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On synchronous robotic networks — Part Il:
Time complexity of rendezvous and

deployment algorithms

Sonia Martnez  Francesco Bullo  Jorge Cest Emilio Frazzoli

Abstract

This paper analyzes a number of basic coordination algorithms runmirgyrchronous robotic networks. We
provide upper and lower bounds on the time complexity of the move-toaeedage and circumcenter laws, both
achieving rendezvous, and of the centroid law, achieving deploynventeoregion of interest. The results are derived
via novel analysis methods, including a set of results on the convexgates of linear dynamical systems defined

by tridiagonal Toeplitz and circulant matrices.

I. INTRODUCTION

Problem motivation: Although recent years have witnessed the emergence of nusieoordination algorithms
for networked mobile systems, the fundamental limits imtgiof achievable performance, energy consumption and
operational time remain largely unknown. This is partiaplained by the inherent difficulty in integrating the
various sensing, computing and communication aspectbigms involving groups of mobile agents. In this paper,
we consider the problem of analyzing the performance ofragé@ordination algorithms achieving rendezvous

and deployment. To this goal, we rely on the general framkwooposed in the companion paper [1] to formally
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2 SUBMITTED AS A REGULAR PAPER TO IEEE TRANSACTIONS ON AUTOMATIC CTROL

model the behavior of robotic networks. Our research etigrts at developing tools and results to assess to what
extent coordination algorithms are scalable, and impleai#a in large networks of mobile agents. Ultimately, we
would like to characterize the minimum amount of commun@gtsensing and control that is necessary to reliably
perform a desired task, and we would like to design algosthihat achieve those limits.

Literature review: A survey on cooperative mobile robotics is presented in ] an overview of control and
communication issues is contained in [3]. Specific topidateel to the present treatment include rendezvous [4],
[5], [6], [7], [8], cyclic pursuit [9], [10], deployment [1}1 [12], swarm aggregation [13], gradient climbing [14],
flocking [15], [16] and consensus [17], [18], [19]. The papf0], [21], [10] discuss convergence rates of various
motion coordination algorithms. See the aforementionedksvfor references on additional cooperative strategies
designed to perform other spatially-distributed tasks.

Satement of contributions. The companion paper [1] proposes a general framework to hnoletic networks
and formally analyze their behavior. In particular, [1] def notions of time and communication complexity aimed
at capturing the performance and cost of the execution ofdiaation algorithms. Here, we focus on establishing
time complexity estimates for basic algorithms that achimndezvous and deployment.

The time complexity of an algorithm is the minimum number ofrenunication rounds required by the agents
to achieve the task. This is a classical notion in the studyisfributed algorithms for networks with fixed
communication topology, e.g., see [22]. From a controlsspective, the notion of time complexity is related
to concepts such as settling time and speed of convergencea Fobotic network, it is natural to expect that
these notions will depend on the number of agents. In thimpape provide asymptotic characterizations of the
time complexity of various coordination algorithms as themiber of agents of the network grows. Arguably, this
characterization serves as a measure of the scalabilipepies of the cooperative strategies under study.

We start by analyzing a simple averaging law for a networkoglly-connected agents moving on a line. This
law is related to the widely known Vicsek’s model, see [1®3]] We show that this law achieves rendezvous
(without preserving connectivity) and that its time conxitie belongs toQ2(N) andO(N®). Second, for a network
of locally-connected agents moving on a line or on a segnmemshow that the well-known circumcenter algorithm
by [4] has time complexity of orde® (V). (This algorithm achieves rendezvous while preservingheotivity with
a communication graph witt(N?) links.) We then consider a network based on a different conication graph,
called the limited Delaunay graph, that arises naturallicdmputational geometry and in the study of wireless

communication topologies. For this less dense graph Wittv) communication links, we show that the time
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complexity of the circumcenter algorithm grows & N2 log N). Intuitively, this tradeoff between the number of
links in the communication graph and time complexity makesse, as robotic networks where agents receive
less information from their neighbors will need more comination rounds to achieve the desired task. For a
network of agents moving oR¢ (with a certain communication graph) we introduce a novelrtiel-circumcenter
algorithm” and establish its time complexity of ordé&(N). Third and last, for a network of agents in a one-
dimensional environment, we show that the time complexitthe deployment algorithm introduced in [11] is
O(N3log N). To obtain these complexity estimates, we develop somel ramadysis methods and build on the
convergence results presented in the appendix of the caompaaper [1]. An important observation is that the
time complexity results presented here on the one-dimeakicase induce lower bounds on the time complexity

of the algorithms considered when executed in higher difoess

Organization: Section Il briefly reviews the general approach to the modetif robotic networks proposed
in [1], presenting the notions of control and communicatem, coordination tasks and time complexity. Sections lll
and IV define the rendezvous and deployment coordinatidkstagspectively, and present various coordination
algorithms that achieve them. For both problems, we estaliie asymptotic correctness of the proposed algorithms,
and characterize their time complexity. Finally, we preésmir conclusions in Section V. In the appendix, we review

some basic computational geometric structures employatyahe discussion.

Notation: We letBool eSet be the se{t rue,fal se}. Welet][,.; 5, Si denote the Cartesian product of
setsSy, ..., Sy. We letR+, andR>( denote the set of strictly positive and non-negative reailmers, respectively.
The set of positive natural numbers is denotedbogndN, denote the set of non-negative integers. Far R?, we
denote byi|z||; and||z||« the Euclidean and theo-norm of z, respectively (recall thatz||o < [|z|l2 < V||| s
for all z € R?). Forz € R? andr € R~, we letB(x,r) andB(z, ) denote the open and closed ballRfi centered
atz of radiusr, respectively. We let,, .. ., e; be the standard orthonormal basisRsf. Also, we define the vectors
0=(0,...,007 and1 = (1,...,1)T in R For f,g: N — R, we say thatf € O(g) (respectively,f € Q(g)) if
there existVy € N andk € R+ such that| f(N)| < k|g(N)| for all N > Ny (respectively,|f(N)| > k|g(N)| for
all N > Np). If f € O(g) andf € Q(g), then we use the notatiohe ©(g). We refer the reader to Appendix | for
some useful geometric concepts. Finally, we will use theatian Tridy (a, b, ¢), Circy(a, b, ¢) and ATrid% (a, b)

to refer to various tridiagonal Toeplitz and circulant nds as introduced in Appendix A of [1].
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4 SUBMITTED AS A REGULAR PAPER TO IEEE TRANSACTIONS ON AUTOMATIC CTROL

II. SYNCHRONOUS ROBOTIC NETWORKS

The companion paper [1] proposes a formal model for robotitvarks, and defines notions of control and
communication laws, coordination tasks, and time and comication complexity. For the sake of completeness,

we present here simplified versions of these notions.

