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Motion coordination is an extraordinary phenomenon in biological systems such as schools of fish and
serves as a remarkable tool for man-made groups of robotic vehicles and active sensors. Although each
individual agent has no global knowledge about the group as a whole or about the surrounding environment,
complex coordinated behaviors emerge from local interactions. From a scientific point of view, the study of
motion coordination poses novel challenges for systems and control theory. A comprehensive understanding
of this phenomenon requires the joint ambitious study of mobility, communication, computation, and sensing
aspects.

In this brief document, we review some of our recent work on models and algorithms for coordinating the
motion of multi-agent networks. In Section 1, we discuss models and classifications for multi-agent networks,
i.e., groups of robotic agents that can sense, communicate and take local control actions. For these networks,
we introduce basic notions of communication and control algorithms, coordination tasks and time complexity.
Earlier efforts in this direction are documented in [1, 2]; our treatment is influenced by [3, 4] and presented
in detail in [5].

In Section 2, we discuss various basic algorithms for (i) rendezvous at a point and (ii) deployment over
a given region. The proposed control and communication algorithms achieve these various coordination
objectives requiring only spatially-distributed information or, in other words, single-hop communication.
These rendezvous and deployment scenarios are treated extensively in [6, 7] and in [8, 9, 10], respectively.
Early efforts on related problems include [11, 12]. The proposed models and examples shed some light on
a novel class of control problems with insightful connections to the disciplines of distributed algorithms,
geometric optimization, and algorithmic robotics.

1 Robotic networks and complexity

The global behavior of a robotic network arises from the combination of the local actions taken by its
members. Each agent in the network can perform a few basic tasks such as sensing, communicating, processing
information and moving according to it. The many ways in which these capabilities can be integrated make
a robotic network a versatile and, at the same time, complex system. To understand the trade-offs between
performance, reliability and costs, it seems appropriate to propose a modeling framework where the execution
of different coordination algorithms can be appropriately formalized, analyzed and compared.

We consider uniform networks of robotic agents defined by a tuple S = (I,A, Ecmm) consisting of a set
of unique identifiers I = {1, . . . , N}, a collection of control systems A = {A[i]}i∈I , with A[i] = (X,U,X0, f),
and a map Ecmm from XN to the subsets of I × I called the communication edge map. Here, (X,U,X0, f) is
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a control system with state space X ⊂ R
d, input space U , set of allowable initial states X0 ⊂ X, and system

dynamics f : X × U → X. An edge between two identifiers in Ecmm implies the ability of the corresponding
two agents to exchange messages. A control and communication law for S consists of the sets:

1. T = {t`}`∈N ⊂ R̄+, an increasing sequence of time instants, called communication schedule;

2. L, called the communication language, whose elements are called messages;

3. W , set of values of some logic variables w[i] ∈ W , i ∈ I, and W0 ⊆ W , subset of allowable initial values.
These sets correspond to the capability of agents to allocate additional variables and store sensor or
communication data;

and the maps:

4. msg: T × X × W × I → L, called message-generation function;

5. stf : T × W × LN → W , called state-transition function;

6. ctl : R̄+ × X × X × W × LN → U , called control function.

To implement a control and communication law each agent performs the following sequence or cycle of
actions. At each instant t` ∈ T, each agent i communicates to each agent j such that (i, j) belongs to
Ecmm(x[1], . . . , x[N ]). Each agent i sends a message computed by applying the message-generation function
to the current values of t`, x[i] and w[i]. After a negligible period of time, agent i resets the value of its
logic variables w[i] by applying the state-transition function to the current value of w[i], and to the messages
y[i](t`) received at t`. Between communication instants, i.e., for t ∈ [t`, t`+1), agent i applies a control action
computed by applying the control function to its state at the last sample time x[i](t`), the current values of
x[i] and w[i], and to the messages y[i](t`) received at t`.

Some remarks are appropriate. In our present definition, all agents are identical and implement the same
algorithm; in this sense the control and communication law is called uniform (or anonymous). If W = W0 = ∅,
then the control and communication law is static (or memoryless) and no state-transition function is defined.
It is also possible for a law to be time-independent if the three relevant maps do not depend on time. Finally,
let us also remark that this is a synchronous model in which all agents share a common clock.

Next, we establish the notion of coordination task and of task achievement by a robotic network. A
(static) coordination task for a network S is a map T : XN → {true, false}. Additionally, let CC be a
control and communication law for S. We say that CC achieves the task T if for all initial conditions

x
[i]
0 ∈ X0, the corresponding network evolution t 7→ x(t) has the property that there exists T ∈ R+ such that

T(x(t)) = true for t ≥ T .
In control-theoretic terms, achieving a task means establishing a convergence or stability result. Beside

this key objective, one might be interested in efficiency as measured by required communication service,
required control energy or by speed of completion. We focus on the latter notion. The time complexity to
achieve T with CC is

TC(T, CC) = sup
{

TC(T, CC , x0) | x0 ∈ XN
0

}

,

where TC(T, CC , x0) = inf {` | T(x(tk)) = true , ∀k ≥ `}, and where t 7→ (x(t)) is the evolution of (S, CC)
from x0. The time complexity of T is

TC(T) = inf {TC(T, CC)| CC achieves T} .

