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Abstract— In this paper we propose and analyze an algorithm
to monitor an environmental boundary with mobile sensors.
The objective is to optimally approximate the boundary with
a polygon. The mobile sensors rely only on sensed local
information to position some interpolation points and define an
approximating polygon. We design an algorithm that distributes
the vertices of the approximating polygon uniformly along the
boundary. The notion of uniform placement relies on a metric
inspired by known results on approximation of convex bodies.
The algorithm is provably convergent for static boundaries and
also for slowly-moving boundaries because of certain input-to-
state stability properties.

I. I NTRODUCTION

Recently much attention has been given to the problem of
boundary estimation and tracking by means of robotic net-
works. The common goal is to design a distributed algorithm
that allows a limited number of mobile sensors to detect the
boundary of a region of interest and estimate it as it evolves.
Boundary estimation and tracking is useful is numerous ap-
plications such as detection of harmful algae bloom [1], [2],
oil spill [3], and fire containment [4], [5]. In [1], Bertozziet
al. adopt the so called “snake algorithm” (from the computer
vision literature) to detect and track the boundary of harmful
algae bloom. The agents are equipped with a chemical sensor
that is able to measure concentration gradient and with a
communication system that is able to exchange information
with a data fusion center. In [2], Kempet al. suggest an
algorithm that requires only a concentration sensor: the
agents repeatedly cross the region boundary using a bang-
bang angular velocity controller. In [3] the authors use a
random coverage controller, a collision avoidance controller
and a bang-bang angular velocity controller to detect and
surround an oil spill. In [5] Casbeeret al. describe an
algorithm that allows LASE (Low Altitude Short Endurance)
Unmanned Vehicles to closely monitor the boundary of a
fire. The LASEs have an infrared camera and a short range
communication device to exchange information with other
agents and to download the information collected onto the
base station. A different approach is considered by Zhang and
Leonard in [6]. A formation of four robots tracks at unitary
speed the level sets of a field. Their relative position changes
so that they optimally measure the gradient and estimate the
curvature of the field in the center of the formation.

In this paper we propose an algorithm to estimate and
reconstruct the boundary of a region. We require a group

of Unmanned Air Vehicles (UAVs) to optimally place some
interpolation points on the boundary of a region of interest.
The boundary can then be reconstructed by linear interpola-
tion of the interpolation points. We assume that (i) the UAVs
do not have a priori knowledge of the boundary, (ii) they
are equipped with a camera sensor and with algorithms to
estimate the tangent and curvature of the boundary, and (iii) a
wireless communication network provides the UAVs with the
ability to download and upload the interpolation points from
and to a data center. The algorithm is provably convergent
for static boundaries and also for slowly-moving boundaries
because of certain input-to-state stability properties.

The novelty of this paper is in the criterion used to
optimally place interpolation points in such a way that they
are uniformly distributed according to a curvature-weighted
distance function defined along the boundary. The curvature-
weighted distance function was inspired by the literature on
optimal approximation of convex bodies by polygons e.g.,
see the survey [7], [8].

The convergence of the algorithm is proven using tools
from the theory of consensus algorithms. An incomplete
list of references includes [9], [10], and [11]. The effort of
the authors is in proving that the infinite product of some
matrices (that belong to a finite set, [9], or infinite set, [10],
[11]) converges to a rank-one matrix.

The paper is organized as follows. In Section II we review
some mathematical literature on approximation theory and
convex optimization. In Section III we introduce an algorithm
to jointly update an environment boundary and deploy the
UAVs uniformly along the boundary estimate. In Section IV
we present our final concluding remarks.

II. BASIC IDEAS IN APPROXIMATION OF CONVEX BODIES

Here we review some known useful results from approx-
imation of strictly convex bodies, e.g., see the extensive
surveys [8], [7]. In the standard literature on convex bodies
approximations, the symmetric differenceδS between two
compact, and strictly convex bodiesC, B ∈ R

d is defined
by

δS(C,B) = µ(C ∪ B) − µ(C ∩ B),

where µ is the Lebesque measure onRd. If Q is the
body to be approximated by an inscribedn-vertices polygon
Pn, then δS(Q,Pn) = µ(Q) − µ(Pn). For n sufficiently



large, McLure and Vitale [12] show thatδS(Q,P ∗
n) ≈

1
12n2

(∫ 2π

0
ρ(θ)2/3dθ

)3

= 1
12n2

(∫
∂Q

κ(`)1/3d`
)3

, where
P ∗

n is the best approximating polygon withn vertices in-
scribed inQ, ∂Q is the boundary ofQ, ρ andκ = ρ−1 are the
curvature radius and curvature of the boundary, respectively,
` is the arc length along∂Q, andθ is the angular position
in a polar variable parametrization of∂Q. To construct the
best approximating polygonP ∗

n for a strictly convex body,
McLure and Vitale in [12] suggest themethod of empirical
distributions. According to this method, the positionsθi,
i ∈ {1, . . . , n}, of the n vertices along∂Q should be
uniformly distributed according toDS(i) =

