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Maintaining limited-range connectivity among second-order agents

Giuseppe Notarstefano Ketan Savla Francesco Bullo Ali Jadbabaie

Abstract— In this paper we consider ad-hoc networks of
robotic agents with double integrator dynamics. For such
networks, the connectivity maintenance problems are: (i) do
there exist control inputs for each agent to maintain network
connectivity, and (ii) given desired controls for each agent,
can one compute the closest connectivity-maintaining controls
in a distributed fashion? The proposed solution is based on
three contributions. First, we define and characterize admissible
sets for double integrators to remain inside disks. Second, we
establish an existence theorem for the connectivity maintenance
problem by introducing a novel state-dependent graph, called
the double-integrator disk graph. Finally, we design a distributed
“flow-control” algorithm to compute optimal connectivity-
maintaining controls.

I. I NTRODUCTION

This work is a contribution to the emerging discipline
of motion coordination for ad-hoc networks of mobile au-
tonomous agents. This loose terminology refers to groups
of robotic agents with limited mobility and communication
capabilities. In the not too distant future, these groups of
coordinated devices will perform a variety of challenging
tasks including search and recovery operations, surveillance,
exploration and environmental monitoring. The potential
advantages of employing arrays of agents have recently
motivated vast interest in this topic. For example, from a
control viewpoint, a group of agents inherently provides
robustness to failures of single agents or of communication
links.

The motion coordination problem for groups of au-
tonomous agents is a control problem in the presence of
communication constraints. Typically, each agent makes de-
cisions based only on partial information about the state
of the entire network that is obtained via communication
with its immediate neighbors. One important difficulty is
that the topology of the communication network depends
on the agents’ locations and, therefore, changes with the
evolution of the network. In order to ensure a desired
emergent behavior for a group of agents, it is necessary
that the group does not disintegrate into subgroups that are
unable to communicate with each other. In other words, some
restrictions must be applied on the movement of the agents
to ensureconnectivityamong the members of the group.
In terms of design, it is required to constrain the control
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input such that the resulting topology maintains connectivity
throughout its course of evolution. In [1], a connectivity
constraint was developed for a group of agents modeled as
first-order discrete time dynamic systems. In [1] and in the
related references [2], [3], this constraint is used to solve ren-
dezvous problems. Connectivity constraints for line-of-sight
communication are proposed in [4]. Another approach to
connectivity maintenance for first-order systems is proposed
in [5]. In this paper we fully characterize the set of admissible
control inputs for a group of agents modeled as second
order discrete time dynamic systems, which would ensure
connectivity of the group in the same spirit as described
earlier.

The contributions of the paper are threefold. First, we
consider a control system consisting of a double integrator
with bounded control inputs. For such a system, we define
and characterize the admissible set that allows the double
integrator to remain inside disks. Second, we define a novel
state-dependent graph – thedouble-integrator disk graph–
and give an existence theorem for the connectivity main-
tenance problem for networks of second order agents with
respect to an appropriate version of this new graph. Finally,
we consider a relevant optimization problem, where given a
set of desired control inputs for all the agents it is required
to find the optimal set of connectivity-maintaining control
inputs. We cast this problem into a standard quadratic pro-
gramming problem and provide a distributed “flow-control”
algorithm to solve it.

II. PRELIMINARY DEVELOPMENTS

We begin with some notations. We letN, N0, and R+

denote the natural numbers, the non-negative integer num-
bers, and the positive real numbers, respectively. Ford ∈ N,
we let 0d and1d denote the vectors whose entries are all0
and 1, respectively. We let‖p‖ denote the Euclidean norm
of p ∈ R

d. For r ∈ R+ and p ∈ R
d, we let B(p, r)

denote the closed ball centered atp with radius r, i.e.,
B(p, r) = {q ∈ R

d | ‖p − q‖ ≤ r}. For x, y ∈ R
d, we

let x � y denote component-wise inequality, i.e.,xk ≤ yk

for k ∈ {1, . . . , d}. We let f : A ⇒ B denote a set-valued
map; in other words, for eacha ∈ A, f(a) is a subset ofB.

