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Abstract— In this paper we propose and analyze an algorithm of Unmanned Air Vehicles (UAVs) to optimally place some
to monitor an environmental boundary with mobile sensors. interpolation points on the boundary of a region of interest
The objective is to optimally approximate the boundary with e poundary can then be reconstructed by linear interpola-

a polygon. The mobile sensors rely only on sensed local . . . ; .
information to position some interpolation points and define an tion of the interpolation points. We assume that (i) the UAVs

approximating polygon. We design an algorithm that distributes  do not have a priori knowledge of the boundary, (i) they
the vertices of the approximating polygon uniformly along the are equipped with a camera sensor and with algorithms to

boundary. The notion of uniform placement relies on a metric  estimate the tangent and curvature of the boundary, aha (iii
inspired by known results on approximation of convex bodies. - \yireless communication network provides the UAVs with the
The algorithm is provably convergent for static boundaries and . . - .
also for slowly-moving boundaries because of certain input-to- ability to download and upload the |nt<_arpolat|on pointsiro
state stability properties. and to a data center. The algorithm is provably convergent
for static boundaries and also for slowly-moving boundarie
|. INTRODUCTION because of certain input-to-state stability properties.
Recently much attention has been given to the problem of The novelty of this paper is in the criterion used to
boundary estimation and tracking by means of robotic netptimally place interpolation points in such a way that they
works. The common goal is to design a distributed algorithrare uniformly distributed according to a curvature-wegght
that allows a limited number of mobile sensors to detect théistance function defined along the boundary. The curvature
boundary of a region of interest and estimate it as it evolveseighted distance function was inspired by the literature o
Boundary estimation and tracking is useful is numerous apptimal approximation of convex bodies by polygons e.g.,
plications such as detection of harmful algae bloom [1], [2]see the survey [7], [8].
oil spill [3], and fire containment [4], [5]. In [1], Bertoza#t The convergence of the algorithm is proven using tools
al. adopt the so called “snake algorithm” (from the computefrom the theory of consensus algorithms. An incomplete
vision literature) to detect and track the boundary of hatmf list of references includes [9], [10], and [11]. The effoft o
algae bloom. The agents are equipped with a chemical sensee¢ authors is in proving that the infinite product of some
that is able to measure concentration gradient and with raatrices (that belong to a finite set, [9], or infinite set,][10
communication system that is able to exchange informatign1]) converges to a rank-one matrix.
with a data fusion center. In [2], Kemg al. suggest an The paper is organized as follows. In Section Il we review
algorithm that requires only a concentration sensor: théome mathematical literature on approximation theory and
agents repeatedly cross the region boundary using a bamgnvex optimization. In Section Il we introduce an alglonit
bang angular velocity controller. In [3] the authors use %o jointly update an environment boundary and deploy the
random coverage controller, a collision avoidance colerol UAVs uniformly along the boundary estimate. In Section IV
and a bang-bang angular velocity controller to detect angle present our final concluding remarks.
surround an oil spill. In [5] Casbeegt al. describe an
algorithm that allows LASE (Low Altitude Short Endurance)!l. BASIC IDEAS IN APPROXIMATION OF CONVEX BODIES
Unmanned Vehicles to closely monitor the boundary of a Here we review some known useful results from approx-
fire. The LASEs have an infrared camera and a short rang@ation of strictly convex bodies, e.g., see the extensive
communication device to exchange information with othegyryeys [8], [7]. In the standard literature on convex bsdie
agents and to download the information collected onto thgyproximations, the symmetric differendé between two

base station. A different approach is considered by Zhadg agompact, and strictly convex bodi€% B € R? is defined
Leonard in [6]. A formation of four robots tracks at unitaryby

speed the level sets of a field. Their relative position ckeang §5(C, B) = u(C' U B) — u(C N B)
so that they optimally measure the gradient and estimate the ’ ’
curvature of the field in the center of the formation. where 1 is the Lebesque measure d?. If @ is the