Definition 11.1 (Robotic networks) A uniform network of robotic agen{®r robotic networl S isatuple (1, A, Ecmm)
consisting of

() I=A{1,...,N}; I iscalled the set of unique identifiers (UIDs)

(i) A= {AM,;c;, with Al = (X, U, X,, f), is a set of identical control systems called physical agents

(iii) Ecmm is a map from [],.; X to the subsets of I x I called the communication edge map .

Definition 11.2 (Control and communication law) A (static, uniform, data-sampled, time-independent) @bntr
and communication lav€C for S consists of the sets T = {t;}sen, C R>o (an increasing sequence of time
instants, called communication schedulend £ (the communication alphabgtand of the mapsmsg: X x I — L

(called message-generation functjoand ctl: X x £N — U (called control functior). .

Definition 11.3 (Evolution) The evolutionof (S,CC) frominitial conditions xg] € X, i € I, is the collection of

curves zl"l: [tg, 00) — X, i € I, satisfying

#(t) = £ (2P (t), et (21 (2] ), 51 (1)),
where |¢], = max{t, € T | t, < t}, and zl(t,) = 2!, i € I. Here, thefunction y!7: T — £V (describing the mes-

sages received by agent i) has jth component yj[.i] (te) = msg’l (zUl(2,),4), if (4,5) € Ecmm(zM(t0), ..., 2N (2y)),

and y!’ (t,) = nul I , otherwise. .

When the messages interchanged among the network agentstatfeej agents’ states, the corresponding alphabet
is £L=XU{nul | }, and the message generation function ggsg{ x I — X is msgq(x,j) = =, referred to as

the standard message-generation function. Next, let us introduce some useful examples of robotic odts

Example 1.4 (Locally-connected first-order agents inR%) Consider N points z!*!,... 2V in R, d > 1,
obeyingzll(t) = ull(t). These are identical agents of the forn= (R¢,R% R?, (0,ey,...,eq)). Assume each
agent can communicate to any other agent within distandbat is, adoptF, gisk (defined in Appendix I) as the

communication edge map. These data define the uniform mhetivorkS,..gisk = (I, A, E;-gisk)- °
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Example 1.5 (LD-connected first-order agents inR?) Consider the set of physical agents defined in the previous

example. For € R, adopt ther-limited Delaunay mag¥,. p defined by
(i,5) € Evo (@M, ..., 2™y ifand only if (VI N Bl ) n (VI n BV, 5)) £0, i # 4,

where {VI, ... VINI} is the Voronoi partition ofR? generated by{z["), ..., z[N1}; see also Appendix I.

These data define the uniform robotic netwatk, p = (I, A, E,.1p). .

Example 1.6 (Locally-oco-connected first-order agents inR?) Consider the set of physical agents defined in the

previous two examples. Fore R, define the proximity edge map,.square DY
(i,) € Ersquadz™, ... 2™y ifand only if |2 — 2| <7 i #5.
These data define the uniform robotic netwdtksquare= (I, A, E/-squard- .

Next, we define the notion of coordination task and of taskemeiment by a robotic network.

Definition 11.7 (Coordination task) Let S be a robotic network. A (static) coordination taskor S is a map
T: [L;e; X1 — Bool eSet . The control and communication law CC achievesT if, for all initial conditions
x([f] € X(gi], 1 € I, the corresponding evolution ¢ — x(t) has the property that there exists 7' € R, with

T(z(t)) =true foral t > T. o

The notions of time complexity describes the performanca t#w that while achieving a coordination task.

Definition 11.8 (Time complexity) Let S be a robotic network, let 7 be a coordination task for S and let CC be

a control and communication law for S. The time complexity to achiev@ with CC from zq €[], xis

TC(7,CC,x0) = inf {£ | T(x(ty)) =true, for al k > (},
where ¢ — (z(t)) is the evolution of (S,CC) from z(. The time complexity to achievd with CC is

TC(T,CC) = sup {TC(’T,CC,xO) | 20 € HXJ;’]} . .
el

Ill. RENDEZVOUS
In this section, we introduce rendezvous coordinationgamhkd analyze various coordination algorithms that

achieve them, providing upper and lower bounds on their Goraplexity. Along the section, we will consider the

networkss,.qisk and S, p presented in Example 11.4 and Example I1.5, respectively.
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A. Rendezvous tasks

First, letS = (I, A, Ecmm) be a uniform robotic network. Thxact) rendezvous task Zyngzvs: X~ — Bool eSet

for S is the static task defined by

true, if zl =zl forall (i,j) € Eemm(z!, ..., zIM)

b

dezvs(af[l]a cee 735[N]) =
fal se, otherwise

Second, letS = (I, A, E;mm) be a uniform robotic network with agents’ state space- RY. Examples networks
of this form areS, gisk, See Examples 11.4 and IlI-B, anf,. p, see Examples II.5. Far > 0, the e-rendezvous

task T.ndzvs: X — Bool eSet for S is defined byZ mgs(z) =t r ue if and only if
o1 = avrg ({21} U (a7 | (.4) € Benm(@)})|| <.

for all i € I, whereavrg computes the average of a finite point seRify that is,avrg({z1,...,zn}) = (x1+-- -+
xy)/h, and where we let = (2!, ... z[¥) € XN < (R?)N. In other wordsZ; iansist r ue atz € (RN if, for

all i e I, z[! is at distance less thanfrom the average of its own position with the position of Eg,y-neighbors.

B. Rendezvous without connectivity constraint via the move-toward-average control and communication law

From Example 1.4, consider the uniform netwask qisk of locally-connected first-order agents k. We now
define a communication and control law that we refer to as tbeentoward-average law and that we denote by

CCaurg- We loosely describe it as follows:

[Informal description] Communication rounds take place at each natural instania. tAt each com-
munication round each agent transmits its position. Betm@mmmunication rounds, each agent moves
towards and reaches the point that is the average of its In@ighpositions; the average point is computed

including the agent’s own position.

