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Maintaining limited-range connectivity among second-ordgzrds

Giuseppe Notarstefano Ketan Savla Francesco Bullo Ali Jadbab

Abstract—In this paper we consider ad-hoc networks of input such that the resulting topology maintains connégtiv
robotic agents with double integrator dynamics. For such throughout its course of evolution. In [1], a connectivity
networks, the connectivity maintenance problems are: (i) do constraint was developed for a group of agents modeled as

there exist control inputs for each agent to maintain network first-order di te fi d - t In 11 din th
connectivity, and (i) given desired controls for each agent, frst-order discrete time dynamic systems. In [1] and in the

can one compute the closest connectivity-maintaining controls elated references [2], [3], this constraint is used tosoén-
in a distributed fashion? The proposed solution is based on dezvous problems. Connectivity constraints for lineighs

three contributions. First, we define and characterize admissible communication are proposed in [4]. Another approach to
sets for double integrators to remain inside disks. Second, we connectivity maintenance for first-order systems is pregos

establish an existence theorem for the connectivity maintenance . ; - o
problem by introducing a novel state-dependent graph, called in [5]. In this paper we fully characterize the set of adniisi

the double“integrator disk graph. Finally, we design a distributed ~ control inputs for a group of agents modeled as second
“flow-control” algorithm to compute optimal connectivity-  order discrete time dynamic systems, which would ensure
maintaining controls. connectivity of the group in the same spirit as described
earlier.
. INTRODUCTION o .

_ _ o _ o The contributions of the paper are threefold. First, we
This work is a contribution to the emerging discipline.,qider a control system consisting of a double integrator

of motion coordination for ad-hoc networks of mobile au, bounded control inputs. For such a system, we define

tonomous agents. This loose terminology refers 0 grouRg,y characterize the admissible set that allows the double
of robotic agents with limited mobility and communication;neqrator to remain inside disks. Second, we define a novel
capabilities. In the not too distant future, these groups %ftate-dependent graph — teuble-integrator disk grapk-

coordinated devices will perform a variety of chaIIengingand give an existence theorem for the connectivity main-
tasks including search and recovery operations, sur@e#ia enance problem for networks of second order agents with

exploration and environmental monitoring. The pOtentiallespect to an appropriate version of this new graph. Fipally

advantages of employing arrays of agents have recenily, ' onsider a relevant optimization problem, where given a

motivated vast interest in this topic. For example, from gy of gesired control inputs for all the agents it is require
control viewpoint, a group of agents inherently provides, fing the optimal set of connectivity-maintaining control
robustness to failures of single agents or of communlcauqﬂputs_ We cast this problem into a standard quadratic pro-

links. ) o gramming problem and provide a distributed “flow-control”
The motion coordination problem for groups of au-;i,5rithm to solve it.

tonomous agents is a control problem in the presence o
communication constraints. Typically, each agent makes de [I. PRELIMINARY DEVELOPMENTS
cisions based only on partial information about the state \y, begin with some notations. We 18t Ny, and R,
of the entire network that is obtained via communicatioraenote the natural numbers. the non-neg,ative' integer num-
with its immediate neighbors. On_e important difficulty isbers, and the positive real numbers, respectively.drer,
that the topology of the communication network dependge et (, and 1, denote the vectors whose entries aredall
on the agents’ locations and, therefore, changes with thgq 1 respectively. We leflp|| denote the Euclidean norm
evolution of the network. In order to ensure a desireg p € R Forr € Ry andp € R?, we let B(p,r)
emergent behavior for a group of agents, it is necessaginote the closed ball centered mtwith radius 7, i.e.,
that the group does not disintegrate into subgroups that age(p r)={ge R | |p—gq| <r} Forz,y € RY, we
unable to communicate with each other. In other words, sonpgtx’ < y denote component-w_ise inequali’ty e, < i
restrictions must be applied on the movement of the agents; ;. = {1 dl.Weletf: A= B denote,a set-valued
o yeeyd} :
to ensureconnectivityamong the members of the 9rouP. map: in other words, for eadhe A, f(a) is a subset of3.
In terms of design, it is required to constrain the control
, o A. Maintaining a double integrator inside a disk
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system as theliscrete-time double integratan R¢ or, more B. Computing admissible sets
R d . . .
loosely, as a second-order system. Giyprw) € R** and We characterized? for d = 1 in the following result and
{urtreny € B(04;7en), let ¢(t, (p,v),{u-}) denote the \ye jjlustrate the outcome in Figure 1.
solution of (1) at timet € Ny from initial condition (p, v) Lemma 2.3:FOr rpos, er € Ry, A (7pos, Ter) is the poly-