In this paper we propose an algorithm to estimate anldody to be approximated by an inscribeédrertices polygon
reconstruct the boundary of a region. We require a group,, then §°(Q, P,) = u(Q) — u(P,). For n sufficiently



large, McLure and Vitale [12] show thai®(Q,P’) ~ agents have two objectives: (i) update the interpolatidantpo
% 2 p(9)2/3d9)3 _ % faQ H(g)l/fidg)g where such that they are uniformly distributed alofig) according
12n2 0 n2 ) . . oy - .
P is the best approximating polygon with vertices in- tq the estimated pseudo-dlstanf},;., (i) be equally Q|s—
scribed inQ, AQ is the boundary of), p andsk — p—! are the tributed qlong the bour_ldary according to arc length digtanc
curvature radius and curvature of the boundary, respd:;z;tiveU To achieve tFr)lese objictlves we proEose a n%m'EATE
¢ is the arc length alon@@, andé is the angular position .PDdATE ?,\IIID UFT;;J'T LGﬁR'THM U ?t can the summa-
in a polar variable parametrization 6f). To construct the rized as Toflows. /Aler reaching a poin .O?Q’ ef Sensing
best approximating polygo®” for a strictly convex body, agents_move along@ to_(_:ollect the following data: (i) points
McLure and Vitale in [12] suggest theethod of empirical ~ P€longing 00Q, and (i) tangent and curvature & at
distributions. According to this method, the positiorts those points. Using these measurements and communicating
! ' with the data center, they complete the following three step

i € {1,...,n}, of the n vertices alongd@ should be . ' L . .
uniformly distributed according &S (i) — fe”l 0(0)2/3d6 In the first step, they determine which interpolation point
0 ’ ; they are closer to and then project it onto the measured

Inter_p_olatln_g p_olygons computed agcordlng to the method foundary. In the second step, they adjust, so that it is
empirical distributions converge t8} asn — +oc.

For smooth non-convex bodies with a small number o?t the center of its Voronoi cell alongQ. In the third step,
. o o they estimate the arc length of distance between them and
saddle points, the method of empirical distributions als

. : o their immediate clockwise and counterclockwise neighbors
yields a nearly optimal distribution as — +oo because of and use this information to speed up or slow down. The first
the local convexity of the body. We show how to do this i P P '

. . "wo steps have the combined effect of updating the local
what followg. S";Ce the curvatur(; radlga;nay:e .unbouénc.jed estimates of the boundary. Thanks to the third step, thetagen
at some point of a non-convgx ounaary, t. € integral(7) distribute themselves uniformly along the boundary.
may be unbounded for some We avoid this problem by In what follows we present the §IMATE UPDATE AND
considering the following general notion of distance alang PURSUIT ALGORITHM in some detail and we analyze its
boundary. Forx € [0, 1], we define the pseudo-distanéi, stability
between vertices$i, i + 1) by: D, (i) = )\fé"“ K(0)Y/3dl + '

(1=A)(fir1—£;). This definition is inspired by the fact that, o' proplem setup and notation

for convex bodies, we havg,fo%r p(0)* = [oqr(0)dL,
see [8]. Introducing the convex combination with arc lengt
we guarantee thab, (i) is non-zero whenever the vertices
andi: + 1 do not coincide.

h Let|lv[ denote the Euclidean norm ofc R™. If v is a
scalar, therjv| denotes its absolute value. LBt be the set
of non negative real numbers allg = NU{0}. Let 1 be the
column vector ifR™ with all entries equal td. Let 9@ be the

I1l. BOUNDARY ESTIMATION ALGORITHM boundary of a connected, and possibly non-convex(sét

) ) - R% Lety: Ry x[0,1] — R? be a parametric representation
In this section we propose and analyze an algorithig¢ e time-varying boundary so that, at fixed R, and
that uniformly distributes the interpolation accordingth® ¢, oy o € [0,1], ~(t, s) describes the boundary at tine

pseudo-distanc®, introduced in the previous section. We assume ’tha'lgygt,’s) — Y(t,s) £ 0 for all s € [0, 1]

We suppose that the sensing agents can locally estimac{ﬁd for allt, thaw?i,o) — ~(1,1), and thats increases as
the tangent and the curvature @@. For the case of UAVS 0 yaverse the curve in the counterclockwise direction. We
surveilling a visible boundary, this information could bealso assume that(t, s) is smooth with respect te and ¢
provided by a camera and an edge detection algorithm. Alid that the length of the bounda8 is upperbounded

