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On collective motion in sensor networks:
sample problems and distributed algorithms

Anurag Ganguli Sara Susca Sonia Miagz Francesco Bullo Jorge Cest

Abstract— Adopting a tutorial approach, this paper surveys and well-motivated coordination problems arise from prac-
some control and systems theory problems that have recently tical applications where the robotic network is required to
gained interest in the context of multi-vehicle and sensor 5.k mobile targets or to estimate environmental bouesari

networks. By means of illustrative examples, we discuss some - . : s .
challenges in modeling of robotic networks, motion coordination as those exhibited by gas diffusion, heat radiation, or fluid

algorithms, sensing and estimation tasks, and complexity of SPills. (A third problem is that of estimating environmenta
distributed algorithms. fields such as deterministic functions of the environment,
e.g., concentration of a pollutant in a lake, and probathilis

|. INTRODUCTION maps representing likelihood of events taking place in the

Motion coordination is an extraordinary phenomenon ifghvironment. We will not talk much about this subject,)
biological systems such as schools of fish, see Fig. 1, afty means of some example scenarios, we illustrate how to
serves as a remarkable tool for man-made groups of robofiiaracterize optimal sensor placement or motion patterns,
vehicles and active sensors. Although each individual mgefl€Sign distributed sensing schemes, and integrate thelm wit
has no global knowledge about the group as a whole or abdiietion coordination algorithms. The examples only begin to

the surrounding environment, complex coordinated behavioSned light onto a large set of challenging control problems
emerge from local interactions. in which node mobility, communication, computation, and

The objective of this paper is to present, in a tutorial piri SENSING aspects are jointly considered.

some sample problems and solutions in the emerging disci-____
pline of motion coordination for robotic sensor networks. E_
The key idea is that spatially-distributed sensing tasishs e y
as surveillance, search and monitoring, can be performed . «® =~ - . .
efficiently by robotic networks of sensors. |
We begin by discussing models of robotic networks, i.e., i

groups of agents that can sense, communicate and take loc
control actions. We present basic notions of coordination
tasks and time complexity in an attempt to provide a unifyindig- 1. Geese flying in formation (source: U.S. Fish & Wildlirvice

. P ty . P P fy dfittp://www.fws.gov/midwest/swanIake) and a school of fisicgtion: IEEE
modeling language for robotic networks. Next, we survey thgpc 2004 at Paradise Island, Bahamas).

state of the art on motion coordination by presenting some

results on the design of coordination primitives, i.e.,ibas pe paper is organized as follows. In Section 2, we discuss
coordination skills for specific tasks such as deploymenf,gqels of multi-agent networks. In Section 3, we illustrate
or pursuit. Remarkably, the problem of deploying a groupteresting algorithms for basic tasks such as deployneht a
of agents to form an arbitrary pattern using distributedangezvous. In Section 4, we focus on the use of mobility in
decision-making and limited communication is in generglacking moving targets and boundaries. In all sections we
an open problem. We emphasize here that the scope of the.sent sample networks, communication graphs, coordina-
tools described in this paper is not limited to the problemg,p, ta5ks and algorithms and we discuss the information flow

mentioned within but can be applied to other tasks of similg§atveen agents. Additionally, in each section we highlight
nature. Indeed such an approach will be useful in the cagg e potentially interesting open problems.

where the same network of simple mobile agents is required

to perform a variety of different motion coordination tasks II. ROBOTIC NETWORKS AND COMPLEXITY
A third focus of this paper is the use of controlled mobility

in target and boundary tracking problems. Indeed, intengst

The global behavior of a robotic network can be seen as
the sum of the local actions taken by its members. Each

Anurag Ganguli is with the Coordinated Science Laboratomiversity ~ 'OPOt in the network can sense its immediate environment,
of lllinois at Urbana-Champaign, Urbana, IL 61801 and with Bepartment communicate with its neighbors, process the information
of Mechanical and Environmental Engineering, UniversityGaflifornia at gathered and move according to it. The integrated capabilit
Santa Barbara, Santa Barbara, CA 93106. . . L

