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On collective motion in sensor networks:
sample problems and distributed algorithms

Anurag Ganguli Sara Susca Sonia Martı́nez Francesco Bullo Jorge Cortés

Abstract— Adopting a tutorial approach, this paper surveys
some control and systems theory problems that have recently
gained interest in the context of multi-vehicle and sensor
networks. By means of illustrative examples, we discuss some
challenges in modeling of robotic networks, motion coordination
algorithms, sensing and estimation tasks, and complexity of
distributed algorithms.

I. I NTRODUCTION

Motion coordination is an extraordinary phenomenon in
biological systems such as schools of fish, see Fig. 1, and
serves as a remarkable tool for man-made groups of robotic
vehicles and active sensors. Although each individual agent
has no global knowledge about the group as a whole or about
the surrounding environment, complex coordinated behaviors
emerge from local interactions.

The objective of this paper is to present, in a tutorial spirit,
some sample problems and solutions in the emerging disci-
pline of motion coordination for robotic sensor networks.
The key idea is that spatially-distributed sensing tasks, such
as surveillance, search and monitoring, can be performed
efficiently by robotic networks of sensors.

We begin by discussing models of robotic networks, i.e.,
groups of agents that can sense, communicate and take local
control actions. We present basic notions of coordination
tasks and time complexity in an attempt to provide a unifying
modeling language for robotic networks. Next, we survey the
state of the art on motion coordination by presenting some
results on the design of coordination primitives, i.e., basic
coordination skills for specific tasks such as deployment
or pursuit. Remarkably, the problem of deploying a group
of agents to form an arbitrary pattern using distributed
decision-making and limited communication is in general
an open problem. We emphasize here that the scope of the
tools described in this paper is not limited to the problems
mentioned within but can be applied to other tasks of similar
nature. Indeed such an approach will be useful in the case
where the same network of simple mobile agents is required
to perform a variety of different motion coordination tasks.

A third focus of this paper is the use of controlled mobility
in target and boundary tracking problems. Indeed, interesting
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and well-motivated coordination problems arise from prac-
tical applications where the robotic network is required to
track mobile targets or to estimate environmental boundaries,
as those exhibited by gas diffusion, heat radiation, or fluid
spills. (A third problem is that of estimating environmental
fields such as deterministic functions of the environment,
e.g., concentration of a pollutant in a lake, and probabilistic
maps representing likelihood of events taking place in the
environment. We will not talk much about this subject.)
By means of some example scenarios, we illustrate how to
characterize optimal sensor placement or motion patterns,
design distributed sensing schemes, and integrate them with
motion coordination algorithms. The examples only begin to
shed light onto a large set of challenging control problems
in which node mobility, communication, computation, and
sensing aspects are jointly considered.

Fig. 1. Geese flying in formation (source: U.S. Fish & WildlifeService
http://www.fws.gov/midwest/swanlake) and a school of fish (location: IEEE
CDC 2004 at Paradise Island, Bahamas).

The paper is organized as follows. In Section 2, we discuss
models of multi-agent networks. In Section 3, we illustrate
interesting algorithms for basic tasks such as deployment and
rendezvous. In Section 4, we focus on the use of mobility in
tracking moving targets and boundaries. In all sections we
present sample networks, communication graphs, coordina-
tion tasks and algorithms and we discuss the information flow
between agents. Additionally, in each section we highlight
some potentially interesting open problems.

II. ROBOTIC NETWORKS AND COMPLEXITY

The global behavior of a robotic network can be seen as
the sum of the local actions taken by its members. Each
robot in the network can sense its immediate environment,
communicate with its neighbors, process the information
gathered and move according to it. The integrated capabilities
together determine the behavior of each agent, which in turn
impacts the overall collective response. This makes a robotic
network a very versatile system and also a very complex
one due to the confluence of processing, communication
and sensing aspects. Therefore, to understand the trade-offs



between performance, reliability of algorithms and their costs
(energy, time, communication, etc), it seems appropriate to
propose a common modeling framework where the execution
of different coordination algorithms can be appropriately
formalized, analyzed and compared.