O]Ehe;] p0§S|l?I|Ity Is to sulbst;':]ute everyt agenI;[ W('Sth t?] fonm?k: and lowerbounded uniformly in. We define the curvature
of chemical sensors. In the recent work [6] the authors "/ "" "5 " f'the curvey by: a(s) — 11/ ()l

propose an optimal formation of four agents to estimate’ RLOLE

the gradient and the curvature of a given level set in a “€t P1:---:Pnp € R* be the locations ofup ordered

field. We assume that an initial estimate of the boundary ig\terpolatlon points. IT?tPi(t)’ with < {1, na} and.

available so that the interpolation points can be distetut ' > 3na, be t_he posmc_ms of_the sensing ager_1ts ata given

(possibly non uniformly) on the boundary and the estimate e. Both the mterpola_tlon points and the sensing agenets a
N ordered counterclockwise. We assume that the sensingsagent

pseudo-distancé, between any two neighbors is known. terclockwi | the bound ith d
We assume also that every agent is equipped with wirele§PVE counterciockwise ajong the boundary, with speg :
We assume that each agent maintains some variables in

communication devices to communicate with a data fusion X

center. its memory that are described as follows. The state of the
To interpolate the unknown slowly time-varying boundarysemsmg agentis:

0Q, we mtrpduce a counterclockwise ordereq set of inter- {NOW!, LASTARC!, BUFFERARC, NEXTBUFFER },

polation points{pi,...,pn,} that are the vertices of the

interpolating polygon. These are virtual positions stoied where the first variable is a counter, and the other three are a

a data fusion center together with the tangenv@f at all  discrete representation of the subset¢f the sensing agent

interpolation points, and the pseudo-distance between aigy/flying over. For simplicity we will omit the upperscriptdn

interpolation point and its counterclockwise neighboreThlowerscripti and we will introduce them when necessary.



Let Now € {1,...,njp} be the next point to be projected To calculate the Voronoi celVyow—1 along 0Q of the
ontod(Q. Let©® = LASTARCUBUFFERARQJNEXTBUFFERC interpolation pointpyow_1, We first need to projegtyow 0N
JQ be the set of observations collected by the sensing agei). Let o; be the projection opyow, defined by:

up to timet while going frompyow_o towardsp along . _
9Q defined as follows: now How Prow = 05 = argmlnojeBUFFERARcH(Oj — Prow) " trowll;

where tyow = % is the unit-length tangent vector
LASTARC = {o01,...,01}, at 0Q(t) at the interpolation pointyoy last time the
BUFFERARC= {0711,...,004+M}, (1) interpolation point was updated. In other words the progect

of pyow at timet* on AQ(¢T) is the intersection 0HQ(t™)
with the normal vector to0Q(t~) at pyow at time ¢—.
where L, M € N, T € Ny, 01 = pnow—2, 0L = Prnow—1,  This projection is univocally defined and has the following
andor, 1 = P(t). The following figure illustrates these properties. 1f0Q is time-invariant themyow = prow. if 0Q
notation and quantities. The solid line represeidsas seen is slowly time-varying therp;,, is close to the orthogonal
by the agent, while the dashed line represei9 as seen by projection ofpyoy 0nto AQ(¢).

the agent—1. The sensing agent is represented by a triangle. We can now define the setowARC and updateBUFFER-
The white circles represent the interpolation points befbe  ARC as follows:NOWARC = {0y, 1, ..., 05}, BUFFERARC=
agent updates them, whereas the black circles represent rFERARC\ {or41,...,05}. In the following figure, the
interpolation points after the agent has updated them. Tlagent (i) projects the interpolation poiptow 0nto 9Q(t),
square represents the last point belonginggto'FERARC (i) update the state variableUFFERARC and generate the
The first and the last point of the three data structuregriableNOWARC.

LASTARC, BUFFERARG and NEXTBUFFER are shown, the Prow ggow
others are omitted for clarity.

