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Notes on averaging over acyclic digraphs
and discrete coverage control

Chunkai Gao Francesco Bullo Jorge @art Ali Jadbabaie

Abstract— In this paper, we show the relationship between of directed graphs, namely acyclic digraphs, are presented
two algorithms and optimization problems that are the subject the literature to describe the interactions of agents iddea
of recent attention in the networking and control literature. following formation problems, e.g., [14], [15].

First, we obtain some results on averaging algorithms over oo . . . L
acyclic digraphs with fixed and controlled-switching topology. ~_ 1h€ contributions of this paper are (i) the investigation

Second, we discuss continuous and discrete coverage controlOf the pr(.)per.ties of averaging algorithr?ns over acyclic di-
laws. Further, we show how discrete coverage control laws can graphs with fixed and controlled-switching topologies, and

be cast as averaging algorithms over discrete Voronoi graphs.  (ji) the establishment of the connection between discrete
l. INTRODUCTION coverage problems aqd averaging algqnthms over acyclic
q | gisti bl digraphs. Regarding (i), our first contribution is a novel
‘Consensus and coverage control are two distinct problemg, iy representation of the disagreement function aasei
within the recent literature on multiagent coordinatiordan with a directed graph. Secondly, we prove that averaging ove
cooperative robotics. Roughly speaking, the objective afy fiyeq acyclic graph drives the agents to an equilibrium
the consensus prqblem is to analyze and design distributgdio - mined by the so-called “sinks” of the graph. Finally,
C°””9' laws _t_o dnvc_e the groups of agents to agree ubQfle show that averaging over controlled-switching acyciic d
certain quantities of interest. On the other hand, the ¢lugec graphs also makes the agents converge to the set of ecuuilibri

of t_he coverage control problem is to deploy the agents 1o gk ger suitable state-dependent switching signals. Regprd
optimal sensing performance of an environment of interesk;y ‘e present multicenter locational optimization ftinos
In the literature, many researchers have used averagi

lorith | bl h irit of continuous and discrete settings, and discuss diséibut
algorithms to solve consensus problems. The spirit of ay,erage control algorithms that optimize them. Finally,

erag'r(‘jg aIgontf;]ms IS Fohlet dthe state of ](cea;:]h agent e\;o!‘(ﬁe show how discrete coverage control laws over discrete
according to the (weighted) average of the state o 't_%ronoi graphs can be casted and analyzed as averaging al-

neighbors. Averaging algorithms has been studied both {i)vithms over a set of controlled-switching acyclic digrap
continuous time [1], [2], [3], [4] and in discrete time [4B]l |, the technical report [16], we provide the proofs for all
[6], [7], [8]. In [1], averaging algorithms are investigdteia statements in this paper.

graph Laplaqian_s under a va_lriet_y of assum_ption_s, including The paper is organized as follows. Section Il introduces
fixed and switching communication topologies, time delays, , oyel matrix representation of the disagreement fongti
and directed and undirected information flow. In [2], & Serie, 4 then reviews the current results on consensus problems.
of consensus protocols are presented, based on the reg also present convergence results of averaging algo-
av?aragl?ghalgonthms, to drive thle agents t?] agree ulpon ltl?f?nms over acyclic digraphs with both fixed and controlled-
value Of t T]power mean,bser? aiso [?].hA t _eoritlca dexlp witching topologies. Section Il presents locationali-opt
nation for the consensus behavior of the Vicsek model [}, 4tion functions in both continuous and discrete sesting

is provided in [6], see also the early quk in [5], while [4] and then discusses appropriate coverage control laws. The
extends the results of [6] to the case of directed topolob: T ,4in result of the paper shows the relationship between aver

work [7] adopts a set-vall.!ed Lyapunov approach_to analyz§ging over switching acyclic digraphs and discrete coverag
the convergence properties of averaging algorithms. Trﬁna”y' we gather our conclusions in Section IV.
works [10], [11] survey the results available for consensus

problems using averaging algorithms. In the scenario of Il. AVERAGING ALGORITHMS OVER DIGRAPHS
coverage control, [12] proposes gradient descent algosith
for optimal coverage, and [13] presents coverage contrq
algorithms for groups of mobile sensors with limited-rang
interactions. Also, we want to point out that a special kin