Note that this law is related to the Vicsek’s model discussegd5], [23], where however different communication
topologies are adopted and where the coordination taskatsofhheading alignment rather than rendezvous. Next,
we formally define the law as follows. First, we talfe= Ny, and we assume that each agent operates with the
standard message-generation function, i.e., weCsetR? U {nul | } and msgx, j) = msg(z,j) = z. Second,

we define the control function ctR? x £V — R by

Ctl(zsmpias ¥) = avrg({zsmpid} U {Zrevd | Zrevd iS @ non-null message in}) — Tsmpld
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where the maprers: R? — R? is defined byvers(0) = 0 andvers(v) = v/||v||2 for v # 0. In summary, we set
CCawrg = (No, R%, msg,, ctl). An implementation of this control and communication lawsteown in Fig. 1 for
d = 1. Note that, along the evolution, (1) several ageetxiezvous, i.e., agree upon a common location, and (2)

some agents are connected at the simulation’s beginningh@ndonnected at the simulation’s end. .

P N W N O o
T
1
PN wWw s> OO N

Fig. 1. Evolution of a robotic network under the move-towax@rage control and communication law in Example IlI-B impleradmver
the r-disk graph, withr = 1.5. The vertical axis corresponds to the elapsed time, and thizdmbal axis to the positions of the agents in the

real line. The51 agents are initially randomly deployed over the interjral 5, 15].

Our main objective here is to characterize the complexityhisf law.

Theorem IIl.1 (Time complexity of move-towards-average lav) For d = 1, the network S;._gisk, the law CCayrg,

and the ta§< ﬁndzvs SatISfy TC(/Trndzvs, CCavrg) E O(N5) and Tc(ﬁndzvs, CCa\/rg) 6 Q(N).

Proof: One can easily prove that, along the evolution of the netwibrk ordering of the agents is preserved,
i.e., if zl1(0) < 2U1(0), thenzll(¢ +1) < zUl(¢ +1). However, links between agents are not necessarily preserv
(see, e.g., Figure 1). Indeed, connected components midalkgpilg the evolution. However, merging events are not
possible. Consider two contiguous connected compor@niand C-, with C; to the left of Cy. By definition, the
rightmost agent of®; and the leftmost agent af; are at a distance strictly bigger thanNow, by executing the
algorithm, they can only but increase that distance, siheerightmost agent of’; will move to the left, and the
leftmost agent of”; will move to the right. Therefore, connected components diomerge.
Consider first the case of an initial configuration of the rwtwfor which the communication graph remains

connected throughout the evolution. Without loss of gditgraassume that the agents are ordered from left to

right according to their identifier, that i/ (0) = (z¢); < -+ < 2[¥(0) = (2)n. Leta € {3,..., N} have the
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property that agent§2,...,« — 1} are neighbors of agert and agentv is not. (If instead all agents are within
an interval of lengthr, then rendezvous is achieved irtime instant, and the statement in theorem is easily seen
to be true.) Note that we can assume that agé®is..,« — 1} are also neighbors of ageat If this is not the
case, then those agents that are neighbors of dgant not of agenty, rendezvous with agerit at the next time

instant. At the time instant = 1, the new updated positions satisfy

A1y = 2 Y ), <D [Zx[k] },76{2,..‘,a—1},
o

wherex denotes a certain unimportant point.

Now, we show that

2M(a —1) —2l1(0) > 4 1)

“ala—1)
Let us first show the inequality forx = 3. Note that the fact that the communication graph remainsected
implies that agen? is still a neighbor of agent at the time instant = 1. Thereforex[!1(2) > 1 (2!(1) + 2[2(1)),

and from here we deduce
2(2) — 211(0) > = (2 (1) - 21(0))

(

Let us now proceed by induction. Assume that inequality $1ydlid for« — 1, and let us prove it forv. Consider

>

N~ N~

(z11(0) + 2P(0) + 2F(0)) — 21Y(0)) > = (2¥(0) — z1(0)) >

W —
| =
CD\%

first the possibility when at the time instafit= 1, the agento — 1 is still a neighbor of agent. In this case,

2l(2) > L5271 2lkl(1), and from here we deduce

3 alf(0) - 2l1(0))

k=1

P(2) — 2(0) > 1 («*(1) ~21(0)) > -

QM—‘

~(
ﬁ(x[a] 0)=a0)) >

which in particular implies (1). Consider then the case whganta — 1 is not a neighbor of agerit at the time

instant/ = 1. Let 8 < « such that agent — 1 is a neighbor of agent at ¢ = 1, but agent3 is not. Sinces < «,

From here, we deduce that'!(a — 1) — z[1(0) > —=

we have by induction:'(3) — 2[1(1) > FICE R

T
B(B-1)"
It is clear that afte; = o — 1, we could again consider two complementary cases (eithamtdghas all others
as neighbors or not) and repeat the same argument once hg#iat way, we would findy such that the distance
traveled by agent after ¢, rounds would be lower bounded % Repeating this argument iteratively, the

worst possible case is one in which agérteeps moving to the right and there is always another ageithwb
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not a neighbor. Sincdiam(zg,I) < (N — 1)r, in the worst possible situation, there exists some tlineuch that

(NEQ)N = O(r(N —1)). This implies thatt = O((N — 1)2N). Now we can upper bound the total convergence
time ¢ by ¢, = Ele a; —k < k(N — 1), where we have used that < N for all « € {1,..., N}. From here
we see that;, = O((N — 1)3N) and hence, we deduce that@(N(N — 1)3) time instants there cannot be any

agent which is not a neighbor of the agéntHence, all agents rendezvous at the next time instant. ecoiestly,
Tc(ﬁndzvs CCavrg7 IO) = O(N(N - 1)3)

Finally, for a general initial configuratiom,, because there are a finite nhumber of agents, only a finite @umb
of splittings (at mostV — 1) of the connected components of the communication graphtalem place along the
evolution. Therefore, we concludBC(Zmdzvs CCavrg) = O(N?).