NEXTBUFFER= {OL{ M +1,- -+ 0L+ M+T}5

_ T Prowtl
Prnow-2 = 01

Prow

Prow+1

Pnow-1 = 0L

current agel Pnow-2 = 01

""" ‘ LASTARC | NOWARC ‘ ‘ ‘
P openir BUFFERARC

Prowy = 01 NEXTBUFFER
| _ | |

previous agent

‘ LASTARC ‘ BUFFERARC ‘ NEXTBLJFFER

Using the collected data, the sensing agents can numeri-
Before defining the pointz. s and the index\/ we intro-  cally evaluate the pseudo-distandes(puow-2, Pvow-1) and

duce the set of estimated tangent vecto8@y~': © — R2,  Da(Pnow—1,Pnow) Detweenpyow—2 and pyow-1, and be-
and the set of estimated curvature@®, #: © — R,. In  tWeenpyow—1 andpyow. Recall thapyow—2 = o1, pyow-1 =

other wordsy/(0;) and#(o;) are estimated tangent vectoroz- Let thenViow 1 = {or, ..., 0.}, Whereo, € LASTARC
and curvature at the point;, for j € {1,...,L+ M +T}. ando, € NOWARC are implicitly defined as:
We can now defineD,: O x O — R, as the discretized . N ﬁ/\(ol or)

_di ior i Dy(01,00) = Dy(0g,0) = ————~
pseudo-distance between two observatiopsind oy, with 01, 0¢ x0¢; 0L B) )
h,je{l,...,L+M+T}, andh > j. We shall characterize R R ﬁA(OL o)
implicitly the observatioro 5, as follows: Dy (or,04) = Dx(0y,05) = ; )95

Dix(0op41,00401) = QE)T (Prow—1, Prow), The pointoy is the midpoint betweepyow—_2 andpyow—1,

R while o, is the midpoint betweepyow—1 andpyow after the
where D (pxow—1, Pnvow) iS the estimated pseudo-distancéatter was projected o@Q. We can implicitly define the
betweenpuow_1 and pyow When an agent updated for the Voronoi centerCyow—1 := oj; € LASTARC U NOWARC by:

last timepyow. This information is assumed to be stored in . Da(o1,01) + Dx(or,0)
the data center. Dx(o¢,0) = Da(og, 0u) = 1 =

The setsLASTARC, and BUFFERARC Will be used by the
sensing agents to define the projection 0@ of pow In the following figure, the agent (i) calculates the Voronoi
and the Voronoi centeCyow-1 Of the interpolation point cell Vjq,_1, and (i) updates the interpolation pointow_1
prnow—1. We recall that the positions,... o441 are  to lie optimally betweemyow—_» and pyow-
points on the plane that the sensing agent has visited in .
previous instants while moving along the boundag, i.e., ﬁNﬁW
o; = P(r) for somer < ¢t and for allj € {1,...,L + o . e Prowi1
M +T}. We can say that the points,...,or 47 are a o ; > °
fine discretization of the portion a¥@ from pyow—_o to the B Prow-1 = Ok

. . . . . NOoW-1

current position of the sensing ageRt while the indices | m"\ﬂ L |
Prnow—2, Prow—1, @Ndpyow are a coarser discretization of the " tasmre T woware 1

sSame arc. NEXTBUFFER



The sensing agent can now update once more the statéJGa"}?i ES;'MATlEéJ_PtD_ng At“r']D F_’UtRSU'thA,LGOR_'TtHM g
VariabIeS as fO||0WS: oal: nirormly distripute e/l\n erpolation points accoraing

to the pseudo-distanc®,, and the sensing agents
according to the arc length.

NOW™ = Now + 1, Data: Location of the interpolation points, unitary tangen
+ _ (- ~ vector atdQ at those points, last value @, between
LASTARC " = {Ok’ ’03}’ any two consecutive interpolation points, local tangent
BUFFERARC = {0j,1,...,04}, and local curvature of the boundafy.
n Requires: At tg = 0 p; lie on 9Q and D, between any two
NEXTBUFFER" = {0q+17 s 70L+M+T}7 interpolation points is known.

where o, € BUFFERARC U NEXTBUFFER is implicitly Ass_u_me data is as stated in (1). At every sensing instant, deateat

defined qb B 9~ It position P;(t) = P(t) performs:

Ae Ine V. A(Oj+17 Og\)_ = A (pNOW+717pNOW+)' 1 if ﬁ,\(oL_H,P(t)) > gﬁ; (Pnow—1, Pnow), then

D, (05+1, or+M+1) < 2D} (Pnow+—15 Prnow+) then 2. update observationsEXTBUFFERT := NEXTBUFFERU {P(t)},
3: else

BUFFERARC™ = BUFFERARCU NEXTBUFFER 4:  update observatiorBUFFERARCT := BUFFERARCU {P(t)}.
5: end if

NEXTBUFFER" = (. 6: estimatey’ (P(t)), R(P(t)), and D (oL ari1, P(t)).

) . ) | 70 if NEXTBUFFER# 0 andpygyi 7 Prowi+1—o then

The following figure shows the state variables update as juss:

described, in the case thREXTBUFFER = ().

update the interpolation poipkow by projecting it ontodQ:

PN+OW =05, 0; = argminoj eaurrerarc [l (05 — Prow) - trowlls

9: update the sesUFFERARC and generate the S&OWARC by:

BUFFERARC' := BUFFERARC\ {or11, .-, o;},

Pnow-2 = 01

| | | NOWARCT :={oL41,...,05},

‘ LASTARC ‘ BUFFERARC ‘ ~ +
10:  calculateCnow—1 := of, and updatenow—1 bY prow_1 = 0%

This completes our description of the estimate up-l —gommunicate with data center: tranSmitow—1, prow,
date algorithm and we now focus on the pursuit ob 7 (Pnow—1),  Dy(Prow—2, pugu-1). Da(wow—1,pnow) and
. . 9 . .. . p receivepnow+1, ¥ (Pnow+1), Dx(Pnow, Pnow+1)s

jective. To uniformly distribute the sensing agents alongi2: update the counterow and the setASTARC by

the boundaryd@ according to arc length, we will use
the following update law for their velocitiesv;(t) =

T(p p TP ) ; 13:  update the seBUFFERARC and NEXTBUFFER as follows:
o + K(L(P;, i) = L(Pi1, B)), with k,vo > 0 and |70 Jo, € BUFFERARCU NEXTBUFFER S.t. D} (0j,1,04) >

NOW™T := NOw + 1, LASTARCT := {oz, .. 505},

Now™ ~
L(Pp, Pp) = Zj:NOW”Jrl(”pj—l —p;ll), for all n,m € 2D (Pyow+ —1> Prowt ), then
{1,...,na}. Here, recall thapyow , Pxown+1, - - - , Pnowm are | 15:
the mtergollatlon pomts separating agerand agenh_a, with BUFFERARCY := {0541, .., 04},
n < m. L is the estimated arc length of the portion @ .
NEXTBUFFER" := {0g+41,...,00L4+M+T},

that has to be traversed to go from the sensing agéatthe

sensing agent.. The sensing agents have only local informaf16:  else

tion of 0Q but still they have to estimate the distance, along

0@, from their clockwise and counterclockwise neighbors

in order to calculate their speed. The estimatg’,, ) NEXTBUFFER™ := 0.

?s obtaingd by _the approximating polygon fprmed by th_elg: end if

interpolation points. In practice any agent will speed up if19: end if _ . - -

it is closer to the agent behind it, and slow down if closer20: communicate withP;i; and Pi_;: receive NOW' ™!, NOW'™ |, |
. . . . . . transmit Now”. Communicate with the data center: receive the|

to the agent in front of it. With a saturation-like function:|  terpolation points with id betweerowi~1 and Nowi+1.

sat(v;(t)) = max{vmin, min{v;(t), Umax}}, we will impose |21: calculatev;(t): v;(t) = sat(vo + k(L(P;, Pi+1) — L(Pi—1, P;))).

though thatd < vmin < v;(t) < vmax for all ¢.