∫ θi+1

θi
ρ(θ)2/3dθ.

Interpolating polygons computed according to the method of
empirical distributions converge toP ∗

n asn → +∞.
For smooth non-convex bodies with a small number of

saddle points, the method of empirical distributions also
yields a nearly optimal distribution asn → +∞ because of
the local convexity of the body. We show how to do this in
what follows. Since the curvature radiusρ may be unbounded
at some point of a non-convex boundary, the integralDS(i)
may be unbounded for somei. We avoid this problem by
considering the following general notion of distance alonga
boundary. Forλ ∈ [0, 1], we define the pseudo-distanceDλ

between vertices(i, i + 1) by: Dλ(i) = λ
∫ `i+1

`i
κ(`)1/3d` +

(1−λ)(`i+1−`i). This definition is inspired by the fact that,
for convex bodies, we have

∫ 2π

0
ρ(θ)α =

∫
∂Q

κ(`)1−αd`,
see [8]. Introducing the convex combination with arc length,
we guarantee thatDλ(i) is non-zero whenever the verticesi

and i + 1 do not coincide.

III. B OUNDARY ESTIMATION ALGORITHM

In this section we propose and analyze an algorithm
that uniformly distributes the interpolation according tothe
pseudo-distanceDλ introduced in the previous section.

We suppose that the sensing agents can locally estimate
the tangent and the curvature of∂Q. For the case of UAVs
surveilling a visible boundary, this information could be
provided by a camera and an edge detection algorithm. An-
other possibility is to substitute every agent with a formation
of chemical sensors. In the recent work [6] the authors
propose an optimal formation of four agents to estimate
the gradient and the curvature of a given level set in a
field. We assume that an initial estimate of the boundary is
available so that the interpolation points can be distributed
(possibly non uniformly) on the boundary and the estimated
pseudo-distancêDλ between any two neighbors is known.
We assume also that every agent is equipped with wireless
communication devices to communicate with a data fusion
center.

To interpolate the unknown slowly time-varying boundary
∂Q, we introduce a counterclockwise ordered set of inter-
polation points{p1, . . . , pnip} that are the vertices of the
interpolating polygon. These are virtual positions storedin
a data fusion center together with the tangent of∂Q at all
interpolation points, and the pseudo-distance between any
interpolation point and its counterclockwise neighbor. The

agents have two objectives: (i) update the interpolation points
such that they are uniformly distributed along∂Q according
to the estimated pseudo-distancêDλ, (ii) be equally dis-
tributed along the boundary according to arc length distance.

To achieve these objectives we propose a novel ESTIMATE

UPDATE AND PURSUIT ALGORITHM that can be summa-
rized as follows. After reaching a point on∂Q, the sensing
agents move along∂Q to collect the following data: (i) points
belonging to∂Q, and (ii) tangent and curvature of∂Q at
those points. Using these measurements and communicating
with the data center, they complete the following three steps.
In the first step, they determine which interpolation point
pi they are closer to and then project it onto the measured
boundary. In the second step, they adjustpi−1 so that it is
at the center of its Voronoi cell along∂Q. In the third step,
they estimate the arc length of distance between them and
their immediate clockwise and counterclockwise neighbors
and use this information to speed up or slow down. The first
two steps have the combined effect of updating the local
estimates of the boundary. Thanks to the third step, the agents
distribute themselves uniformly along the boundary.

In what follows we present the ESTIMATE UPDATE AND

PURSUIT ALGORITHM in some detail and we analyze its
stability.

