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On synchronous robotic networks — Part I

Models, tasks and complexity

Sonia Marinez  Francesco Bullo Jorge Cest Emilio Frazzoli

Abstract

This paper proposes a formal model for a network of robotic ageatsniove and communicate. Building on
concepts from distributed computation, robotics and control theory, efimed notions of robotic network, control
and communication law, coordination task, and time and communication legityp We illustrate our model and
compute the proposed complexity measures in the example of a netwlw&atlfy connected agents on a circle that

agree upon a direction of motion and pursue their immediate neighbors.

I. INTRODUCTION

Problem motivation:The study of networked mobile systems presents new chaetiat lie at the confluence

of communication, computing, and control. In this paper wesider the problem of designing joint communication
protocols and control algorithms for groups of agents wihtmlled mobility. For such groups of agents we define
the notion of communication and control law by extendingdtassic notion of distributed algorithm in synchronous
networks. Decentralized control strategies are appedtingietworks of robots because they can be scalable and
they provide robustness to vehicle and communication rieslu

One of our key objectives is to develop a theory of time androomication complexity for motion coordination
algorithms. Hopefully, our formal model will be suitable &malyze objectively the performance of various coor-
dination algorithms. It is our contention that such a thesryequired to assess the complex trade-offs between
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2 SUBMITTED AS A REGULAR PAPER TO IEEE TRANSACTIONS ON AUTOMATIC CTROL

computation, communication and motion control or, in otkards, to establish what algorithms asealable
and practically implementable in large networks of mobildoaomous agents. The need for modern models of
computation in wireless and sensor network applicatiordissussed in the well-known report [1], [2].

Literature review: To study complexity of motion coordination, our startingrge are the standard notions of
synchronous and asynchronous netwadrkdistributed and parallel computation, e.g., see [3] avith an emphasis
on numerical methods, [4]. This established body of knog#edowever, is not applicable to the robotic network
setting because of the agents’ mobility and the ensuing ™i;maommunication topology.

An important contribution towards a network model of moliilteracting robots is introduced in [5], see also [6].
This model consists of a group of identical “distributed myrmous mobile robots” characterized as follows: no
explicit communication takes place between them, and ah déiace instant of an “activation schedule,” each
robot senses the relative position of all other robots andem@ccording to a pre-specified algorithm. A related
model is presented in [7], where as few capabilities as plesgire assumed on the agents, with the objective
of understanding the limitations of multi-agent networksbrief survey of models, algorithms, and the need for
appropriate complexity notions is presented in [8]. Regeatnotion of communication complexity for control and
communication algorithms in multi-robot systems is anatyin [9], see also [10]. A general modeling paradigm
is discussed in [11], which however does not take into acctherspecific features of robotic networks. The time
complexity of a class of coordinated motion planning praideis computed in [12]. The convergence rate and
communication overhead of two cyclic pursuit algorithm&xamined in [13].

Statement of contributionsA key contribution of this paper is a model for robotic netikgrwhich properly
takes into account some important dynamical, communicagiod computational aspects of these systems. Our
model is meaningful and tractable, it describes feasibbratpns and their costs, and it allows us to study tradeoffs
between control and communication problems. We summarnizeapproach as follows. Aobotic networkis a
group of robotic agents moving in space and endowed with canigation capabilities. The agents’ positions obey
a differential equation and the communication topology fsirzction of the agents’ relative positions. Each agent
repeatedly performs communication, computation and physnotion as described next. At predetermined time
instants, the agents exchange information along the conwation graph and update their internal state. Between
successive communication instants, the agents move aegada motion control law, computed as a function of
the agent location and of the available information gatthéhgough communication with other agents. In short,