Since this is an important topic, we briefly present in this
section some of the concepts that we think should be present
in such a model. We do not attempt here to present this model
in its full generality, but rather give a flavor of this research
avenue. For a more detailed discussion, we refer the reader
to [1] and to the related models proposed in [2], [3], [4].

We consideruniform networks of robotic agents(or robotic
networks) defined by a tupleS = (I,A, Ecmm) consisting of

(i) I = {1, . . . , N}; a set of unique identifiers (UIDs);
(ii) A = {A[i]}i∈I , with A[i] = (X,U,X0, f) (Here, X

is thestate space, U is the input space, X0 is theset
of allowable initial statesand f is a C∞ map with
domain X × U ), a set of identical control systems;
this set is called theset of physical agents;

(iii) Ecmm, a map from
∏

i∈I X to the subsets ofI × I \
diag(I × I) called thecommunication edge map.

An edge between two nodes inEcomm implies the ability of
the corresponding two agents to exchange messages.

Next, a (synchronous, dynamic) control and communica-
tion law for S consists of the sets:

(i) T = {t`}`∈N0
⊂ R̄+, an increasing sequence of time

instants, calledcommunication schedule;
(ii) L, a set containing thenull element, called the

communication language; elements ofL are called
messages;

(iii) W , sets of values of somelogic variablesw[i] ∈ W ,
i ∈ I. These sets correspond to the capability of agents
to allocate additional variables and store sensor or
communication data;

(iv) W0 ⊆ W , subsets ofallowable initial values;
and the maps:

(i) msg: T × X × W × I → L, i ∈ I, called message-
generation function;

(ii) stf : T×W×LN → W , calledstate-transition function;
(iii) ctl : R̄+ × X × X × W × LN → U , called control

function.
To implement a control and communication law each agent

performs the following sequence or cycle of actions. At each
instantt` ∈ T, agenti sends to agentj a message computed
by applying the message-generation function to the current
values oft`, x[i] andw[i]. After a negligible period of time
(therefore, still att` ∈ T), agenti resets the value of its logic
variablesw[i] by applying the state-transition function to the
current value ofw[i], and to the messagesy[i](t`) received at
t`. Between communication instants, i.e., fort ∈ [t`, t`+1),
agenti applies a control action computed by applying the
control function tox[i](t`), the current values ofx[i] and
w[i], and to the messagesy[i](t`) received att`.

Let us present some brief comments. In our present
definition, all agents are identical and implement the same
algorithm; in this sense the control and communication law
is calleduniform (or anonymous). IfW = W0 = ∅, then the
control and communication law isstatic(or memoryless) and

no state-transition function is defined. It is also possiblefor a
law to betime-independentif the three relevant maps do not
depend on time. In most uniform control and communication
laws, the messages interchanged among the network agents
are (quantized representations of) the agents’ states. In what
follows we focus on the static time-independent case.

To analyze the performance of a motion coordination
algorithm, we need to establish the notion of coordination
task, and of task achievement by a robotic network. A(static)
coordination taskfor a networkS is a mapT :

∏

i∈I X [i] →
{true,false}. Additionally, let CC be a control and
communication law forS. We say thatCC achievesthe task
T if for all initial conditions x

[i]
0 ∈ X0, the corresponding

network evolutiont 7→ x(t) has the property that there exists
T ∈ R+ such thatT(x(t)) = true for t ≥ T .

In some situations achieving a task efficiently means
stabilizing the system. In other situations efficiency might
be measured by required communication/control energy or
by speed of completion. For the latter, we can establish the
following notions of time complexity.

(i) The time complexity to achieveT with CC from x0 ∈
∏

i∈I X
[i]
0 is

TC(T, CC , x0) = inf {` | T(x(tk)) = true , ∀k ≥ `},

wheret 7→ (x(t)) is the evolution of(S, CC) from x0.
(ii) The time complexity to achieveT with CC is

TC(T, CC) = sup
{

TC(T, CC , x0) | x0 ∈
∏

i∈I

X
[i]
0

}

.