Sara Susca, Sonia Mérez and Francesco Bullo are with the Departmen{Og€ther determine the behavior of each agent, which in turn
ofMechanical and Environmental Engineering and with the t&@efior  impacts the overall collective response. This makes a iobot
Control, Dynamical Systems and Computation, University ofifGalia at  network a very versatile system and also a very complex
Santa Barbara, Santa Barbara, CA 93106. . L

Jorge Corés is with the Department of Applied Mathematics and StatisON€ due to the confluence of processing, communication

tics, University of California at Santa Cruz, Santa Cruz, @3064. and sensing aspects. Therefore, to understand the trégle-of



between performance, reliability of algorithms and thests no state-transition function is defined. It is also possibtea
(energy, time, communication, etc), it seems appropriate taw to betime-independenif the three relevant maps do not
propose a common modeling framework where the executiatepend on time. In most uniform control and communication
of different coordination algorithms can be appropriatelyaws, the messages interchanged among the network agents
formalized, analyzed and compared. are (quantized representations of) the agents’ statesh&t w
Since this is an important topic, we briefly present in thigollows we focus on the static time-independent case.
section some of the concepts that we think should be presentTo analyze the performance of a motion coordination
in such a model. We do not attempt here to present this modsborithm, we need to establish the notion of coordination
in its full generality, but rather give a flavor of this resglar task, and of task achievement by a robotic networkstatic)
avenue. For a more detailed discussion, we refer the readerordination taskfor a networksS is a map7: [[,.; X! —
to [1] and to the related models proposed in [2], [3], [4]. {true,fal se}. Additionally, let CC be a control and
We consideuniform networks of robotic agengsr robotic  communication law foiS. We say thatC achieveshe task
network3 defined by a tupleS = (I, A, Ecmm) consisting of 7 if for all initial conditions =/ € X,, the corresponding
(i) I=1{1,...,N},; a set of unique identifiers (UIDs);  network evolutiort — z(t) has the property that there exists
(i) A= {A};c;, with AVl = (X, U, Xy, f) (Here, X T € R, such thatZ{x(t)) =true for t > T.
is the state spaceU is theinput space X, is the set In some situations achieving a task efficiently means
of allowable initial statesand f is a C> map with stabilizing the system. In other situations efficiency nigh
domain X x U), a set of identical control systems;be measured by required communication/control energy or

this set is called thset of physical agents by speed of completion. For the latter, we can establish the
(iii) Ecmm, @ map from[[,.; X to the subsets of x I\  following notions of time complexity.
diag(I x I) called thecommunication edge map (i) The time complexity to achievé& with CC from z, €
An edge between two nodes f.omm implies the ability of L, xiis
the corresponding two agents to exchange messages. )
Next, a(synchronous, dynamic) control and communica- TC(T,CC, o) = inf {¢ | T(x(tx)) =true, Vk = {},
tion law for § consists of the sets: wheret — (z(t)) is the evolution of(S,CC) from .

() T = {te}een, C Ry, an increasing sequence of time (ji) The time complexity to achievé with CC is
instants, calleccommunication schedule

(i) L, a set containing thewul | element, called the TC(7,CC) = sup { TC(T,CC, x0) | x0 € HX([)i]}-
communication languageelements of are called icl

_ Mmessages _ . ‘ (iiiy The time complexity off is

(i) W, sets of values of somlegic variablesw!! e W, . .
i € I. These sets correspond to the capability of agents TC(7)=inf {TC(7,CC)| CC achievesT} .

to allocate additional variables and store sensor X
communication data;
(iv) Wy C W, subsets ofllowable initial values

nother important notion is that of communication complex-
ity. Roughly speaking, this represents the total number of
messages exchanged to complete a task. In the following

and the maps: _ sections, we will describe certain coordination algorighm
()) msg: T x X x W x1I — L,i¢c I, calledmessage- some of which have been cast into this modeling framework
generation function and their complexity properties analyzed; see [1]. In the

(i) stf: TxWx LY — W, calledstate-transition function interest of space and to preserve the tutorial flavor of the

(iiiy ctl: Ry x X x X x W x LV — U, calledcontrol  paper, we will not model the algorithms in this framework but
function will only provide an informal description of them. We will,