Let us now prove the lower bound. Consider an initial configon o € RY where all agents are positioned
in increasing order according to their identity, and exaetl a distance: apart, say(zg)i+1 — (x0); = 7, @ €
{1,...,N — 1}. Assume for simplicity thatV is odd - whenN is even, one can reason in an analogous way.
Because of the symmetry of the initial condition, in the fiiste step, only agentsand N move. All the remaining
agents remain in their position because it coincides with alierage of its neighbors’ position and its own. At
the second time step, only agents2, N — 1 and N move, and the others remain still because of the symmetry.
Applying this idea iteratively, one deduces the time stepamvlagents% and % move for the first time is
lower bounded by%. Since both agents have still at least a neighbor (aéfg‘rh), the taskZingzvs has not been

achieved yet at this time step. Therefol&’(Zimdzvs CCaurg, o) > % and the result follows. |

C. Rendezvous with connectivity constraint via circumcenter control and communication laws

Here we define theircumcenter control and communication law CC¢rementr fOr both networksS, gisk and S,.1p.
This is a uniform, static, time-independent law originalhtroduced by [4] and later studied in [6], [7]. The
circumcenter of a point set is the center of the smallestisagphere that encloses the set. Loosely speaking, the
evolution of the network under théCqrementr law can be described as follows:
[Informal description] Communication rounds take place at each natural instantraf. tAt each com-
munication round each agent performs the following tasRsit fransmits its position and receives its
neighbors’ positions; (ii) it computes the circumcentettitd point set comprised of its neighbors and of

itself, and (iii) it moves toward this circumcenter while imizining connectivity with its neighbors.
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Let us present this description in more formal terms. WeTset Ny, £ = RY U {nul | }, and ms§! = msg,g
1 € I. In order to define the control function, we need to introdsimae preliminary constructions. First, connectivity
is maintained by restricting the allowable motion of eaclerdagn the following appropriate manner. If agerits
andj are neighbors at timé € Ny, then we require their subsequent positions to belo@(téw, 5). If
an agent has its neighbors at locatiorsg;, ..., ¢} at time/, then itscongtraint set D, (z1(¢), {q1,...,q}) is

i —2lil()y+q r
D0 {qr,....al) = [ B(%,i).
a€{qr,--a}

Second, to maximize the displacement toward the circurecasitthe point set comprised of its neighbors and of
itself, each agent solves the following convex optimizatpoblem. Forg, andg; in R?, and for a convex closed

set@Q c RY with go € Q, let Amax(qo, g1, Q) denote the solution to the strictly convex problem:

maximize \

subject toA < 1, (1 — X)go + A\q1 € Q.
Under the stated assumptions the solution exists and isuenithird, note that since the agents operate with the
standard message-generation function, the non-null messé! (¢) received by the agerite I at time/ € N, are
the positions of its neighbors. We are now ready to defineabkeihgredient oCCqcment- Given a stater and an

array of messageg, define the point
Tgoal(x,y) = Circum({z} U {zrcvq | for all non-nullzyevg € y}),

whereCircum(qs, ..., q) is the circumcenter of the pointset, . .., ¢; see definition in Appendix |. Next, define

the control function ctl R¢ x £V — R4 by

Ctl(l’smplda y) = )‘*(l’goal(l’smplda y) - xsmpld) ) 2

with X* = Amax(Zsmpid Zgoal(@smpids ¥), D (Tsmpia, {Zreva | for all non-nullzc,q € y})). Evolving under this control
law, it is clear that, at time¢| + 1, each agent reaches the pointl — \,)zl!([¢]) + N zgoa(zl([2]), y([t])).
Next, we consider the networK, square Of locally-oo-connected first-order agents k', see Example 11.6. For
this network we define thearallel circumcenter law, CCpii-crements DY designingd decoupled circumcenter laws
running in parallel on each coordinate axiskf. As before, this law is uniform, static and time-indepertd&ve

setT = Ny, £=R?U{nul | }, and ms§l = msg,, i € I. We define the control function ctR¢ x £V — R? by

ctl(zsmpia, y) = (Circum(ﬁ(./\/l)) — (@smpid)1, - - - , Circum(r4(M)) — (Ismpld)d), 3
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where M = {zsmpid} U {@reva | for all non-null zevq € y} and wherery, ..., 74: R¢ — R denote the canonical

projections ofR? ontoR. See Fig. 2 for an illustration of this law iR2.

Fig. 2. Parallel circumcenter control and communication lai# The target point for the agentis plotted in light gray and has coordinates

(Circum(r1 (M), Circum (2 (MI1))).

Asymptotic behavior and complexity analysis. The following theorem summarizes the results known in the

literature about the asymptotic properties of the circumeelaw.

Theorem II.2 (Correctness of the circumcenter laws)For d € N, r € Ry and ¢ € R., the following

statements hold:

(i) on the network S,_gisk, the 1aw CC¢rementr @Chieves the exact rendezvous task Zingzvs
(i) on the network S, p, the law CCq¢rementr achieves the e-rendezvous task 7:.mgzvs
(iii) on the network S;.square the law CCpii-crementr aChieves the exact rendezvous task Zindzvs
(iv) the evolutions of (S;-disk; CCerementy), OF (Sr-Lp, CCerementr), @nd Of (Sr-square CCpli-crementr) have the property
that, if two agents belong to the same connected component of the communication graph at ¢ € Ny, then they

continue to belong to the same connected component for all subsequent times & > ¢. °
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12 SUBMITTED AS A REGULAR PAPER TO IEEE TRANSACTIONS ON AUTOMATIC CTROL

Proof: The results orS, gisk appeared originally in [4]. The proof for the results Sp . p is provided in [7].

We postpone the proof fa$,.squareto the proof of Theorem 111.3 below. |
Next we analyze the time complexity @fCqremente We provide complete results for the cagde= 1. As we
see next, the complexity d@Cqcmentr differs dramatically when applied to the two robotic netigorvith different

communication graphs.

Theorem I11.3 (Time complexity of circumcenter laws) For » € Ry, and ¢ €]0, 1], the following statements

hold:

(l) fOf d = 1, on the netWOfk ST-diSk! TC(,z?ndZVSu CCcrcmcntr) S G(N),
(i) for d =1, on the network S,..p, TC(7(;e)-mdzvs CCerement) € O(N?log(Ne™1));

(i) for d € N, on the network S,..square TC(Zmazve CCplicrement) € O(N). .

Proof: Let xyo € RY. Throughout the proof, we letr(y) denote the subset of non-null messageg.in
Fact (i). Let us show that, fod = 1, the connectivity constraints on each agesrt/ imposed by the constraint set
D, (z1, 7r(y))) are superfluous, i.e., the solution of the convex optimizafiroblem is\, = 1 (cf. equation (2)).
To see this, assume that agen#d; are neighbors in the-disk graph at time instart defineM!? asmg (v (£))U
{zl1(¢)}, and let us show thatircum (M%) belongs t@(w, 2). Without loss of generality, let!’ (¢) <
zll(p). Let z!" 0), x[ﬂ (¢) denote the positions of the leftmost and rightmost agentsngnthe neighbors of ageint

Note thatzl](¢) < 201(¢) < 21 (¢) and Circum(M) = L (2 (¢) + 211 (¢)). Then,

| Circum(M) — %(mm (0) + ] (€))| = %|$[i] (0) —2le) + m[l] (6) — 2! (€)|
< % max{fa(0) - (O, 12 (0) - 2P0} < L

as claimed. Therefore, we have thdt!(¢ 4+ 1) = Circum(M?). Likewise, one can deduc€ircum(Mll) <
Circum(MU1), and therefore, the order of the agents is preserved.

