D2 = {(ti, ti+1) ∈ R
2 × R

2 | ti ∈ ∂(QI ∪QII), ti+1 ∈ S2} .



Since ξi(ti, ti+1) is discontinuous, its gradient is not well
defined everywhere. However, the gradient admits a contin-
uous extension toR2 × R

2:

∂ξi

∂ti

(ti, ti+1) = (t2i ,−t1i ) , t1, t2 ∈ R
2 .

Let us use this information to define our control law. Denote
by R ≡ [−∞,+∞] and define the following values forµi,
λi ∈ R, i ∈ {1, . . . , N}:

µi =







(pi − pi−1) · ni−1

ti · ni−1

, ti · ni−1 6= 0,

+∞ , otherwise,

λi =







(pi+1 − pi) · ni+1

ti · ni+1

, ti · ni+1 6= 0,

+∞ , otherwise.

The distancesµi andλi are graphically shown in Figure 5.
Observe that becauseQ is strictly convex,µi andλi can not
be both+∞. Now, by means ofλi and µi, we define the
dynamical system:

ṗi = − satv(µi − λi) ti , i ∈ {1, . . . , N}, (10)

where the functionsatv : R → R, defined for some positive
saturation valuev ∈ (0,+∞), is given by:

satv(x) =

{

x , |x| ≤ v
x
|x| v , |x| ≥ v .

We use the convention| ± ∞| = +∞, and the usual
operations inR.

Theorem 4.3: Let the number of nodes N be
N ≥ 3. The control law (10) decreases monotonically
EO(Q,PE(p1, . . . , pN )). A critical point (p∗1, . . . , p

∗
n)

satisfiesλ∗
i = µ∗

i for all i ∈ {1, . . . , N}.

Again, we omit the proof of this result for space reasons and
we refer to a forthcoming technical report.

Simulations of outer-polygon approximation algorithm:
Figure 6 shows the result of the implementation of the outer-
polygon approximation algorithm. The eleven nodes are on
the contour described by (5).

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3
Initial node configuration

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Final node configuration

0 10 20 30 40 50 60 70 80 90 100
14.4

14.6

14.8

15

15.2

15.4

15.6

15.8

16

16.2

16.4
Minimization of polygon area

Fig. 6. Implementation of outer-polygon approximation algorithm.

A. Discrete-time outer-polygon approximation algorithms

It is easy to prove that an algorithm analogous to Algo-
rithm 1 in the previous section guarantees convergence to a
local extremum ofEO. We state the analogous results here
omitting the corresponding proof.
Algorithm 3. Assume each nodepi has knowledge about its
own label numberi ∈ {1, . . . , N}. At each discrete time
instant that we index byk ∈ N we define:

pi(k + 1) =

{

q̄(pi−1(k), pi+1(k)) , if i ≡ k mod N,

pi(k), if i 6= k mod N ,

where q̄(pi−1(k), pi+1(k)) is the closest point topi(k) on
the arc in∂Q from pi−1(k) to pi+1(k) such that its tangent
at ∂Q satisfiesλi = µi.

V. OUTER MINUS INNER POLYGON APPROXIMATION

ALGORITHMS

An alternative cost function that quantifies the approxi-
mation of the boundary of a convex bodyQ, is provided by
the measureES(PE(p1, . . . , pN ),PI(p1, . . . , pN )). Here we
establish new computations of∂ES

∂pi
, i ∈ {1, . . . , N}, when

the outer polygon is well defined. This will lead to a new
type of gradient decent algorithm.

Lemma 5.1: Let pi, pi+1 ∈ ∂Q. Assume thatti+1 × ti 6=
0. Then, the areaA of the triangle formed by the lines
passing throughpi+1−pi, `(pi) and`(pi+1) can be expressed
as:

A =
1

2

(ni · (pi − pi+1))(ni+1 · (pi − pi+1))

(ni × ni+1) · e3

(11)

wheree3 = (0, 0, 1) andni ×ni+1 is interpreted as a vector
in R

3.
Let us denote byA(pi, pi+1,ni,ni+1) ≡ Ai the area (11)

corresponding topi, pi+1. We can write our cost function as

ES(PE(p1, . . . , pN ), PI(p1, . . . , pN ))

=
N

∑

i=1

A(pi, pi+1,ni,ni+1).



If we considerpi, ni, as functions depending on the param-
eters ∈ [0, 1], we have that

∂ES(PE(p1, . . . , pN ), PI(p1, . . . , pN ))

∂s
=

∂Ai

∂s
+

∂Ai−1

∂s
,

where we have used the shorthand notationAi, i ∈
{1, . . . , n}. Now for example, we can develop the expression
for ∂Ai−1

∂s
, as follows:

∂Ai−1

∂s
=

∂Ai−1

∂pi

∂pi

∂s
+

∂Ai−1

∂ni

∂ni

∂s
.

On the other hand, the Frenet-Serret equations imply

d t

d s |s0

= κ(s0)n(s0) ,
dn

d s |s0

= κ(s0)t(s0) ,

where t and n are tangent and normal vectors such that
t×n points towards the reader. Therefore, the expression in
the partial derivative ofAi−1 admits the following rewriting:

∂Ai

∂s
=

[

∂Ai

∂pi

− κ(s)
∂Ai

∂ni

]

ti .

In the following we include the explicit expressions for
∂Ai−1

∂pi

and
∂Ai−1

∂ni

. Let us use the notations:

∂Ai−1

∂pi

=

[

∂Ai−1

∂xi

,
∂Ai−1

∂yi

]

,
∂Ai−1

∂ni

=

[

∂Ai−1

∂n1
i

,
∂Ai−1

∂n2
i

]

.

Then, one can compute that:

∂Ai−1

∂xi

=
(pi − pi−1) · ( 2n1

i−1n
1
i , ni−1 × n

+

i )

2(ni−1 × n
+

i )
,

∂Ai−1

∂yi

=
(pi − pi−1)(ni−1 × n

+

i , 2n1
i−1n

1
i )

2(ni−1 × n
+

i )
,

∂Ai−1

∂n1
i

=
n2

i (ni−1 · (pi − pi−1)
2)

2(ni−1 × n
+

i )2
,

∂Ai−1

∂n2
i

=
n1

i (ni−1 · (pi − pi−1)
2)

2(ni−1 × n
+

i )
,

whereni−1 × n
+

i = n1
i−1n

2
i + n1

i n
2
i−1. To summarize, the

gradient control law for each node is:

−ṗi =
∂Ai−1

∂pi

+
∂Ai

∂pi

− k(si)

[

∂Ai−1

∂ni

+
∂Ai

∂ni

]

.

Simulations for the inner/outer polygon approximation:
Figure 7 show the results of inner/outer polygon approxima-
tion. The eleven nodes are on the contour described by (5).
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Fig. 7. Implementation of inner/outer-polygon approximationalgorithm

VI. CONCLUSIONS

We have discussed various geometric optimization prob-
lems and corresponding gradient flows. Future works will
focus on nonsmooth contours such as polygons, non-convex
sets, and more general algorithms for optimal interpolation
of boundaries.
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