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Notes on averaging over acyclic digraphs
and discrete coverage control

Chunkai Gao Francesco Bullo Jorge Cortés Ali Jadbabaie

Abstract— In this paper, we show the relationship between
two algorithms and optimization problems that are the subject
of recent attention in the networking and control literature.
First, we obtain some results on averaging algorithms over
acyclic digraphs with fixed and controlled-switching topology.
Second, we discuss continuous and discrete coverage control
laws. Further, we show how discrete coverage control laws can
be cast as averaging algorithms over discrete Voronoi graphs.

I. I NTRODUCTION

Consensus and coverage control are two distinct problems
within the recent literature on multiagent coordination and
cooperative robotics. Roughly speaking, the objective of
the consensus problem is to analyze and design distributed
control laws to drive the groups of agents to agree upon
certain quantities of interest. On the other hand, the objective
of the coverage control problem is to deploy the agents to get
optimal sensing performance of an environment of interest.

In the literature, many researchers have used averaging
algorithms to solve consensus problems. The spirit of av-
eraging algorithms is to let the state of each agent evolve
according to the (weighted) average of the state of its
neighbors. Averaging algorithms has been studied both in
continuous time [1], [2], [3], [4] and in discrete time [4], [5],
[6], [7], [8]. In [1], averaging algorithms are investigated via
graph Laplacians under a variety of assumptions, including
fixed and switching communication topologies, time delays,
and directed and undirected information flow. In [2], a series
of consensus protocols are presented, based on the regular
averaging algorithms, to drive the agents to agree upon the
value of the power mean, see also [3]. A theoretical expla-
nation for the consensus behavior of the Vicsek model [9]
is provided in [6], see also the early work in [5], while [4]
extends the results of [6] to the case of directed topology. The
work [7] adopts a set-valued Lyapunov approach to analyze
the convergence properties of averaging algorithms. The
works [10], [11] survey the results available for consensus
problems using averaging algorithms. In the scenario of
coverage control, [12] proposes gradient descent algorithms
for optimal coverage, and [13] presents coverage control
algorithms for groups of mobile sensors with limited-range
interactions. Also, we want to point out that a special kind

Chunkai Gao and Francesco Bullo are with the Center for Control,
Dynamical Systems and Computation and the Department of Mechan-
ical Engineering, University of California, Santa Barbara, CA 93106,
{ckgao,bullo}@engineering.ucsb.edu

Jorge Cort́es is with the Department of Applied Mathematics and
Statistics, University of California, Santa Cruz, California 95064,
jcortes@ucsc.edu

Ali Jadbabaie is with the Department of Electrical and Sys-
tems Engineering, University of Pennsylvania, Philadelphia, PA 19104,
jadbabai@seas.upenn.edu

of directed graphs, namely acyclic digraphs, are presentedin
the literature to describe the interactions of agents in leader-
following formation problems, e.g., [14], [15].

The contributions of this paper are (i) the investigation
of the properties of averaging algorithms over acyclic di-
graphs with fixed and controlled-switching topologies, and
(ii) the establishment of the connection between discrete
coverage problems and averaging algorithms over acyclic
digraphs. Regarding (i), our first contribution is a novel
matrix representation of the disagreement function associated
with a directed graph. Secondly, we prove that averaging over
an fixed acyclic graph drives the agents to an equilibrium
determined by the so-called “sinks” of the graph. Finally,
we show that averaging over controlled-switching acyclic di-
graphs also makes the agents converge to the set of equilibria
under suitable state-dependent switching signals. Regarding
(ii), we present multicenter locational optimization functions
in continuous and discrete settings, and discuss distributed
coverage control algorithms that optimize them. Finally,
we show how discrete coverage control laws over discrete
Voronoi graphs can be casted and analyzed as averaging al-
gorithms over a set of controlled-switching acyclic digraphs.
In the technical report [16], we provide the proofs for all
statements in this paper.