Consider the case whefi, gisk(zo) is connected. Without loss of generality, assume that tlemtagare ordered
from left to right according to their identifier, that i8{'/(0) = (z0); < --- < zIM(0) = (20)n. Leta € {3,..., N}
have the property that agenf,...,« — 1} are neighbors of agent, and agenty is not. (If instead all agents
are within an interval of lengthr, then rendezvous is achieved Intime instant, and the statement in theorem
is easily seen to be true.) See Fig. 3 for an illustration ekéhdefinitions. Note that we can assume that agents

{2,...,a — 1} are also neighbors of ageat If this is not the case, then those agents that are neigldiagent
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Fig. 3. Definition ofa € {3,..., N} for an initial network configuration.

1 and not of agenty, rendezvous with agerit at the next time instant. At the time instaht 1, the new updated
positions satisfy

z1(0) + zlel0) 2MM(0) + 2D1(0) +
2 ’ 2

21(0) + zl@=1(0)
2 K

(1) = (1) e ,v€eE{2,...,a—1}.

These equalities imply that™™(1) — z111(0) = L (z[*=1(0) — 2[(0)) < 1r. Analogously, we deduce!(2) —

zl(1) < ir, and therefore
21 (2) -l (0) <. @)

On the other hand, fromt(2) € [2 (z1)(1) + zl*=1(1)), «] (where the symbot represents a certain unimportant

point in R), we deduce that

AV(2) — 20y > L (2l(1) + 221 (1)) — 2(0) >

=35 2
Zépg@tg—ﬂﬁ—ﬂWm)=§@Mw%w“wD2§f (5)

Inequalities (4) and (5) mean that, after at most two timéains, agent has traveled an amount larger thaft.

In turn this implies that

diam(zg, I 4 diam(zg, I
% < TC(dezv& CCerements l‘o) < % .

If E..gisk(zo) is not connected, note that along the network evolution,ctivnected components of thedisk
graph do not change. Therefore, using the previous chaizatien on the amount traveled by the leftmost agent

of each connected component in at most two time instants,edeat that

1 4
- max diam(x()7 C) S TC(?’rndz\/S CCCTCantﬁ x()) S - max diam(./,r(), C) .
T CeCR, gy (z0) T CeCp, 44 (x0)
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Note that the connectedness of ea€he Cg, . (zo) implies thatdiam(zy,C) < (N — 1)r, and therefore
TC(Tmdzvs CCorement) € O(N). Moreover, forzg € RY such that(zg)i1 — (zo)i = 7, i € {1,...,N — 1},

we havediam(zg, I) = (N — 1)r, and thereforél'C(Zingzvs, CCorements o) > N — 1. We conclude that
TC(Trndzva Cccrcmcntr) € @(N) .

Fact (ii). In ther-limited Delaunay graph, two agents on the line that are adtraba distance from each other are
neighbors if and only if there are no other agents between tiidso, note that the-limited Delaunay graph and the
r-disk graph have the same connected components (cf. [18i)glan argument similar to the one above, one can
show that the connectivity constraints imposed by the camgtsetsD, (z1(|¢]), mr(y))) are again superfluous.
Consider first the case whdh,.. p(z() is connected. Note that this is equivalentAqisk(zo) being connected.
Without loss of generality, assume that the agents are eddigom left to right according to their identifier, that
is, z11(0) = (z¢)1 < --- < 2NV(0) = (20) . The evolution of the network und€Cccmeny can then be described

as the discrete-time dynamical system
(4 1) = %(wm 0 +220), 2H(+1) = %(:All )+ 280, ...
1 1
e ™) = S @0 + 2@, 2N 1) = S @) + 2N ().

Note that this evolution respects the ordering of the agdtgsivalently, we can write:(£ + 1) = Ax({), where

A is the N x N matrix given by

1 1
11 0
1 1
3 0 3 0
o 1 o 1 0
A: 2 2
1 1
0 3 0 3
1 1
U R T 1

Note thatA = ATrid} (3,0) as defined in [1, Appendix A]. Theorem A.4() in [1] impliesath for zae =

IA

+172(0), we have thatlimy_ . z(f) = zawl, and that the maximum time required fr(/) — zavel ||,
n||z(0) — zavel ||2 (over all initial conditionsz(0) € RY) is ©(N?logn~!). (Note that this also implies that agents
rendezvous at the location given by the average of theialrpositions. In other words, the asymptotic rendezvous

position for this case can be expressed in closed form, asseppto the case with thedisk communication graph.)
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Next, let us convert the contraction inequality 2morms into an appropriate inequality en-norms. Note that

diam(xg,I) < (N — 1)r becauseF,...p(zg) is connected. Therefore
[2(0) — zavel | oo = max 2l (0) — wavd < [y — "] < (W —)r.

For ¢ of order N?logn~*, we use this bound ofiz(0) — zavel||« and the basic inequalitiev||.. < |[v]l2 <

V' N|[v||o for all v € RV, to obtain:
2(€) = zavel|loo < [|2(£) — Zavel[|2 < 7]|2(0) — zavel[l2 < nV'N]|2(0) — Zavel oo < nVN(N = 1)r.

This means thare)-rendezvous is achieved fgr/N (N —1)r = re, that s, in imeO(N2logn~!) = O(N?log(Ne~1)).