(iii) The time complexity ofT is

TC(T)=inf {TC(T, CC)| CC achievesT} .

Another important notion is that of communication complex-
ity. Roughly speaking, this represents the total number of
messages exchanged to complete a task. In the following
sections, we will describe certain coordination algorithms,
some of which have been cast into this modeling framework
and their complexity properties analyzed; see [1]. In the
interest of space and to preserve the tutorial flavor of the
paper, we will not model the algorithms in this framework but
will only provide an informal description of them. We will,
however, state their complexity properties whenever possible.

III. M OTION COORDINATION

Loosely speaking, by a motion coordination problem we
mean a task where the network objective can be captured
by the final spatial configuration of its agents and/or of
their velocity vectors. Key problems include flocking [5],
foraging [6], [7], rendezvous [8], [9], pursuit [10], cov-
erage [11], [12], cooperative search [13], and formation
control [14]. Behavior-based robotics, see [15], [16], [17],
[18], has investigated heuristic approaches to the design of
emerging behaviors. Lately there been a systematic effort to
design scalable and efficient algorithms; see [5], [11], [9].

Our method of approaching motion coordination prob-
lems exploits their inherent geometric [19], [20], graph-
theoretical [21], and optimization [22] structure. The sensing
capabilities of the agents are captured through geometric



models; the information flow/neighborhood relationship of
the agents is represented by appropriate graphs; and the
network objective is characterized via appropriate utility
functions. Algorithms are then designed via gradient/greedy
methods. We illustrate our approach by discussing two basic
types of problems: deployment and rendezvous.

A. Deployment problems

First, we consider thearea-coverage deploymentprob-
lem in a convex polygonal environment. The objective is
to maximize the area within close range of the mobile
nodes. This models a scenario in which the nodes take
local measurements. Assume that certain regions in the
environment are more important than others and describe this
by a density functionφ. Our recent work [11], [23] shows
how this problems leads to the coverage performance metric
H(p1, . . . , pN ) =

∑N
i=1

∫

Vi

f(‖q − pi‖)φ(q)dq. Here pi is
the position of theith node,f measures the performance
of an individual sensor, and{V1, . . . , VN} is the Voronoi
partition of the nodes{p1, . . . , pN}. If we assume that each
node obeys a first order dynamical behavior, then a simple
gradient scheme can be easily implemented in a spatially-
distributed manner. Because the closed-loop system is a
gradient flow for the cost functionH, performance is locally,
continuously optimized. Fig. 2 illustrates the performance
of this coordination algorithm. As a special case, when the
environment is a segment andφ = 1, the time complexity of
the algorithm can be shown to beO(N3 log(Nε−1)) where
ε is a threshold value below which we consider the task
accomplished; see [1].

Fig. 2. Area-coverage deployment for16 agents on a convex polygonal
environment. The shaded region represents the density function φ. The left
(respectively, right) figure illustrates the initial (respectively, final) locations
and Voronoi partition. The central figure illustrates the gradient ascent flow.

Second, we consider the problem of deployingto maximize
the likelihood of detecting a source. For example, consider
devices equipped with acoustic sensors attempting to detect a
sound-source (or similarly, antennas detecting RF signals, or
chemical sensors localizing a pollutant source). For a variety
of criteria, when the source emits a known signal and the
noise is Gaussian, we know that (1) the optimal detection
algorithm involves a matched filter, (2) detection perfor-
mance is a function of signal-to-noise-ratio, and, in turn,(3)
signal-to-noise ratio is inversely proportional to the sensor-
source distance. How do we deploy the nodes and maximize
the detection probability? We design a motion coordination
algorithm to maximize detection likelihood as follows: each
node moves toward the circumcenter of its Voronoi cell. Our
work [24] shows that (1) the detection likelihood is inversely
proportional to the circumradius of each node’s Voronoi cell,
and (2) if the nodes follow this algorithm, then the detection
likelihood increases monotonically as a function of time; see

Fig. 3. (This algorithm is designed for the detection problem;
source localization/tracking is discussed in the next section.)