The paper is organized as follows. Section II introduces
our novel matrix representation of the disagreement function,
and then reviews the current results on consensus problems.
We also present convergence results of averaging algo-
rithms over acyclic digraphs with both fixed and controlled-
switching topologies. Section III presents locational opti-
mization functions in both continuous and discrete settings,
and then discusses appropriate coverage control laws. The
main result of the paper shows the relationship between aver-
aging over switching acyclic digraphs and discrete coverage.
Finally, we gather our conclusions in Section IV.

II. AVERAGING ALGORITHMS OVER DIGRAPHS

We begin with some basic notation. We letN and R≥0

denote, respectively, the set of natural numbers and the set
of non-negative reals. The quadratic form associated with
a symmetric matrixB ∈ R

n×n is the function defined by
x 7→ xT Bx.

A. Digraphs and disagreement functions

A weighted directed graph, in short digraph, G =
(U , E ,A) of order n consists of avertex setU with n
elements, anedge setE ∈ 2U×U (recall that 2U is the
collection of subsets ofU), and aweighted adjacency matrix
A with nonnegative entriesaij , i, j ∈ {1, . . . , n}. For



simplicity, we takeU = {1, . . . , n}. For i, j ∈ {1, . . . , n},
the entryaij is positive if and only if the pair(i, j) is an
edge ofG, i.e., aij > 0 ⇐⇒ (i, j) ∈ E . We also assume
aii = 0 for all i ∈ {1, . . . , n} andaij = 0 if (i, j) 6∈ E , for
all i, j ∈ {1, . . . , n} and i 6= j. When convenient, we will
refer to the adjacency matrix ofG by A(G).

Let us now review some basic connectivity notions for
digraphs. Adirected pathin a digraph is an ordered sequence
of vertices such that any two consecutive vertices in the
sequence are an edge of the digraph. Acycle is a non-
trivial directed path that starts and ends at the same vertex.
A digraph isacyclic if it contains no directed cycles. A node
of a digraph isglobally reachableif it can be reached from
any other node by traversing a directed path. A digraph is
strongly connectedif every node is globally reachable.

Theout-degreeand thein-degreeof nodei are defined by
dout(i) =

∑n

j=1 aij anddin(i) =
∑n

j=1 aji, respectively. The
out-degree matrixDout(G) and the in-degree matrixDin(G)
are the diagonal matrices defined by(Dout(G))ii = dout(i)
and (Din(G))ii = din(i), respectively. The digraphG is
balancedif Dout(G) = Din(G). The graph Laplacianof the
digraphG is

L(G) = Dout(G) −A(G).

Next, we define reverse and mirror digraphs. LetẼ be the
set of reverse edges ofG obtained by reversing the order
of all pairs in E . The reverse digraphG̃ of G is (U , Ẽ , Ã),
where Ã = AT . The mirror digraph Ĝ of G is (U , Ê , Â),
whereÊ = E ∪ Ẽ and Â = (A + AT )/2. Note thatL(G̃) =
Dout(G̃) −A(G̃) = Din(G) −A(G)T .

Given a digraphG of ordern, the disagreement function
ΦG : R

n → R is defined by

ΦG(x) =
1

2

n∑

i,j=1

aij(xj − xi)
2. (1)

The following characterization ofΦG is novel.
Proposition 2.1 (Matrix form of disagreement):Given a

digraph G of order n, the disagreement functionΦG :
R

n → R is the quadratic form associated with the symmetric
positive-semidefinite matrix

P (G) =
1

2
(Dout(G) + Din(G) −A(G) −A(G)T ).

Moreover,P (G) is the graph Laplacian of the mirror graph
Ĝ, that is,P (G) = L(Ĝ) = 1

2

(
L(G) + L(G̃)

)
.