Next, we show the lower bound. Consider the unit-length migetorvy = /7 (sin 15, - -, sin 375)7 €

RN of TridN,l(%,O,%) corresponding to the largest singular values(%:). This vector is an eigenvector of

Tridy_1(%,0, 3) corresponding to the largest singular value(Z% ). For p = m‘\lﬁrN"’/Q, we then define the

. e e 0

initial condition zy = puPy € RY. One can show thatzg); < (x¢)iy1 for i € {1,..., N — 1}, that
VN-1

(20) e = 0, and thatmax{(xo)i+1 — (w0); | i € {1,...,N — 1}} < r. Using [1, Lemma A.5] and because

[w]|oo < [lw]l2 < VNJ|w||s for all w € RV, we compute

rN3/2

rIN rIN
T = —
Jooll = S5

> ——||VN= = —F.
—10\/5” N-1ll2 0v3

2

0 H e
> —N||P
+ 2 +
10v/2
VN-1 ) \/ VN

The trajectoryz(¢) = (cos(%))‘zo therefore satisfies

|mmu:(mqgnmmuzigxm4;»4

Therefore,||z(¢)|| is larger thanlrs so long asTi/ﬁN(COS(%))E > 1¢, that is, so long as

log(e ™' N) — log(5v/2)

< flog(cos(%))

The rest of the proof is analogous to the one of Theorem AiB(j1] for the lower bound result.
If E,..o(zo) is not connected, along the network evolution the connectatiponents do not change. Therefore,
the previous reasoning can be applied to each connectedoremp Since the number of agents in each connected

component is strictly less thdt, the time complexity can only but improve. Therefore, we aode that

TC(’];ndzvsa Cccrcmcntr) € ®(N2 log(Ne’l)) .
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Fact (iii). Finally, we prove the statements regardiSgsquare aNd CCpi.crementr IN fact (iii) and in the previous
Theorem Il1.2. By definition, agentsand j are neighbors at timé € Ny if and only if ||z(%(¢) — 2l (0)|| < 7,

which is equivalent to

I (2(0) — @V () <7, ke{1,....d}.

Recall from the proof of fact (i) that the connectivity caméints of CCcrementr ON €ach agent are trivially satisfied
in the 1-dimensional case. This fact has the following importamssmuence: from the expression for the control
function in CCpii.crements W deduce that the evolution und€€pii.crementr Of the robotic networksS,.square (in d
dimensions) can be alternatively described as the evoluti@erCCqcmentr Of d robotic networksS, . gisk in R. The

correctness and the time complexity results now followsnfithe analysis o€Ccementr @t d = 1. |

Remark 111.4 (Analysis in higher dimensions) The results in Theorem 111.3(i) and (ii) induce lower bourafs

the time complexity of the circumcenter law in higher dimens. Indeed, we have

(i) for d € N, on the networkS,._gisks TC(Zmdzvs CCerementy) € Q(N);

(i) for d € N, on the networkS,..o, TC(7(¢)-mdzvs CCerement) € (N2 log(Ne™1)).

We have performed extensive numerical simulations for #se¢ = 2 and the networls,. gisk. We run the algorithm
starting from generic initial configurations (where, in fi@arlar, agents’ positions are not aligned) contained in a
bounded region oR2. We have consistently obtained that the time complexity dbieve Trdzvs With CCerementr
starting from these initial configurations is independeihthe number of agents. This leads us to conjecture that
initial configurations where all agents are aligned (edeivtly, thel-dimensional case) give rise to the worst possible

performance of the algorithm. In other words, we conjectha, ford > 2, TC(Zmdzvs, CCoerement) = ©(N). °

IV. DEPLOYMENT

In this section, we introduce the deployment coordinatamsktand analyze a coordination algorithm that achieves
it, providing upper and lower bounds on its time complexi&jong the section, we consider the uniform robotic
network S, p presented in Example I11.5 with parameterc R.,. We assume we are given a convex simple
polytope Q C R, with an integrable density function: Q — R~,. We assume that the initial positions of the

agents belong tg) and we intend to design a control law that keeps ther® ifor subsequent times.
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A. Deployment task

By optimal deployment on the convex simple polytaRec R? with density functiong: Q — R, we mean
the following objective: place the agents ghso that the expected square Euclidean distance from any ipoip
to one of the agents is minimized. To define this task formédtyus review some known preliminary notions; we
will require some computational geometric notions from Apgix . We consider the following network objective

function Hgepimnt: QY — R,

Haggmod V..., 2) = [ min g — o3 o(a)da, ©)
Q ?

This function and variations of it are studied in the fagillocation and resource allocation research literature;
see [24], [11]. It is convenient [12] to study a generaligatdf this function. Forr € R+, define the saturation
functionsat,: R — R by sat,(z) = z if # < r andsat,(z) = r otherwise. For € R+, define the new objective

function H,-depimnt: @~ — R by

Hr-gepimnd™, .., 2™) = /ngleip sats (lg — 217(13) ¢(q)dq 7

Note that ifr > 2 diam(Q), thenHaepimnt= H.-depimne Let {V I, ... VIN]} be the Voronoi partition of) associated

with {z[1, ... 2[M}. The partial derivative of the cost function takes the failug meaningful form (see [12])

arHr-deplmnt

ool (V.. 2Ny = 2 Mass(VI N B (!,

) - (Centroid(Vm NB(zll, 5)) — xm) , tel.

r
2

(Here, as in Appendix IMass(S) and Centroid(S) are, respectively, the mass and the centroidSof= R%.)
Clearly, the critical points of,.gepimnt are network states wheré? = Centroid(VI1 N B(z[, £)). We call such
configurationsz-centroidal Voronoi configurations. Fer> 2 diam((), they coincide with the standard centroidal
Voronoi configurations ord). Fig. 4 illustrates these notions.

Motivated by these observations, we define the followinglaapent task. Forr,e € R.(, define thee-r-

deployment task 7..,-gepimnt: @~ — Bool eSet by

true, if me — Centroid(VI N B(2l, %))H2 <eg, foralliel,
Te—r—deplmm(x) =

fal se, otherwise.

Roughly speaking/:.-depmnt is t r ue for those network configurations where each agent is suitigielose to

the centroid of an appropriate regiéfi®) N B(z[, ).
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Fig. 4. Centroidal and;-centroidal Voronoi configurations. The density functigris depicted by a contour plot. For each agénthe set

VI nB(«ll, 2) is plotted in light gray.

B. Centroid law

To achieve the-r-deployment task discussed in Example IV-A, we definecimtroid control and communication
law CCcentrg¢ This is a uniform, static, time-independent law studiedlih], [12]. Loosely speaking, the evolution

of the network under the centroid control and communicatéom can be described as follows:

[Informal description] Communication rounds take place at each natural instanitna. tAt each com-
munication round each agent performs the following tasRsit fransmits its position and receives its
neighbors’ positions; (ii) it computes the centroid of ampm@priate region (the region is the intersection
between the agent’s Voronoi cell and a closed ball centerets osition and of radiug), and (iii) it

moves toward this centroid.