a control and communication laor a robotic network consists of a message-generationtibmgwhat do the
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agents communicate?), a state-transition function (howhdoagents update their internal state with the received
information?), and a motion control law (how do the agents/enbetween communication rounds?). Tirae
complexityof a control and communication law (aimed at solving a giveordination task) is the minimum
number of communication rounds required by the agents t@eeehhe task. We also provide similar definitions
for mean and total communication complexity. We show that wotions of complexity satisfy a basic well-
posedness property that we refer to as “invariance undehedsilings.” To the best of our knowledge, the proposal
of studying the complexity of coordination algorithms fgmshronous robotic networks under a comprehensive
modeling framework presented here is a novel contributiont® own. For a network of locally connected agents
evolving on the circle, we define a novel agree-and-pursmraloand communication law. This example has the
advantages of being both simple to state and illustrativalatspects of the proposed framework. We prove that the
agree-and-pursue law achieves consensus on the agemeiiatir of motion and equidistance between the agents’
positions. Furthermore, we provide upper and lower boundshe time and total communication complexity to
achieve these tasks with the proposed law, and draw somecioms with leader election algorithms, see [3]. The
complexity estimates build on novel results on the convargerates of discrete-time dynamical systems defined
by tridiagonal Toeplitz and circulant matrices presentedhie appendix. The companion paper [14] builds on
this framework to establish complexity estimates for motamordination algorithms that achieve rendezvous and
deployment.

Organization: Section Il presents a general approach to the modeling aftimbetworks by formally intro-
ducing notions such as communication graph, control andnoamication law, and network evolution. Section 1lI
defines the notions of task, and of time and communicationpbexity. We also study the invariance properties of
the complexity notions under rescheduling. Section IV @es bounds on the time and communication complexity
of the agree-and-pursue law. We gather our conclusionsdtiddeV. The appendix contains the results on discrete-
time dynamical systems defined by tridiagonal Toeplitz aincutant matrices.

Notation: We letBool eSet be the se{t r ue,f al se}. We let]| v} Si denote the Cartesian product of

ie{1,..
setsSy, ..., Sy. We letR+, andR>( denote the set of strictly positive and non-negative reailmers, respectively.
The set of positive natural numbers is denotedNognd N, denotes the set of non-negative integers. Far R,
we denote by||z||> and ||z« the Euclidean and theo-norm of z, respectively (recal||z||o < [|z]l2 < Vd||Z|lo

for + € R%). We define the vector® = (0,...,0) and1 = (1,...,1) in R% For f,g: N — R, we say that

f € O(g) (respectively,f € Q(g)) if there existNy € N andk € Ry such that f(N)| < k|g(N)| for all N > Ny
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4 SUBMITTED AS A REGULAR PAPER TO IEEE TRANSACTIONS ON AUTOMATIC CTROL
(respectively,| f(N)| > k|g(N)| for all N > Ny). If f € O(g) and f € Q(g), then we use the notatiofi€ ©(g).

Il. A FORMAL MODEL FOR SYNCHRONOUS ROBOTIC NETWORKS

Here we introduce a notion of robotic network as a group ofoticbagents with the ability to move and
communicate according to a specified communication togol@gr model is inspired by the synchronous network

model in [3] and has connections with recent hybrid systerodets, e.g., see [15] and see the HIO model in [11].

A. The physical components of a robotic network

Here we introduce our basic definition of physical quargiseich as the agents and such as the ability of agents
to communicate. We begin by providing a basic model for hoesheabotic agent moves in space.cAntrol system
is a tuple(X, U, Xy, f), where

(i) X is a differentiable manifold, called the&tate space

(i) U is a compact subset @™ containing0, called theinput space
(i) Xo is a subset ofX, called theset of allowable initial states

(iv) f: X xU—->TX isaC*>-map with f(z,u) € T, X for all (x,u) € X x U.
We refer tox € X andu € U as astateand aninput of the control system, respectively. We will often consider
control-affine systems, i.e., control systems wfix, u) = fo(z) + >~ fa(x) ue. In such a case, we represeht

as the ordered family of'>°-vector fields( fo, f1,..., fm) on X.

Definition 11.1 (Network of robotic agents) A network of robotic agent®r robotic networl S is a tuple(Z, A, Ecmm)
consisting of
() I={1,...,N}; Iis called theset of unique identifiers (UIDs)
(iy A= {All};c; = {(X] Ul X1, fly},c; is a set of control systems; this set is called #e¢ of physical
agents
(i) Ecmm is a map from]'[ieIX“] to the subsets of x I; this map is called theeommunication edge map

If Al = (X, U, X, f) for all i € I, then the robotic network is calledniform. .