A. Maintaining a double integrator inside a disk

For t ∈ N0, consider the discrete-time control system in
R

2d

p[t + 1] = p[t] + v[t],

v[t + 1] = v[t] + u[t],
(1)

where the norm of the control is upper-bounded byrctr ∈ R+,
i.e., u[t] ∈ B(0d, rctr) for t ∈ N0. We refer to this control



system as thediscrete-time double integratorin R
d or, more

loosely, as a second-order system. Given(p, v) ∈ R
2d and

{uτ}τ∈N0
⊆ B(0d, rctr), let φ(t, (p, v), {uτ}) denote the

solution of (1) at timet ∈ N0 from initial condition (p, v)
with inputsu1, . . . , ut−1.

In what follows we consider the following problem: as-
sume that the initial position of (1) is inside a disk centered
at 0d, find inputs that keep it inside that disk. This task is
impossible for general values of the initial velocity. In what
follows we identify assumptions on the initial velocity that
render the task possible.

For rpos ∈ R+, we define theadmissible set at time zero
by

Ad
0(rpos) = B(0d, rpos) × R

d. (2)

For rpos, rctr ∈ R+, we define theadmissible setby

Ad(rpos, rctr) =
{

(p, v) ∈ R
2d | ∃{uτ}τ∈N0

⊆ B(0d, rctr)

s.t.φ(t, (p, v), {uτ}) ∈ Ad
0(rpos), ∀t ∈ N0

}

, (3)

and theadmissible set form time stepsby

Ad
m =

{

(p, v) ∈ R
2d | ∃{uτ}τ∈[0,m−1] ⊆ B(0d, rctr)

s.t.φ(t, (p, v), {uτ}) ∈ Ad
0(rpos), ∀t ∈ [0,m]

}

. (4)

The following theorem characterizes the admissible set.
Theorem 2.1:For all d ∈ N and rpos, rctr ∈ R+, the

following statements hold:
(i) for all m ∈ N, Ad

m ⊆ Ad
m−1 and there exists

m̄(rpos, rctr) such thatAd
m = Ad

m̄, for all m ≥ m̄;
(ii) Ad(rpos, rctr) = limm→+∞ Ad

m;
(iii) Ad(rpos, rctr) is a convex, compact set and is the largest

controlled-invariant1 subset ofAd
0(rpos);

(iv) Ad(rpos, rctr) is invariant under orthogonal transfor-
mations in the sense that, if(p, v) ∈ Ad(rpos, rctr),
then also(Rp,Rv) ∈ Ad(rpos, rctr) for all orthogonal2

matricesR in R
d×d;

(v) if 0 < r1 < r2, thenAd(rpos, r1) ⊂ Ad(rpos, r2) and
Ad(r1, rctr) ⊂ Ad(r2, rctr).

Next, we study the set-valued map that associates to
each state inAd(rpos, rctr) the set of control inputs that
keep the state insideAd(rpos, rctr) in one step. We define
the admissible control setUd(rpos, rctr) : Ad(rpos, rctr) ⇒

B(0d, rctr) by

Ud(rpos, rctr) · (p, v) = {u ∈ B(0d, rctr) |
(p + v, v + u) ∈ Ad(rpos, rctr)}, (5)

or, equivalently,

Ud(rpos, rctr) · (p, v)

= B(0d, rctr)∩{w − v | (p + v, w) ∈ Ad(rpos, rctr)}.
Lemma 2.2:For all (p, v) ∈ Ad(rpos, rctr), the set

Ud(rpos, rctr) · (p, v) is non-empty, convex and compact. For
generic(p, v), the setUd(rpos, rctr)·(p, v) does not contain0d.

1A set is controlled invariant for a control system if there exists a feedback
law such that the set is positively invariant for the closed-loop system.

2A matrix R ∈ R
d×d is orthogonal ifRRT

= RT R = Id.

B. Computing admissible sets

We characterizeAd for d = 1 in the following result and
we illustrate the outcome in Figure 1.