with inputsuy, ..., ur—1. _ tope containing the pointg, v) € R? satisfying

In what follows we consider the following problem: as-
sume that the initial position of (1) is inside a disk centere ~_ 7pos _ m—1 = L P Teos M L
at 04, find inputs that keep it inside that disk. This task is m 2 m = m 2 o

impossible for general values of the initial velocity. In&h for all m € N, and —Tpos < P < Tpos
follows we identify assumptions on the initial velocity tha
render the task possible.

For rpes € R4, we define theadmissible set at time zero
Ag(7'pos) = B(Od, Tpos) X Rd. (2) Qd\

For rpos, rer € R4, we define theadmissible seby

| ~"pos

Ad(rpo& Tctr) = {(pa U) S R2 | H{UT}TENO C E(Od, Tctr)
s.t.o(t, (p,v), {ur}) € Ad(rpos), ¥t € No}, (3)
and theadmissible set forn time stepshy

Ag@ = {(p7 U) € RZd | 3{u‘r}‘re[o,mfl] C E(Odchtr)
s.t.o(t, (p,v), {ur}) € Ad(rpos), Vt € [0,m]}. (4)
The following theorem characterizes the admissible set.

Theorem 2.1:For all d € N and rpos,7er € Ry, the Remark 2.4:The  methodology ~ for  constructing
following statements hold: Al (rpos, 7etr) Closely follows the procedure for constructing
(i) for all m € N, A% C A% _, and there exists the so-called isochronic regions using principles from
1M (Tpos, Totr) SUCh thatA, = AL, for all m > m; discrete-time optimal control, as outlined in [6]. O

(”) -Ad(rpOSa rctr) = 1im7rL—>+oo 'A7dn1

(iii) Ad(rpos, ror) IS @ convex, compact set and is the Iarges&1
controlled-invariant subset ong(rpos);

(V) A%(rpos, rerr) is invariant under orthogonal transfor-
mations in the sense that, ip,v) € A% (rpos 7ctr),
then also(Rp, Rv) € Ad(rpos, rey) for all orthogonal

Fig. 1. The admissible sed! for generic values ofpos and rey

Next, we introduce some definitions useful to provide an
ner approximation ofA? whend > 2. Givenp € R? and
v € R?\ {04}, definep; € R andp, € R? by

v
P=DP|7 o +PL,
[[vll

matricesk in R**; wherep, - v = 0. FOT rpos, 7o € R, define
(v) if 0 <7y < ra, then A% (rpos,71) C A%(rpos 72) and B

Ad(rl, Tctr) C Ad(7"277“ctr)- Aﬁ(Tpo& Tctr) = {(pa U) € B(Odﬂ"pos) x R? | v=_04 Or
Next, we study the set-valued map that associates to oy, 10]) € AL (/7206 Ip L1, 7exr) }-

each state inAd(rpos, rer) the set of control inputs that
keep the state insideéld(rpos, rer) IN One step. We define Lemma 2.5:For rpes, rer € R,

me admISSIbIe ContrOI Seud(TDOS) TCU) : Ad(’rpOSa Tctl’) = (l) Aﬁ(rpos, Tctr) |S a Subset Omd(rpos, Tctr), aﬂd
B(04,7ctr) by (i) Afl(rpos rerr) is convex and compact.
U (rpos, Tetr) - (p,v) = {u € B(0g, rer) | Remark 2.6:In what follows we silently adopt the inner

(p+v,0+ 1) € A(rpos o)}, (5)  @pproximationAff for the setA? anytimed > 2. Further-
more, we perform computations by adopting inner polytopic

or, equivalently, representations for the various compact convex sets.[]

U (Tpos, Tetr) - (p,0) C. The double-integrator disk graph

= B(0g,rer) N{w — v | (p+ v, w) € A(rpos Ter)}- Let us introduce some concepts about state dependent
Lemma 2.2:For all (p,v) € A%(rposrer), the set graphs and some u_sc_aful examples. For a)éetletdIF(_X)
U (rpos Terr) - (p, v) is non-empty, convex and compact. For€ the collection of finite subsets &f; e.g.,P € F(R?) is a

generic(p, v), the setd%(rpos, rer)-(p, v) does not contaif. set of points. For a seX, let G(X) be the; set of undirected
graphs whose vertices are elementsxofi.e., whose vertex