To implement a control and communication law each agetfowever, state their complexity properties whenever jpessi
performs the following sequence or cycle of actions. At each
instantt, € T, agenti sends to agent a message computed I1l. M OTION COORDINATION
by applying the message-generation function to the currentLoosely speaking, by a motion coordination problem we
values oft,, 2l andw!l’. After a negligible period of time mean a task where the network objective can be captured
(therefore, still at, € T), agent: resets the value of its logic by the final spatial configuration of its agents and/or of
variablesw!” by applying the state-transition function to thetheir velocity vectors. Key problems include flocking [5],
current value ofw!”, and to the messagg$!(,) received at foraging [6], [7], rendezvous [8], [9], pursuit [10], cov-
te. Between communication instants, i.e., foe [ty,t,+1), erage [11], [12], cooperative search [13], and formation
agent: applies a control action computed by applying thecontrol [14]. Behavior-based robotics, see [15], [16],][17
control function tozl’(t,), the current values of!’) and [18], has investigated heuristic approaches to the design o
wll, and to the message&!(t,) received at,. emerging behaviors. Lately there been a systematic effort t

Let us present some brief comments. In our preseiesign scalable and efficient algorithms; see [5], [11], [9]
definition, all agents are identical and implement the same Our method of approaching motion coordination prob-
algorithm; in this sense the control and communication laems exploits their inherent geometric [19], [20], graph-
is calleduniform (or anonymous). I#¥ = W, = (), then the theoretical [21], and optimization [22] structure. The Ssiag
control and communication law &atic (or memoryless) and capabilities of the agents are captured through geometric



models; the information flow/neighborhood relationship ofig. 3. (This algorithm is designed for the detection praile
the agents is represented by appropriate graphs; and gwurce localization/tracking is discussed in the nextiseqgt
network objective is characterized via appropriate wtilit
functions. Algorithms are then designed via gradient/dyee
methods. We illustrate our approach by discussing two basic
types of problems: deployment and rendezvous.

A. Deployment problems

First, we consider thearea-coverage deploymenrob-
lem in a convex polygonal environment. The objective is
to maXImI?e the area within ,Clolse range of the mObll%ig. 3. The nodes solve a maximum-likelihood-detection depkmnt; the
nodes. This models a scenario in which the nodes takgure depicts the nodes final position and the circumcirabesfich node.
local measurements. Assume that certain regions in the
environment are more important than others and describe thi Third, we consider aisibility-based deploymerf nodes
by a density functions. Our recent work [11], [23] shows in @ planar non-convex polygonal environment. Here, the
how this problems leads to the coverage performance metfigverage objective is to deploy the ad hoc network in such
H(pr,....pn) = Zif\il J f(la — pil)$(a)dg. Herep; is @ way as to obtain complete _V|s_|b|I|ty of the environment.
the position of the:ith noae’f measures the performanceTh|S coverage problem is a distributed feedback VeI‘.SIOI"I of
of an individual sensor, andV,...,Vy} is the Voronoi the well-known “art gallery pro.blem" from_computat_lonal
partition of the nodegp:, ..., pn}. If we assume that each geometry [25]. Let us now describe an algorithm for this type
node obeys a first order dynamical behavior, then a simpf deployment. At every time instant, each ngdeomputes
gradient scheme can be easily implemented in a spatiallj-dominance region as the set of points for whiclis either
distributed manner. Because the closed-loop system iste only visible node or the closest visible node;then
gradient flow for the cost functiok, performance is locally, Mmoves toward the furthest vertex in its dominance region.
continuously optimized. Fig. 2 illustrates the performancThe performance of this algorithm is, at this time, known
of this coordination algorithm. As a special case, when th@nly via simulations on a class of floor plan environments;
environment is a segment arid= 1, the time complexity of €-9.. see Fig. 4.
the algorithm can be shown to l6&( N3 log(Ne~1)) where
e is a threshold value below which we consider the task
accomplished; see [1].