Fig. 3. The nodes solve a maximum-likelihood-detection deployment; the
figure depicts the nodes final position and the circumcircles for each node.

Third, we consider avisibility-based deploymentof nodes
in a planar non-convex polygonal environment. Here, the
coverage objective is to deploy the ad hoc network in such
a way as to obtain complete visibility of the environment.
This coverage problem is a distributed feedback version of
the well-known “art gallery problem” from computational
geometry [25]. Let us now describe an algorithm for this type
of deployment. At every time instant, each nodepi computes
a dominance region as the set of points for whichpi is either
the only visible node or the closest visible node;pi then
moves toward the furthest vertex in its dominance region.
The performance of this algorithm is, at this time, known
only via simulations on a class of floor plan environments;
e.g., see Fig. 4.

Fig. 4. The nodes solve the visibility deployment problem fora nonconvex
polygonal environment shaped as a typical floor-plan.

B. Rendezvous problems

In the context of motion coordination, the rendezvous
objective is to achieve agreement over the location of the
agents, that is, to steer each agent to a common location.
We consider two scenarios which differ in the agents’
sensing/communication capabilities and the environment to
which the agents belong. LetP = {p1, . . . , pN} represent
the set of locations of the agents.

Let us first consider the problem of rendezvous for agents
equipped withrange-limited sensors. In this case, each agent
is capable of sensing in a closed disk of bounded radius and
belongs to the unbounded spaceR

d of arbitrary dimensiond.
This is described by ther-disk graph,Gdisk(r), in which two
agents are neighbors if and only if the Euclidean distance
between them is less than or equal tor. For a complete
discussion of this problem, see [26].

Second, we considervisually-guided agents. Here the
agents are assumed to belong to a nonconvex simple polyg-
onal environmentQ. Each agent can sense within line-of
sight any other agent as well as sense the distance to the
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Fig. 5. Ther-disk and Relative Neighborhood (GRN(r)) graphs inR3 for a
configuration of25 agents with coordinates uniformly randomly generated
within the cube[−7, 7]× [−7, 7]× [−7, 7]. The parameterr is taken equal
to 4. See [26] for a discussion on proximity graphs.

boundary of the environment. The relationship between the
agents can be characterized by the visibility graph,Gvis,Q.
Two agents are neighbors if they are mutually visible to each
other; see [27] for a complete discussion.

Fig. 6. From left to right, visibility graph and the locally-cliqueless
visibility graph. The locally-cliqueless visibility graph is spatially distributed
over the visibility graph (see [27]).

In both scenarios, the rendezvous problem cannot be
solved with distributed information if the agents are placed
in such a way that they do not form a connected sens-
ing/communication graph. Arguably, a good property of
any algorithm for rendezvous is that of maintaining some
form of connectivity between agents, which in turn imposes
constraints on the agents’ motion. Motion constraints that
maintain connectivity are designed in [8], [27] and exploitthe
geometric properties of proximity graphs. These constraints
need not be imposed for all pair of neighbors. Instead, it is
enough to impose them according to certain sparse proximity
graphs. For the disk graph scenario, an appropriate graph is
the so-called Relative Neighborhood graph depicted in Fig.5.

We are now ready to outline an algorithm that solves
the problems for both communication scenarios. The agents
execute what we shall refer to as theCircumcenter Algo-
rithm; here is an informal description. Each agent iteratively
performs the following tasks:

1: detects its neighbors according toG
2: computes the circumcenter of the point set comprised of

its neighbors and of itself
3: moves toward this circumcenter while maintaining con-

nectivity with its neighbors.
Fig. 7 and 8 illustrate the performance of the Circumcenter

Algorithm for the first and second scenario, respectively. One
can prove that, under technical conditions, the algorithm does
achieve the rendezvous task in both scenarios. Additionally,
whend = 1, it can be shown that the time complexity of the
task using the Circumcenter Algorithm isΘ(N); see [1].