Remarks 1.2 (i) By convention, we let the superscrifif denote the variables and spaces which correspond to
the agent with unique identifier for instancez! € X1 andz!! € X[ denote the state and the initial state

of agentAl, respectively. We refer ta = (z!l,...,2IN) € [].., X[} as astateof the network.
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(i) The map E.mm models the topology of the communication service among tients: at a network state
z = (zlY,...,zI"), two agents at locations!’) and zl// can communicate if the pait, j) is an edge in
Eemm(zM, ..., 2N, Accordingly, we refer to(1, Eemm(z!Y, ..., z!N)) as thecommunication graplat z.
When and what agents communicate is discussed in SectionMlaBs from[],, X[ to the subsets of x I

are calledproximity edge mapand arise in wireless networks and computational geometgy, see [16]s

To make things concrete, let us present an interesting egaofpobotic network. LeS! be the unit circle, and
measure positions ofi' counterclockwise from the positive horizontal axis. Row € S*, we letdist(z,y) =
min{distc (z, y), distcc (z, y) }. Here,distc (z,y) = (z — y) (mod2r) is the clockwise distance, that is, the path
length fromz to y traveling clockwise. Similarlydistcc (x,y) = (y — ) (mod2r) is the counterclockwise distance.

Here z (mod2r) is the remainder of the division af by 2.

Example 11.3 (Locally-connected first-order agents on the tcle) For » € R+, consider the uniform robotic
network Sgircle = (I, A, E,-gisk) composed of identical agents of the fo@®', R, S, (0,e)). Heree is the vector
field on S! describing unit-speed counterclockwise rotation. We @efire r-disk proximity edge mag&, . gisk on

the circle by setting, j) € E,.qisk(f™, ..., 0N if and only if i # j and
dist (011, 0V < r |

wheredist(z, y) is the geodesic distance between the two paintg on the circle. .

B. Control and communication laws for robotic networks

Here we present a discrete-time communication, contintiows motion model for the evolution of a robotic
network. In our model, the robotic agents evolve in the ptalsiomain in continuous-time and have the ability to

exchange information (position and/or dynamic variabtes} affect their motion at discrete-time instants.

Definition 11.4 (Control and communication law) Let S be a robotic network. Asynchronous, dynamic, feed-
back) control and communication la#C for S consists of the sets:
() T = {te}een, C R>p, an increasing sequence of time instants with no accunmigtoints, calledcommu-
nication schedule
(i) L, a set containing theul | element, called theommunication alphabetlements of are calledmessages

@iy W, ie I, sets of values of somegic variablesw!!, i € I;
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(v) W c Wi, ie I, subsets ofallowable initial valuesor the logic variables;
and of the maps:
(i) msd?: T x XU x Wil x I — £, i € I, called message-generation functigns
(i) stfll: T x Wl x £N — wlil ;e I, called state-transition functions
i) ot Rug x X0 5 XU x Wil 5 £N -yl i € I, called control functions
If S is uniform and ifWll = W, msdl = msg stf! = stf, cti! = ctl, for all i € I, thenCC is said to beuniform

and is described by a tuplgV, {I/V(g"’]}ieb msg stf, ctl). .

We will sometimes refer to a control and communication lawaasotion coordination algorithmRoughly
speaking, the rationale behind Definition 11.4 is the foliog for all i € I, to theith physical agent corresponds a
logic process, labeled] that performs the following actions. First, at each timgtamtt, € T, theith logic process
sends to each of its neighbors in the communication graphssage (possibly theul | message) computed by
applying the message-generation function to the currelniesaof [/ and wlil. After a negligible period of time
(therefore, still at time instartt, € T), theith logic process updates the value of its logic varialés by applying
the state-transition function to the current value.f, and to the messages received aBetween communication
instants, i.e., fort € [ts,ts+1), the motion of theith agent is determined by applying the control function te th

current value oftl, the value ofz[? at ¢,, and the current value afl. This idea is formalized as follows.