I_u:

-

Fig. 4. The nodes solve the visibility deployment problem&daronconvex
Fig. 2. Area-coverage deployment fo6 agents on a convex polygonal polygonal environment shaped as a typical floor-plan.
environment. The shaded region represents the densityidangt The left
(respectively, right) figure illustrates the initial (respively, final) locations
and Vorono partition. The central figure illustrates thadjent ascent flow, B- Rendezvous problems

In the context of motion coordination, the rendezvous

Second, we consider the problem of deployiognaximize objective is to achieve agreement over the location of the
the likelihood of detecting a sourc€or example, consider agents, that is, to steer each agent to a common location.
devices equipped with acoustic sensors attempting totd@tecWe consider two scenarios which differ in the agents’
sound-source (or similarly, antennas detecting RF sigioals sensing/communication capabilities and the environment t
chemical sensors localizing a pollutant source). For eetsari which the agents belong. Lé? = {p;,...,pn} represent
of criteria, when the source emits a known signal and thihe set of locations of the agents.
noise is Gaussian, we know that (1) the optimal detection Let us first consider the problem of rendezvous for agents
algorithm involves a matched filter, (2) detection perforequipped withrange-limited sensorsn this case, each agent
mance is a function of signal-to-noise-ratio, and, in t8), is capable of sensing in a closed disk of bounded radius and
signal-to-noise ratio is inversely proportional to the s®n belongs to the unbounded spake of arbitrary dimension.
source distance. How do we deploy the nodes and maximiZdis is described by the-disk graph Gisk(r), in which two
the detection probability? We design a motion coordinatioagents are neighbors if and only if the Euclidean distance
algorithm to maximize detection likelihood as follows: kac between them is less than or equal itoFor a complete
node moves toward the circumcenter of its Voronoi cell. Oudiscussion of this problem, see [26].
work [24] shows that (1) the detection likelihood is invdyse ~ Second, we considevisually-guided agentsHere the
proportional to the circumradius of each node’s Voronoi,celagents are assumed to belong to a nonconvex simple polyg-
and (2) if the nodes follow this algorithm, then the detactio onal environment)). Each agent can sense within line-of
likelihood increases monotonically as a function of timee s sight any other agent as well as sense the distance to the




Fig. 5. Ther-disk and Relative Neighborhoo@gn(r)) graphs inR3 for a

configuration of25 agents with coordinates uniformly randomly generatedrig. 7. Evolution (in light gray) of the Circumcenter Algdiinh from two
within the cube[—7,7] x [—7,7] x [-7,7]. The parameter is taken equal viewpoints. The initial configuration of the network is asFiy. 5.

to 4. See [26] for a discussion on proximity graphs.

Initial position of the agents Evolution of the network Final position of the agents

boundary of the environment. The relationship between the — . - .
agents can be characterized by the visibility gra@hso.
Two agents are neighbors if they are mutually visible to each 9 E

other; see [27] for a complete discussion. .

il

Fig. 8. Simulation results of the Circumcenter Algorithm oneawork of
agents distributed in a spiral polygon. The algorithm is ower Gyis .

remain unanswered. One such problem is that of achieving

arbitrary patterns. The problem of deploying and contnglli

Fig. 6.  From left to right, visibility graph and the localtfiqueless Vlsua”y'gu'qed_agents is another prOblem_ where a_ de_eper

visibility graph. The locally-cliqueless visibility gréis spatially distributed understanding is needed. Apart from motion coordination,

over the visibility graph (see [27]). another class of interesting problems is that of localizing
d estimating moving targets and fields. We shall try to

ilfustrate some of these problems in the following section.

WI IZH the problems. However, many open research questions still

In both scenarios, the rendezvous problem cannot
solved with distributed information if the agents are pthce
in such a way that they do not form a connected sens- IV. TARGET AND BOUNDARY TRACKING
mg/comm.unlcatlon graph. Arg.uably, a goqd prc_)perty of The subject of this section is the design of algorithms that
any algorithm for rendezvous is that of maintaining some, it controlled mobility to efficiently localize movingr-
form of connectivity between agents, which in turn imposegqq (or sources) and boundaries, and to efficiently estimat

con_stre_lints on the_ agents' m°“°”: Motion constraint§ th nvironmental fields (here we mean both functions of the
maintain connectivity are designed in [8], [27] and explb& o\ ironment, e.g., concentration of a pollutant in a lake} a

