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On synchronous robotic networks – Part II:

Time complexity of rendezvous and

deployment algorithms

Sonia Mart́ınez Francesco Bullo Jorge Cortés Emilio Frazzoli

Abstract

This paper analyzes a number of basic coordination algorithms running on synchronous robotic networks. We

provide upper and lower bounds on the time complexity of the move-towardaverage and circumcenter laws, both

achieving rendezvous, and of the centroid law, achieving deployment over a region of interest. The results are derived

via novel analysis methods, including a set of results on the convergence rates of linear dynamical systems defined

by tridiagonal Toeplitz and circulant matrices.

I. I NTRODUCTION

Problem motivation: Although recent years have witnessed the emergence of numerous coordination algorithms

for networked mobile systems, the fundamental limits in terms of achievable performance, energy consumption and

operational time remain largely unknown. This is partiallyexplained by the inherent difficulty in integrating the

various sensing, computing and communication aspects of problems involving groups of mobile agents. In this paper,

we consider the problem of analyzing the performance of several coordination algorithms achieving rendezvous

and deployment. To this goal, we rely on the general framework proposed in the companion paper [1] to formally
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model the behavior of robotic networks. Our research effortaims at developing tools and results to assess to what

extent coordination algorithms are scalable, and implementable in large networks of mobile agents. Ultimately, we

would like to characterize the minimum amount of communication, sensing and control that is necessary to reliably

perform a desired task, and we would like to design algorithms that achieve those limits.

Literature review: A survey on cooperative mobile robotics is presented in [2] and an overview of control and

communication issues is contained in [3]. Specific topics related to the present treatment include rendezvous [4],

[5], [6], [7], [8], cyclic pursuit [9], [10], deployment [11], [12], swarm aggregation [13], gradient climbing [14],

flocking [15], [16] and consensus [17], [18], [19]. The papers [20], [21], [10] discuss convergence rates of various

motion coordination algorithms. See the aforementioned works for references on additional cooperative strategies

designed to perform other spatially-distributed tasks.

Statement of contributions: The companion paper [1] proposes a general framework to model robotic networks

and formally analyze their behavior. In particular, [1] defines notions of time and communication complexity aimed

at capturing the performance and cost of the execution of coordination algorithms. Here, we focus on establishing

time complexity estimates for basic algorithms that achieve rendezvous and deployment.

The time complexity of an algorithm is the minimum number of communication rounds required by the agents

to achieve the task. This is a classical notion in the study ofdistributed algorithms for networks with fixed

communication topology, e.g., see [22]. From a controls perspective, the notion of time complexity is related

to concepts such as settling time and speed of convergence. For a robotic network, it is natural to expect that

these notions will depend on the number of agents. In this paper, we provide asymptotic characterizations of the

time complexity of various coordination algorithms as the number of agents of the network grows. Arguably, this

characterization serves as a measure of the scalability properties of the cooperative strategies under study.

We start by analyzing a simple averaging law for a network of locally-connected agents moving on a line. This

law is related to the widely known Vicsek’s model, see [15], [23]. We show that this law achieves rendezvous

(without preserving connectivity) and that its time complexity belongs toΩ(N) andO(N5). Second, for a network

of locally-connected agents moving on a line or on a segment,we show that the well-known circumcenter algorithm

by [4] has time complexity of orderΘ(N). (This algorithm achieves rendezvous while preserving connectivity with

a communication graph withO(N2) links.) We then consider a network based on a different communication graph,

called the limited Delaunay graph, that arises naturally incomputational geometry and in the study of wireless

communication topologies. For this less dense graph withO(N) communication links, we show that the time
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complexity of the circumcenter algorithm grows toΘ(N2 log N). Intuitively, this tradeoff between the number of

links in the communication graph and time complexity makes sense, as robotic networks where agents receive

less information from their neighbors will need more communication rounds to achieve the desired task. For a

network of agents moving onRd (with a certain communication graph) we introduce a novel “parallel-circumcenter

algorithm” and establish its time complexity of orderΘ(N). Third and last, for a network of agents in a one-

dimensional environment, we show that the time complexity of the deployment algorithm introduced in [11] is

O(N3 log N). To obtain these complexity estimates, we develop some novel analysis methods and build on the

convergence results presented in the appendix of the companion paper [1]. An important observation is that the

time complexity results presented here on the one-dimensional case induce lower bounds on the time complexity

of the algorithms considered when executed in higher dimensions.

Organization: Section II briefly reviews the general approach to the modeling of robotic networks proposed

in [1], presenting the notions of control and communicationlaw, coordination tasks and time complexity. Sections III

and IV define the rendezvous and deployment coordination tasks, respectively, and present various coordination

algorithms that achieve them. For both problems, we establish the asymptotic correctness of the proposed algorithms,

and characterize their time complexity. Finally, we present our conclusions in Section V. In the appendix, we review

some basic computational geometric structures employed along the discussion.

Notation: We letBooleSet be the set{true,false}. We let
∏

i∈{1,...,N} Si denote the Cartesian product of

setsS1, . . . , SN . We letR>0 andR≥0 denote the set of strictly positive and non-negative real numbers, respectively.

The set of positive natural numbers is denoted byN andN0 denote the set of non-negative integers. Forx ∈ R
d, we

denote by‖x‖2 and‖x‖∞ the Euclidean and the∞-norm ofx, respectively (recall that‖x‖∞ ≤ ‖x‖2 ≤
√

d‖x‖∞

for all x ∈ R
d). Forx ∈ R

d andr ∈ R>0, we letB(x, r) andB(x, r) denote the open and closed ball inR
d centered

at x of radiusr, respectively. We lete1, . . . , ed be the standard orthonormal basis ofR
d. Also, we define the vectors

0 = (0, . . . , 0)T and1 = (1, . . . , 1)T in R
d. For f, g : N → R, we say thatf ∈ O(g) (respectively,f ∈ Ω(g)) if

there existN0 ∈ N andk ∈ R>0 such that|f(N)| ≤ k|g(N)| for all N ≥ N0 (respectively,|f(N)| ≥ k|g(N)| for

all N ≥ N0). If f ∈ O(g) andf ∈ Ω(g), then we use the notationf ∈ Θ(g). We refer the reader to Appendix I for

some useful geometric concepts. Finally, we will use the notation TridN (a, b, c), CircN (a, b, c) andATrid±
N (a, b)

to refer to various tridiagonal Toeplitz and circulant matrices as introduced in Appendix A of [1].
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II. SYNCHRONOUS ROBOTIC NETWORKS

The companion paper [1] proposes a formal model for robotic networks, and defines notions of control and

communication laws, coordination tasks, and time and communication complexity. For the sake of completeness,

we present here simplified versions of these notions.

Definition II.1 (Robotic networks) A uniform network of robotic agents(or robotic network) S is a tuple (I,A, Ecmm)

consisting of

(i) I = {1, . . . , N}; I is called the set of unique identifiers (UIDs);

(ii) A = {A[i]}i∈I , with A[i] = (X,U,X0, f), is a set of identical control systems called physical agents;

(iii) Ecmm is a map from
∏

i∈I X to the subsets of I × I called the communication edge map. •

Definition II.2 (Control and communication law) A (static, uniform, data-sampled, time-independent) control

and communication lawCC for S consists of the sets T = {t`}`∈N0
⊂ R≥0 (an increasing sequence of time

instants, called communication schedule) and L (the communication alphabet), and of the maps msg: X × I → L

(called message-generation function) and ctl : X × LN → U (called control function). •

Definition II.3 (Evolution) The evolutionof (S, CC) from initial conditions x
[i]
0 ∈ X0

[i], i ∈ I , is the collection of

curves x[i] : [t0,∞) → X , i ∈ I , satisfying

ẋ[i](t) = f
(

x[i](t), ctl[i]
(

x[i](btc
T
), y[i](btc

T
)
))

,

where btc
T

= max{t` ∈ T | t` < t}, and x[i](t0) = x
[i]
0 , i ∈ I . Here, the function y[i] : T → LN (describing the mes-

sages received by agent i) has jth component y
[i]
j (t`) = msg[j](x[j](t`), i), if (i, j) ∈ Ecmm

(

x[1](t`), . . . , x
[N ](t`)

)

,

and y
[i]
j (t`) = null, otherwise. •

When the messages interchanged among the network agents are just the agents’ states, the corresponding alphabet

is L = X ∪ {null}, and the message generation function msgstd: X × I → X is msgstd(x, j) = x, referred to as

the standard message-generation function. Next, let us introduce some useful examples of robotic networks.