Definition 11.5 (Evolution of a robotic network) Let S be a robotic network andC be a control and commu-

nication law for S. The evolution of (S,CC) from initial conditionng] € X, and wg] ewll iel is the

collection of curvesel!: [ty, c0) — X andwl?: T — Wl i e I, satisfying
#li(t) = f(fm (1), ctil (¢, 1" (t)axm(UJT)»w[i](UJT),ym(UJT))),
where |t|; = max{t, € T | t, < t}, and
wll(t) = st (¢, wl(t01), 7 (10))

with 2l (tg) = zl!, andwl(t_,) = wl, i € I. In the previous equationg[!: T — £V (describing the messages

received by agent) has componentggi] (te), for j € I, given by

il dej] (tg, xm (tz), U)[j] (t[_l), i), if (L,J) € Ecmm((ﬂm (tz), Ce ,l'[N] (tg)),
ij (te) = *

nul |, otherwise
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With slight abuse of notation, we let— (z(¢), w(t)) denote the curves!! andwl’, fori e {1,...,N}.

Remark 11.6 (Properties of control and communication laws) A control and communication law(C is:

(i) time-independenf all message-generation, state-transition and contnattions are time-independent; in this
caseCC can be described by maps of the form fisgX il x Wil x 1 — £, st : wlil x £¥ — wli and
ctll: XU 5 XU 5 Wil x £N — Ul for i e I;

(i) staticif W is a singleton for alf € I; in this case’C can be described by a tupl&, £, {msd }.c;, {ctl}ic,
with msd?: T x X0 x I — £, and ctl’: Rso x X1 x X0 5 £N — Ul fori e I;

(iii) data-sampledf the control functions ctil, i € 1, have the following property: given a time a logic state
wll € Wi, an array of messageg’ € £V, a current statel’), and a state at last sample tirmglmp,d, the
control input ct{t, 27, zlL_ w0 ) is independent ofl7. In this case the control functions &C can be

smpld

described by maps of the form &t R~ x X x wlil x £N — yld, fori e 1. .

Remark 11.7 (Idealized aspects of communication model)et us discuss two limitations regarding the proposed
communication model. We refer & as asynchronougontrol and communication law because the communications
between all agents takes always place at the same time fageatits. We do not discuss here the important setting
of asynchronous laws (see however the discussion in Segjion

The setl is used to exchange information between two robotic agéimsmessageul | indicates no commu-
nication. We assume that the messages in the communicdpbabet,L allow us to encode logical expressions
such astrue andf al se, integers, and real numbers. A realistic assumptionCowould be to adopt a finite-
precision representation for integers and real numbersemtessages, e.gC,= {nul | ,0,...,2*'} would allow
messages that can be encoded using up bits. Instead, in what follows, we neglect any inaccuraclas to
guantization (see however Section V); in other words, wéimiplicitly assume thab is sufficiently large. In many
uniform control and communication laws, the messagesdhterged among the network agents are (quantized
representations of) the agents’ states and logic statesvilValentify the corresponding communication alphabet
with £ = (X x W) U {nul | }; the message generation function I{gg, =, w, j) = (z,w) is referred to as the

standard message-generation function °

Remark 11.8 (Groups of robotic agents with relative-position sensing)In the model proposed in [5], robots

are referred to as “anonymous” and “oblivious” in preciséiye same way in which we defined control and
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communication laws to be uniform and static, respectivély. compared with our notion of robotic network,
the model in [5] is more general in that the robots’ activasicschedules do not necessarily coincide (i.e., this
model is asynchronous), and at the same time it is less deimetthat (1) robots cannot communicate any
information other than their respective positions, and €2th robot observes every other robot’s position (i.e.,
the complete communication graph is adopted; this lindtats not present for example in [6]). Note that a control
and communication law, as in our definition, can be implem@rdn a synchronous model [5] if the law (1) is
static and uniform, (2) only relies on communicating therdagepositions (e.g., the message-generation function is
the standard one), and (3) entails a control function thit depends on relative positions (as opposed to absolute

positions). .