1A setis controlled invariant for a control system if theréséxa feedback set bglongs tdF(X)' For a seiX, astate dependent gr'aph
law such that the set is positively invariant for the cloteap system. on X is a mapg : F(X) — G(X) that qssomates to a finite
2A matrix R € R%*4 s orthogonal ifRRT = RTR = 1. subsetV of X an undirected graph with vertex sit and



edge setfg (V) whereéy : F(X) — F(X x X) satisfies remm € Ry. We remark that the control boung; and the
Eq(V) CV x V. In other words, what edges existsgiil’) communication radius;mm are the same for all agents.
depends on the elements Gfthat constitute the nodes. We now state the control design problem of interest.

The following three examples of state dependent graphs Problem 3.1 (Connectivity Maintenancethoose a state
play an important role. First, giver,s € R, thedisk graph  dependent grapBiarge: on R?¢ and design (state dependent)
Gaisk(Tpos) is the state dependent graph &4 defined as control constraints sets with the following property: ifcha
follows: for {p1,...,p,} C R%, the pair(p;, p;) is an edge in agent's control takes values in the control constrainttie
Gaisk(Tpos)* ({P1, - - -, pn }) ifand only if p;—p; € B(0a,mp0s).  the agents move in such a way that the number of connected
Second, givenrpes, rer € Ry, the double-integrator disk components ot (Evaluated at the agents’ states) does
graph Gai.gisk(Tpos, 7otr) iS the state dependent graph BA?  not increase with time. O
defined as follows: fof{(py,v1),..., (Pn,vn)} C R?4, the This objective is to be achieved with the limited informa-
pair ((pi,vi), (p;,v;)) is an edge if and only if the relative tion available through message exchanges between agents.

ositions and velocities satis _ .
P fy B. A known result for agents with first-order dynamics

d . .
(pi = pj,vi — v5) € A%(rpos Terr)- In [1], a connectivity constraint was developed for a set

Third, it is convenient to define the disk graph also as a staff 29ents modeled by first-order discrete-time dynamics:

dependent graph oR** by stating that((p;, v:), (p;, v;)) is pilt + 1] = p[t] + walt].
an edge if and only ifp;, p;) is an edge of the disk graph S ) ) )
on R<. We illustrate the first two graphs in Figure 2. Here the graph whose connectivity is of interest, is the disk

graph Ggisk(remm) over the vertices(pi[t], ..., ps[t]}. Net-
work connectivity is maintained by restricting the alloweb

motion of each agent. In particular, it suffices to restrict

the motion of each agent as follows. If agentsand j

are neighbors in the.ym-disk graphGisk(remm) at timet,

then their positions at timé+ 1 are required to belong to
’

B M7 Taw ) In other words, connectivity between
andj is maintained if

wlt] € E(m [t] — pilt] rcmm>7

2 T2
Fig. 2. The disk graph and the double-integrator disk grap®in wlt] € E(pi [t] — pylt] Tcmm)
for 20 agents with random positions and velocities. J 2 9 ’

The constraint is illustrated in Figure 3.

[1l. CONNECTIVITY CONSTRAINTS AMONG
SECOND-ORDER AGENTS

In this section we state the model, the notion of connec-
tivity, and a sufficient condition that guarantees connégti
can be preserved.

A. Networks of robotic agents with second-order dynamics
and the connectivity maintenance problem

We begin by introducing the notion efetwork of robotic
agents with second-order dynamias R¢. Let n be the
number of agents. Each agent has the following computation, \; o+ that this constraint takes into account only the

mlotlon con:rr]ol,‘tﬁnd co;nrr]n unication Capab'“_tt'ﬁst'hﬁori_l_t ypositions of the agents; this fact can be attributed to the
{ ""’n}.’ € «h agent has a processor wi € ablllfirst-order dynamicf the agents. We wish to construct a
of allogatmg contlnuous‘ and discrete states and Perf@m'réimilar constraint for agents with second order dynamits. |
operations on them. Thah agent occupies a localign € g reagonaple to expect that this new constraint will depend