Example II.4 (Locally-connected first-order agents in R
d) ConsiderN points x[1], . . . , x[N ] in R

d, d ≥ 1,

obeying ẋ[i](t) = u[i](t). These are identical agents of the formA = (Rd, Rd, Rd, (0, e1, . . . , ed)). Assume each

agent can communicate to any other agent within distancer, that is, adoptEr-disk (defined in Appendix I) as the

communication edge map. These data define the uniform robotic networkSr-disk = (I,A, Er-disk). •
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Example II.5 (LD-connected first-order agents inR
d) Consider the set of physical agents defined in the previous

example. Forr ∈ R>0, adopt ther-limited Delaunay mapEr-LD defined by

(i, j) ∈ Er-LD(x[1], . . . , x[N ]) if and only if
(

V [i] ∩ B(x[i], r
2 )

)

∩
(

V [j] ∩ B(x[j], r
2 )

)

6= ∅, i 6= j,

where{V [1], . . . , V [N ]} is the Voronoi partition ofRd generated by{x[1], . . . , x[N ]}; see also Appendix I.

These data define the uniform robotic networkSr-LD = (I,A, Er-LD). •

Example II.6 (Locally-∞-connected first-order agents inR
d) Consider the set of physical agents defined in the

previous two examples. Forr ∈ R>0, define the proximity edge mapEr-squareby

(i, j) ∈ Er-square(x
[1], . . . , x[N ]) if and only if ‖x[i] − x[j]‖∞ ≤ r, i 6= j.

These data define the uniform robotic networkSr-square= (I,A, Er-square). •

Next, we define the notion of coordination task and of task achievement by a robotic network.

Definition II.7 (Coordination task) Let S be a robotic network. A (static) coordination taskfor S is a map

T :
∏

i∈I X [i] → BooleSet. The control and communication law CC achievesT if, for all initial conditions

x
[i]
0 ∈ X

[i]
0 , i ∈ I , the corresponding evolution t 7→ x(t) has the property that there exists T ∈ R>0 with

T(x(t)) = true for all t ≥ T . •

The notions of time complexity describes the performance ofa law that while achieving a coordination task.

Definition II.8 (Time complexity) Let S be a robotic network, let T be a coordination task for S and let CC be

a control and communication law for S. The time complexity to achieveT with CC from x0 ∈ ∏

i∈I X
[i]
0 is

TC(T, CC , x0) = inf {` | T(x(tk)) = true , for all k ≥ `} ,

where t 7→ (x(t)) is the evolution of (S, CC) from x0. The time complexity to achieveT with CC is

TC(T, CC) = sup
{

TC(T, CC , x0) | x0 ∈
∏

i∈I

X
[i]
0

}

. •

III. R ENDEZVOUS

In this section, we introduce rendezvous coordination tasks and analyze various coordination algorithms that

achieve them, providing upper and lower bounds on their timecomplexity. Along the section, we will consider the

networksSr-disk andSr-LD presented in Example II.4 and Example II.5, respectively.
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A. Rendezvous tasks

First, letS = (I,A, Ecmm) be a uniform robotic network. The(exact) rendezvous task Trndzvs: XN → BooleSet

for S is the static task defined by

Trndzvs(x
[1], . . . , x[N ]) =



















true, if x[i] = x[j], for all (i, j) ∈ Ecmm(x[1], . . . , x[N ]),

false, otherwise.

Second, letS = (I,A, Ecmm) be a uniform robotic network with agents’ state spaceX ⊂ R
d. Examples networks

of this form areSr-disk, see Examples II.4 and III-B, andSr-LD , see Examples II.5. Forε > 0, the ε-rendezvous

task Tε-rndzvs: XN → BooleSet for S is defined byTε-rndzvs(x) = true if and only if

∥

∥

∥
x[i] − avrg

(

{x[i]} ∪ {x[j] | (i, j) ∈ Ecmm(x)}
)

∥

∥

∥

2
< ε,

for all i ∈ I, whereavrg computes the average of a finite point set inR
d, that is,avrg({x1, . . . , xh}) = (x1 + · · ·+

xh)/h, and where we letx = (x[1], . . . , x[N ]) ∈ XN ⊂ (Rd)N . In other words,Tε-rndzvs is true atx ∈ (Rd)N if, for

all i ∈ I, x[i] is at distance less thanε from the average of its own position with the position of itsEcmm-neighbors.

B. Rendezvous without connectivity constraint via the move-toward-average control and communication law

From Example II.4, consider the uniform networkSr-disk of locally-connected first-order agents inRd. We now

define a communication and control law that we refer to as the move-toward-average law and that we denote by

CCavrg. We loosely describe it as follows:

[Informal description] Communication rounds take place at each natural instant of time. At each com-

munication round each agent transmits its position. Between communication rounds, each agent moves

towards and reaches the point that is the average of its neighbors’ positions; the average point is computed

including the agent’s own position.

Note that this law is related to the Vicsek’s model discussedin [15], [23], where however different communication

topologies are adopted and where the coordination task is that of heading alignment rather than rendezvous. Next,

we formally define the law as follows. First, we takeT = N0 and we assume that each agent operates with the

standard message-generation function, i.e., we setL = R
d ∪ {null} and msg(x, j) = msgstd(x, j) = x. Second,

we define the control function ctl: R
d × LN → R

d by

ctl(xsmpld, y) = avrg({xsmpld} ∪ {xrcvd | xrcvd is a non-null message iny}) − xsmpld
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where the mapvers : R
d → R

d is defined byvers(0) = 0 and vers(v) = v/‖v‖2 for v 6= 0. In summary, we set

CCavrg = (N0, R
d, msgstd, ctl). An implementation of this control and communication law isshown in Fig. 1 for

d = 1. Note that, along the evolution, (1) several agentsrendezvous, i.e., agree upon a common location, and (2)

some agents are connected at the simulation’s beginning andnot connected at the simulation’s end. •

11

22

33

44

77

66

55

Fig. 1. Evolution of a robotic network under the move-toward-average control and communication law in Example III-B implemented over

the r-disk graph, withr = 1.5. The vertical axis corresponds to the elapsed time, and the horizontal axis to the positions of the agents in the

real line. The51 agents are initially randomly deployed over the interval[−15, 15].

Our main objective here is to characterize the complexity ofthis law.

Theorem III.1 (Time complexity of move-towards-average law) For d = 1, the network Sr-disk, the law CCavrg,

and the task Trndzvs satisfy TC(Trndzvs, CCavrg) ∈ O(N5) and TC(Trndzvs, CCavrg) ∈ Ω(N).