Lemma 2.3:For rpos, rctr ∈ R+, A1(rpos, rctr) is the poly-
tope containing the points(p, v) ∈ R
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Fig. 1. The admissible setA1 for generic values ofrpos andrctr

Remark 2.4:The methodology for constructing
A1(rpos, rctr) closely follows the procedure for constructing
the so-called isochronic regions using principles from
discrete-time optimal control, as outlined in [6]. �

Next, we introduce some definitions useful to provide an
inner approximation ofAd whend ≥ 2. Given p ∈ R

d and
v ∈ R

d \ {0d}, definep‖ ∈ R andp⊥ ∈ R
d by

p = p‖
v

‖v‖ + p⊥,

wherep⊥ · v = 0. For rpos, rctr ∈ R+, define

Ad
‖(rpos, rctr) =

{

(p, v) ∈ B(0d, rpos) × R
d | v = 0d or

(p‖, ‖v‖) ∈ A1
(

√

r2
pos− ‖p⊥‖2, rctr

)}

.

Lemma 2.5:For rpos, rctr ∈ R+,
(i) Ad

‖(rpos, rctr) is a subset ofAd(rpos, rctr), and
(ii) Ad

‖(rpos, rctr) is convex and compact.

Remark 2.6:In what follows we silently adopt the inner
approximationAd

‖ for the setAd anytimed ≥ 2. Further-
more, we perform computations by adopting inner polytopic
representations for the various compact convex sets.�

C. The double-integrator disk graph

Let us introduce some concepts about state dependent
graphs and some useful examples. For a setX, let F(X)
be the collection of finite subsets ofX; e.g.,P ∈ F(Rd) is a
set of points. For a setX, let G(X) be the set of undirected
graphs whose vertices are elements ofX, i.e., whose vertex
set belongs toF(X). For a setX, a state dependent graph
on X is a mapG : F(X) → G(X) that associates to a finite
subsetV of X an undirected graph with vertex setV and



edge setEG(V ) where EG : F(X) → F(X × X) satisfies
EG(V ) ⊆ V ×V . In other words, what edges exists inG(V )
depends on the elements ofV that constitute the nodes.

The following three examples of state dependent graphs
play an important role. First, givenrpos∈ R+, thedisk graph
Gdisk(rpos) is the state dependent graph onR

d defined as
follows: for {p1, . . . , pn} ⊂ R

d, the pair(pi, pj) is an edge in
Gdisk(rpos)·({p1, . . . , pn}) if and only if pi−pj ∈ B(0d, rpos).
Second, givenrpos, rctr ∈ R+, the double-integrator disk
graph Gdi-disk(rpos, rctr) is the state dependent graph onR

2d

defined as follows: for{(p1, v1), . . . , (pn, vn)} ⊂ R
2d, the

pair ((pi, vi), (pj , vj)) is an edge if and only if the relative
positions and velocities satisfy

(pi − pj , vi − vj) ∈ Ad(rpos, rctr).

Third, it is convenient to define the disk graph also as a state
dependent graph onR2d by stating that((pi, vi), (pj , vj)) is
an edge if and only if(pi, pj) is an edge of the disk graph
on R

d. We illustrate the first two graphs in Figure 2.

Fig. 2. The disk graph and the double-integrator disk graph inR
2

for 20 agents with random positions and velocities.

III. C ONNECTIVITY CONSTRAINTS AMONG

SECOND-ORDER AGENTS

In this section we state the model, the notion of connec-
tivity, and a sufficient condition that guarantees connectivity
can be preserved.

A. Networks of robotic agents with second-order dynamics
and the connectivity maintenance problem

We begin by introducing the notion ofnetwork of robotic
agents with second-order dynamicsin R

d. Let n be the
number of agents. Each agent has the following computation,
motion control, and communication capabilities. Fori ∈
{1, . . . , n}, the ith agent has a processor with the ability
of allocating continuous and discrete states and performing
operations on them. Theith agent occupies a locationpi ∈
R

d, moves with velocityvi ∈ R
d, according to the discrete-

time double integrator dynamics in (1), i.e.,

pi[t + 1] = pi[t] + vi[t],

vi[t + 1] = vi[t] + ui[t],
(6)

where the norm of all controlsui[t], i ∈ {1, . . . , n}, t ∈ N0,
is upper-bounded byrctr ∈ R+. The processor of each agent
has access to the agent location and velocity. Each agent
can transmit information to other agents within a distance

rcmm ∈ R+. We remark that the control boundrctr and the
communication radiusrcmm are the same for all agents.