geometric properties of proximity graphs. These constsaing, ohapilistic maps representing likelihood of events rigki
need not be imposed for all pair of neighbors. Instead, it '?Iace in the environment, e.g., occupancy maps).
enough to impose them according to certain sparse proximity 5 possible approach t,o explloiting controlled mobility is
graphs. For the disk graph scenario, an appropriate graphbiased on anext-best-viewparadigm. The key idea is to
the so-called Relative Neighborhood graph depicted in%:ig. 4agign greedy policies that move the network nodes in such
We are now ready to outline an algorithm that solve§ 5y as to maximize the information that the nodes will
the problems for both communication scenarios. The agerf§iher with subsequent measurements. Put into a broader
execute what we shall refer to as tReircumcenter Algo- orspective, an integrated algorithm entails an estimatio
rithm; here is an mfprmal description. Each agent iteratively,io; and a motion coordination algorithm that takes the
performs the following tasks: network agents to optimal sensor positions. Accordingly, a
1: detects its neighbors according §o fundamental objective of this approach is to characterize
2: computes the circumcenter of the point set comprised @jptimal sensor placements or optimal sensor motion pattern
its neighbors and of itself for various estimation problems.
3: moves toward this circumcenter while maintaining CON- The literature on (Static) sensor networks performing var-
nectivity with its neighbors. ious estimation tasks is vast and we only mention the two
Fig. 7 and 8 illustrate the performance of the Circumcentesurveys [28], [29] that are somehow related to our approach.
Algorithm for the first and second scenario, respectivelye O From a robotic viewpoint, an incomplete list of works on ac-
can prove that, under technical conditions, the algoritioesd tive target tracking for controlled-mobility networks indes
achieve the rendezvous task in both scenarios. Additignall[30] and [31]. Related to our next-best-view and optimal
whend = 1, it can be shown that the time complexity of thesensor placement approach is the literature on optimum
task using the Circumcenter Algorithm &(N); see [1]. experimental design. Here the references [32], [33] shaw ho
In this section, we have provided examples of certaito define appropriate “sensitivity performance measure” fo
motion coordination tasks and outlined approaches torsglvi optimal sensor placement; see also [34]. Boundary estimati



In other words, we define a cost function quantifying an
estimation error and then design a motion coordination al-
gorithm that minimizes it. The details are as follows. Assum
that the unknown sef is the planar subset where a certain
environmental quantity, e.g., heat or chemical conceptrat

is above a given threshold. The objective is to estimate the
boundaryd@ by means of an array of sensors able to locally
detectd@ and to move towards and along it. Let us consider
Fig. 9. Comparison of target localization algorithm for static andthe following basic task: how to place the robots al@r@
controlled mobile sensors. The left figure compares the estimation such a way that the polygon, whose vertices are the

errors and the right figure shows the estimated target trajectorigghots’ positions, is a good approximation@f To simplify

The lower error and the more accurate “figure-eight” trajectory ar : ; ; :
achieved by the controlled mobile sensors. The mobile sensors m F'e fc:cllowmg dISC.USSI|0n’ we _assumt;l th@t. IS cqnvlex.
along the boundary of the environment (in this case, a circle). erefore, our optimal estimation problem Is equivalent to

finding the “best” N-vertices polytope inscribed insid@
oo , _that best approximate® according to some metric. This
has been recently studied in the con_text of static sens_dsflel setup is interesting also because polygonal approximsaton
e.g., see [35] and references therein. Researchers inenobi|anar convex bodies is a well-studied subject, e.g., see th
robotics have explored alternative approaches for boyndag ey [39] and references therein. It is known, for example
estimation. A motion coordination mechanism is designeg, st the distance between the convex baghand its best
in [36] by relying on certain energy-minimizing curves from g measured according to various metrics) inner polygonal
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image processing. A related gradient climbing algorithm I8 pproximation belongs t0(-L ).

proposed in [37]. Let us formalize one of these error formulations. Once the
) robots reach the boundary we order them in counterclockwise