We begin with some basic notation. We Etand R
lenote, respectively, the set of natural numbers and the set
f non-negative reals. The quadratic form associated with

symmetric matrixB € R™*™ is the function defined by
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simplicity, we takel/ = {1,...,n}. Fori,j € {1,...,n}, its neighbors inG, for i € {1,...,n}. In other words, the
the entrya;; is positive if and only if the pairi,j) is an closed-loop system asymptotically achieves consensta if,
edge ofG, i.e.,a;; >0 < (i,j) € £. We also assume any z, € R", one has that(t) — {a(1,...,1) | « € R}

a; =0forallie{l,...,n} anda;; =0 if (i,j) ¢ £, for whent — +o0. If the value« is the average of the initial
alli,5 € {1,...,n} andi # j. When convenient, we will state of then nodes, then we say the nodes have reached
refer to the adjacency matrix &f by A(G). average-consensus

Let us now review some basic connectivity notions for We refer to the following linear control law, often used in
digraphs. Adirected pathin a digraph is an ordered sequencehe literature on consensus (e.g., see [6], [8], [10]), &s th
of vertices such that any two consecutive vertices in thaveraging protocal
sequence are an edge of the digraph.cykle is a non- n
trivial directed path that starts and ends at the same vertex u; = Z aij(z; — ). 2)

A digraph isacyclicif it contains no directed cycles. A node =

of a digraph isglobally reachabléf it can be reached from
any other node by traversing a directed path. A digraph
strongly connectedf every node is globally reachable. i(t) = —L(G)x(t). ()

The out-degreeand thein-degreeof nodes: are defined by ) ) ) )
dou(i) = 37 ai; anddin(i) = 7, aj;, respectively. The Next, we consider a family of digrapH$, . . . , G, } with

M/ith this control law, the closed-loop system is

out-degree matrixDo,(G) and the in-degree matrio;,(G) the same vertex sdftl, ..., n}. A switching signalis a map
are the diagonal matrices defined Bou(G))ii = dow(i) @ : K=o X R" — {1,...,m}. Given these objects, we can
and (Din(G))ii = din(i), respectively. The digraplg is define the following switched dynamical system
balancedif Dow(G) = Din(G). The graph Laplacianof the i(t) = —L(G)x(t),
digraphg is b — 4)
=o(t,z(t)).
L(G) = Doul§) — A(9)- Note that the notion of solution for this system might not be

Next, we define reverse and mirror digraphs. Eebe the well-defined for arbitrary switching signals. The propesti
set of reverse edges @ obtained by reversing the order Of the linear system (3) and the system (4) under time-
of all pairs in€. The reverse digraphG of G is (U, £, A), dependent switching S|gna_1ls have been |nvest|gated_ in _[1],
where A = A”. The mirror digraph G of G is (U, &, A), [4], [7], [17]. Here, we review some of these properties in
where€ = £UE and A = (A + AT)/2. Note thatZ,(G) = the following two statements.

Dout(g) _ A(,C';) = Din(G) — A(G)T. Theorem 2.3 (Averaging over digraphd)et G be a di-
Given a digraphg of ordern, the disagreement function 9raPh. The following statements hold:
g : R™ — R is defined by (i) System (3) asymptotically achieves consensus if and
n only if G has a globally reachable node;
Bg(x) = 1 Z aij(z; — )2, 1) (ii) If G is strongly connected, then system (3) asymptot-
2 Py ’ ically achieves average-consensus if and only ifs
' balanced.

The following characterization obg is novel. Next, let {Gr, ..., G} be digraphs with the same vertex

Proposition 2.1 (Matrix form of disagreementBiven a set{l,....n}, leto : Ruy — {L....,m} be a piecewise

digraph G of order n, the disagreement functio®g . . )
R™ — R is the quadratic form associated with the symmetrigcmStant function. The following statements hold:

positive-semidefinite matrix (iif) System (4) asymptotically achieves consensus ifeéher
exist infinitely many consecutive uniformly bounded
P(G) = E(Dout(g) + Din(G) — A(G) — A(G)T). time intervals such that the union of the switching
2 graphs across each interval has a globally reachable
Moreover, P(G) is the graph Laplacian of the mirror graph node;
G, that is, P(G) = L(G) = 1 (L(G) + L(G)). (iv) If eachG;, i € {1,...,m}, is strongly connected and
Remark 2.2:In general, P(G) # L(G) and, therefore, balanced, then for any arbitrary piecewise constant
®g(z) # T L(G)x. However, if the digraplg is balanced, function o, the system (4) globally asymptotically
then Dow(G) = Din(G) and, in turn,®¢(x) = 27 L(G)x. solves theaverageconsensus problem.