Remark 2.2:In general,P (G) 6= L(G) and, therefore,
ΦG(x) 6= xT L(G)x. However, if the digraphG is balanced,
then Dout(G) = Din(G) and, in turn,ΦG(x) = xT L(G)x.
This is the usual result for undirected graphs, e.g., [1].•

B. Averaging plus connectivity achieves consensus

To each nodei ∈ U of a digraphG, we associate a
statexi ∈ R, that obeys a first-order dynamics of the form
ẋi = ui, i ∈ {1, . . . , n}. We say that the nodes of a network
have reached aconsensusif xi = xj for all i, j ∈ {1, . . . , n}.
Our objective is to design control lawsu that guarantee that
consensus is achieved starting from any initial condition,
while ui depends only on the state of the nodei and of

its neighbors inG, for i ∈ {1, . . . , n}. In other words, the
closed-loop system asymptotically achieves consensus if,for
any x0 ∈ R

n, one has thatx(t) → {α(1, . . . , 1) | α ∈ R}
when t → +∞. If the valueα is the average of the initial
state of then nodes, then we say the nodes have reached
average-consensus.

We refer to the following linear control law, often used in
the literature on consensus (e.g., see [6], [8], [10]), as the
averaging protocol:

ui =

n∑

j=1

aij(xj − xi). (2)

With this control law, the closed-loop system is

ẋ(t) = −L(G)x(t). (3)

Next, we consider a family of digraphs{G1, . . . ,Gm} with
the same vertex set{1, . . . , n}. A switching signalis a map
σ : R≥0 × R

n → {1, . . . ,m}. Given these objects, we can
define the following switched dynamical system

ẋ(t) = −L(Gk)x(t),

k = σ(t, x(t)).
(4)

Note that the notion of solution for this system might not be
well-defined for arbitrary switching signals. The properties
of the linear system (3) and the system (4) under time-
dependent switching signals have been investigated in [1],
[4], [7], [17]. Here, we review some of these properties in
the following two statements.

Theorem 2.3 (Averaging over digraphs):Let G be a di-
graph. The following statements hold:

(i) System (3) asymptotically achieves consensus if and
only if G has a globally reachable node;

(ii) If G is strongly connected, then system (3) asymptot-
ically achieves average-consensus if and only ifG is
balanced.

Next, let {G1, . . . ,Gm} be digraphs with the same vertex
set {1, . . . , n}, let σ : R≥0 → {1, . . . ,m} be a piecewise
constant function. The following statements hold:
(iii) System (4) asymptotically achieves consensus if there

exist infinitely many consecutive uniformly bounded
time intervals such that the union of the switching
graphs across each interval has a globally reachable
node;

(iv) If each Gi, i ∈ {1, . . . ,m}, is strongly connected and
balanced, then for any arbitrary piecewise constant
function σ, the system (4) globally asymptotically
solves theaverage-consensus problem.

C. Averaging protocol over a fixed acyclic digraph

Here we characterize the convergence properties of the
averaging protocol (3) under different connectivity properties
than the ones stated in Theorem 2.3(i) and (ii), namely
assuming that the given digraph is acyclic.

We start by reviewing some basic properties of acyclic
digraphs. Given an acyclic digraphG, every vertex of in-
degree0 is namedsource, and every vertex of out-degree0 is
namedsink. Every acyclic digraph has at least one source and



at least one sink. Given an acyclic digraphG, we associate
a nonnegative number to each vertex, calleddepth, in the
following way. First, we define the depth of the sinks ofG
to be 0. Next, we consider the acyclic digraph that results
from erasing the0-depth vertices fromG and the in-edges
towards them; the depth of the sinks of this new acyclic
digraph are defined to be1. The higher depth vertices are
defined recursively. This process is well-posed as any acyclic
digraph has at least one sink. The depth of the digraph is the
maximum depth of its vertices. Forn, d ∈ N, Sn,d is the set
of acyclic digraphs with vertex set{1, . . . , n} and depthd.