BUFFERARC! := BUFFERARCU NEXTBUFFER,

35
0

B. Estimate Update and Pursuit Algorithm . ) . .
of the interpolation poinpyow:—; Might not be calculated

In this section we present an algorithm that allows exactly. Letf)(t) andL(t) be the column vectors:
sensing agents to equally distribute thg interpolation
points alongd@, according to the pseudo—distanﬁe\. Also ﬁ(t) _ [ﬁx(m(t) pa(1)), ..
the algorithm uniformly distributes the, sensing agents N ’ ’ R r
along 9Q, according to the arc length. The algorithm is DA(Prip—1 (1), Py (£))s D (P (8), 21(1))] ™
summarized in the following table.

Some steps of the algorithm are affected by noise and
error: i) ’?’ andk are only estimate of the true values,ﬁ)is L(t) = [L(Pl(t)» By(t)),- -,
an approximation of_, iii) the setSLASTARC, BUFFERARG L(Py, _1(t), Py, (t), L(Py, (t), P, (t))}T_
andNEXTBUFFERare discretization of the subset @f) that
agenti is visiting, therefore, the center of the Voronoi cellConsider now the disagreement vectatsk) and JL(t)

M



Initial Config. Final Config.

defined as follows:
- 17D, (k
) = D(k) - =228y @
Nip
T
sL) = L- 20y 3)
Na
note that they are orthogonal to the vector N T

Theorem 1. The evolution of the disagreement vectors
defined by (2) and by (3) under thesEIMATE UPDATE AND o o _ . _
PURSUIT ALGORITHM is input-to-state stable with respectFig: 1. Lh's f'gulre Showtf '”'“3' t;amdhﬁnal Clonf'gura“on affterr]
50 seconds simulation obtaine y the imp ementation of the
to estimation noise and deformation of the bounda®(¢). ESTIMATE UPDATE AND PURSUIT ALGORITHM with 1a — 3,
We omit the proof for lack of space, the interested reader I§ — 30, v, = 1, k = 0.05, A = 109Q is time invariant.
referred to [13]. The sensing agents’ positions are represented by the triangles and
Because of the ISS property we can conclude that ase initialized to be on the boundad. In the last frame also the
long as the errors are small, the stat®s(p;,p; 1) and a@pproximating polygon is shown.

L(P;, P;+1) will be close to the equilibrium of the unper-

max Dy — min D, vs time 12Arc length distances vs time

turbed system, i.e.Dx(pi,pit1) = Da(pit1,pi+2) for all —_ .
ie{1,...,np} and L(P;, Piy1) = L(Pit1, Piy2) for all 25 o
ie{l,...,na}. ’
= 8
C. Smulations e — A
In this section we present results of two different simu- T '
lations obtained with the implementation of thesBMATE %S0 D0 a0 a0 om0 fo 0 a0 a0 o s

UPDATE AND PURSUIT ALGORITHM. In the first simulation

the boundanydQ is time invariant, while in the second is Fig. 2. ESTIMATE UPDATE AND PURSUIT ALGORITHM This plots

refers to the case obQ being time-invariant. In the first plot

time varying. from right it i
ght it is shown the erromax;eq, ..., g} Dx(pi, pit1) —
1) Time-invariant boundary: In this simulation we use minie (1, ..y} Da(pis pis1) VS time. In the second plot we show

na = 3 sensing agents to have an approximation of the no
convex boundarylQ) described by: %e arc length distances between the three sensing agents.

0) = (2 + cos(1070) + 0.5 sin(4x0 CF’S(%G)}
7(0) ( + cos(1070) + 0.5 sin (4 )) {Sm(%@) estimate the arc length using the positions of the intetjomia

The outcome is shown in Figure 1. In order to calculate thef?o'ntS

2) Sowly time-varying boundary: In this simulation we
speeds, the sensing agents wge= 1, andk = 0.05. The g4, '3 sensing agents to have an approximation of the

saturation function for the speed has lower limit, = 0.5 non-convex boundaryQ)(t) described by:
and upper limitvmax = 2. The number of interpolation points