In this section, we have provided examples of certain
motion coordination tasks and outlined approaches to solving
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Fig. 7. Evolution (in light gray) of the Circumcenter Algorithm from two
viewpoints. The initial configuration of the network is as inFig. 5.

Initial position of the agents Final position of the agentsEvolution of the network

Fig. 8. Simulation results of the Circumcenter Algorithm on a network of
agents distributed in a spiral polygon. The algorithm is runoverGvis,Q.

the problems. However, many open research questions still
remain unanswered. One such problem is that of achieving
arbitrary patterns. The problem of deploying and controlling
visually-guided agents is another problem where a deeper
understanding is needed. Apart from motion coordination,
another class of interesting problems is that of localizing
and estimating moving targets and fields. We shall try to
illustrate some of these problems in the following section.

IV. TARGET AND BOUNDARY TRACKING

The subject of this section is the design of algorithms that
exploit controlled mobility to efficiently localize movingtar-
gets (or sources) and boundaries, and to efficiently estimate
environmental fields (here we mean both functions of the
environment, e.g., concentration of a pollutant in a lake, and
probabilistic maps representing likelihood of events taking
place in the environment, e.g., occupancy maps).

A possible approach to exploiting controlled mobility is
based on anext-best-viewparadigm. The key idea is to
design greedy policies that move the network nodes in such
a way as to maximize the information that the nodes will
gather with subsequent measurements. Put into a broader
perspective, an integrated algorithm entails an estimation
filter and a motion coordination algorithm that takes the
network agents to optimal sensor positions. Accordingly, a
fundamental objective of this approach is to characterize
optimal sensor placements or optimal sensor motion patterns
for various estimation problems.

The literature on (static) sensor networks performing var-
ious estimation tasks is vast and we only mention the two
surveys [28], [29] that are somehow related to our approach.
From a robotic viewpoint, an incomplete list of works on ac-
tive target tracking for controlled-mobility networks includes
[30] and [31]. Related to our next-best-view and optimal
sensor placement approach is the literature on optimum
experimental design. Here the references [32], [33] show how
to define appropriate “sensitivity performance measure” for
optimal sensor placement; see also [34]. Boundary estimation
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Fig. 9. Comparison of target localization algorithm for static and
controlled mobile sensors. The left figure compares the estimation
errors and the right figure shows the estimated target trajectories.
The lower error and the more accurate “figure-eight” trajectory are
achieved by the controlled mobile sensors. The mobile sensors move
along the boundary of the environment (in this case, a circle).

has been recently studied in the context of static sensor fields;
e.g., see [35] and references therein. Researchers in mobile
robotics have explored alternative approaches for boundary
estimation. A motion coordination mechanism is designed
in [36] by relying on certain energy-minimizing curves from
image processing. A related gradient climbing algorithm is
proposed in [37].

A. Target tracking

In this section we present an example approach to tar-
get tracking. For this problem, an appropriate sensitivity
performance measure in 2D and 3D environments is the
determinant of the Fisher Information Matrix (FIM). The
determinant measures [38] the information produced by a
set of measurements in estimating a set of unknown pa-
rameters; its inverse, called the Cramer-Rao-Lower-Bound,
characterizes the best achievable estimation error covariance.
Under the assumptions of Gaussian independent noise, a
2D environment, and a stationary sound-source, the global
maxima of the FIM determinant correspond to an optimal
pattern in which the sensors are uniformly placed in circular
fashion around the target. We use this information to improve
the performance of a Kalman filter-based algorithm for target
localization. In short, we implement a motion coordination
algorithm that steers the mobile sensor network to an optimal
deployment; we do not detail this algorithm here, but note
that it is related to the ones presented in the previous section.
A schematic description of the algorithm is as follows. Each
agent iteratively performs the following:

1: measures target location and shares new measurement
with neighbors

2: computes new estimate of target location
3: moves according to motion algorithm (based on target

estimate and neighbors’ positions).