Proof: One can easily prove that, along the evolution of the network, the ordering of the agents is preserved,

i.e., if x[i](`) ≤ x[j](`), thenx[i](` + 1) ≤ x[j](` + 1). However, links between agents are not necessarily preserved

(see, e.g., Figure 1). Indeed, connected components may split along the evolution. However, merging events are not

possible. Consider two contiguous connected componentsC1 andC2, with C1 to the left ofC2. By definition, the

rightmost agent ofC1 and the leftmost agent ofC2 are at a distance strictly bigger thanr. Now, by executing the

algorithm, they can only but increase that distance, since the rightmost agent ofC1 will move to the left, and the

leftmost agent ofC2 will move to the right. Therefore, connected components do not merge.

Consider first the case of an initial configuration of the network for which the communication graph remains

connected throughout the evolution. Without loss of generality, assume that the agents are ordered from left to

right according to their identifier, that is,x[1](0) = (x0)1 ≤ · · · ≤ x[N ](0) = (x0)N . Let α ∈ {3, . . . , N} have the
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property that agents{2, . . . , α − 1} are neighbors of agent1, and agentα is not. (If instead all agents are within

an interval of lengthr, then rendezvous is achieved in1 time instant, and the statement in theorem is easily seen

to be true.) Note that we can assume that agents{2, . . . , α − 1} are also neighbors of agentα. If this is not the

case, then those agents that are neighbors of agent1 and not of agentα, rendezvous with agent1 at the next time

instant. At the time instant̀ = 1, the new updated positions satisfy

x[1](1) =
1

α − 1

α−1
∑

k=1

x[k](0), x[γ](1) ∈
[ 1

α

α
∑

k=1

x[k](0), ∗
]

, γ ∈ {2, . . . , α − 1},

where∗ denotes a certain unimportant point.

Now, we show that

x[1](α − 1) − x[1](0) ≥ r

α(α − 1)
. (1)

Let us first show the inequality forα = 3. Note that the fact that the communication graph remains connected

implies that agent2 is still a neighbor of agent1 at the time instant̀ = 1. Thereforex[1](2) ≥ 1
2 (x[1](1)+x[2](1)),

and from here we deduce

x[1](2) − x[1](0) ≥ 1

2

(

x[2](1) − x[1](0)
)

≥ 1

2

(1

3

(

x[1](0) + x[2](0) + x[3](0)
)

− x[1](0)
)

≥ 1

6

(

x[3](0) − x[1](0)
)

≥ r

6
.

Let us now proceed by induction. Assume that inequality (1) is valid for α− 1, and let us prove it forα. Consider

first the possibility when at the time instant` = 1, the agentα − 1 is still a neighbor of agent1. In this case,

x[1](2) ≥ 1
α−1

∑α−1
k=1 x[k](1), and from here we deduce

x[1](2) − x[1](0) ≥ 1

α − 1

(

x[α−1](1) − x[1](0)
)

≥ 1

α − 1

( 1

α

α
∑

k=1

x[k](0) − x[1](0)
)

≥ 1

α(α − 1)

(

x[α](0) − x[1](0)
)

≥ r

α(α − 1)
,

which in particular implies (1). Consider then the case whenagentα − 1 is not a neighbor of agent1 at the time

instant` = 1. Let β < α such that agentβ − 1 is a neighbor of agent1 at ` = 1, but agentβ is not. Sinceβ < α,

we have by inductionx[1](β) − x[1](1) ≥ r
β(β−1) . From here, we deduce thatx[1](α − 1) − x[1](0) ≥ r

α(α−1) .

It is clear that after̀ 1 = α− 1, we could again consider two complementary cases (either agent 1 has all others

as neighbors or not) and repeat the same argument once again.In that way, we would find̀ 2 such that the distance

traveled by agent1 after `2 rounds would be lower bounded by 2r
N(N−1) . Repeating this argument iteratively, the

worst possible case is one in which agent1 keeps moving to the right and there is always another agent which is
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not a neighbor. Sincediam(x0, I) ≤ (N − 1)r, in the worst possible situation, there exists some time`k such that

kr
(N−1)N = O(r(N − 1)). This implies thatk = O((N − 1)2N). Now we can upper bound the total convergence

time `k by `k =
∑k

i=1 αi − k ≤ k(N − 1), where we have used thatαi ≤ N for all i ∈ {1, . . . , N}. From here

we see that̀ k = O((N − 1)3N) and hence, we deduce that inO(N(N − 1)3) time instants there cannot be any

agent which is not a neighbor of the agent1. Hence, all agents rendezvous at the next time instant. Consequently,

TC(Trndzvs, CCavrg, x0) = O(N(N − 1)3).

Finally, for a general initial configurationx0, because there are a finite number of agents, only a finite number

of splittings (at mostN − 1) of the connected components of the communication graph cantake place along the

evolution. Therefore, we concludeTC(Trndzvs, CCavrg) = O(N5).

Let us now prove the lower bound. Consider an initial configuration x0 ∈ R
N where all agents are positioned

in increasing order according to their identity, and exactly at a distancer apart, say(x0)i+1 − (x0)i = r, i ∈

{1, . . . , N − 1}. Assume for simplicity thatN is odd - whenN is even, one can reason in an analogous way.

Because of the symmetry of the initial condition, in the firsttime step, only agents1 andN move. All the remaining

agents remain in their position because it coincides with the average of its neighbors’ position and its own. At

the second time step, only agents1, 2, N − 1 andN move, and the others remain still because of the symmetry.

Applying this idea iteratively, one deduces the time step when agentsN−1
2 and N+3

2 move for the first time is

lower bounded byN−1
2 . Since both agents have still at least a neighbor (agentN+1

2 ), the taskTrndzvs has not been

achieved yet at this time step. Therefore,TC(Trndzvs, CCavrg, x0) ≥ N−1
2 , and the result follows.

C. Rendezvous with connectivity constraint via circumcenter control and communication laws

Here we define thecircumcenter control and communication law CCcrcmcntr for both networksSr-disk andSr-LD .

This is a uniform, static, time-independent law originallyintroduced by [4] and later studied in [6], [7]. The

circumcenter of a point set is the center of the smallest-radius sphere that encloses the set. Loosely speaking, the

evolution of the network under theCCcrcmcntr law can be described as follows:

[Informal description] Communication rounds take place at each natural instant of time. At each com-

munication round each agent performs the following tasks: (i) it transmits its position and receives its

neighbors’ positions; (ii) it computes the circumcenter ofthe point set comprised of its neighbors and of

itself, and (iii) it moves toward this circumcenter while maintaining connectivity with its neighbors.
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Let us present this description in more formal terms. We setT = N0, L = R
d ∪ {null}, and msg[i] = msgstd,

i ∈ I. In order to define the control function, we need to introducesome preliminary constructions. First, connectivity

is maintained by restricting the allowable motion of each agent in the following appropriate manner. If agentsi

andj are neighbors at timè∈ N0, then we require their subsequent positions to belong toB(x[i](`)+x[j](`)
2 , r

2 ). If

an agenti has its neighbors at locations{q1, . . . , ql} at time `, then itsconstraint set Dr(x
[i](`), {q1, . . . , ql}) is

Dr(x
[i](`), {q1, . . . , ql}) =

⋂

q∈{q1,...,ql}
B

(x[i](`) + q

2
,
r

2

)

.

Second, to maximize the displacement toward the circumcenter of the point set comprised of its neighbors and of

itself, each agent solves the following convex optimization problem. Forq0 andq1 in R
d, and for a convex closed

setQ ⊂ R
d with q0 ∈ Q, let λmax(q0, q1, Q) denote the solution to the strictly convex problem:

maximize λ

subject toλ ≤ 1, (1 − λ)q0 + λq1 ∈ Q.