Next, it is convenient to relabel then vertices of the
acyclic digraphG with depth d in the following way: (1)
label the sinks from1 to n0, where n0 is the number of
sinks; (2) label the vertices of depthk from

∑k−1
j=0 nj + 1

to
∑k−1

j=0 nj + nk, wherenk is the number of vertices of
depthk, for k ∈ {1, . . . , d}. Note that vertices with the same
depth may be labeled in arbitrary order. With this labeling,
the adjacency matrixA(G) is lower-diagonal with vanishing
diagonal entries, and the LaplacianL(G) takes the form

L(G) =





0 0 . . . 0

−a21

∑1
j=1 a2j . . . 0

. . . . . . . . . . . .

−an1 −an2 . . .
∑n−1

j=1 anj



 .

Clearly, all eigenvalues ofL are non-negative and the zero
eigenvalues are simple.

Proposition 2.4 (Averaging over an acyclic digraph):
Let G be an acyclic digraph of ordern with n0 sinks,
assume its vertices are labeled according to their depth, and
consider the dynamical systeṁx(t) = −L(G)x(t) defined
in (3). The following statements hold:

(i) The equilibrium set of (3) is the vector subspace

ker L(G) = {(xs, xe) ∈ R
n0×R

n−n0 | xe = −L−1
22 L21xs}.

(ii) Each trajectoryx : R≥0 → R
n of (3) exponentially

converges to the equilibriumx∗ defined by

x∗
i =






xi(0), i ∈ {1, . . . , n0},∑i−1
j=1 aijx

∗
j∑i−1

j=1 aij

, i ∈ {n0 + 1, . . . , n}.

(iii) If G has unit depth, thenΦG is monotonically decreas-
ing along any trajectory of (3).

Remark 2.5:If the digraph has a single sink, then the
convergence statement in part (ii) of Proposition 2.4 is
equivalent to part (i) of Theorem 2.3. Note also that statement
(iii) is not true for digraphs with depth larger than 1. The
digraph in Figure 1 is a counterexample. •

D. Averaging protocol over switching acyclic digraphs

Given a family of digraphsΓ = {G1, . . . ,Gm} with
vertex set{1, . . . , n}, the minimal disagreement function
ΦΓ : R

n → R is defined by

ΦΓ(x) = min
k∈{1,...,m}

ΦGk
(x). (5)

Let I(x) = argmin{ΦGk
(x) | k ∈ {1, . . . ,m}}. We consider

state-dependent switching signalsσ : R
n → {1, . . . ,m} with

1 2

6

3

4 5

Fig. 1. For this digraph of depth2, the Lie derivative of the disagree-
ment (1) along the protocol (3) is indefinite.

the property thatσ(x) ∈ I(x), that is, at eachx ∈ R
n,

σ(x) corresponds to the index of a graph with minimal
disagreement. Clearly, for any suchσ, one hasΦΓ(x) =
ΦGσ(x)

(x).
Proposition 2.6 (Averaging over acyclic digraphs):Let

Γ = {G1, . . . ,Gm} be a set of acyclic digraphs with
vertices {1, . . . , n} and depth1, i.e., Γ ⊂ Sn,1. Assume
that ∪k∈{1,...,m} Gk ∈ Sn,1 and thatσ : R

n → {1, . . . ,m}
satisfiesσ(x) ∈ I(x). Consider the discontinuous system

ẋ(t) = Y (x(t)) = −L(Gk)x(t), for k = σ(x(t)), (6)

whose solutions are understood in the Filippov sense. The
following statements hold:

(i) The point x∗ ∈ R
n is an equilibrium for (6) if and

only if for eachi ∈ I(x∗), there exists scalarsλi ≥ 0
and

∑
i∈I(x∗) λi = 1, such that

x∗ ∈ ker
( ∑

i∈I(x∗)

λiL(Gi)
)
. (7)

(ii) Each trajectoryx : R≥0 → R
n of (6) converges to the

set of equilibria.
(iii) The minimum disagreement functionΦΓ is monoton-

ically non-increasing along any trajectory of (6).
Remarks 2.7: • Statement (ii) in this theorem is

weaker than statement (ii) in previous one in three ways:
first, we are not able to characterize the limit point as a
function of the initial state. Second, we require the depth
1 assumption, which is sufficient to ensure convergence,
but possibly not necessary. Third, we establish only
convergence to a set, rather than an individual point.
It remains an open question to obtain necessary and
sufficient conditions for convergence to a point.