A. Problem setup and notation

Let ‖v‖ denote the Euclidean norm ofv ∈ R
n. If v is a

scalar, then|v| denotes its absolute value. LetR+ be the set
of non negative real numbers andN0 = N∪{0}. Let 1 be the
column vector inRn with all entries equal to1. Let∂Q be the
boundary of a connected, and possibly non-convex setQ in
R

2. Let γ : R+ × [0, 1] → R
2 be a parametric representation

of the time-varying boundary so that, at fixedt ∈ R+ and
for all s ∈ [0, 1], γ(t, s) describes the boundary at timet.
We assume that∂γ(t,s)

∂s = γ′(t, s) 6= 0 for all s ∈ [0, 1]
and for all t, that γ(t, 0) = γ(t, 1), and thats increases as
we traverse the curve in the counterclockwise direction. We
also assume thatγ(t, s) is smooth with respect tos and t

and that the length of the boundary∂Q is upperbounded
and lowerbounded uniformly int. We define the curvature
κ : [0, 1] → R̄+ of the curveγ by: κ(s) = ‖γ′(s)×γ′′(s)‖

‖γ′(s)‖3 .
Let p1, . . . , pnip ∈ R

2 be the locations ofnip ordered
interpolation points. LetPi(t), with i ∈ {1, . . . , na} and
nip � 3na, be the positions of the sensing agents at a given
time. Both the interpolation points and the sensing agents are
ordered counterclockwise. We assume that the sensing agents
move counterclockwise along the boundary, with speedvi.

We assume that each agent maintains some variables in
its memory that are described as follows. The state of the
sensing agenti is:

{NOWi, LASTARCi, BUFFERARCi, NEXTBUFFERi},

where the first variable is a counter, and the other three are a
discrete representation of the subset of∂Q the sensing agent
is flying over. For simplicity we will omit the upperscript and
lowerscripti and we will introduce them when necessary.



Let NOW ∈ {1, . . . , nip} be the next point to be projected
onto∂Q. LetO = LASTARC∪BUFFERARC∪NEXTBUFFER⊂
∂Q be the set of observations collected by the sensing agent
up to time t while going frompNOW−2 towardspNOW along
∂Q defined as follows:

LASTARC = {o1, . . . , oL},

BUFFERARC= {oL+1, . . . , oL+M},

NEXTBUFFER= {oL+M+1, . . . , oL+M+T },

(1)

where L,M ∈ N, T ∈ N0, o1 = pNOW−2, oL = pNOW−1,
andoL+M+T = P (t). The following figure illustrates these
notation and quantities. The solid line represents∂Q as seen
by the agenti, while the dashed line represents∂Q as seen by
the agenti−1. The sensing agent is represented by a triangle.
The white circles represent the interpolation points before the
agent updates them, whereas the black circles represent the
interpolation points after the agent has updated them. The
square represents the last point belonging toBUFFERARC.
The first and the last point of the three data structures
LASTARC, BUFFERARC, and NEXTBUFFER are shown, the
others are omitted for clarity.

pNOW−2 = o1

LASTARC

pNOW−1 = oL

pNOW

pNOW+1

Pi = oL+M+T

oL+M

BUFFERARC NEXTBUFFER

current agent

previous agent

Before defining the pointoL+M and the indexM we intro-
duce the set of estimated tangent vectors to∂Q, γ̂′ : O → R

2,
and the set of estimated curvature of∂Q, κ̂ : O → R̄+. In
other words,γ̂′(oj) and κ̂(oj) are estimated tangent vector
and curvature at the pointoj , for j ∈ {1, . . . , L + M + T}.
We can now definêDλ : O × O → R̄+ as the discretized
pseudo-distance between two observationsoj and oh, with
h, j ∈ {1, . . . , L+M +T}, andh > j. We shall characterize
implicitly the observationoL+M as follows:

D̂λ(oL+1, oL+M ) = 2D̂−
λ (pNOW−1, pNOW),

where D̂−
λ (pNOW−1, pNOW) is the estimated pseudo-distance

betweenpNOW−1 and pNOW when an agent updated for the
last timepNOW. This information is assumed to be stored in
the data center.

The setsLASTARC, and BUFFERARC will be used by the
sensing agents to define the projection onto∂Q of pNOW

and the Voronoi center̂CNOW−1 of the interpolation point
pNOW−1. We recall that the positionso1, . . . , oL+M+T are
points on the plane that the sensing agent has visited in
previous instants while moving along the boundary∂Q, i.e.,
oj = P (τ) for someτ < t and for all j ∈ {1, . . . , L +
M + T}. We can say that the pointso1, . . . , oL+M+T are a
fine discretization of the portion of∂Q from pNOW−2 to the
current position of the sensing agentP , while the indices
pNOW−2, pNOW−1, andpNOW are a coarser discretization of the
same arc.