Under the stated assumptions the solution exists and is unique. Third, note that since the agents operate with the

standard message-generation function, the non-null messagesy[i](`) received by the agenti ∈ I at time` ∈ N0 are

the positions of its neighbors. We are now ready to define the last ingredient ofCCcrcmcntr. Given a statex and an

array of messagesy, define the point

xgoal(x, y) = Circum({x} ∪ {xrcvd | for all non-nullxrcvd ∈ y}),

whereCircum(q1, . . . , ql) is the circumcenter of the pointsetq1, . . . , ql; see definition in Appendix I. Next, define

the control function ctl: R
d × LN → R

d by

ctl(xsmpld, y) = λ∗(xgoal(xsmpld, y) − xsmpld) , (2)

with λ∗ = λmax
(

xsmpld, xgoal(xsmpld, y),Dr(xsmpld, {xrcvd | for all non-nullxrcvd ∈ y})
)

. Evolving under this control

law, it is clear that, at timebtc + 1, each agenti reaches the point(1 − λ∗)x[i](btc) + λ∗xgoal
(

x[i](btc), y(btc)
)

.

Next, we consider the networkSr-square of locally-∞-connected first-order agents inRd, see Example II.6. For

this network we define theparallel circumcenter law, CCpll-crcmcntr, by designingd decoupled circumcenter laws

running in parallel on each coordinate axis ofR
d. As before, this law is uniform, static and time-independent. We

setT = N0, L = R
d ∪{null}, and msg[i] = msgstd, i ∈ I. We define the control function ctl: R

d ×LN → R
d by

ctl(xsmpld, y) =
(

Circum(τ1(M)) − (xsmpld)1, . . . , Circum(τd(M)) − (xsmpld)d

)

, (3)
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whereM = {xsmpld} ∪ {xrcvd | for all non-null xrcvd ∈ y} and whereτ1, . . . , τd : R
d → R denote the canonical

projections ofRd onto R. See Fig. 2 for an illustration of this law inR2.

x
[i]

x
[k]

x
[j]

x
[l]

Fig. 2. Parallel circumcenter control and communication law inR
2. The target point for the agenti is plotted in light gray and has coordinates

(Circum(τ1(M[i])), Circum(τ2(M[i]))).

Asymptotic behavior and complexity analysis: The following theorem summarizes the results known in the

literature about the asymptotic properties of the circumcenter law.

Theorem III.2 (Correctness of the circumcenter laws)For d ∈ N, r ∈ R>0 and ε ∈ R>0, the following

statements hold:

(i) on the network Sr-disk, the law CCcrcmcntr achieves the exact rendezvous task Trndzvs;

(ii) on the network Sr-LD , the law CCcrcmcntr achieves the ε-rendezvous task Tε-rndzvs;

(iii) on the network Sr-square, the law CCpll-crcmcntr achieves the exact rendezvous task Trndzvs;

(iv) the evolutions of (Sr-disk, CCcrcmcntr), of (Sr-LD , CCcrcmcntr), and of (Sr-square, CCpll-crcmcntr) have the property

that, if two agents belong to the same connected component of the communication graph at ` ∈ N0, then they

continue to belong to the same connected component for all subsequent times k ≥ `. •
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Proof: The results onSr-disk appeared originally in [4]. The proof for the results onSr-LD is provided in [7].

We postpone the proof forSr-square to the proof of Theorem III.3 below.

Next we analyze the time complexity ofCCcrcmcntr. We provide complete results for the cased = 1. As we

see next, the complexity ofCCcrcmcntr differs dramatically when applied to the two robotic networks with different

communication graphs.

Theorem III.3 (Time complexity of circumcenter laws) For r ∈ R>0 and ε ∈]0, 1[, the following statements

hold:

(i) for d = 1, on the network Sr-disk, TC(Trndzvs, CCcrcmcntr) ∈ Θ(N);

(ii) for d = 1, on the network Sr-LD , TC(T(rε)-rndzvs, CCcrcmcntr) ∈ Θ(N2 log(Nε−1));

(iii) for d ∈ N, on the network Sr-square, TC(Trndzvs, CCpll-crcmcntr) ∈ Θ(N). •

Proof: Let x0 ∈ R
N . Throughout the proof, we letπR(y) denote the subset of non-null messages iny.

Fact (i). Let us show that, ford = 1, the connectivity constraints on each agenti ∈ I imposed by the constraint set

Dr(x
[i], πR(y))) are superfluous, i.e., the solution of the convex optimization problem isλ∗ = 1 (cf. equation (2)).

To see this, assume that agentsi andj are neighbors in ther-disk graph at time instant̀, defineM[i] asπR(y[i](`))∪

{x[i](`)}, and let us show thatCircum(M[i]) belongs toB(x[i](`)+x[j](`)
2 , r

2 ). Without loss of generality, letx[i](`) ≤

x[j](`). Let x
[i]
− (`), x

[i]
+ (`) denote the positions of the leftmost and rightmost agents among the neighbors of agenti.

Note thatx[i](`) ≤ x[j](`) ≤ x
[i]
+ (`) andCircum(M[i]) = 1

2 (x
[i]
− (`) + x

[i]
+ (`)). Then,

∣

∣ Circum(M[i]) − 1

2
(x[i](`) + x[j](`))

∣

∣ =
1

2

∣

∣x
[i]
− (`) − x[i](`) + x

[i]
+ (`) − x[j](`)

∣

∣

≤ 1

2
max{|x[i]

− (`) − x[i](`)|, |x[i]
+ (`) − x[j](`)|} ≤ r

2
,

as claimed. Therefore, we have thatx[i](` + 1) = Circum(M[i]). Likewise, one can deduceCircum(M[i]) ≤

Circum(M[j]), and therefore, the order of the agents is preserved.

Consider the case whenEr-disk(x0) is connected. Without loss of generality, assume that the agents are ordered

from left to right according to their identifier, that is,x[1](0) = (x0)1 ≤ · · · ≤ x[N ](0) = (x0)N . Let α ∈ {3, . . . , N}

have the property that agents{2, . . . , α − 1} are neighbors of agent1, and agentα is not. (If instead all agents

are within an interval of lengthr, then rendezvous is achieved in1 time instant, and the statement in theorem

is easily seen to be true.) See Fig. 3 for an illustration of these definitions. Note that we can assume that agents

{2, . . . , α − 1} are also neighbors of agentα. If this is not the case, then those agents that are neighborsof agent
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r

x
[1](0) x

[α−1](0) x
[α](0)

Fig. 3. Definition ofα ∈ {3, . . . , N} for an initial network configuration.

1 and not of agentα, rendezvous with agent1 at the next time instant. At the time instant` = 1, the new updated

positions satisfy

x[1](1) =
x[1](0) + x[α−1](0)

2
, x[γ](1) ∈

[

x[1](0) + x[α](0)

2
,
x[1](0) + x[γ](0) + r

2

]

, γ ∈ {2, . . . , α − 1} .

These equalities imply thatx[1](1) − x[1](0) = 1
2

(

x[α−1](0) − x[1](0)
)

≤ 1
2r. Analogously, we deducex[1](2) −

x[1](1) ≤ 1
2r, and therefore

x[1](2) − x[1](0) ≤ r . (4)

On the other hand, fromx[1](2) ∈
[

1
2

(

x[1](1) + x[α−1](1)
)

, ∗
]

(where the symbol∗ represents a certain unimportant

point in R), we deduce that

x[1](2) − x[1](0) ≥ 1

2

(

x[1](1) + x[α−1](1)
)

− x[1](0) ≥ 1

2

(

x[α−1](1) − x[1](0)
)

≥ 1

2

(x[1](0) + x[α](0)

2
− x[1](0)

)

=
1

4

(

x[α](0) − x[1](0)
)

≥ 1

4
r . (5)

Inequalities (4) and (5) mean that, after at most two time instants, agent1 has traveled an amount larger thanr/4.