This is the usual result for undirected graphs, e.g., [1]e C. Averaging protocol over a fixed acydlic digraph

B. Averaging plus connectivity achieves consensus Here we characterize the convergence properties of the
To each nodei € U of a digraphG, we associate a averaging protocol (3) under different connectivity prajes
statex; € R, that obeys a first-order dynamics of the formthan the ones stated in Theorem 2.3(i) and (ii), hamely
z; =, 1 € {1,...,n}. We say that the nodes of a networkassuming that the given digraph is acyclic.
have reached eonsensuff z; = z; forall 7,5 € {1,...,n}. We start by reviewing some basic properties of acyclic
Our objective is to design control lawsthat guarantee that digraphs. Given an acyclic digraph, every vertex of in-
consensus is achieved starting from any initial conditiordegree) is namedsource and every vertex of out-degr@ds
while u; depends only on the state of the nodand of namedsink Every acyclic digraph has at least one source and



at least one sink. Given an acyclic digraghwe associate
a nonnegative number to each vertex, caltegpth in the

following way. First, we define the depth of the sinks®f 4 O 5
to be 0. Next, we consider the acyclic digraph that results

from erasing the)-depth vertices frony and the in-edges

towards them; the depth of the sinks of this new acyclic

digraph are defined to be The higher depth vertices are

defined recursively. This process is well-posed as any &cycl 1 2 3

digraph has at least one sink. The depth of the digraph is tllg - _ - _

For this digraph of deptB, the Lie derivative of the disagree-
maximum depth of its vertices. Fer,d € N, S,, 4 is the set mem (1) along the protocol (3) is indefinite.
of acyclic digraphs with vertex stl, ..., n} and depthd.

Next, it is convenient to relabel tha vertices of the )

acyclic digraphG with depthd in the following way: (1) the property thatr(z) € I(z), that is, at each: € R",
label the sinks froml to ngy, wheren, is the number of o(z) corresponds to the index of a graph with minimal
sinks; (2) label the vertices of depthfrom 37~ n; + 1 d|sagr(ee)ment. Clearly, for any sueh one has®r(z) =
to %" n; + ng, wheren,, is the number of vertices of 9z \*/:
dep%ﬂg Ofor]k; € fl ,d}. llilote that vertices with the same Proposmon 2.6 (Averaging over acyclic digraphs)et
depth may be Iabeled in arbitrary order. With this Iabellng ert {gi’“ G} t()jeda tshelt (.)f alciycllcsdlgraxhs with
the adjacency matri¥d(G) is lower-diagonal with vanishing |ces{ ,n} and depthl, i€, I' C &g,;. Assume

; - : that Upeq1,....m} Gk € Sp,1 and thate : R — {1,...,m}
diagonal entries, and the Laplacidig) takes the form satisfiess(x) € I(z). Consider the discontinuous system

0 0 0 )
. S 0 z(t) =Y (x(t)) = =L(Gp)z(t), for k=o(z(t)), (6)
G2 ...
L(G) = o j, B . whose solutions are understood in the Filippov sense. The
—an1 —no Z;L:—ll in; follpwing stat_ements hoId_: o _
. ) (i) The pointz* € R™ is an equilibrium for (6) if and
Clearly, all eigenvalues of. are non-negative and the zero only if for eachi € I(a*), there exists scalars; > 0
eigenvalues are simple. andS> A= 1, such that -
Proposition 2.4 (Averaging over an acyclic digraph): i€l ()

Let G be an acyclic digraph of orden with ny sinks, = ker( Z NL(G) ) 7

assume its vertices are labeled according to their depth, an
consider the dynamical systeir(t) = —L(G)x(t) defined
in (3). The following statements hold:

(i) The equilibrium set of (3) is the vector subspace

i€l (x*)

(i) Each trajectoryx : R>o — R”™ of (6) converges to the
set of equilibria.
(iii) The minimum disagreement functio- is monoton-
ker L(G) = {(xs, Te) € R™XR"™™ | g0 = —L§21L21xs}. ically non-increasing along any trajectory of (6).
Remarks 2.7: « Statement (i) in this theorem s
weaker than statement (ii) in previous one in three ways:
first, we are not able to characterize the limit point as a

(i) Each trajectoryz : R>o — R™ of (3) exponentially
converges to the equilibrium* defined by

2:(0), ie{l,...,no}, function of the initial state. Second, we require the depth

- Zi‘—l P 1 assumption, which is sufficient to ensure convergence,

i 7Ji1 v ie{ng+1,...,n}. but possibly not necessary. Third, we establish only

> im1 ij convergence to a set, rather than an individual point.