To calculate the Voronoi cell̂VNOW−1 along ∂Q of the
interpolation pointpNOW−1, we first need to projectpNOW on
∂Q. Let oj̄ be the projection ofpNOW, defined by:

p+
NOW := oj̄ = argminoj∈BUFFERARC‖(oj − pNOW) · t−NOW‖,

where t
−
NOW =

bγ′(pNOW)

‖ bγ′(pNOW)‖
is the unit-length tangent vector

at ∂Q(t−) at the interpolation pointpNOW last time the
interpolation point was updated. In other words the projection
of pNOW at timet+ on ∂Q(t+) is the intersection of∂Q(t+)
with the normal vector to∂Q(t−) at pNOW at time t−.
This projection is univocally defined and has the following
properties. If∂Q is time-invariant thenp−NOW = p+

NOW, if ∂Q

is slowly time-varying thenp+
NOW is close to the orthogonal

projection ofp−NOW onto ∂Q(t+).
We can now define the setNOWARC and updateBUFFER-

ARC as follows:NOWARC = {oL+1, . . . , oj̄}, BUFFERARC=
BUFFERARC\ {oL+1, . . . , oj̄}. In the following figure, the
agent (i) projects the interpolation pointpNOW onto ∂Q(t),
(ii) update the state variableBUFFERARC and generate the
variableNOWARC.

LASTARC NOWARC

p+
NOW = oj̄

pNOW+1
pNOW−2 = o1

BUFFERARC

NEXTBUFFER

pNOW−1 = oL

pNOW t
−
NOW

Using the collected data, the sensing agents can numeri-
cally evaluate the pseudo-distancesD̂λ(pNOW−2, pNOW−1) and
D̂λ(pNOW−1, pNOW) betweenpNOW−2 and pNOW−1, and be-
tweenpNOW−1 andpNOW. Recall thatpNOW−2 = o1, pNOW−1 =
oL. Let thenV̂NOW−1 = {o`, . . . , ou}, whereo` ∈ LASTARC

andou ∈ NOWARC are implicitly defined as:

D̂λ(o1, o`) = D̂λ(o`, oL) =
D̂λ(o1, oL)

2
,

D̂λ(oL, ou) = D̂λ(ou, oj̄) =
D̂λ(oL, oj̄)

2
.

The pointo` is the midpoint betweenpNOW−2 andpNOW−1,
while ou is the midpoint betweenpNOW−1 andpNOW after the
latter was projected on∂Q. We can implicitly define the
Voronoi centerĈNOW−1 := ok̄ ∈ LASTARC ∪ NOWARC by:

bDλ(o`, ok̄) = bDλ(ok̄, ou) =
bDλ(o1, oL) + bDλ(oL, oj̄)

4
.

In the following figure, the agent (i) calculates the Voronoi
cell V̂NOW−1, and (ii) updates the interpolation pointpNOW−1

to lie optimally betweenpNOW−2 andpNOW.

LASTARC NOWARC

pNOW+1
pNOW−2 = o1

BUFFERARC

NEXTBUFFER

p+
NOW

o`

ou

p+

NOW−1
= ok̄pNOW−1

t
−
NOW



The sensing agent can now update once more the state
variables as follows:

NOW+ = NOW + 1,

LASTARC+ = {ok̄, . . . , oj̄},

BUFFERARC+ = {oj̄+1, . . . , oq},

NEXTBUFFER+ = {oq+1, . . . , oL+M+T },

where oq ∈ BUFFERARC ∪ NEXTBUFFER is implicitly
defined by: D̂λ(oj̄+1, oq) = 2D̂−

λ (pNOW+−1, pNOW+). If
D̂λ(oj̄+1, oL+M+T ) < 2D̂−

λ (pNOW+−1, pNOW+) then

BUFFERARC+ = BUFFERARC∪ NEXTBUFFER

NEXTBUFFER+ = ∅.