C. The agree-and-pursue control and communication law

Here we present an example of a dynamic control and commntioridaw with the aim of illustrating the proposed
framework. The following coordination law is related to dea election algorithms as studied in the distributed
algorithms literature, e.g., see [3] (more will be said abthis analogy in Remark 1V.3), and to cyclic pursuit
algorithms as studied in the control literature, e.g., sEf,[[13]. Despite the apparent simplicity, this example
is remarkable in that it combines a leader election taskH@lbgic variables) with a uniform agent deployment
task (in the state variables), arguably two of the most bsiks in distributed algorithms and cooperative control,
respectively. Another advantage of the agree-and-puimued that its correctness, performance and cost can be
fully characterized. We will come back to this later in SentiV.

From Example 1.3, we consider the uniform netwask of locally-connected first-order agents $1. We
now define the agree-and-pursue law, denote@®yy.pursuic @s the uniform, time-independent and data-sampled

law loosely described as follows:

[Informal description] The logic variables arelr ct n (the agent’s direction of motion) taking values
in {c,cc} and pri or (the agent’s priority) taking values if. At each communication round, each
agent transmits its position and its logic variables ang #etlogic variables to those of the incoming
message with the largest valuemfi or . (Therefore, the logic state with the largesti or will propagate
throughout the network.) Between communication roundsh ement moves in the counterclockwise or
clockwise direction depending on whether its logic vagadht ct n is cc or c. For kpop €]0, %[, each

agent movesipop times the distance to the immediately next neighbor in theseh direction, or, if no
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neighbors are detecteflyop times the communication range

Next, we define the law formally. Each agent has logic vaeisbl = (w1, w2), wherew; = drctn € {cc,c}, with
arbitrary initial value, andv, = pri or € I, with initial value set equal to the agent’s identifiein other words,
we definel = {cc,c} x I, and we seW(Ei] = {cc,c} x{i}. Each agent € I operates with the standard message-
generation function, i.e., we s& = (S' x W) U {nul | } and ms§! = msg,,, where msgy(0,w,j) = (0, w).

Given a logic statev € W and an array of messagesc £V, the state-transition function is defined by
stf(w,y) = max{wreyg € W | Ireva € S* S.t. (Brevd, Wreva) = v, for somej € I},

where we define an ordering in the logic 9ét by saying that(drct ny,prior;) > (drctng,prior,) if
prior; > prior,. Forkpop € Rso, given a logic statev € W, an array of messages< £V, and a state at

last sample timésmpig, the control function is

min({r} U {distec (fsmpic reva) | for all non-null (freva, wreva) € ), i dretn =ce,
ctl(Osmpigs W, y) = Kprop

— min({r} U {distc (Osmpid, freva) | for all non-null (6reva, wrevd) € y}), if dretn=c.
An implementation of this control and communication law liwn in Figure 1. Along the evolution, all agents

agree upon a common direction of motion and, after suitabie,tthey reach a uniform distribution.

Fig. 1. The agree-and-pursue control and communication laBeiction 1I-C with N = 45, r = 27/40, and kprop = 7/16. Disks and
circles correspond to agents moving counterclockwise anckulise, respectively. The initial positions and the alitlirections of motion are

randomly generated. The five pictures depict the networle gtatimes0, 9, 24, 100, 800.

IIl. COORDINATION TASKS AND COMPLEXITY MEASURES

In this section we introduce concepts and tools useful tdyaeaa communication and control law. We address
the following questions: What is a coordination task for aatobnetwork? When does a control and communication

law achieve a task? And with what time and communication dexiiy?
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A. Coordination tasks

Our first analysis step is to characterize the correctnegsepties of a communication and control law. We do

so by defining the notion of task and of task achievement bybatio network.

Definition 111.1 (Coordination task) LetS be a robotic network and letV be a set.

(i) A coordination taskor S is a map7: [[;.; X! x WN — Bool eSet .
(i) If W = 0, then the coordination task is said to lstatic and is described by a map: HZ.EIXM —

Bool eSet .
Additionally, letCC a control and communication law fas.

(i) The lawCC is compatiblewith the task7: HieIXm x WY — Bool eSet if its logic variables take values
in W, that is, if Wl =W, for all i € I.