(iii) If G has unit depth, thefg is monotonically decreas- It remains an open question to obtain necessary and
ing along any trajectory of (3). sufficient conditions for convergence to a point.

Remark 2.5:If the digraph has a single sink, then the ¢ Although the statement (ii) is obtained only for digraphs
convergence statement in part (i) of Proposition 2.4 is ©Of unit depth, this class of graphs is of interest in the

equivalent to part (i) of Theorem 2.3. Note also that statgme ~ forthcoming sections. o
(i) is not true for digraphs with depth larger than 1. The I1l. DISCRETE COVERAGE CONTROL
digraph in Figure 1 is a counterexample. °

We now consider motion coordination problems for a
D. Averaging protocol over switching acyclic digraphs ~ group of robots described by first order integrators. In
Given a familv of diaraphsl’ — , 1 with other words, we assume that robotic agents are pIac_ed

Y grap (o G} at locationspy, ..., p, € R? and that they move according

vertex set{l the minimal disa reement function
Hp - R” H{R’is deT;}ned by g 0p; = u;, t € {1,...,n}. We denote byP the vector
b (p1,...,pn) € (R?)™. Additionally, we define
$r(x)= min D¢ (2). 5 , ) .
r(@) ke{l,...m} 6 (7) ) Scoinc = {(P1, -+, pn) € (R | p; = p; for somei # j},

Let I(z) = argmin{®g, (v) | k € {1,...,m}}. We consider and, for P ¢ Scoinc, We let {V;(P)}ieq1,....ny denote the
state-dependent switching signalsR™ — {1,...,m} with  Voronoi partition generated by, e.g., see Figure 2.



N /W (i) Hgscrt is regular on@Q™ with generalized gradient
VAN
e g \Q OHdser( P) =
4 \\\\‘V V al 0
~ A > 050 {5 g =l | k€ I, )},
j=1

Fig. 2. Voronoi partition of a rectangle. The generatpis. .., p, are . o .
elevated from the plane for intuition’s sake. wherel(g;, P) is the set of indices for which f(]|¢; —

pk”) = maXie{l ..... n} f(HQ7 - pZH) Addmona”)’i if
P & ScoincU Sequia, then Hgscr is differentiable atP,

A. Continuous and discrete multi-center functions and for each € {1,...,n}

Let Q be a convex polygon iR? including its interior 8Hds°’t Z b;— f(lla; — pil).
and let¢ : R — R, be a bounded and measurable function Ip; ;e Vi(P) 0 !
whose support i€). Analogously, let{q1, . ..,qy} C R* be For particular choices of, the multl-center functions and
a pointset and ¢1, ..., ¢ } be nonnegative weights associ-their partial derivatives may simplify. For example fifz) =
ated to them. Given a non-increasing performance functlong;Q the partial derivative of the multi-center functid
f: R, — R, we consider theontinuousanddiscrete multi- reads, forP ¢ Scoinc,
center functionsH : (R?)" — R and Hgsert : (R?)" — R

. OH
defined by p: (P) = QMVi(P)(CVi(P) - i),
H(P) = max  f(|lq — psl|)(q)dg, where mass and the centroid Bf C (@ are

@ €{l,...,n}
1
M = [ otada. Cw =11 [ aota)da
JW w Jw

Additionally, the critical pointsP* of H have the property

_ that p; = Cy,(p-), fori € {1,...,n}, accordingly, they are

Let d(q) = minjeq1,.. ny lg — p;ll, we define called [12] centroidal Voronoi configurationsAnalogously,
if f(x) = —a2, the discrete function reads

Hdscrl(P Z maX (bj ||QJ pz”)

Sequid = {(p1,---,Pn) € (R*)"™ | llg—pill = llg—px|l = d(q)
for someq € {¢1,...,qn} and for some # k}, Haser P) = Z max qu lg; — pill%,