The following figure shows the state variables update as just
described, in the case thatNEXTBUFFER= ∅.

pNOW−2 = o1

pNOW−1 = oL
pNOW

LASTARC BUFFERARC

This completes our description of the estimate up-
date algorithm and we now focus on the pursuit ob-
jective. To uniformly distribute the sensing agents along
the boundary∂Q according to arc length, we will use
the following update law for their velocities:vi(t) =
v0 + k(L̂(Pi, Pi+1) − L̂(Pi−1, Pi)), with k, v0 > 0 and
L̂(Pn, Pm) =

∑NOWm

j=NOWn+1(‖pj−1 − pj‖), for all n,m ∈
{1, . . . , na}. Here, recall thatpNOWn , pNOWn+1 , . . . , pNOWm are
the interpolation points separating agentn and agentm, with
n < m. L̂ is the estimated arc length of the portion of∂Q

that has to be traversed to go from the sensing agentn to the
sensing agentm. The sensing agents have only local informa-
tion of ∂Q but still they have to estimate the distance, along
∂Q, from their clockwise and counterclockwise neighbors
in order to calculate their speed. The estimateL̂(Pn, Pm)
is obtained by the approximating polygon formed by the
interpolation points. In practice any agent will speed up if
it is closer to the agent behind it, and slow down if closer
to the agent in front of it. With a saturation-like function:
sat(vi(t)) = max{vmin,min{vi(t), vmax}}, we will impose
though that0 < vmin ≤ vi(t) ≤ vmax for all t.

B. Estimate Update and Pursuit Algorithm

In this section we present an algorithm that allowsna

sensing agents to equally distribute thenip interpolation
points along∂Q, according to the pseudo-distanceD̂λ. Also
the algorithm uniformly distributes thena sensing agents
along ∂Q, according to the arc length. The algorithm is
summarized in the following table.

Some steps of the algorithm are affected by noise and
error: i) γ̂′ andκ̂ are only estimate of the true values, ii)L̂ is
an approximation ofL, iii) the setsLASTARC, BUFFERARC,
andNEXTBUFFER are discretization of the subset of∂Q that
agenti is visiting, therefore, the center of the Voronoi cell

Name: ESTIMATE UPDATE AND PURSUIT ALGORITHM

Goal: Uniformly distribute the interpolation points according
to the pseudo-distancebDλ, and the sensing agents
according to the arc lengthbL.

Data: Location of the interpolation points, unitary tangent
vector at∂Q at those points, last value ofbDλ between
any two consecutive interpolation points, local tangent
and local curvature of the boundary∂Q.

Requires: At t0 = 0 pi lie on ∂Q and bDλ between any two
interpolation points is known.

Assume data is as stated in (1). At every sensing instant, the agent at
positionPi(t) = P (t) performs:

1: if bDλ(oL+1, P (t)) > 2 bD−
λ

(pNOW−1, pNOW), then
2: update observationsNEXTBUFFER+ := NEXTBUFFER∪ {P (t)},
3: else
4: update observationsBUFFERARC+ := BUFFERARC∪ {P (t)}.
5: end if
6: estimatebγ′(P (t)), bκ(P (t)), and bDλ(oL+M+T , P (t)).
7: if NEXTBUFFER 6= ∅ andpNOWi 6= pNOWi+1−2 then
8: update the interpolation pointpNOW by projecting it onto∂Q:

p+
NOW := oj̄ , oj̄ = argminoj∈BUFFERARC‖(oj − pNOW) · t−NOW‖,

9: update the setBUFFERARC and generate the setNOWARC by:

BUFFERARC+ := BUFFERARC\ {oL+1, . . . , oj̄},

NOWARC+ := {oL+1, . . . , oj̄},

10: calculatebCNOW−1 := ok̄ and updatepNOW−1 by p+

NOW−1
:= ok̄,

11: communicate with data center: transmitpNOW−1, pNOW,
bγ′(pNOW−1), bDλ(pNOW−2, pNOW−1), bDλ(pNOW−1, pNOW) and
receivepNOW+1, bγ′(pNOW+1), bDλ(pNOW, pNOW+1),

12: update the counterNOW and the setLASTARC by

NOW+ := NOW + 1, LASTARC+ := {ok̄, . . . , oj̄},

13: update the setsBUFFERARC and NEXTBUFFER as follows:
14: if ∃oq ∈ BUFFERARC ∪ NEXTBUFFER s.t. bD−

λ
(oj̄+1, oq) ≥

2 bDλ(pNOW+−1, pNOW+ ), then
15:

BUFFERARC+ := {oj̄+1, . . . , oq},

NEXTBUFFER+ := {oq+1, . . . , oL+M+T },

16: else
17:

BUFFERARC+ := BUFFERARC∪ NEXTBUFFER,

NEXTBUFFER+ := ∅.