Fig. 9 (see [31]), illustrates how this integrated mo-
tion/sensing/estimation algorithms lead to improved perfor-
mance of an extended Kalman filter in a target tracking sce-
nario where the target moves along a “figure-eight” pattern.

B. Boundary estimation

Here we consider a boundary estimation problem. The
aim is to select an interpolation technique and to deploy the
sensors in such a way as to optimally estimate the boundary.

In other words, we define a cost function quantifying an
estimation error and then design a motion coordination al-
gorithm that minimizes it. The details are as follows. Assume
that the unknown setQ is the planar subset where a certain
environmental quantity, e.g., heat or chemical concentration,
is above a given threshold. The objective is to estimate the
boundary∂Q by means of an array of sensors able to locally
detect∂Q and to move towards and along it. Let us consider
the following basic task: how to place the robots along∂Q

in such a way that the polygon, whose vertices are the
robots’ positions, is a good approximation ofQ. To simplify
the following discussion, we assume thatQ is convex.
Therefore, our optimal estimation problem is equivalent to
finding the “best”N -vertices polytope inscribed insideQ
that best approximatesQ according to some metric. This
setup is interesting also because polygonal approximations of
planar convex bodies is a well-studied subject, e.g., see the
survey [39] and references therein. It is known, for example,
that the distance between the convex bodyQ and its best
(as measured according to various metrics) inner polygonal
approximation belongs toO( 1

N2 ).
Let us formalize one of these error formulations. Once the

robots reach the boundary we order them in counterclockwise
order {p1, . . . , pN}; for convenience, we setp0 = pN and
pN+1 = p1. Among the possible choices of metric we
considerH(g, gI) :=

∫ b

a
‖g(t) − gI(t)‖dt, whereg and gI

are parametric representations of the boundary ofQ and of
the interpolating lines between any two nodes, respectively.
It turns out thatH is the area of the convex setQ minus its
inner approximating polygon. We regardH as the cost that
we minimize through a motion coordination algorithm. Thus

min
p1,...,pN∈∂Q

H(g, gI) = A(Q) − max
p1,...,pN∈∂Q

A(co(p1, . . . , pN )),

where A is area function, andco is the convex hull of
its arguments.H is always non-negative. The area of the
polygon co(p1, . . . , pN ) is easily expressed as a function
of position of the vertices, that is,A(co(p1, . . . , pN )) =
1
2

∑N
k=1(xkyk+1 − xk+1yk), wherepk = (xk, yk). To max-

imize H we consider the following gradient flow:

ṗi = projT∂Q

„

∂A(co(p1, . . . , pN ))

∂pi

«

=
1

2
projT∂Q

„

yi+1 − yi−1

xi−1 − xi+1

«

,

whereprojT∂Q is the orthogonal projection onto the tangent
contourT∂Q. (A nonsmooth gradient flow can be designed
to handle nonsmooth contours.) Note that, in order to imple-
ment this gradient flow, every agent needs to know only the
positions of its immediate clockwise and counterclockwise
neighbors and of the gradient of the contour at its position;as
for the target tracking problem, this information requirements
can be formalized using proximity graph models as in the
previous sections. By design, the gradient flow is guaranteed
to lead the robots to the set of critical configurations ofH
(see Fig. 10). It also turns out thatH is not strictly concave
and it possesses multiple critical points.

In this section, we have discussed two types of problems
related to target tracking and localization for mobile sensor
networks. Numerous open questions remain. For example,
there is a need for appropriate ”sensitivity performance mea-
sures” for next-best-view algorithms in target, boundary and
function estimation. Another interesting area is the studyof
different sensor models, e.g., sensors with limited footprint.
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Fig. 10. Gradient flow maximizing inner approximating polygon
(N = 8).

V. CONCLUSIONS

This paper is a partial survey of some control prob-
lems related to collective motion and estimation for sensor
networks. Specifically, we have talked about deployment
and rendezvous as examples of motion coordination tasks
and target tracking and boundary estimation as examples
of localization/estimation tasks. We have outlined possible
approaches to these problems and mentioned some new
research directions in this area.
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