In other words, ifP ¢ Sequia, then no pointy; is equidistant
to two or more nearest robots. Note th§fg.q is a set
of measure zero because it is the union of the solutions N Api

of a finite number of algebraic equations. Using Voronoi MHasct(P) = Y ¢; co {2(%‘ —P)ap | ke I(%P)}-
partitions, for P & Scoine, We may write j=

and its generalized gradlent is

N For eachj € {1,...,N}, assume the scalars;;, i €
=3 [, fa=pibstaaa I, P), satisfy
Aij 20, Z Aij =1, ®)
Haserl P) = Z Z card q (H%‘ = pil)) i€l(q;,P)
=l aevih) ’ and define(Mdscrt)w(P) and (Cdscrt)v,i(P) by

wherecard : R? x (R?)" — {1,...,n} denotes the number (Masc)vi (p) = Z Xij g,

of indicesk for which ||g; — pi|| = min;eqq,.. 0} lg5 — pill- 4 eVi(P)
If ¢; is a point in the interior ofV;(P) for somei, then :
card(g;, P) = 1. The following result is discussed in [13] Pi; if (Maser)v;(py =0,
for the continuous multi-center function; the result foeth
discrete function is novel. (Caser)v; (p) = Z Aijbi4;
Proposition 3.1 (Derivatives oft and Hgscr): If f is lo- 4;EVi(P) )
cally Lipschitz, thenH and Hgscrt are locally Lipschitz on " (Masdvip) | otherwise

Q™. If f is differentiable, then ] ) ) ] - ) i
With this notation,P* is a critical point of0Hyscry, that is,

(i) H is differentiable onQ™ \ Scoinc With 0 € OHgscn( P*) if, for any j € {1,..., N}, there exist\;;
OH 9 as in equations (8) such that = (Cuscr)v,(p+), for each
3 (P) :/ 8p'f(||q = pill)¢(q)dq, i € {1,...,n}. We call such points** discrete centroidal

Voronoi configurations



B. Continuous and discrete coverage control

Based on the expressions obtained in the previous subsec-
tion, it is possible to design motion coordination algarith
for the robotsp,...,p,. We call continuousand discrete
coverage optimizatiothe problems of maximizing the multi-
center functionH and Hgyscr, respectively. The continuous ) ) S
problem is'studied in [12]. We simply impose that the % The decrel vojone graph overobots ancs - rd poits i

locations py, ..., p, follow a gradient ascent law defined

over the setQ™ \ Scoinc- The (continuousyoverage control

law is the nodes 0Ggscrtvor DY Z = (21,..., 20y n) € (RZ)MTV,

OH ‘ the weights bya,gs, for o, 8 € {1,...,n + N}, with the

U = kpmpa*p(P)v iefl,...,n}, (9 understanding that:

where kprop IS @ positive gain. Analogously, thdiscrete ) Pas if a€{l,...,n},

coverage control laws o= Go—n) otherwise
u; = kprop X (P), i€ {1,...,n}, (10) and that the only non-vanishing weights atg; = ¢; when

N g . B =n+j, forje{l,...,N}, and whena € {1,...,n}
where X; : Q" — R” is defined by corresponds to the robgt, closest tog; and (pa,g;) is
- ?; 9] a directed edge of the grapfyscri-vor NOte that Gyscri-vor
Xi(P) = Z Card(qj7p)@f(||qj = pil))- depends upor¥. Since{q,...,qn} C Q are fixed, when
4 €Vi(P) we need to emphasize this dependence, we will simply
Note thatX; is discontinuous orQ”, continuous onQ” \  denote it aLgscrt-vor P)-

ScoincU Sequia and satisfies Let us now define a set of digraphs of which the dis-
crete Voronoi graphs are examples. LE{N,n) be the
X;(P) = aLdsm(p). set of functions from{1,...,N} to {1,...,n}. Roughly
Ip; speaking, a function inF'(N,n) assigns to each point

Note that both laws are distributed in the sense that each, j € {1,...,N}, a robotp;, i € {1,...,n}. Given
robot only needs information about its Voronoi cell in ordel € F(N,n), let G, be the digraph with(n + N)
to compute its control. vertices {p1,...,Pn,q1,--.,qn}, With N directed edges
To handle the discontinuity of the discrete coverage contrd (Pr(j)» 4j) }je{1,....n},» @nd corresponding edge weighs,
law (10), we define the vector field = [X;, X,,...,X,]7 J € {1,...,N}. With these notations, it holds that

and write ' Gascri-vo P) = gh*(,’p_) with any functionh* : {1,..., N} x
P = kprop X (P). (11) Q" — {1,...,n} which satisfiesh*(j, P) € argmin{||q; —
pill | i€ {1,...,n}}. Let us state a useful observation about

We understand the solution of this equation in the Filippoyhese digraphs.