We now state the control design problem of interest.
Problem 3.1 (Connectivity Maintenance):Choose a state

dependent graphGtarget on R
2d and design (state dependent)

control constraints sets with the following property: if each
agent’s control takes values in the control constraint set,then
the agents move in such a way that the number of connected
components ofGtarget (evaluated at the agents’ states) does
not increase with time. �

This objective is to be achieved with the limited informa-
tion available through message exchanges between agents.

B. A known result for agents with first-order dynamics

In [1], a connectivity constraint was developed for a set
of agents modeled by first-order discrete-time dynamics:

pi[t + 1] = pi[t] + ui[t].

Here the graph whose connectivity is of interest, is the disk
graphGdisk(rcmm) over the vertices{p1[t], . . . , pn[t]}. Net-
work connectivity is maintained by restricting the allowable
motion of each agent. In particular, it suffices to restrict
the motion of each agent as follows. If agentsi and j

are neighbors in thercmm-disk graphGdisk(rcmm) at time t,
then their positions at timet + 1 are required to belong to
B

(

pi[t]+pj [t]
2 , rcmm

2

)

. In other words, connectivity betweeni
and j is maintained if

ui[t] ∈ B
(pj [t] − pi[t]

2
,
rcmm

2

)

,

uj [t] ∈ B
(pi[t] − pj [t]

2
,
rcmm

2

)

.

The constraint is illustrated in Figure 3.

pj

pi

Fig. 3. Starting frompi andpj , the agents are restricted to move
inside the disk centered at

pi+pj

2
with radius rcmm

2
.

Note that this constraint takes into account only the
positions of the agents; this fact can be attributed to the
first-order dynamicsof the agents. We wish to construct a
similar constraint for agents with second order dynamics. It
is reasonable to expect that this new constraint will depend
on positions as well as velocities of the neighboring agents.

C. An appropriate graph for the connectivity maintenance
problem for agents with second-order dynamics

We begin working on the stated problem with a negative
result regarding two candidate target graphs.

Lemma 3.2:Consider a network ofn agents with double
integrator dynamics (6) inRd. Let rcmm be the communi-
cation range and letrctr be the control bound. LetGtarget be



eitherGdisk(rcmm) on R
2d or Gdi-disk(rcmm, 2rctr). There exist

states{(pi, vi)}i∈{1,...,n} such that
(i) the graphGtargetat{(pi, vi)}i∈{1,...,n} is connected, and

(ii) for all {ui}i∈{1,...,n} ⊆ B(0d, rctr), the graphGtarget at
{(pi + vi, vi + ui)}i∈{1,...,n}, is disconnected.

Remark 3.3:The result in Lemma 3.2 on the double
integrator graph has the following interpretation. Assume
that agent i has two neighborsj and k in the graph
Gdi-disk(rcmm, rctr). By definition of the neighboring law for
this graph, we know that there exists bounded controls for
i and j to maintain the((pi, vi), (pj , vj)) link and that
there exists bounded controls fori and k to maintain the
((pi, vi), (pk, vk)) link. The lemma states that, for some
states of the agentsi, j, andk, there might not exist controls
that maintain both links simultaneously. �

The following theorem suggests that an appropriate scaling
of the control bound is helpful in identifying a suitable state
dependent graph for Problem 3.1.

Theorem 3.4: [A scaled double-integrator disk graph is
suitable] Consider a network ofn agents with double inte-
grator dynamics (6) inRd. Let rcmm be the communication
range and letrctr be the control bound. Take

ν ∈
]

0,
2√

d(n − 1)

]

.

Then the following statements hold:
(i) For all states{(pi, vi)}i∈{1,...,n} such that the graph

Gdi-disk(rcmm, νrctr) is connected at{(pi, vi)}i∈{1,...,n},
there exists{ui}i∈{1,...,n} ⊆ B(0d, rctr), such that the
graphGdi-disk(rcmm, νrctr) is also connected at{(pi +
vi, vi + ui)}i∈{1,...,n}.

(ii) Let T be a spanning tree ofGdi-disk(rcmm, νrctr) at
{(pi, vi)}i∈{1,...,n}. Then, there exists{ui}i∈{1,...,n} ⊆
B(0d, rctr), such that, for all edges((pi, vi), (pj , vj))
of T , it holds that((pi +vi, vi +ui), (pj +vj , vj +uj))
is an edge inGdi-disk(rcmm, νrctr) at {(pi + vi, vi +
ui)}i∈{1,...,n}.