• Although the statement (ii) is obtained only for digraphs
of unit depth, this class of graphs is of interest in the
forthcoming sections. •

III. D ISCRETE COVERAGE CONTROL

We now consider motion coordination problems for a
group of robots described by first order integrators. In
other words, we assume thatn robotic agents are placed
at locationsp1, . . . , pn ∈ R

2 and that they move according
to ṗi = ui, i ∈ {1, . . . , n}. We denote byP the vector
(p1, . . . , pn) ∈ (R2)n. Additionally, we define

Scoinc = {(p1, . . . , pn) ∈ (R2)n | pi = pj for somei 6= j},

and, for P 6∈ Scoinc, we let {Vi(P )}i∈{1,...,n} denote the
Voronoi partition generated byP , e.g., see Figure 2.



Fig. 2. Voronoi partition of a rectangle. The generatorsp1, . . . , pn are
elevated from the plane for intuition’s sake.

A. Continuous and discrete multi-center functions

Let Q be a convex polygon inR2 including its interior
and letφ : R

2 → R+ be a bounded and measurable function
whose support isQ. Analogously, let{q1, . . . , qN} ⊂ R

2 be
a pointset and{φ1, . . . , φN} be nonnegative weights associ-
ated to them. Given a non-increasing performance function
f : R+ → R, we consider thecontinuousanddiscrete multi-
center functionsH : (R2)n → R andHdscrt : (R2)n → R

defined by

H(P ) =

∫

Q

max
i∈{1,...,n}

f(‖q − pi‖)φ(q)dq,

Hdscrt(P ) =

N∑

j=1

max
i∈{1,...,n}

φjf(‖qj − pi‖).

Let d(q) = minj∈{1,...,n} ‖q − pj‖, we define

Sequid = {(p1, . . . , pn) ∈ (R2)n | ‖q−pi‖ = ‖q−pk‖ = d(q)

for someq ∈ {q1, . . . , qN} and for somei 6= k},

In other words, ifP 6∈ Sequid, then no pointqj is equidistant
to two or more nearest robots. Note thatSequid is a set
of measure zero because it is the union of the solutions
of a finite number of algebraic equations. Using Voronoi
partitions, forP 6∈ Scoinc, we may write

H(P ) =

n∑

i=1

∫

Vi(P )

f(‖q − pi‖)φ(q)dq,

Hdscrt(P ) =

n∑

i=1

∑

qj∈Vi(P )

φj

card(qj , P )
f(‖qj − pi‖),

wherecard : R
2 × (R2)n → {1, . . . , n} denotes the number

of indicesk for which ‖qj − pk‖ = mini∈{1,...,n} ‖qj − pi‖.
If qj is a point in the interior ofVi(P ) for some i, then
card(qj , P ) = 1. The following result is discussed in [13]
for the continuous multi-center function; the result for the
discrete function is novel.