In turn this implies that

diam(x0, I)

r
≤ TC(Trndzvs, CCcrcmcntr, x0) ≤

4 diam(x0, I)

r
.

If Er-disk(x0) is not connected, note that along the network evolution, theconnected components of ther-disk

graph do not change. Therefore, using the previous characterization on the amount traveled by the leftmost agent

of each connected component in at most two time instants, we deduce that

1

r
max

C∈CEr-disk(x0)
diam(x0, C) ≤ TC(Trndzvs, CCcrcmcntr, x0) ≤

4

r
max

C∈CEr-disk(x0)
diam(x0, C) .
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Note that the connectedness of eachC ∈ CEr-disk(x0) implies that diam(x0, C) ≤ (N − 1)r, and therefore

TC(Trndzvs, CCcrcmcntr) ∈ O(N). Moreover, forx0 ∈ R
N such that(x0)i+1 − (x0)i = r, i ∈ {1, . . . , N − 1},

we havediam(x0, I) = (N − 1)r, and thereforeTC(Trndzvs, CCcrcmcntr, x0) ≥ N − 1. We conclude that

TC(Trndzvs, CCcrcmcntr) ∈ Θ(N) .

Fact (ii). In ther-limited Delaunay graph, two agents on the line that are at most at a distancer from each other are

neighbors if and only if there are no other agents between them. Also, note that ther-limited Delaunay graph and the

r-disk graph have the same connected components (cf. [12]). Using an argument similar to the one above, one can

show that the connectivity constraints imposed by the constraint setsDr(x
[i](btc), πR(y))) are again superfluous.

Consider first the case whenEr-LD(x0) is connected. Note that this is equivalent toEr-disk(x0) being connected.

Without loss of generality, assume that the agents are ordered from left to right according to their identifier, that

is, x[1](0) = (x0)1 ≤ · · · ≤ x[N ](0) = (x0)N . The evolution of the network underCCcrcmcntr can then be described

as the discrete-time dynamical system

x[1](` + 1) =
1

2
(x[1](`) + x[2](`)) , x[2](` + 1) =

1

2
(x[1](`) + x[3](`)) , . . . ,

, . . . , x[N−1](` + 1) =
1

2
(x[N−2](`) + x[N ](`)) , x[N ](` + 1) =

1

2
(x[N−1](`) + x[N ](`)) .

Note that this evolution respects the ordering of the agents. Equivalently, we can writex(` + 1) = Ax(`), where

A is theN × N matrix given by

A =





































1
2

1
2 0 . . . . . . 0

1
2 0 1

2 . . . . . . 0

0 1
2 0 1

2 . . . 0

...
. ..

.. .
.. .

...

0 . . . . . . 1
2 0 1

2

0 . . . . . . 0 1
2

1
2





































.

Note thatA = ATrid+
N

(

1
2 , 0

)

as defined in [1, Appendix A]. Theorem A.4(i) in [1] implies that, for xave =

1
N 1

T x(0), we have thatlim`→+∞ x(`) = xave1, and that the maximum time required for‖x(`) − xave1
∥

∥

2
≤

η‖x(0)−xave1‖2 (over all initial conditionsx(0) ∈ R
N ) is Θ

(

N2 log η−1
)

. (Note that this also implies that agents

rendezvous at the location given by the average of their initial positions. In other words, the asymptotic rendezvous

position for this case can be expressed in closed form, as opposed to the case with ther-disk communication graph.)
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Next, let us convert the contraction inequality on2-norms into an appropriate inequality on∞-norms. Note that

diam(x0, I) ≤ (N − 1)r becauseEr-LD(x0) is connected. Therefore

‖x(0) − xave1‖∞ = max
i∈I

|x[i](0) − xave| ≤ |x[1]
0 − x

[N ]
0 | ≤ (N − 1)r.

For ` of order N2 log η−1, we use this bound on‖x(0) − xave1‖∞ and the basic inequalities‖v‖∞ ≤ ‖v‖2 ≤
√

N‖v‖∞ for all v ∈ R
N , to obtain:

‖x(`) − xave1‖∞ ≤ ‖x(`) − xave1‖2 ≤ η‖x(0) − xave1‖2 ≤ η
√

N‖x(0) − xave1‖∞ ≤ η
√

N(N − 1)r.

This means that(rε)-rendezvous is achieved forη
√

N(N−1)r = rε, that is, in timeO(N2 log η−1) = O(N2 log(Nε−1)).

Next, we show the lower bound. Consider the unit-length eigenvectorvN =
√

2
N+1 (sin π

N+1 , . . . , sin Nπ
N+1 )T ∈

R
N of TridN−1(

1
2 , 0, 1

2 ) corresponding to the largest singular valuecos( π
N ). This vector is an eigenvector of

TridN−1(
1
2 , 0, 1

2 ) corresponding to the largest singular valuecos( π
N ). For µ = −1

10
√

2
rN5/2, we then define the

initial condition x0 = µP+







0

vN−1






∈ R

N . One can show that(x0)i < (x0)i+1 for i ∈ {1, . . . , N − 1}, that

(x0)ave = 0, and thatmax{(x0)i+1 − (x0)i | i ∈ {1, . . . , N − 1}} ≤ r. Using [1, Lemma A.5] and because

‖w‖∞ ≤ ‖w‖2 ≤
√

N‖w‖∞ for all w ∈ R
N , we compute

‖x0‖∞ =
rN5/2

10
√

2

∥

∥

∥

∥

∥

P+







0

vN−1







∥

∥

∥

∥

∥

∞
≥ rN2

10
√

2

∥

∥

∥

∥

∥

P+







0

vN−1







∥

∥

∥

∥

∥

2

≥ rN

10
√

2
‖vN−1‖2 =

rN

10
√

2
.

The trajectoryx(`) = (cos( π
N ))`x0 therefore satisfies

‖x(`)‖∞ =
(

cos
( π

N

))`

‖x0‖∞ ≥ rN

10
√

2

(

cos
( π

N

))`

.

Therefore,‖x(`)‖∞ is larger than1
2rε so long as 1

10
√

2
N(cos( π

N ))` > 1
2ε, that is, so long as

` <
log(ε−1N) − log(5

√
2)

− log
(

cos( π
N )

) .

The rest of the proof is analogous to the one of Theorem A.3(i)in [1] for the lower bound result.

If Er-LD(x0) is not connected, along the network evolution the connectedcomponents do not change. Therefore,

the previous reasoning can be applied to each connected component. Since the number of agents in each connected

component is strictly less thatN , the time complexity can only but improve. Therefore, we conclude that

TC(Trndzvs, CCcrcmcntr) ∈ Θ(N2 log(Nε−1)) .
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Fact (iii). Finally, we prove the statements regardingSr-square and CCpll-crcmcntr in fact (iii) and in the previous

Theorem III.2. By definition, agentsi and j are neighbors at timè∈ N0 if and only if ‖x[i](`) − x[j](`)‖∞ ≤ r,

which is equivalent to

|τk(x[i](`)) − τk(x[j](`))| ≤ r , k ∈ {1, . . . , d} .

Recall from the proof of fact (i) that the connectivity constraints ofCCcrcmcntr on each agent are trivially satisfied

in the 1-dimensional case. This fact has the following important consequence: from the expression for the control

function in CCpll-crcmcntr, we deduce that the evolution underCCpll-crcmcntr of the robotic networkSr-square (in d

dimensions) can be alternatively described as the evolution underCCcrcmcntr of d robotic networksSr-disk in R. The

correctness and the time complexity results now follows from the analysis ofCCcrcmcntr at d = 1.