Let us present this description in more formal terms. WeTset Np, £ = R? U {nul | }, and ms§l = msg,y

i € 1. We define the control function ctR? x £V — R? by
Ctl(zsmplm y) = Centroid (X(l'smplda y)) — Tsmpld,

where X (z,y) = Qﬂ?(x, %) N (ﬂp cy.p#null Hw> and H, , is the half-spacgqg € R? | ||g — z|]> <
llg — pll2}- One can show thap? is a positively-invariant set for this control law.

The following theorem on the centroid control and commutinicelaw summarizes the known results about
the asymptotic properties and the novel results on the aaxtplof this law. In characterizing complexity, we

assumeliam(Q) is independent ofV, » ande, and we do not calculate how the bounds depend.ohs for the
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circumcenter law, we provide complete time-complexityulssfor the casel = 1.

Theorem IV.1 (Time complexity of centroid law) For r € R-q and € € R+, consider the network S,...p with

initial conditions in Q. The following statements hold:

(i) for d € N, the law CCcenuq achieves the e-r-deployment task 7..,._gepimng

(") fOf d = ]. a.nd (b = 1, TC(’]—E_T-_demmnt, CCCentrd) € O(N3 log(NE_l))- L d

Proof: Fact (i) is proved in [12] fod € {1, 2}; the same proof technique can be generalized to any dinrensio
In what follows we sketch the proof of fact (ii). Far= 1, Q is a compact interval olR, say@ = [g—, q+].

We start with a brief discussion about connectivity. In thiemited Delaunay graph, two agents that are at most
at a distance from each other are neighbors if and only if there are no ofigents between them. Additionally,
we claim that, if agents and; are neighbors at time instaftthen| Centroid(X'?(¢)) — Centroid (X U1 (¢))| < 7.

To see this, assume without loss of generality tHa{¢) < zl/(¢). Let us consider the case where the agents have
neighbors on both sides (the other cases can be treatedyansaly). Letz!” (0) (respectively,x@ (¢)) denote the

position of the neighbor of agertto the left (respectively, of agentto the right). Now, we have
Centroid (X1 (£)) = i(:p[ﬁ] (0) + 2211(¢) + 2V)(0)),  Centroid(XV)(0)) = i(x[i] () + 2211(0) + 2V (0)) .

Therefore| Centroid (X1)(£)) — Centroid (XU (£))| < L (|2 (0) =211 (0)| 2|2l (£) — 2l (6) |+ U] (0) - (0)]) <
r. This implies that agents and j belong to the same connected component ofsttienited Delaunay graph at
time instant? + 1.

Next, let us consider the case th&f. p(zp) is connected. Without loss of generality, assume that tremtag
are ordered from left to right according to their identifitivat is, z[1/(0) = (z¢); < --- < 2IN(0) = (x)n. We
distinguish three cases depending on the proximity of thientest and rightmost agentisand N, respectively, to
the boundary of the environment: cagg both agents are within a distaneof 0Q; case(b) none of the two is
within a distancej of 0Q; and casédc) only one of the agents is within a distangeof Q. Here is an important
observation: from one time instant to the next one, the ndétwonfiguration can fall into any of the cases described
above. However, because of the discussion on connectiratysitions can only occur from ca$b) to either case
(a) or (c); and from caséc) to case(a). As we show below, for each of these cases, the network éeplunder

CCcentra CaN be described as a discrete-time linear dynamical syataich respects agents’ ordering.
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Let us consider casg). In this case, we have

1) = S0+ 2 (0) + 2o BP0 1) = 20 + 2P0 + 200,

a1y = i(mw*% (0)+ 2200 + 2N (), M 41) = i(w*ﬂ (0) + 2™ (0)) + %qu .

Equivalently, we can writer(¢ + 1) = A, - 2({) + b(a), Where theN x N-matrix A,y and the vectob,) are

given by
1 1
iz 0 0 ]
11 1 29-
i3 1 0
0
o 1 1 1 0
4 2 4
Aa) = v b@) =
0
1 1 1
0 i3 1
_QQ+
0 ... ... 0 1 1%

Note that the only equilibrium network configuration respecting the ordering of the agents is given by

. 1 _ .
xL]ZQ—+W(1+2(Z—1))(Q+—Q—), rel,

and note that this is g-centroidal Voronoi configuration (under the assumptiorcage(a)). We can therefore
write (z(0) — x,) = A(a)(z(¢ — 1) — x,). Now, note thatA,) = ATridy (3, 3). Theorem A.4(ii) in [1] implies
thatlim,_. o (2(¢) — z.) = 0, and that the maximum time required foe(¢) — z. ||, < [|z(0) — z.|2 (over all
initial conditionsz(0) € RY) is ©(N2loge™!). It is not obvious, but it can be verified, that the initial détion
providing the lower bound in the time complexity estimatesiindeed have the property of respecting the agents’
ordering; this fact holds for all three cas@s), (b) and(c).

The casgb) can be treated in the same way. The network evolution takestime formz (£ +1) = A,y -2(£) +

b, where theN x N-matrix A,y and the vectob,) are given by

3 1
3L 0 . 0 e
1 1 1 _Zr
i 2 1 0 .
o 1 3 3 -0
Awy = | N E
0
1 1 1
0 i3 1 )
17"
: N -
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In this case, a (non-unique) equilibrium network configimratrespecting the ordering of the agents is of the form

1. 1+ N
- —r

xLi:zr 5 , 1€1.

Note that this is a-centroidal Voronoi configuration (under the assumptiorcage(b)). We can therefore write
(z(0) — z,) = Aw)(z(£ — 1) — z.). Now, note thatA,) = ATrid} (1, 3). We computerae = %17 (zo — z.) =
+17z,. With this calculation, Theorem A.4(j) in [1] implies th&tn, ., o (z({) — 2. — zael) = 0, and that the
maximum time required fofjz(¢) — z. — xa\,el||2 < el|2(0) — 2+ — zavel||2 (over all initial conditionsz(0) € RY)
is ©(N?loge™1).