These results are based upon Shostak’s Theory for systems
of inequalities, as exposed in [7]. We postpone the proof to
a forthcoming technical report.

Remark 3.5: [One-hop distributed computation of con-
nectivity] Each agent can compute its neighbors in the
graph Gdi-disk(rcmm, νrctr) just by communicating with its
neighbors inGdisk(rcmm) and exchanging with them position
and velocity information. �

Remark 3.6:If Gdi-disk(rcmm, νrctr) at {(pi, vi)}i∈{1,...,n}

is not connected, then the above theorem applies to its con-
nected components. Without loss of generality, we assume
this graph to be connected in what follows. �

D. The control constraint set and its polytopic representation

We now concentrate on two agents with indicesi and j.
For t ∈ N0, we define the relative position, velocity and
control by pij [t] = pi[t] − pj [t], vij [t] = vi[t] − vj [t] and
uij [t] = ui[t] − uj [t], respectively. It is easy to see that

pij [t + 1] = pij [t] + vij [t],

vij [t + 1] = vij [t] + uij [t].

Assume that agentsi, j are connected inGdi-disk(rcmm, νrctr)
at time t. By definition, this means that the relative state
(pij [t], vij [t]) belongs toAd(rcmm, νrctr). If this connection
is to be maintained at timet + 1, then the relative control at
time t must satisfy

ui[t] − uj [t] ∈ Ud(rcmm, νrctr) · (pij [t], vij [t]). (7)

Also, implicit are the following bounds on individual control
inputsui[t] anduj [t]:

ui[t] ∈ B(0d, rctr), uj [t] ∈ B(0d, rctr). (8)

This discussion motivates the following definition.
Definition 3.7: Given rcmm, rctr, ν ∈ R+ and given a set

E of edges inGdi-disk(rcmm, νrctr) at {(pi, vi)}i∈{1,...,n}, the
control constraint setis defined by

Ud
E(rcmm, rctr, ν) · ({pi, vi}i∈{1,...,n})

= {(u1, . . . , un) ∈ B(0d, rctr)
n | ∀((pi, vi), (pj , vj)) ∈ E,

ui − uj ∈ Ud(rcmm, νrctr) · (pi − pj , vi − vj)}.
Remark 3.8:The control constraint set for an edge setE

is the set of controls for each agent with the property that
all edges inE will be maintained in one time step. �

Remark 3.9:We can now interpret the results in Theo-
rem 3.4 as follows.

(i) To maintain connectivity between any pair of
connected agents, we should simultaneously han-
dle constraints corresponding toall edges of
Gdi-disk(rcmm, νrctr). This might render the control con-
straint set empty.

(ii) However, if we only consider constraints corre-
sponding to edges belonging toa spanning treeT
of Gdi-disk(rcmm, νrctr), then the setUd

T (rcmm, νrctr) ·
({pi, vi}i∈{1,...,n}) is guaranteed to be nonempty.�

Let us now provide a concrete representation of the control
constraint set. Given a pairi, j of connected agents, the
admissible control setUd(rcmm, νrctr) · (pij , vij) is convex
and compact (Lemma 2.2). Hence, we can fit a polytope
with Npoly sides inside it. This approximating polytope leads
to the following tighter version of the constraint in (7):

(Cη
ij)

T (ui − uj) ≤ w
η
ij , η ∈ {1, . . . , Npoly}, (9)

for some appropriate vectorCη
ij ∈ R

d and scalarwijη ∈ R.
Similarly, one can compute an inner polytopic approximation
of the ball B(0d, rctr) and write the following linear vector
inequalities:

(Cη
iθ)

T ui ≤ w
η
iθ, η ∈ {1, . . . , Npoly}, (10)

where the symbolθ has the interpretation of a fictional agent.
In this way, we have cast the original problem of finding

a set of feasible control inputs into a satisfiability problem
for a set of linear inequalities.