S . Lo e ) ) i Ol th _ _
[g » Moves W.Ith velocityv; € R ' apcordmg to the discrete on positions as well as velocities of the neighboring agents
time double integrator dynamics in (1), i.e.,

pilt + 1] = pilt] + vit],

Fig. 3. Starting fromp; andp;, the agents are restricted to move
inside the disk centered &% with radius ",

C. An appropriate graph for the connectivity maintenance
(6) problem for agents with second-order dynamics

We begin working on the stated problem with a negative
where the norm of all controls;[t], i € {1,...,n}, t € Ny, result regarding two candidate target graphs.

is upper-bounded by, € R,. The processor of each agent Lemma 3.2:Consider a network of. agents with double
has access to the agent location and velocity. Each agentegrator dynamics (6) ilR?. Let r¢mm be the communi-
can transmit information to other agents within a distanceation range and let, be the control bound. Le&farget be



either Gisk(remm) 0N R24 0r Gyi-disk(Temm, 27ctr). There exist  Assume that agents j are connected igi.gisk(Tcmm, VTctr)
states{(pi, vi) }ieq1,... ny Such that at time t. By definition, this means that the relative state
(i) the graphGiargetat{(pi,vi)}ieq1,....n} is connected, and (py;[t], vi;[t]) belongs t0A%(remm, vrer). If this connection
(i) forall {u;}icqr,...ny C B(04, rerr), the graphGragerat  is to be maintained at time+ 1, then the relative control at
{(pi + vi,vi + us) Yieqa,....n}, IS disconnected. time ¢ must satisfy

_ Remark 3.3:The result in Lemma 3.2 on _the double wilt] — u;[t] € U (remm vrer) - (pij[t], vi5[t]).  (7)
integrator graph has the following interpretation. Assume
that agenti has two neighborsj and k£ in the graph Also, |mp|IC|t are the following bounds on individual coatr
Gai-disk(Temm; Terr)- By definition of the neighboring law for inputsw;[t] andu;lt]:
this graph, we know that there exists bounded controls for = =
i and j to maintain the((p;,v;), (pj,v;)) link and that u;[t] € B(0g,7err), uj[t] € B(0g,7etr)- (8)
there exists bounded controls forand £ to maintain the This discussion motivates the following definition.
((pi,vi), (px,vr)) link. The lemma states that, for some Definition 3.7: Given rcmm, rer, v € R, and given a set
states of the agents j, andk, there might not exist controls £ of edges inGi-gisk(romm: vrar) at {(pi, vi) Yicq1,. n}» the
that maintain both links simultaneously. O  control constraint sets defined by

The following theorem suggests that an appropriate scaling
of the control bound is helpful in identifying a suitabletsta 2% (7cmm, 7o ¥) - ({pi, vitieq,...n})

dependent graph for Problem 3.1. _ B n
'IF')heorem%A? [A scaled double-integrator disk graph is ;o un) € B(dod’mr) V(i vi), (b, 07)) € B
suitable] Consider a network of, agents with double inte- ui = uj € US(remm; vreu) - (pi = pjsvi = 0j)}-
grator dynamics (6) irR?. Let remm be the communication  Remark 3.8:The control constraint set for an edge #t
range and letq be the control bound. Take is the set of controls for each agent with the property that
2 all edges inE will be maintained in one time step. O
Ve }07 \/E(n—l)} : Remark 3.9:We can now interpret the results in Theo-

rem 3.4 as follows.

(i) To maintain connectivity between any pair of
connected agents, we should simultaneously han-
dle constraints corresponding tall edges of
Gui-disk(Temm, VTetr)- This might render the control con-
straint set empty.

(i) However, if we only consider constraints corre-
sponding to edges belonging ® spanning treel’

B(04, ror), Such that, for all edges(p;, v;), (ps,v;)) Of Gaiaisk(remm, vrew), then the sewls(remm, vre)

of T, it holds that((p; + v, vi +us), (p; +v;, v; + ;) ({pi vitieq,...n}) I guaranteed to be nonempty.]

is an edge iNGidisk(Temm, YTerr) at {(p; + vi,v; + Let us now provide a concrete representation of the control

i) Yieqt, ...} - constraint set. Given a paif,j of connected agents, the

o i i d . .. .. i

These results are based upon Shostak’s Theory for systegngs;nlizﬁleagtorzlt_rgllﬁ;neg Z(TZC;]m;-IVgrcltcr:)e Eﬁg’ggg ]ii ;On\éfxto o
of inequalities, as exposed in [7]. We postpone the proof t0. ba T T polytop
a forthcoming technical report with Npay Sides inside it. This approximating polytope leads