Case(c) needs to be handled differently. Without loss of generatissume that agertis within distances
of Q) and agentV is not (the other case is treated analogously). Then, theonktevolution takes now the form

r(l+1) = Ay - 2(€) + by, Where theN x N-matrix A and the vectob. are given by

1 1
Lo 0 -
29—
1 1 1
i 2 1 0 .
o i 3 3 -0
Ay = | | S e =
0
1 1 1
0 i3 1 )
L 2" ]
o ... ... 0o 1 2

Note that the only equilibrium network configuratian respecting the ordering of the agents is given by

i 1. .
xL]:q,+§(2z—1)r, 1el,

and note that this is g§-centroidal Voronoi configuration (under the assumptiorcase(c)). In order to analyze
A(c), We recast theV-dimensional discrete-time dynamical system asVadimensional one. To do this, we define

a 2N-dimensional vectoy by
Yyl =2l e, and yN+l = gIN=it1 i e, (8)

Now, one can see that the network evolution can be alteetgtidescribed in the variablgg!!, ..., yN) as a
linear dynamical system determined by th& x 2N matrix ATridQ‘N(%, %). Using analogous arguments to the
ones used before and exploiting the chain of equalitiesw8)can characterize the eigenvalues and eigenvectors of
Triday—1(§, 3. 3), and infer that, even for cage), the maximum time required fdfz(¢) — z. ||, < [|z(0) — .|

(over all initial conditionsz(0) € RY) is ©(N?loge™!).
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In summary, for all three caséa), (b) and(c), our calculations show that, in tim@(N?loge™"), the error2-

norm satisfies the contraction inequaljty(¢) — x.||, < €||z(0) — x.||2. We convert this inequality o2-norms into

I
an appropriate inequality oso-norms as follows. Note thakz(0) — 2. ||oc = max;es |217(0) — x[f]| < (g+ —q-).

For ¢ of order N?logn~1!, we have
2(6) = 2lloo < [|2(6) = ll2 < 1l|2(0) = z4]|2 < 9V N||2(0) = 2. [los < 9V N (g4 — ¢-).

This means that-r-deployment is achieved fapn/N (¢, —q_) = ¢, that s, in timeO(N?logn ') = O(N?log(Ne~1)).
Up to here we have proved that, if the graph E,..p(x¢)) is connected, the'C(7Z.,.gepimnt CCcentrd) €

O(N?log(Ne™Y)). If (I,E,.p(xo)) is not connected, note that along the network evolutionetteam only be

a finite number of time instants, at mast— 1 where a merging of two connected components occurs. Thretefo

the time complexity is at mosD(N3 log(Ne~1)). [ ]

V. CONCLUSIONS

Building on the robotic network framework proposed in thenpanion paper [1], we have formalized various
motion coordination algorithms: the move-toward-average the circumcenter laws, achieving the rendezvous task,
and the centroid law, achieving the deployment task. We lcaveputed the time complexity of these algorithms,
providing upper and lower bounds as the number of agents tenuhfinity. To obtain these complexity estimates,
we have relied on some novel analysis methods involvinglirlynamical systems defined by tridiagonal Toeplitz
and circulant matrices. These results demonstrate thellnesg of the proposed formal model.

The complexity bounds reported in this and the companiomipare of low polynomial order and are comparable
to those found in the distributed algorithms literature, esee [22], [25]. None of the algorithms has an exponential
complexity. From a practical viewpoint, what level of comxity (logarithmic, linear, polynomial) is acceptable
will depend on the specific application considered and weelghis question to future work.

The analysis presented in this paper is useful for robotievoik applications because it provides a rigorous
assessment of the performance of the above-mentionedinatioth algorithms. Given a desired task, our vision
is that the combination of coordination algorithms with thest scalability properties will enable the synthesis of
efficient cooperative strategies. Once a catalog of exampbdedination tasks and algorithms have been carefully
understood, one could envision the design of more complategfies building on this knowledge. It is also our
hope that the kind of analysis performed here will help cti@réze the complex trade-offs between computation,

communication and motion control in robotic networks.
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A number of research avenues look now promising and excitimghis paper, our analysis results essentially
consist of a time-complexity analysis of some basic algorg, but many more open algorithmic questions remain
unresolved including (i) time complexity analysis in higlitmensions; (ii) communication complexity analysis for
unidirectional and omnidirectional models of communiaati(iii) analysis of other known algorithms for flocking,
cohesion, formation, motion planning and a long etcetenal @) complexity analysis results for coordination

tasks, as opposed to for algorithms.
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APPENDIX |

BASIC GEOMETRIC NOTIONS

Here we have gathered various geometric concepts usedgtimotithe paper. Le§ C R?, d € N, be compact.
The circumcenter of S, denoted byCircum(S), is the center of the smallest-radius spher&fnenclosingS. Given

an integrable functior: S — R, themass of S is Mass(S) = [, ¢(¢)dg, and thecentroid of S is

Centroid(.5) qé(q)dq .

1
~ Mass(S) /S
A partition of S is a collection of subsets ¢f with disjoint interiors and whose union & Given a set ofV distinct

pointsP = {p;}ieq1,....ny in S, the Voronoi partition of S generated byP (with respect to the Euclidean norm) is
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the collection of set4V;(P)}icq1,..., vy defined byV;(P) = {q € S| lg—pill2 < |lg — pjll2, for all p; € P}. We
usually refer toV;(P) asV;. For a detailed treatment of Voronoi partitions we refer26][ [24].

ForI = {1,...,N} and S c R9, a proximity edge map is a map of the form: SV — 2/%I Forr € Ry,
we define ther-disk proximity edge mage, gisk: (R?)Y — 27%1 and ther-limited Delaunay proximity edge map
E,ip: (RHN — 2IXI as follows. An edgdi, j) € I x I belongs toF, gisk(71, - - -, xx) if and only if i # j and
|lzi — x]|2 <r. An edge(i, j) € I x I belongs toE,..p(x1,...,2y) if and only if i # j and

(Vi N B, 5) 0 (V; 0 Blaj,5) #0,

where{V;,...,Vy} is the Voronoi partition ofR? generated by{z1, ..., zy}. lllustrations of these concepts are

given in Fig. 5.

r-disk graph

r-lim. Delaunay graph

Fig. 5. Ther-disk andr-limited Delaunay graphs iiR2.

As proved in [12], ther-limited Delaunay graph and thedisk graph have the same connected components.
Additionally, ther-limited Delaunay graph is “computable” on thedisk graph in the following sense: any node in
the network can compute the set of its neighbors intlimited Delaunay graph if it is given the set of its neighbor
in the r-disk graph. This implies that any control and communigataw for a network with communication graph

E,..p can be implemented on a analogous network with communitafiaph F,._gis.

June 29, 2006 DRAFT