Remark 3.10:Rather than a network-wide control con-
straint set, one might like to obtain decoupled constraint sets
for each individual agent. However, (1) it is not clear how to
design a distributed algorithm to perform this computation,



(2) such an algorithm will likely have large communication
requirements, and (3) such a calculation might lead to a very
conservative estimate for the decoupled control constraint
sets. Therefore, rather than explicitly decoupling the control
constraint sets, we next focus on a distributed algorithm to
search the control constraint set for feasible controls that are
optimal according to some criterion. �

IV. D ISTRIBUTED COMPUTATION OF OPTIMAL CONTROLS

In this section we formulate and solve the following
optimization problem: given an array of desired control
inputs Udes = (udes,1, . . . , udes,n)T ∈ (Rd)n, find, via local
computation, the arrayU = (u1, . . . , un) belonging to the
control constraint set, that isclosestto the desired arrayUdes.
To formulate this problem precisely, we need some additional
notations. LetE be a set of edges in the undirected graph
Gdi-disk(rcmm, νrctr) at {(pi, vi)}i∈{1,...,n}. To deal with the
linear inequalities of the form (9) and (10) associated to
each edge ofE, we introduce an appropriatemultigraph.
A multigraph(or multiple edge graph) is, roughly speaking,
a graph with multiple edges between the same vertices. More
formally, a multigraph is a pair(V,E), whereV is the vertex
set and the edge setE contains numbered edges of the form
(i, j, η), for i, j ∈ V andη ∈ N, and whereE has the prop-
erty that if(i, j, η) ∈ E andη > 1, then also(i, j, η−1) ∈ E.
Two edgese1 and e2 of a multigraph areparallel if e1 =
(vi, vj , η1) ande2 = (vi, vj , η2), i.e., if they share the same
vertices. With this definition in hand, letEmult = {(i, j, η) ∈
{1, . . . , n}2 × {1, . . . , Npoly} | ((pi, vi), (pj , vj)) ∈ E, i >

j} and defineGmult = ({1, . . . , n}, Emult). Note that to
each element(i, j, η) ∈ Emult is associated the inequality
(Cη

ij)
T (ui−uj) ≤ wijη. We are now ready to formally state

the optimization problem at hand in the form of the following
quadratic programming problem:

minimize
1

2

n
∑

i=1

‖ui − udes,i‖2,

subj. to (Cη
ij)

T (ui − uj) ≤ w
η
ij , for (i, j, η) ∈ Emult,

(Cη
iθ)

T ui ≤ w
η
iθ,

for i ∈ {1, . . . , n}, η ∈ {1, . . . , Npoly}.
(11)

Here, somehow arbitrarily, we have adopted the2-norm to
define the cost function.

Remark 4.1:If E is a spanning tree ofGdi-disk(rcmm, νrctr)
at a connected configuration{(pi, vi)}i∈{1,...,n}, then the
control constraint setUd

E(rcmm, rctr, ν) · ({pi, vi}i∈{1,...,n})
is guaranteed to be non-empty by Theorem 3.4. In turn, this
implies that the optimization problem (11) is feasible.�

The above problem can be written in a compact form as:

minimize
1

2
‖U − Udes‖2,

subj. to BT
multU � w,

(12)

for appropriately defined matrixBmult and vectorw.

A. Solution via duality: Linearized projected Jacobi method

The quadratic programming problem stated in (12) can be
written into its equivalent standard form as:

minimize
1

2
UT U − UT

desU,

subj. to BT
multU � w̃.

The solution to this problem relies on using duality theory
and is obtained by employing a technique which is known
as thelinearized projected Jacobi methodin the literature
on network flow control problems ([8], Section 3.4). Ac-
cordingly, let λ∗ be the value of Lagrange multipliers at
optimality. Then the global minimum forU is achieved at

U∗ = Udes− Bmultλ
∗. (13)

The linearized projected Jacobi iteration for each component
of λ is given by

λα(t + 1) = max
{

λα(t) − τ

(BT
multBmult)αα

(

(BT
multUdes− w)α

+

Npoly(e+n)
∑

β=1

(BT
multBmult)αβλβ(t)

)

, 0
}

,

(14)

whereα ∈ {1, . . . , Npoly(e+n)} andτ is the stepsize param-
eter. We can selectτ = 1

Npoly(e+n) to guarantee convergence.