18: end if
19: end if
20: communicate withPi+1 and Pi−1: receive NOWi+1, NOWi−1,

transmit NOWi. Communicate with the data center: receive the in-
terpolation points with id betweenNOWi−1 and NOWi+1.

21: calculatevi(t): vi(t) = sat(v0 + k(bL(Pi, Pi+1)− bL(Pi−1, Pi))).

of the interpolation pointpNOWi−1 might not be calculated
exactly. LetD̂(t) andL(t) be the column vectors:

D̂(t) =
[
D̂λ(p1(t), p2(t)), . . . ,

D̂λ(pnip−1(t), pnip(t)), D̂λ(pnip(t), p1(t))
]T

,

L(t) =
[
L(P1(t), P2(t)), . . . ,

L(Pna−1(t), Pna
(t)), L(Pna

(t), P1(t))
]T

.

Consider now the disagreement vectorsd(k) and δL(t)



defined as follows:

d(k) = D̂λ(k) −
1

T
D̂λ(k)

nip
1, (2)

δL(t) = L(t) −
1

T
L(t)

na
1, (3)

note that they are orthogonal to the vector1.
Theorem 1: The evolution of the disagreement vectors

defined by (2) and by (3) under the ESTIMATE UPDATE AND

PURSUIT ALGORITHM is input-to-state stable with respect
to estimation noise and deformation of the boundary∂Q(t).
We omit the proof for lack of space, the interested reader is
referred to [13].

Because of the ISS property we can conclude that as
long as the errors are small, the statesDλ(pi, pi+1) and
L(Pi, Pi+1) will be close to the equilibrium of the unper-
turbed system, i.e.,Dλ(pi, pi+1) = Dλ(pi+1, pi+2) for all
i ∈ {1, . . . , nip} and L(Pi, Pi+1) = L(Pi+1, Pi+2) for all
i ∈ {1, . . . , na}.

C. Simulations

In this section we present results of two different simu-
lations obtained with the implementation of the ESTIMATE

UPDATE AND PURSUIT ALGORITHM. In the first simulation
the boundary∂Q is time invariant, while in the second is
time varying.

1) Time-invariant boundary: In this simulation we use
na = 3 sensing agents to have an approximation of the non-
convex boundary∂Q described by:

γ(θ) =
“
2 + cos(10πθ) + 0.5 sin(4πθ)

” »
cos(2πθ)
sin(2πθ)

–
.

The outcome is shown in Figure 1. In order to calculate their
speeds, the sensing agents usev0 = 1, andk = 0.05. The
saturation function for the speed has lower limitvmin = 0.5
and upper limitvmax = 2. The number of interpolation points
is nip = 30, while λ = 10

11 . The simulation time is50 seconds
and the sampling time0.01 seconds. The plots in Figure 1
corresponds to the positions of the interpolation points and
the sensing agents at the initial and final configurations. The
interpolation pointspNOWi for i ∈ {1, . . . , na} coincide with
the positions of the sensing agents. The other interpolation
points are randomly distributed on the boundary. In the last
frame one can also see the approximating polygon and how
close it is to the actual boundary.

Since the pseudo-distanceDλ and the arc lengthL can be
calculated after the simulation is completed, we useDλ and
L instead of their estimatêDλ and L̂ to show the algorithm
performance. Figure 2 does indeed show the convergence
of the algorithm. In the first plot we can see that the
consensus on the pseudo-distanceDλ(pi, pi+1), between any
two consecutive interpolation points, is reached. The quantity
maxi∈{1,...,nip} Dλ(pi, pi+1) − mini∈{1,...,nip} Dλ(pi, pi+1)
does not vanish because of numerical errors in the estimate
D̂λ. The second plot shows how the agents get uniformly
spaced along the boundary. The steady state values of the
arc length distances oscillates around8.3 which is the target
value. The noise is again due to the fact that the agents only

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

Initial Config.

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

Final Config.

Fig. 1. This figure shows initial and final configuration after
50 seconds simulation obtained by the implementation of the
ESTIMATE UPDATE AND PURSUIT ALGORITHM with na = 3,
nip = 30, v0 = 1, k = 0.05, λ = 10

11
. ∂Q is time invariant.