Proposition 3.1 (Derivatives ofH andHdscrt): If f is lo-
cally Lipschitz, thenH andHdscrt are locally Lipschitz on
Qn. If f is differentiable, then

(i) H is differentiable onQn \ Scoinc with

∂H

∂pi

(P ) =

∫

Vi(P )

∂

∂pi

f(‖q − pi‖)φ(q)dq,

(ii) Hdscrt is regular onQn with generalized gradient

∂Hdscrt(P ) =
N∑

j=1

φj co
{ ∂

∂P
f(‖qj − pk‖)

∣∣ k ∈ I(qj , P )
}

,

whereI(qj , P ) is the set of indicesk for whichf(‖qj−
pk‖) = maxi∈{1,...,n} f(‖qj − pi‖). Additionally, if
P 6∈ Scoinc∪Sequid, thenHdscrt is differentiable atP ,
and for eachi ∈ {1, . . . , n}

∂Hdscrt

∂pi

(P ) =
∑

qj∈Vi(P )

φj

∂

∂pi

f(‖qj − pi‖).

For particular choices off , the multi-center functions and
their partial derivatives may simplify. For example, iff(x) =
−x2, the partial derivative of the multi-center functionH
reads, forP 6∈ Scoinc,

∂H

∂pi

(P ) = 2MVi(P )(CVi(P ) − pi),

where mass and the centroid ofW ⊂ Q are

MW =

∫

W

φ(q) dq, CW =
1

MW

∫

W

q φ(q) dq.

Additionally, the critical pointsP ∗ of H have the property
that p∗i = CVi(P∗), for i ∈ {1, . . . , n}; accordingly, they are
called [12] centroidal Voronoi configurations. Analogously,
if f(x) = −x2, the discrete function reads

Hdscrt(P ) = −
N∑

j=1

max
i∈{1,...,n}

φj‖qj − pi‖
2,

and its generalized gradient is

∂Hdscrt(P ) =

N∑

j=1

φj co
{

2(qj − pk)
∂pk

∂P

∣∣ k ∈ I(qj , P )
}

.

For eachj ∈ {1, . . . , N}, assume the scalarsλij , i ∈
I(qj , P ), satisfy

λij ≥ 0,
∑

i∈I(qj ,P )

λij = 1, (8)

and define(Mdscrt)Vi(P ) and (Cdscrt)Vi(P ) by

(Mdscrt)Vi(P ) =
∑

qj∈Vi(P )

λijφj ,

(Cdscrt)Vi(P ) =






pi, if (Mdscrt)Vi(P ) = 0,

∑

qj∈Vi(P )

λijφjqj

(Mdscrt)Vi(P )
, otherwise.

With this notation,P ∗ is a critical point of∂Hdscrt, that is,
0 ∈ ∂Hdscrt(P

∗) if, for any j ∈ {1, . . . , N}, there existλij

as in equations (8) such thatp∗i = (Cdscrt)Vi(P∗), for each
i ∈ {1, . . . , n}. We call such pointsP ∗ discrete centroidal
Voronoi configurations.



B. Continuous and discrete coverage control

Based on the expressions obtained in the previous subsec-
tion, it is possible to design motion coordination algorithms
for the robotsp1, . . . , pn. We call continuousand discrete
coverage optimizationthe problems of maximizing the multi-
center functionH and Hdscrt, respectively. The continuous
problem is studied in [12]. We simply impose that the
locations p1, . . . , pn follow a gradient ascent law defined
over the setQn \ Scoinc. The (continuous)coverage control
law is

ui = kprop
∂H

∂pi

(P ), i ∈ {1, . . . , n}, (9)

where kprop is a positive gain. Analogously, thediscrete
coverage control lawis

ui = kpropXi(P ), i ∈ {1, . . . , n}, (10)

whereXi : Qn → R
2 is defined by

Xi(P ) =
∑

qj∈Vi(P )

φj

card(qj , P )

∂

∂pi

f(‖qj − pi‖).

Note thatXi is discontinuous onQn, continuous onQn \
Scoinc∪Sequid, and satisfies

Xi(P ) =
∂Hdscrt

∂pi

(P ).

Note that both laws are distributed in the sense that each
robot only needs information about its Voronoi cell in order
to compute its control.