B. A distributed implementation of the dual algorithm

Because of the particular structure of the matrix
BT

multBmult, the iterations (14) can be implemented in a
distributed way over the original graphG. To highlight the
distributed structure of the iteration we denote the compo-
nents ofλ by referring to the nodes that they share and the
inequality they are related to. In particular for each edge in
Gmult, the corresponding Lagrange multiplier will be denoted
asλ

η
ij if the edge goes from nodei to nodej, i > j, and it

is associated to the inequality constraintC
η
ij(ui−uj) ≤ w

η
ij .

This makes up the firstNpolye entries of the vectorλ. To be
consistent with this notation, the nextNpolyn entries will be
denoted asλ1

1θ, . . . , λ
Npoly

1θ , . . . , λ1
nθ, . . . , λ

Npoly

nθ . Additionally,
defineN (i) = {j ∈ {1, . . . , n} | {p(i), p(j)} ∈ E} ∪ {θ}.
The symbolθ has the interpretation of a fictional node.

Definingλ
η
ij := λ

η
ji for i < j, we can write equations (13)

and (14) in components as follows. Equation (13) reads, for
i ∈ {1, . . . , n},

u∗
i = udes,i +

∑

k∈N (i)

Npoly
∑

η=1

C
η
ikλ

η
ik. (15)

One can easily work an explicit expression for matrix
product BT

multBmult in (14). Then, equation (14) reads, for



(i, j, η) ∈ Emult,

λ
η
ij(t + 1) = max







0, λ
η
ij(t) −

τ

2(Cη
ij)

T C
η
ij

·




∑

k∈N (i)

Npoly
∑

σ=1

(

(Cη
ij)

T Cσ
ikλσ

ik

)

+
∑

k∈N (j)

Npoly
∑

σ=1

(

(Cη
ij)

T Cσ
jkλσ

jk

)

+ (Cη
ij)

T (udes,i − udes,j) − w
η
ij











,

together with, fori = {1, . . . , n}, η = {1, . . . , Npoly}

λ
η
iθ(t + 1) = max

{

0, λ
η
iθ(t)

− τ

(Cη
iθ)

T C
η
iθ

(

∑

k∈N (i)

Npoly
∑

σ=1

(Cσ
ikλσ

ik)+ (Cη
iθ)

T udes,i −w
η
iθ

)}

,

Remark 4.2:We distribute the task of running iterations
for theseNpoly(e + n) Lagrange multipliers among then
agents as follows: an agenti carries out the updates for all
quantitiesλ

η
iθ and all λη

ij for which i > j. By means of
this partition and one-hop communication, we find the global
solution for the optimization problem (11) in a distributed
fashion over the double integrator disk graph. �

V. SIMULATIONS

To illustrate our analysis we focus on the following
scenario. For the two dimensional setting, i.e. ford = 2, we
assume that there aren = 5 agents with (randomly chosen)
initial condition and such that they are connected according
to Gdi-disk. The bound for the control input isrctr = 2 and
the communication radius isrcmm = 10.

We assigned to one of the agents a derivative feedback
control ux[p, v] = (vx − 2), uy[p, v] = (vy − 5) as desired
input. For the other agents the desired input is set to zero.
The interesting aspect of this simulation, which opens the
perspective to new results in the area of flocking, is that the
maintenance of connectivity can lead to the accomplishments
of a coordination task as the flocking. We show the velocities
(vx andvy) of the agents with respect to time, see Figure 4,
and the distances between agents which are neighbors in
the spanning tree, see Figure 5. Notice that the agents flock
reaching a configuration in which all of them are at the limit
distancercmm = 10.

VI. CONCLUSION

We provide some distributed algorithms to enforce con-
nectivity among networks of agents with double-integrator
dynamics. Future directions of research include (i) evaluating
the communication complexity of the proposed distributed
dual algorithm and possibly designing faster ones, (ii) study-
ing the relationship between the connectivity maintenance
problem and the platooning and mesh stability problem, and
(iii) investigating the flocking phenomenon and designing
flocking algorithms which do not rely on a blanket assump-
tion of connectivity.
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Fig. 4. Velocities (vx andvy) of 5 agents for the flocking task

0 5 10 15 20 25 30 35
1

2

3

4

5

6

7

8

9

10

t

r ij

Fig. 5. Inter-agent distances of neighbors in the spanning tree for
the flocking task
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