is nip = 30, while A = 19, The simulation time i$0 seconds (6, t) = <2 _Ey (2 + cos(10m6) + Sln(“e))i) {g?s((g;rg))] ,
and the sampling tim@®.01 seconds. The plots in Figure 1 t 2
corresponds to the positions of the interpolation pointd an with 6 € [0,1), t; = 200 seconds as shown in Figure 3.
the sensing agents at the initial and final configurationg Thrhe values ofvy, k, vmin, vmax and A are respectively1,
interpolation pointgyow: for i € {1,...,n,} coincide with  0.05, 0.5, 2, and%. The simulation time i200 seconds, the
the positions of the sensing agents. The other interpolaticampling tim&).01 seconds. The plots in Figure 3 correspond
points are randomly distributed on the boundary. In the la$0 the positions of the interpolation points and the sensing
frame one can also see the approximating polygon and hagents at four different instants= 0, ¢ = 50, ¢t = 100, and
close it is to the actual boundary. t = 200 seconds respectively. The algorithm is initialized
Since the pseudo-distand®, and the arc lengtli. can be with the agents on the boundary. The interpolation points
calculated after the simulation is completed, we iiseand  pyow: coincide with the positions of the sensing agents. The
L instead of their estimat®, andZ to show the algorithm other interpolation points are randomly distributed. le kst
performance. Figure 2 does indeed show the convergentame we can also see the approximating polygon and how
of the algorithm. In the first plot we can see that theclose to the actual boundary is. From the frames in Figure 3
consensus on the pseudo-distaftbgp;, p;+1), between any it is clear that the sensing agents can adapf@schanges.
two consecutive interpolation points, is reached. The fiiyan  The pseudo-distanc®, is well defined only if the in-
maxie{lwnip}DA(pi,le) — minie{lwnip}DA(pi,piH) terpolation points belong to the boundafy). Since the
does not vanish because of numerical errors in the estimdteundary changes with time, the interpolation points are
D,. The second plot shows how the agents get uniformlgnly for some time on the boundary after a sensing agents
spaced along the boundary. The steady state values of tm&s projected them. So, we consider as pseudo-distance
arc length distances oscillates arouhd which is the target between any two consecutive interpolation points in a @erta
value. The noise is again due to the fact that the agents ortljne  the pseudo-distance between their radial projection




Initial Configuration

t = 50 sec

25 2 -15 -1 05 o0 05 1 15 2 25

t = 100 sec

Final Configuration

estimate of the pseudo-distand®,. The position of the
interpolation points is stored in a data fusion center and
is available on-demand to the agents. The vertices of the
approximating polygon are the interpolation point positio
The algorithm is proven to converge even if the boundary
is slowly-moving. Tools from consensus analysis allow us
to prove the correctness of the algorithm. The existence
of a central data fusion center is not a critical ingredient
in the design of the algorithm. Indeed, one can envision
the following equivalent scenario: the agents communicate
the updated interpolation points to their clockwise nemhb
instead of exchanging them with the data fusion center. In
such a distributed setting, a stationary user could reoactst
the approximating polygon by communicating to all the
agents as they pass by a fixed spatial location. Future asear

will

Fig. 3. This figure shows four different instants of th@0 seconds
simulation obtained by implementing thesEMATE UPDATE AND
PURSUIT ALGORITHM with na = 3, njp = 30, vo = 1, k =

explore this idea more in detail.
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(1]
max Dy — min Dy Vs time Arc length distances vs time
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Fig. 4. ESTIMATE UPDATE AND PURSUIT ALGORITHM. [4]
This figure refers to the case ofQ being slowly time-
varying. In the first plot from the right we shown the er- [5]

ror maxXe(1,...,np} DA(Pi; Pit1) —minieq, . npy Da(pis pit1) VS
time. The second plot shows the arc length distances between the
three sensing agents.

(6]

onto 9Q(7). The disagreement in the placement of the[7
interpolation points, wher®, is redefined as just explained,
is shown in the first plot of Figure 4.

The arc length between any two consecutive sensinésl
agents is shown in the second plot of Figure 4. The three
distances increase with time becadg@qQ), the total length  [°]
of the boundary, increases with time.

[10]
IV. CONCLUSIONS

In this paper we have addressed the problem of boundary
estimation and tracking by means of robotic sensors. We hafié]
presented an algorithm to position interpolation pointgl
the boundary in such a way as to obtain an approximatingy)
polygon with some optimality features.

The mobile agents are equipped with sensors that Py
vide local information on the tangent and curvature of the
boundary. The algorithm allows the robots to place a set
of interpolation points uniformly spaced according to the
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