Remark III.4 (Analysis in higher dimensions) The results in Theorem III.3(i) and (ii) induce lower boundson

the time complexity of the circumcenter law in higher dimensions. Indeed, we have

(i) for d ∈ N, on the networkSr-disk, TC(Trndzvs, CCcrcmcntr) ∈ Ω(N);

(ii) for d ∈ N, on the networkSr-LD , TC(T(rε)-rndzvs, CCcrcmcntr) ∈ Ω(N2 log(Nε−1)).

We have performed extensive numerical simulations for the cased = 2 and the networkSr-disk. We run the algorithm

starting from generic initial configurations (where, in particular, agents’ positions are not aligned) contained in a

bounded region ofR2. We have consistently obtained that the time complexity to achieveTrndzvs with CCcrcmcntr

starting from these initial configurations is independent of the number of agents. This leads us to conjecture that

initial configurations where all agents are aligned (equivalently, the1-dimensional case) give rise to the worst possible

performance of the algorithm. In other words, we conjecturethat, for d ≥ 2, TC(Trndzvs, CCcrcmcntr) = Θ(N). •

IV. D EPLOYMENT

In this section, we introduce the deployment coordination task and analyze a coordination algorithm that achieves

it, providing upper and lower bounds on its time complexity.Along the section, we consider the uniform robotic

network Sr-LD presented in Example II.5 with parameterr ∈ R>0. We assume we are given a convex simple

polytopeQ ⊂ R
d, with an integrable density functionφ : Q → R>0. We assume that the initial positions of the

agents belong toQ and we intend to design a control law that keeps them inQ for subsequent times.
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A. Deployment task

By optimal deployment on the convex simple polytopeQ ⊂ R
d with density functionφ : Q → R>0, we mean

the following objective: place the agents onQ so that the expected square Euclidean distance from any point in Q

to one of the agents is minimized. To define this task formally, let us review some known preliminary notions; we

will require some computational geometric notions from Appendix I. We consider the following network objective

functionHdeplmnt: QN → R,

Hdeplmnt(x
[1], . . . , x[N ]) =

∫

Q

min
i∈I

‖q − x[i]‖2
2 φ(q)dq . (6)

This function and variations of it are studied in the facility location and resource allocation research literature;

see [24], [11]. It is convenient [12] to study a generalization of this function. Forr ∈ R>0, define the saturation

function satr : R → R by satr(x) = x if x ≤ r andsatr(x) = r otherwise. Forr ∈ R>0, define the new objective

functionHr-deplmnt: QN → R by

Hr-deplmnt(x
[1], . . . , x[N ]) =

∫

Q

min
i∈I

sat r
2
(‖q − x[i]‖2

2)φ(q)dq . (7)

Note that ifr ≥ 2 diam(Q), thenHdeplmnt = Hr-deplmnt. Let {V [1], . . . , V [N ]} be the Voronoi partition ofQ associated

with {x[1], . . . , x[N ]}. The partial derivative of the cost function takes the following meaningful form (see [12])

∂Hr-deplmnt

∂x[i]
(x[1], . . . , x[N ]) = 2Mass(V [i] ∩B(x[i], r

2 )) ·
(

Centroid(V [i] ∩B(x[i], r
2 )) − x[i]

)

, i ∈ I .

(Here, as in Appendix I,Mass(S) and Centroid(S) are, respectively, the mass and the centroid ofS ⊂ R
d.)

Clearly, the critical points ofHr-deplmnt are network states wherex[i] = Centroid(V [i] ∩B(x[i], r
2 )). We call such

configurationsr
2 -centroidal Voronoi configurations. Forr ≥ 2 diam(Q), they coincide with the standard centroidal

Voronoi configurations onQ. Fig. 4 illustrates these notions.

Motivated by these observations, we define the following deployment task. Forr, ε ∈ R>0, define theε-r-

deployment task Tε-r-deplmnt: QN → BooleSet by

Tε-r-deplmnt(x) =



















true, if
∥

∥x[i] − Centroid(V [i] ∩B(x[i], r
2 ))

∥

∥

2
≤ ε, for all i ∈ I ,

false, otherwise.

Roughly speaking,Tε-rdeplmnt is true for those network configurations where each agent is sufficiently close to

the centroid of an appropriate regionV [i] ∩B(x[i], r
2 ).
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Fig. 4. Centroidal andr
2

-centroidal Voronoi configurations. The density functionφ is depicted by a contour plot. For each agenti, the set

V [i] ∩B(x[i], r

2
) is plotted in light gray.

B. Centroid law

To achieve theε-r-deployment task discussed in Example IV-A, we define thecentroid control and communication

law CCcentrd. This is a uniform, static, time-independent law studied in[11], [12]. Loosely speaking, the evolution

of the network under the centroid control and communicationlaw can be described as follows:

[Informal description] Communication rounds take place at each natural instant of time. At each com-

munication round each agent performs the following tasks: (i) it transmits its position and receives its

neighbors’ positions; (ii) it computes the centroid of an appropriate region (the region is the intersection

between the agent’s Voronoi cell and a closed ball centered at its position and of radiusr2 ), and (iii) it

moves toward this centroid.

Let us present this description in more formal terms. We setT = N0, L = R
d ∪ {null}, and msg[i] = msgstd,

i ∈ I. We define the control function ctl: R
d × LN → R

d by

ctl(xsmpld, y) = Centroid
(

X (xsmpld, y)
)

− xsmpld,

whereX (x, y) = Q
⋂

B
(

x, r
2

)

⋂

(

⋂

p ∈ y, p 6= nullHx,p

)

and Hx,p is the half-space{q ∈ R
d | ‖q − x‖2 ≤

‖q − p‖2}. One can show thatQN is a positively-invariant set for this control law.

The following theorem on the centroid control and communication law summarizes the known results about

the asymptotic properties and the novel results on the complexity of this law. In characterizing complexity, we

assumediam(Q) is independent ofN , r andε, and we do not calculate how the bounds depend onr. As for the
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circumcenter law, we provide complete time-complexity results for the cased = 1.

Theorem IV.1 (Time complexity of centroid law) For r ∈ R>0 and ε ∈ R>0, consider the network Sr-LD with

initial conditions in Q. The following statements hold:

(i) for d ∈ N, the law CCcentrd achieves the ε-r-deployment task Tε-r-deplmnt;

(ii) for d = 1 and φ = 1, TC(Tε-r-deplmnt, CCcentrd) ∈ O(N3 log(Nε−1)). •

Proof: Fact (i) is proved in [12] ford ∈ {1, 2}; the same proof technique can be generalized to any dimension.

In what follows we sketch the proof of fact (ii). Ford = 1, Q is a compact interval onR, sayQ = [q−, q+].

We start with a brief discussion about connectivity. In ther-limited Delaunay graph, two agents that are at most

at a distancer from each other are neighbors if and only if there are no otheragents between them. Additionally,

we claim that, if agentsi andj are neighbors at time instant`, then|Centroid(X [i](`))−Centroid(X [j](`))| ≤ r.

To see this, assume without loss of generality thatx[i](`) ≤ x[j](`). Let us consider the case where the agents have

neighbors on both sides (the other cases can be treated analogously). Letx[i]
− (`) (respectively,x[j]

+ (`)) denote the

position of the neighbor of agenti to the left (respectively, of agentj to the right). Now, we have

Centroid(X [i](`)) =
1

4
(x

[i]
− (`) + 2x[i](`) + x[j](`)) , Centroid(X [j](`)) =

1

4
(x[i](`) + 2x[j](`) + x

[j]
+ (`)) .

Therefore,|Centroid(X [i](`))−Centroid(X [j](`))| ≤ 1
4

(

|x[i]
− (`)−x[i](`)|+2|x[i](`)−x[j](`)|+|x[j](`)−x

[j]
+ (`)|

)

≤

r. This implies that agentsi and j belong to the same connected component of ther-limited Delaunay graph at

time instant` + 1.