To handle the discontinuity of the discrete coverage control
law (10), we define the vector fieldX = [X1,X2, . . . ,Xn]T

and write
Ṗ = kpropX(P ). (11)

We understand the solution of this equation in the Filippov
sense. We then investigate the properties of the solution and
analysis the convergence of (9) and (10).

Proposition 3.2: (Continuous and discrete coverage con-
trol) For the closed-loop systems induced by equation (9)
and by equation (10) starting atP0 ∈ Qn \ Scoinc, the agents
location converges asymptotically to the set of critical points
of H and ofHdscrt, respectively.

C. The relationship between discrete coverage and averag-
ing over switching acyclic digraphs

Let Q be a convex polygon, let{p1, . . . , pn} ⊂ Q be the
position ofn robots, let{q1, . . . , qN} ⊂ Q beN fixed points
in Q with corresponding nonnegative weights{φ1, . . . , φN},
and letI(qj , P ) be the set of indicesk for which‖qj−pk‖ =
mini∈{1,...,n} ‖qj − pi‖. We begin by defining some useful
digraphs.

A discrete Voronoi graphGdscrt-Vor is a digraph with
(n + N) vertices{p1, . . . , pn, q1, . . . , qN}, with N directed
edges{(pi, qj)| for eachj ∈ {1, . . . , N}, pick one and only
one i ∈ I(qj , P )} and with corresponding edge weightsφj ,
for all j ∈ {1, . . . , N}. We illustrate one such graph in
Figure 3. With our definition, it is possible for one vertex set
to generate multiple discrete Voronoi graphs. We will denote

Fig. 3. The discrete Voronoi graph over3 robots and6× 9 grid points in
the rectangle of Figure 2. The edges have top/down direction.

the nodes ofGdscrt-Vor by Z = (z1, . . . , zn+N ) ∈ (R2)n+N ,
the weights byaαβ , for α, β ∈ {1, . . . , n + N}, with the
understanding that:

zα =

{
pα, if α ∈ {1, . . . , n},

qα−n, otherwise,

and that the only non-vanishing weights areaαβ = φj when
β = n + j, for j ∈ {1, . . . , N}, and whenα ∈ {1, . . . , n}
corresponds to the robotpα closest toqj and (pα, qj) is
a directed edge of the graphGdscrt-Vor. Note thatGdscrt-Vor

depends uponZ. Since{q1, . . . , qN} ⊂ Q are fixed, when
we need to emphasize this dependence, we will simply
denote it asGdscrt-Vor(P ).

Let us now define a set of digraphs of which the dis-
crete Voronoi graphs are examples. LetF (N,n) be the
set of functions from{1, . . . , N} to {1, . . . , n}. Roughly
speaking, a function inF (N,n) assigns to each point
qj , j ∈ {1, . . . , N}, a robot pi, i ∈ {1, . . . , n}. Given
h ∈ F (N,n), let Gh be the digraph with(n + N)
vertices {p1, . . . , pn, q1, . . . , qN}, with N directed edges
{(ph(j), qj)}j∈{1,...,N}, and corresponding edge weightsφj ,
j ∈ {1, . . . , N}. With these notations, it holds that
Gdscrt-Vor(P ) = Gh∗(·,P ) with any functionh∗ : {1, . . . , N}×
Qn → {1, . . . , n} which satisfiesh∗(j, P ) ∈ argmin{‖qj −
pi‖ | i ∈ {1, . . . , n}}. Let us state a useful observation about
these digraphs.

Lemma 3.3:The set of digraphsGh, h ∈ F (N,n), is a
set of acyclic digraphs with unit depth, i.e., it is a subset
of Sn+N,1 (see definition in Subsection II-C). Moreover,
∪h∈F (N,n) Gh is an acyclic digraph with unit depth, i.e.,
∪h∈F (N,n) Gh ∈ Sn+N,1.