Remark 3.5: [One-hop distributed computation of confo the following tighter version of the constraint in (7):

nectivity] Each agent can compute its .neighbor's iq the (C?j)T(ui —uj) < w?j) ne{l,..., Nooy}, (9)

graph Gi-gisk(remm, V7cr) just by communicating with its .

neighbors iNGgisk(remm) and exchanging with them position for some appropriate vectdr;; € R? and scalanv;;, € R.

and velocity information. O  Similarly, one can compute an inner polytopic approximatio
Remark 3.6:If Gy disk(Temm, vretr) at {(pi, vi) bicr,....n} pf the l?é_lllB(Od,rctr) and write the following linear vector

is not connected, then the above theorem applies to its copequalities:

nected components. Without loss of generality, we assume AT n

this graph to be connected in what follows. O (Cip)" ui < wip, 1€ {1, Nooy}, (10)

D. The control constraint set and its polytopic represeiotat Where the symbaft has the interpretation of a fictional agent.
We now concentrate on two agents with indigeand /. In this way, we have cast the original problem of finding
Fort € N,, we define the relative position, velocity and® set of feasible control inputs into a satisfiability prable
' ’ for a set of linear inequalities.
control by p;;[t] = pilt] — p;[t], viz[t] = wilt] — v;[t] and . -
wijlt] = wilt] — u;[¢], respectively. It is easy to see that Remark 3.10:Rather than a network-wide control con-
straint set, one might like to obtain decoupled constraitd s
pij[t + 1] = pi;[t] + vt for each individual agent. However, (1) it is not clear how to
vt + 1] = vi;[t] + wij[t]. design a distributed algorithm to perform this computation

Then the following statements hold:

(i) For all states{(pi,_vi)}ie{l _____ »} such that the graph
gdi—disk(Tcmma Vrctr) IS connecLed a{(pi, 'Ui)}qie{l,...,n},
there exists{u;}ieq1,....ny € B(04,7crr), Such that the
graph Gi-gisk(cmm, V7ctr) IS also connected af(p; +
Vi, U3 + uz‘)}ie{l,...,n}-

(i) Let T be a spanning tree 0fqigisk("cmm, V7ctr) at
{(pisvi)tieqa,... ny- Then, there existbu; bic 1, ny C



(2) such an algorithm will likely have large communicationA. Solution via duality: Linearized projected Jacobi matho
requirements, and (3) such a calculation might lead to a very i , ,
conservative estimate for the decoupled control constrain 1n€ quadratic programming problem stated in (12) can be
sets. Therefore, rather than explicitly decoupling thetegn VWritten into its equivalent standard form as:
constraint sets, we next focus on a distributed algorithm to 1
search the control constraint set for feasible controls dha minimize 5UTU — Ugd,
optimal according to some criterion. O subj. to BT, < 1.
IV. DISTRIBUTED COMPUTATION OF OPTIMAL CONTROLS . ) . . ,
The solution to this problem relies on using duality theory

In this section we formulate and solve the followingand is obtained by employing a technique which is known
optimization problem: given an array of desired controbs thelinearized projected Jacobi methdd the literature
iNputs Uges = (Udest; - - -, Udesn)” € (RY)™, find, via local on network flow control problems ([8], Section 3.4). Ac-
computation, the array/ = (u1,...,u,) belonging to the cordingly, let \* be the value of Lagrange multipliers at
control constraint set, that idosestto the desired array/yes  optimality. Then the global minimum fdi/ is achieved at
To formulate this problem precisely, we need some additiona
notations. LetE be a set of edges in the undirected graph
G- dlsk(rcmma VTctr) at {(pmvz)}ze{l ..... n}e To deal with the
linear inequalities of the form (9) and (10) associated to
each edge off, we introduce an appropriataultigraph The linearized projected Jacobi iteration for each compbne
A multigraph (or multiple edge graphis, roughly speaking, ©f A is given by
a graph with multiple edges between the same vertices. More -
formally, a multigraph is a paifV, E), whereV is the vertex A (t 4+ 1) =max {)\a (t) — BT B ((BgunUdes— W)
set and the edge sét contains numbered edges of the form (B Bmuit) oo
(i,4,m), fori,j € V andn € N, and whereE has the prop-
erty that if(i, j,n) € E andn > 1, then alsq(i, j,n—1) € E. + Z (BrutBmut) s (t )) 0},
Two edgese; and e, of a multigraph areparallel if e; = p=1
(vi,v5,m) andey = (v, v5,12), i.e., if they share the same
vertices. With this definition in hand, It = {(3, 7, , )
(1,...,n}% x {1, Noow} | ((piv:) (p;”gj)){e( é,ni)i wherea € {1,. .., Nyoy(e+n)} andr is the stepsize param-
j} and defineGmue = ({1,...,n}, Emu). Note that to eter. We can select = NoyleTny [0 guarantee convergence.
each elementi,j,n) € Emu iS associated the inequality
(CI)" (ui —uj) < wijn. We are now ready to formally state B. A distributed implementation of the dual algorithm
the optimization problem at hand in the form of the following