Next, let us consider the case thatEr-LD(x0) is connected. Without loss of generality, assume that the agents

are ordered from left to right according to their identifier,that is,x[1](0) = (x0)1 ≤ · · · ≤ x[N ](0) = (x0)N . We

distinguish three cases depending on the proximity of the leftmost and rightmost agents1 andN , respectively, to

the boundary of the environment: case(a) both agents are within a distancer
2 of ∂Q; case(b) none of the two is

within a distancer
2 of ∂Q; and case(c) only one of the agents is within a distancer

2 of ∂Q. Here is an important

observation: from one time instant to the next one, the network configuration can fall into any of the cases described

above. However, because of the discussion on connectivity,transitions can only occur from case(b) to either case

(a) or (c); and from case(c) to case(a). As we show below, for each of these cases, the network evolution under

CCcentrd can be described as a discrete-time linear dynamical systemwhich respects agents’ ordering.
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Let us consider case(a). In this case, we have

x[1](` + 1) =
1

4
(x[1](`) + x[2](`)) +

1

2
q− , x[2](` + 1) =

1

4
(x[1](`) + 2x[2](`) + x[3](`)) , . . . ,

. . . , x[N−1](` + 1) =
1

4
(x[N−2](`) + 2x[N−1](`) + x[N ](`)) , x[N ](` + 1) =

1

4
(x[N−1](`) + x[N ](`)) +

1

2
q+ .

Equivalently, we can writex(` + 1) = A(a) · x(`) + b(a), where theN × N -matrix A(a) and the vectorb(a) are

given by

A(a) =





































1
4

1
4 0 . . . . . . 0

1
4

1
2

1
4 . . . . . . 0

0 1
4

1
2

1
4 . . . 0

...
. . .

. . .
. . .

...

0 . . . . . . 1
4

1
2

1
4

0 . . . . . . 0 1
4

1
4





































, b(a) =





























1
2q−

0

...

0

1
2q+





























.

Note that the only equilibrium network configurationx∗ respecting the ordering of the agents is given by

x
[i]
∗ = q− +

1

2N
(1 + 2(i − 1))(q+ − q−) , i ∈ I ,

and note that this is ar2 -centroidal Voronoi configuration (under the assumption ofcase(a)). We can therefore

write (x(`) − x∗) = A(a)(x(` − 1) − x∗). Now, note thatA(a) = ATrid−
N

(

1
4 , 1

2

)

. Theorem A.4(ii) in [1] implies

that lim`→+∞
(

x(`) − x∗
)

= 0, and that the maximum time required for‖x(`) − x∗
∥

∥

2
≤ ε‖x(0) − x∗‖2 (over all

initial conditionsx(0) ∈ R
N ) is Θ

(

N2 log ε−1
)

. It is not obvious, but it can be verified, that the initial condition

providing the lower bound in the time complexity estimate does indeed have the property of respecting the agents’

ordering; this fact holds for all three cases(a), (b) and (c).

The case(b) can be treated in the same way. The network evolution takes now the formx(`+1) = A(b) ·x(`)+

b(b), where theN × N -matrix A(b) and the vectorb(b) are given by

A(b) =





































3
4

1
4 0 . . . . . . 0

1
4

1
2

1
4 . . . . . . 0

0 1
4

1
2

1
4 . . . 0

...
. ..

.. .
.. .

...

0 . . . . . . 1
4

1
2

1
4

0 . . . . . . 0 1
4

3
4





































, b(b) =





























− 1
4r

0

...

0

1
4r





























.
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In this case, a (non-unique) equilibrium network configuration respecting the ordering of the agents is of the form

x
[i]
∗ = ir − 1 + N

2
r , i ∈ I .

Note that this is ar
2 -centroidal Voronoi configuration (under the assumption ofcase(b)). We can therefore write

(x(`) − x∗) = A(b)(x(` − 1) − x∗). Now, note thatA(b) = ATrid+
N

(

1
4 , 1

2

)

. We computexave = 1
N 1

T (x0 − x∗) =

1
N 1

T x0. With this calculation, Theorem A.4(i) in [1] implies thatlim`→+∞
(

x(`)− x∗ − xave1
)

= 0, and that the

maximum time required for‖x(`)− x∗ − xave1
∥

∥

2
≤ ε‖x(0)− x∗ − xave1‖2 (over all initial conditionsx(0) ∈ R

N )

is Θ
(

N2 log ε−1
)

.

Case(c) needs to be handled differently. Without loss of generality, assume that agent1 is within distancer
2

of ∂Q and agentN is not (the other case is treated analogously). Then, the network evolution takes now the form

x(` + 1) = A(c) · x(`) + b(c), where theN × N -matrix A(c) and the vectorb(c) are given by

A(c) =





































1
4

1
4 0 . . . . . . 0

1
4

1
2

1
4 . . . . . . 0

0 1
4

1
2

1
4 . . . 0

...
.. .

.. .
. . .

...

0 . . . . . . 1
4

1
2

1
4

0 . . . . . . 0 1
4

3
4





































, b(c) =





























1
2q−

0

...

0

1
4r





























.

Note that the only equilibrium network configurationx∗ respecting the ordering of the agents is given by

x
[i]
∗ = q− +

1

2
(2i − 1)r , i ∈ I ,

and note that this is ar2 -centroidal Voronoi configuration (under the assumption ofcase(c)). In order to analyze

A(c), we recast theN -dimensional discrete-time dynamical system as a2N -dimensional one. To do this, we define

a 2N -dimensional vectory by

y[i] = x[i], i ∈ I, and y[N+i] = x[N−i+1], i ∈ I, (8)

Now, one can see that the network evolution can be alternatively described in the variables(y[1], . . . , y[2N ]) as a

linear dynamical system determined by the2N × 2N matrix ATrid−
2N ( 1

4 , 1
2 ). Using analogous arguments to the

ones used before and exploiting the chain of equalities (8),we can characterize the eigenvalues and eigenvectors of

Trid2N−1(
1
4 , 1

2 , 1
4 ), and infer that, even for case(c), the maximum time required for‖x(`)−x∗

∥

∥

2
≤ ε‖x(0)−x∗‖2

(over all initial conditionsx(0) ∈ R
N ) is Θ

(

N2 log ε−1
)

.
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In summary, for all three cases(a), (b) and(c), our calculations show that, in timeO
(

N2 log ε−1
)

, the error2-

norm satisfies the contraction inequality‖x(`)−x∗
∥

∥

2
≤ ε‖x(0)−x∗‖2. We convert this inequality on2-norms into

an appropriate inequality on∞-norms as follows. Note that‖x(0)− x∗‖∞ = maxi∈I |x[i](0)− x
[i]
∗ | ≤ (q+ − q−).

For ` of orderN2 log η−1, we have

‖x(`) − x∗‖∞ ≤ ‖x(`) − x∗‖2 ≤ η‖x(0) − x∗‖2 ≤ η
√

N‖x(0) − x∗‖∞ ≤ η
√

N(q+ − q−).

This means thatε-r-deployment is achieved forη
√

N(q+−q−) = ε, that is, in timeO(N2 log η−1) = O(N2 log(Nε−1)).

Up to here we have proved that, if the graph(I, Er-LD(x0)) is connected, thenTC(Tε-r-deplmnt, CCcentrd) ∈

O(N2 log(Nε−1)). If (I, Er-LD(x0)) is not connected, note that along the network evolution there can only be

a finite number of time instants, at mostN − 1 where a merging of two connected components occurs. Therefore,

the time complexity is at mostO(N3 log(Nε−1)).