Some ideas on how to define meaningful notions of communication complexity are discussed in [5]. In the
following discussion, we describe certain coordination algorithms, which have been cast into this modeling
framework and whose time complexity properties have been analyzed.
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2 Example algorithms and tasks

Key problems in motion coordination include the design of strategies for flocking, motion planning, collision
avoidance and others. Numerous such problems remain interesting open challenges as of today. For example,
it is still not clear how to prescribe the agents’ motion in such a way as to achieve a generic prescribed
geometric pattern; note that certain impossibility results are known [1]. Typically, coordination objectives
are characterized via appropriate utility functions. We illustrate our approach by discussing two basic types
of problems: rendezvous and deployment.

Aggregation algorithms

The rendezvous objective (also referred to as the gathering problem) is to achieve agreement over the location
of the agents, that is, to steer each agent to a common location. An early reference on this problem is [11]. We
consider two scenarios which differ in the agents’ sensing/communication capabilities and the environment
to which the agents belong. First [6], we consider the problem of rendezvous for agents equipped with
range-limited communication in obstacle-free environments. In this case, each agent is capable of sensing its
position in the Euclidean space R

d and can communicate it to any other robot within a given distance r. This
communication service is modeled by the r-disk graph, in which two agents are neighbors if and only if their
Euclidean distance is less than or equal to r. Second [7], we consider visually-guided agents. Here the agents
are assumed to belong to a nonconvex simple polygonal environment Q. Each agent can sense within line-of
sight any other agent as well as sense the distance to the boundary of the environment. The relationship
between the agents can be characterized by the so-called visibility graph: two agents are neighbors if and
only if they are mutually visible to each other.

In both scenarios, the rendezvous problem cannot be solved with distributed information unless the
agents’ initial positions form a connected sensing/communication graph. Arguably, a good property of any
rendezvous algorithm is that of maintaining connectivity between agents. This connectivity-maintenance
objective is interesting on its own. It turns out that this objective can be achieved through local constraints
on the agents’ motion. Motion constraint sets that maintain connectivity are designed in [11, 7] by exploiting
the geometric properties of disk and visibility graphs.

These discussions lead to the following algorithm that solves the rendezvous problems for both communi-
cation scenarios. The agents execute what we shall refer to as the Circumcenter Algorithm; here is an informal
description. Each agent iteratively performs the following tasks:

1: acquire neighbors’ positions

2: compute connectivity constraint set

3: moves toward the circumcenter of the point set comprised of its neighbors and of itself,

while remaining inside the connectivity constraint set.

One can prove that, under technical conditions, the algorithm does achieve the rendezvous task in both
scenarios; see [6, 7]. Additionally, when d = 1, it can be shown that the time complexity of this algorithm is
Θ(N); see [5].

Deployment algorithms

The problem of deploying a group of agents over a given region of interest can be tackled with the following
simple heuristic. Each agent iteratively performs the following tasks:

1: acquire neighbors’ positions

2: compute own dominance region

3: move towards the center of own dominance region

This short description can be made accurate by specifying what notions of dominance region and of center
are to be adopted. In what follows we mention two examples and refer to [8, 9, 10] for more details.

First, we consider the area-coverage deployment problem in a convex polygonal environment. The objective
is to maximize the area within close range of the mobile nodes. This models a scenario in which the nodes
are equipped with some sensors that take measurements of some physical quantity in the environment, e.g.,
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temperature or concentration. Assume that certain regions in the environment are more important than
others and describe this by a density function φ. This problems leads to the coverage performance metric

Have(p1, . . . , pN ) =

∫

Q

min
i∈{1,...,N}

f(‖q − pi‖)φ(q)dq =

N
∑

i=1

∫

Vi

f(‖q − pi‖)φ(q)dq.

Here pi is the position of the ith node, f measures the performance of an individual sensor, and {V1, . . . , VN}
is the Voronoi partition of the nodes {p1, . . . , pN}. If we assume that each node obeys a first order dynam-
ical behavior, then a simple gradient scheme can be easily implemented in a spatially-distributed manner.
Following the gradient of Have corresponds, in the previous algorithm, to defining (1) the dominance regions
to be the Voronoi cells generated by the agents, and (2) the center of a region to be the centroid of the
region (if f(x) = x2). Because the closed-loop system is a gradient flow for the cost function, performance is
locally, continuously optimized. As a special case, when the environment is a segment and φ = 1, the time
complexity of the algorithm can be shown to be O(N3 log(Nε−1)), where ε is a threshold value below which
we consider the task accomplished; see [5].

Second, we consider the problem of deploying to maximize the likelihood of detecting a source. For example,
consider devices equipped with acoustic sensors attempting to detect a sound-source (or, similarly, antennas
detecting RF signals, or chemical sensors localizing a pollutant source). For a variety of criteria, when the
source emits a known signal and the noise is Gaussian, we know that the optimal detection algorithm involves
a matched filter, that detection performance is a function of signal-to-noise-ratio, and, in turn, that signal-to-
noise ratio is inversely proportional to the sensor-source distance. In this case, the appropriate cost function
is

Hworst(p1, . . . , pN ) = max
q∈Q

min
i∈{1,...,N}

f(‖q − pi‖) = max
q∈Vi

f(‖q − pi‖),

and a greedy motion coordination algorithm is for each node to move toward the circumcenter of its Voronoi
cell. A detailed analysis [10] shows that the detection likelihood is inversely proportional to the circumradius
of each node’s Voronoi cell, and that, if the nodes follow this algorithm, then the detection likelihood increases
monotonically as a function of time.
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