The sensing agents’ positions are represented by the triangles and
are initialized to be on the boundary∂Q. In the last frame also the
approximating polygon is shown.

max Dλ − min Dλ vs time

0 10 20 30 40 500.5

1.5

2.5

Arc length distances vs time

4

6

8

12

0

10

10 20 30 40 50

Fig. 2. ESTIMATE UPDATE AND PURSUIT ALGORITHM This plots
refers to the case of∂Q being time-invariant. In the first plot
from right it is shown the errormaxi∈{1,...,nip} Dλ(pi, pi+1) −
mini∈{1,...,nip} Dλ(pi, pi+1) vs time. In the second plot we show
the arc length distances between the three sensing agents.

estimate the arc length using the positions of the interpolation
points.

2) Slowly time-varying boundary: In this simulation we
usedna = 3 sensing agents to have an approximation of the
non-convex boundary∂Q(t) described by:

γ(θ, t) =

„
2 −

2t

tf
+

“
2 + cos(10πθ) +

sin(4πθ)

2

” t

tf

« »
cos(2πθ)
sin(2πθ)

–
,

with θ ∈ [0, 1), tf = 200 seconds as shown in Figure 3.
The values ofv0, k, vmin, vmax and λ are respectively:1,
0.05, 0.5, 2, and 10

11 . The simulation time is200 seconds, the
sampling time0.01 seconds. The plots in Figure 3 correspond
to the positions of the interpolation points and the sensing
agents at four different instants,t = 0, t = 50, t = 100, and
t = 200 seconds respectively. The algorithm is initialized
with the agents on the boundary. The interpolation points
pNOWi coincide with the positions of the sensing agents. The
other interpolation points are randomly distributed. In the last
frame we can also see the approximating polygon and how
close to the actual boundary is. From the frames in Figure 3
it is clear that the sensing agents can adapt as∂Q changes.

The pseudo-distanceDλ is well defined only if the in-
terpolation points belong to the boundary∂Q. Since the
boundary changes with time, the interpolation points are
only for some time on the boundary after a sensing agents
has projected them. So, we consider as pseudo-distance
between any two consecutive interpolation points in a certain
time τ the pseudo-distance between their radial projection
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Fig. 3. This figure shows four different instants of the200 seconds
simulation obtained by implementing the ESTIMATE UPDATE AND
PURSUIT ALGORITHM with na = 3, nip = 30, v0 = 1, k =
0.05, λ = 10

11
. The boundary∂Q is slowly time-varying in this

case. The sensing agents positions are represented by triangles and
initialized to be on the boundary∂Q. The last frame also shows
the approximating polygon.

max Dλ − min Dλ vs time
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Fig. 4. ESTIMATE UPDATE AND PURSUIT ALGORITHM.
This figure refers to the case of∂Q being slowly time-
varying. In the first plot from the right we shown the er-
ror maxi∈{1,...,nip} Dλ(pi, pi+1)−mini∈{1,...,nip} Dλ(pi, pi+1) vs
time. The second plot shows the arc length distances between the
three sensing agents.

onto ∂Q(τ). The disagreement in the placement of the
interpolation points, whereDλ is redefined as just explained,
is shown in the first plot of Figure 4.

The arc length between any two consecutive sensing
agents is shown in the second plot of Figure 4. The three
distances increase with time becauseL(∂Q), the total length
of the boundary, increases with time.

IV. CONCLUSIONS

In this paper we have addressed the problem of boundary
estimation and tracking by means of robotic sensors. We have
presented an algorithm to position interpolation points along
the boundary in such a way as to obtain an approximating
polygon with some optimality features.

The mobile agents are equipped with sensors that pro-
vide local information on the tangent and curvature of the
boundary. The algorithm allows the robots to place a set
of interpolation points uniformly spaced according to the

estimate of the pseudo-distanceDλ. The position of the
interpolation points is stored in a data fusion center and
is available on-demand to the agents. The vertices of the
approximating polygon are the interpolation point positions.
The algorithm is proven to converge even if the boundary
is slowly-moving. Tools from consensus analysis allow us
to prove the correctness of the algorithm. The existence
of a central data fusion center is not a critical ingredient
in the design of the algorithm. Indeed, one can envision
the following equivalent scenario: the agents communicate
the updated interpolation points to their clockwise neighbor,
instead of exchanging them with the data fusion center. In
such a distributed setting, a stationary user could reconstruct
the approximating polygon by communicating to all the
agents as they pass by a fixed spatial location. Future research
will explore this idea more in detail.
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