sense. We then investigate the properties of the solutidn an | emma 3.3:The set of digraphs,, h € F(N,n), is a

analysis the convergence of (9) and (10). set of acyclic digraphs with unit depth, i.e., it is a subset
Proposition 3.2: (Continuous and discrete coverage congf S,.n.1 (see definition in Subsection II-C). Moreover,

trol) For the closed-loop systems induced by equation (Q)heF(N_n) G, is an acyclic digraph with unit depth, i.e.,

and by equation (10) starting & € Q™ \ Scoine, the agents UheF(Nin) Gh € Spani.

location converges asymptotically to the set of criticahp® For h € F(N,n), let us study appropriate disagreement

of H and of Hascr, respectively. functions for the digrapl,. We define the functiomg, :

2\n+N
C. The relationship between discrete coverage and avera(_(,jl—Ri ) — R by
ing over switching acyclic digraphs 1 N
Pg, (Z2)| 2= y=5 Y apllza — 2]
Let @ be a convex polygon, lefp,...,p,} C @ be the h P1yesPrsqlsqN 2
position ofrn robots, let{q1,...,gn} C Q be N fixed points “]’V@:l
in @ with corresponding nonnegative weigHts, , ..., ¢n }, 1 5
3 > dilla; — puii) 1%
j=1

and letI(g;, P) be the set of indicek for which ||g; —px| =
min;eqi,.. 0y [lg; — pil|. We begin by defining some useful
digraphs. because the weights, s, o, 0 € {1,...,n+ N} of the G,

A discrete Voronoi graphGgscrt.vor is @ digraph with —all vanish except fory, ;) ; = ¢;, j € {1,..., N}. We now
(n+ N) vertices{pi,...,pn,q1,---,qn}, With N directed state the main result of this section.
edges{(pi, q;)| for eachj € {1,..., N}, pick one and only ~ Theorem 3.4: (Correspondence between discrete cover-
onei € I(g;, P)} and with corresponding edge weights, age control laws and averaging protocols over acyclic
for all j € {1,...,N}. We illustrate one such graph in graphs)The following statements hold:
Figure 3. With our definition, it is possible for one vertex se (i) The discrete multi-center functioFgscrt With f(x) =
to generate multiple discrete Voronoi graphs. We will denot —22, and the minimum disagreement function over the



set of digraphgj;,, h € F(N,n), satisfy
N

functions, and distributed control laws that optimize them
The main result of the paper shows how these two sets of
problems are intimately related: discrete coverage cbntro
laws are indeed averaging protocols over acyclic digraphs.

a consequence of our analysis, one can argue that coverage

— min

1
- P =
2Hdscrl( ) 2 _Zlie{l,...,n

}¢j||q3‘ - pil]?

J
N
_ Equ'llq- T control consensus problems are special cases of a general
2 = T @) class of distributed optimization problems.
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law for f(z) = —2? and the averaging protocol over
the discrete Voronoi digraph together satisfy, foe

{1,...,n}, (1]

1 0Hq ity

275 EP) =D (a5 —pi) = Y tap(zs — 2a), P
pi q; €Vi(P) B=1

wherez, andaa.g, o, § € {1,...,n+ N}, are nodes 3]

and weights ofGyscrevor Accordingly, the discontinu-

ous coverage control system (11), fftz) = —a2,

and the averaging system (6) over the set of digraphg]
Gh, h € F(N,n), together satisfy, foi € {1,...,n},

(5]
1
SKIX(P) = K[Y)(2),
with Z = (p1,...,pn, q1,--.,qn). X;, Y; are theith
2-dimensional block component &f, Y, respectively.
P* € Q" is an equilibrium of the discrete coverage (7]
control system withf(z) = —z? if and only if

[6]
(iii)

z* = (py,...,p5,q1,---,qn) 1S an equilibrium of 6]
system (6) over the set of digrapfg, h € F(N,n),
that is:
Vi e{l,...,N}, 3\; as in (8), such that [l
pf = (Odscrt)w(P*)a Vi€ {17 ce 7n}’
1 [10]
Juy, > 0and zk:uk =1, such that 11
Z" € ker (Z UkL(ggscrt-Vor(Z*)))a [12]
k

where {GX \vo(Z*)}r are all possible discrete |13
\Voronoi graphs generated by*.

Given any initial position of robotsP, € Q", the
evolution of the discrete coverage control system (11)4
and the evolution of the averaging system (6) under
the switching signab : Q™ — {G), | h € F(N,n)}
defined byo(P) = Guscrvo( Z) are identical in the
Filippov sense and, therefore, the two systems will
converge to the same set of equilibrium placement dt¢!
robots, as described in (iii).

(iv)

[15]

IV. CONCLUSIONS
We have studied averaging protocols over fixed ani”]
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