U* = Udes_ Bmult/\*- (13)

Npoiy(e+n)

(14)

quadratic programming problem: Because of the particular structure of the matrix
Bmuanun, the iterations (14) can be implemented in a

_ 1< 9 distributed way over the original grapgh. To highlight the
minimize % " [lu; — ugesil| distributed structure of the iteration we denote the compo-
i AT . o nents of\ by referring to the nodes that they share and the
subj. to (Cj3)" (ui —u;) < wjj, for (i,5,m) € Emut,  jnequality they are related to. In particular for each edye i
(O”) u; < wjy, Gmur, the corresponding Lagrange multiplier will be denoted

fori e {1,...,n},n € {1,..., Npoy}. as\}; if the edge goes from nodeto nodej, i > j, and it

(11) s associated to the inequality constrairft (u; —u;) < wy).

This makes up the firsW,qye entries of the vectoi. To be

Here, somehow arbitrarily, we have adopted theorm to  consistent with this notation, the neXio,n entries will be
define the cost function. denoted as\l,, ..., AP . AL, AT Additionally,

Remark 4.1:If E'is a spanning tree &aidisk(remm vrer) — define N (i) = {j € {1,...,n} | {p(i),p(j)} € E} U {6}.
at a connected ConflgUfatlo{‘(Pi,vi)}ieu,...,n}, then the The symbold has the interpretation of a fictional node.

control constraint Se/s (remm e, v) - ({pis viticq1,...ny) Defining A/, := A7, for i < j, we can write equations (13)
is guaranteed to be non-empty by Theorem 3.4. In tumn, thigyqg (14) in components as follows. Equation (13) reads, for
implies that the optimization problem (11) is feasible..] ;o {1,....n},
The above problem can be written in a compact form as:
Npol
L 1 poly
minimize 5||U — Uged|?, (12) U = Udesi + Z Z CHND. (15)

subj. to BY .U < w, REN(E) n=1

for appropriately defined matri®m, and vectorw. One can easily work an explicit expression for matrix

product BL Bt in (14). Then, equation (14) reads, for

mult



(ivja T]) € EmU"’

AL(t+1) = max { 0, \];(t) — W :
Npoly Npoly ST
S Y (eprea)+ S (lenrona)
kEN (i) o=1 kEN(j) o=1

+ (C) " (udesi — udes;) — wy; ’

) 0 5 10 15 20 25 30 35
together with, fori = {1,...,n}, n = {1,..., Npoy} t
AL (t+1) = max {0, A (t) Fig. 4. Velocities @, andv,) of 5 agents for the flocking task

Npoy

~emyrar (2 D (CRNG) + (C) T uaesi —wly )}

W " keN (i) o=1

Remark 4.2:We distribute the task of running iterations
for these Npoy(e + n) Lagrange multipliers among the -
agents as follows: an agentcarries out the updates for all
quantities A, and all \}; for which i > j. By means of
this partition and one-hop communication, we find the global
solution for the optimization problem (11) in a distributed
fashion over the double integrator disk graph. O 1

0 5 1‘0 1‘5 éO 25 1;0 35
V. SIMULATIONS t
To illustrate our analysis we focus on the followinggy 5 |nter-agent distances of neighbors in the spanning tree for
scenario. For the two dimensional setting, i.e.dor 2, we  the flocking task
assume that there are= 5 agents with (randomly chosen)
initial condition and such that they are connected accgrdin
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