V. CONCLUSIONS

Building on the robotic network framework proposed in the companion paper [1], we have formalized various

motion coordination algorithms: the move-toward-averageand the circumcenter laws, achieving the rendezvous task,

and the centroid law, achieving the deployment task. We havecomputed the time complexity of these algorithms,

providing upper and lower bounds as the number of agents tends to infinity. To obtain these complexity estimates,

we have relied on some novel analysis methods involving linear dynamical systems defined by tridiagonal Toeplitz

and circulant matrices. These results demonstrate the usefulness of the proposed formal model.

The complexity bounds reported in this and the companion paper are of low polynomial order and are comparable

to those found in the distributed algorithms literature, e.g., see [22], [25]. None of the algorithms has an exponential

complexity. From a practical viewpoint, what level of complexity (logarithmic, linear, polynomial) is acceptable

will depend on the specific application considered and we leave this question to future work.

The analysis presented in this paper is useful for robotic network applications because it provides a rigorous

assessment of the performance of the above-mentioned coordination algorithms. Given a desired task, our vision

is that the combination of coordination algorithms with thebest scalability properties will enable the synthesis of

efficient cooperative strategies. Once a catalog of examplecoordination tasks and algorithms have been carefully

understood, one could envision the design of more complex strategies building on this knowledge. It is also our

hope that the kind of analysis performed here will help characterize the complex trade-offs between computation,

communication and motion control in robotic networks.
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MARTÍNEZ, BULLO, CORTÉS AND FRAZZOLI: TIME COMPLEXITY OF RENDEZVOUS AND DEPLOYMENT ALGORITHMS 23

A number of research avenues look now promising and exciting. In this paper, our analysis results essentially

consist of a time-complexity analysis of some basic algorithms, but many more open algorithmic questions remain

unresolved including (i) time complexity analysis in higher dimensions; (ii) communication complexity analysis for

unidirectional and omnidirectional models of communication; (iii) analysis of other known algorithms for flocking,

cohesion, formation, motion planning and a long etcetera; and (iv) complexity analysis results for coordination

tasks, as opposed to for algorithms.

ACKNOWLEDGMENTS

This material is based upon work supported in part by ONR YIP Award N00014-03-1-0512, NSF SENSORS

Award IIS-0330008, DARPA/AFOSR MURI Award F49620-02-1-0325, NSF CAREER Award CCR-0133869 and

NSF CAREER Award ECS-0546871. Sonia Martı́nez’s work was supported in part by a Fulbright Postdoctoral

Fellowship from the Spanish Ministry of Education and Science.

REFERENCES

[1] S. Mart́ınez, F. Bullo, J. Cort́es, and E. Frazzoli, “On synchronous robotic networks – PartI: Models, tasks and complexity,”IEEE

Transactions on Automatic Control, Apr. 2005, submitted.

[2] Y. U. Cao, A. S. Fukunaga, and A. Kahng, “Cooperative mobile robotics: Antecedents and directions,”Autonomous Robots, vol. 4, no. 1,

pp. 7–27, 1997.

[3] E. Klavins and R. M. Murray, “Distributed algorithms for cooperative control,”IEEE Pervasive Computing, vol. 3, no. 1, pp. 56–65, 2004.

[4] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, “Distributed memoryless point convergence algorithm for mobile robots with limited

visibility,” IEEE Transactions on Robotics and Automation, vol. 15, no. 5, pp. 818–828, 1999.

[5] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, “Gathering of asynchronous oblivious robots with limited visibility,” Theoretical

Computer Science, vol. 337, no. 1-3, pp. 147–168, 2005.

[6] J. Lin, A. S. Morse, and B. D. O. Anderson, “The multi-agentrendezvous problem - the asynchronous case,” inIEEE Conf. on Decision

and Control, Paradise Island, Bahamas, Dec. 2004, pp. 1926–1931.

[7] J. Cort́es, S. Mart́ınez, and F. Bullo, “Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions,”

IEEE Transactions on Automatic Control, vol. 51, no. 7, 2006, to appear.

[8] Z. Lin, M. Broucke, and B. Francis, “Local control strategies for groups of mobile autonomous agents,”IEEE Transactions on Automatic

Control, vol. 49, no. 4, pp. 622–629, 2004.

[9] J. A. Marshall, M. E. Broucke, and B. A. Francis, “Formations of vehicles in cyclic pursuit,”IEEE Transactions on Automatic Control,

vol. 49, no. 11, pp. 1963– 1974, 2004.

[10] S. L. Smith, M. E. Broucke, and B. A. Francis, “A hierarchical cyclic pursuit scheme for vehicle networks,”Automatica, vol. 41, no. 6,

pp. 1045–1053, 2005.

[11] J. Cort́es, S. Mart́ınez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing networks,”IEEE Transactions on Robotics and

Automation, vol. 20, no. 2, pp. 243–255, 2004.

June 29, 2006 DRAFT



24 SUBMITTED AS A REGULAR PAPER TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL

[12] J. Cort́es, S. Mart́ınez, and F. Bullo, “Spatially-distributed coverage optimization and control with limited-range interactions,”ESAIM.

Control, Optimisation & Calculus of Variations, vol. 11, pp. 691–719, 2005.

[13] V. Gazi and K. M. Passino, “Stability analysis of swarms,” IEEE Transactions on Automatic Control, vol. 48, no. 4, pp. 692–697, 2003.
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APPENDIX I

BASIC GEOMETRIC NOTIONS

Here we have gathered various geometric concepts used throughout the paper. LetS ⊂ R
d, d ∈ N, be compact.

Thecircumcenter of S, denoted byCircum(S), is the center of the smallest-radius sphere inR
d enclosingS. Given

an integrable functionφ : S → R>0, the mass of S is Mass(S) =
∫

S
φ(q)dq, and thecentroid of S is

Centroid(S) =
1

Mass(S)

∫

S

qφ(q)dq .

A partition of S is a collection of subsets ofS with disjoint interiors and whose union isS. Given a set ofN distinct

pointsP = {pi}i∈{1,...,N} in S, theVoronoi partition of S generated byP (with respect to the Euclidean norm) is
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the collection of sets{Vi(P)}i∈{1,...,N} defined byVi(P) = {q ∈ S | ‖q − pi‖2 ≤ ‖q − pj‖2 , for all pj ∈ P}. We

usually refer toVi(P) asVi. For a detailed treatment of Voronoi partitions we refer to [26], [24].

For I = {1, . . . , N} and S ⊂ R
d, a proximity edge map is a map of the formE : SN → 2I×I . For r ∈ R>0,

we define ther-disk proximity edge mapEr-disk : (Rd)N → 2I×I and ther-limited Delaunay proximity edge map

Er-LD : (Rd)N → 2I×I as follows. An edge(i, j) ∈ I × I belongs toEr-disk(x1, . . . , xN ) if and only if i 6= j and

‖xi − xj‖2 ≤ r. An edge(i, j) ∈ I × I belongs toEr-LD(x1, . . . , xN ) if and only if i 6= j and

(

Vi ∩ B(xi,
r
2 )

)

∩
(

Vj ∩ B(xj ,
r
2 )

)

6= ∅,

where{V1, . . . , VN} is the Voronoi partition ofRd generated by{x1, . . . , xN}. Illustrations of these concepts are

given in Fig. 5.

r-disk graph r-lim. Delaunay graph

Fig. 5. Ther-disk andr-limited Delaunay graphs inR2.

As proved in [12], ther-limited Delaunay graph and ther-disk graph have the same connected components.

Additionally, ther-limited Delaunay graph is “computable” on ther-disk graph in the following sense: any node in

the network can compute the set of its neighbors in ther-limited Delaunay graph if it is given the set of its neighbors

in the r-disk graph. This implies that any control and communication law for a network with communication graph

Er-LD can be implemented on a analogous network with communication graphEr-disk.
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