A. Target tracking order {p1,...,pn}; for convenience, we set, = py and

In this section we present an example approach to tafy+1 = P1. Among the possible choices of metric we

b
get tracking. For this problem, an appropriate sensitivit&oé‘sp;ggrfnfgﬁglzeipzreé;é Mféﬁéﬁsgéf(iﬂftéoﬁﬂgﬁ% cazfrr]10(|j 91
performance measure in 2D and 3D environments is t e Interpolating lines between any two nodes, respewgtivel

determ?nant of the Fisher Inforr_nation Matrix (FIM). The\t turns out thatH is the area of the convex SEX minus its
determinant measures [38] the information produced by ianer approximating polygon. We regafd as the cost that
set of measurements in estimating a set of unknown pae minimize through a motion coordination algorithm. Thus
rameters; its inverse, called the Cramer-Rao-Lower-Bound | ;, H(g.gr) = A(Q) — max _ A(co(pi,....pn)),
characterizes the best achievable estimation error anegi  »1.-PNEIQ P1,PNEDQ
Under the assumptions of Gaussian independent noise,. Where A is area function, ando is the convex hull of
2D environment, and a stationary sound-source, the glob# arguments is always non-negative. The area of the
maxima of the FIM determinant correspond to an optima‘P?'ygofg_CO(m{ 0 ,pN)t_'S eafr'llyt e.;gfessed as a fungt'on
pattern in which the sensors are uniformly placed in cincula? pg,s' |o'n of the vertices, h at isd(co(py; .. ., pn)) =
fashion around the target. We use this information to imerova 2-k=1(Zk¥k+1 — Tk+1yk), Wherepy = (zy, yi). To max-
X . imize H we consider the following gradient flow:

the performance of a Kalman filter-based algorithm for targe
localization. In short, we implement a motion coordinatior);, _ ,,,.; 9A(co(p1,..,pN))\ _ 1 Yit1 — Yi-1

. . . Pi T9Q e 5 PrOIToQ \ 2y 1 — i )
algorithm that steers the mobile sensor network to an optima Pi
deployment; we do not detail this algorithm here, but notewhereproj 4, is the orthogonal projection onto the tangent
that it is related to the ones presented in the previousmecti contour79Q. (A nonsmooth gradient flow can be designed

A schematic description of the algorithm is as follows. Eaclio handle nonsmooth contours.) Note that, in order to imple-

agent iteratively performs the following: ment this gradient flow, every agent needs to know only the
1: measures target location and shares new measurem@ﬁﬁitions of its immediate clockwise and counterclockwise
with neighbors neighbors and of the gradient of the contour at its positen;
2: computes new estimate of target location for the target tracking problem, this information requiests
3: moves according to motion algorithm (based on targetan be formalized using proximity graph models as in the
estimate and neighbors’ positions). previous sections. By design, the gradient flow is guarahtee

to lead the robots to the set of critical configurationsHof
Fig. 9 (see [31]), illustrates how this integrated mo-<{see Fig. 10). It also turns out that is not strictly concave
tion/sensing/estimation algorithms lead to improved @erf and it possesses multiple critical points.
mance of an extended Kalman filter in a target tracking sce- In this section, we have discussed two types of problems
nario where the target moves along a “figure-eight” patternelated to target tracking and localization for mobile sgns
o networks. Numerous open questions remain. For example,
B. Boundary estimation there is a need for appropriate "sensitivity performance-me
Here we consider a boundary estimation problem. Theures” for next-best-view algorithms in target, boundary a
aim is to select an interpolation technique and to deploy thienction estimation. Another interesting area is the statly
sensors in such a way as to optimally estimate the boundadjfferent sensor models, e.g., sensors with limited faotpr
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[14]

[15]
[16]

[17]

Fig. 10. Gradient flow maximizing inner approximating polygon [1g
(VN =28).
[19]
V. CONCLUSIONS

This paper is a partial survey of some control probEzo
lems related to collective motion and estimation for sensor
networks. Specifically, we have talked about deponmerEl]
and rendezvous as examples of motion coordination tasks
and target tracking and boundary estimation as exampl&3]
of localization/estimation tasks. We have outlined pdx-;sib[23
approaches to these problems and mentioned some new
research directions in this area.
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