For h ∈ F (N,n), let us study appropriate disagreement
functions for the digraphGh. We define the functionΦGh

:
(R2)n+N → R by

ΦGh
(Z)|Z=(p1,...,pn,q1,...,qN ) =

1

2

n+N∑

α,β=1

aαβ‖zα − zβ‖
2

=
1

2

N∑

j=1

φj‖qj − ph(j)‖
2,

because the weightsaαβ , α, β ∈ {1, . . . , n + N} of the Gh

all vanish except forah(j),j = φj , j ∈ {1, . . . , N}. We now
state the main result of this section.

Theorem 3.4: (Correspondence between discrete cover-
age control laws and averaging protocols over acyclic
graphs)The following statements hold:

(i) The discrete multi-center functionHdscrt with f(x) =
−x2, and the minimum disagreement function over the



set of digraphsGh, h ∈ F (N,n), satisfy

−
1

2
Hdscrt(P ) =

1

2

N∑

j=1

min
i∈{1,...,n}

φj‖qj − pi‖
2

=
1

2

N∑

j=1

φj‖qj − ph∗(j)‖
2

= ΦGdscrt-Vor(p1, . . . , pn, q1, . . . , qN )

= min
h∈F (N,n)

ΦGh
(p1, . . . , pn, q1, . . . , qN ).

(ii) For P 6∈ Scoinc∪Sequid, the discrete coverage control
law for f(x) = −x2 and the averaging protocol over
the discrete Voronoi digraph together satisfy, fori ∈
{1, . . . , n},

1

2

∂Hdscrt

∂pi

(P ) =
∑

qj∈Vi(P )

φj(qj − pi) =
n+N∑

β=1

aαβ(zβ − zα),

wherezα andaαβ , α, β ∈ {1, . . . , n + N}, are nodes
and weights ofGdscrt-Vor. Accordingly, the discontinu-
ous coverage control system (11), forf(x) = −x2,
and the averaging system (6) over the set of digraphs
Gh, h ∈ F (N,n), together satisfy, fori ∈ {1, . . . , n},

1

2
K[Xi](P ) = K[Yi](Z),

with Z = (p1, . . . , pn, q1, . . . , qN ). Xi, Yi are theith

2-dimensional block component ofX, Y , respectively.
(iii) P ∗ ∈ Qn is an equilibrium of the discrete coverage

control system withf(x) = −x2 if and only if
Z∗ = (p∗1, . . . , p

∗
n, q1, . . . , qN ) is an equilibrium of

system (6) over the set of digraphsGh, h ∈ F (N,n),
that is:

∀j ∈ {1, . . . , N}, ∃λij as in (8), such that

p∗i = (Cdscrt)Vi(P∗), ∀i ∈ {1, . . . , n},

m

∃µk ≥ 0 and
∑

k

µk = 1, such that

Z∗ ∈ ker
( ∑

k

µkL(Gk
dscrt-Vor(Z

∗))
)
,

where {Gk
dscrt-Vor(Z

∗)}k are all possible discrete
Voronoi graphs generated byZ∗.

(iv) Given any initial position of robotsP0 ∈ Qn, the
evolution of the discrete coverage control system (11)
and the evolution of the averaging system (6) under
the switching signalσ : Qn → {Gh | h ∈ F (N,n)}
defined byσ(P ) = Gdscrt-Vor(Z) are identical in the
Filippov sense and, therefore, the two systems will
converge to the same set of equilibrium placement of
robots, as described in (iii).

IV. CONCLUSIONS

We have studied averaging protocols over fixed and
controlled-switching acyclic digraphs, and characterized their
asymptotic convergence properties. We have also discussed
continuous and discrete multi-center locational optimization

functions, and distributed control laws that optimize them.
The main result of the paper shows how these two sets of
problems are intimately related: discrete coverage control
laws are indeed averaging protocols over acyclic digraphs.As
a consequence of our analysis, one can argue that coverage
control consensus problems are special cases of a general
class of distributed optimization problems.
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