(i) The lawCC achievesthe task7 if it is compatible with it and if, for all initial conditions! € X[ and
wg} € WOM, i € I, the corresponding network evolutign— (x(¢),w(t)) has the property that there exists

T € R-q such thatZ{z(t), w(t)) =true for all ¢t > T. .

Remark 111.2 (Temporal logic) Loosely speaking, achieving a task means obtaining andtaiaing a specified
pattern in the position of the agents or of their logic vaeab In other words, the task is achievedaif some
time andfor all subsequent timethe predicate evaluates to true along system trajectdtiesspossible to consider
more general tasks based on more expressive predicatesjeatdries. Such predicates can be defined through
various forms of temporal and propositional logic, e.ge $&8]. In particular, (linear) temporal logic contains
certain constructs that allow reasoning in terms of time iarfience appropriate for robotic applications, as argued
for example in [19]. Network tasks such as periodically tingj a desired set of configurations could easily be

encoded with such temporal logic statements. °

Example 111.3 (Agreement and equidistance tasks)From Example 11.3, consider the uniform netwafkce Of
locally-connected first-order agents $4. From Example II-C, recall the agree-and-pursue contrdl @mmuni-

cation 1awCCagrpursuitWith logic variables taking values i’ = {cc,c} x I. There are two tasks of interest. First,
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we define theagreement tasky,ctn: (S1)Y x W& — Bool eSet by

true, if dretnlt!=...=drctnl™,
Tdrctn(oaw) =
fal se, otherwise
whered = (A1, ... 0N, w = (w, ..., w™), andw!? = (drct nl¥ prior ), for i € I. Furthermore, for

e € R50, we define the statiequidistance tasKeqdstne (SH)N — Bool eSet by

true, if |minj7gi diste (17, 9U1) — min;-; distcc(H[i],Gm)} <e, foralliel,
Te—equtm{e) =
fal se, otherwise

In other words,7;.eqastnciS true when, for every agent, the clockwise distance to theest clockwise neighbor

and the counterclockwise distance to the closest countkwise neighbor are approximately equal. .

B. Complexity notions for control and communication lawsl &r coordination tasks

We are finally ready to define the key notions of time and comoation complexity. These notions describe
the cost that a certain control and communication law ingthide completing a certain coordination task. We also
define the complexity of a task to be the infimum of the costsiiired by all laws that achieve that task.

First, we define the time complexity of an achievable taskhasnhinimum number of communication rounds

needed by the agents to achieve the task

Definition 111.4 (Time complexity) LetS be a robotic network and lef be a coordination task fo§. LetCC be

a control and communication law fa$ compatible with7.

() The(worst-case) time complexity to achie@ewith CC from (zo,wo) € [];¢; X([f] X [Lier Wéi] is

TC(7,CC, xo,wp) = inf {£ | T(x(ty),w(tr)) =true, forall k > ¢},

wheret — (z(t),w(t)) is the evolution of S,CC) from the initial condition(xg, wy).

(ii) The (worst-case) time complexity to achieZewith CC is

TC(,T’ CC) = sup {TC(Z CCaanwO) | (‘TOawO) € ]:[X([)l] X HW(EZ]} . °

el i€l
The time complexity of a task can be also defined by takingrifimum among all compatible laws that achieve it.

Next, we define the notions of mean and total communicationptexities for an algorithm. As usual, consider

a networkS and a control and communication la@¢. With these data we can discuss the cost of realizing one
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12 SUBMITTED AS A REGULAR PAPER TO IEEE TRANSACTIONS ON AUTOMATIC CTROL

communication round. At time instants T, each agent generates a certain number of messagg&sdiestined to
neighboring agents as defined by the communication edge Imdipate the set of all non-null messages generated

during one communication round with
M(t,x,w) = {(i, 5) € Eemm(x) | msg’ (¢, 2l wl, j) # nul 1},

To compute the cost of delivering all such messages to tleadied recipient, we introduce the following function.

Definition 111.5 (One-round cost) A functionC,,4: 2! — R~ is a one-round cost functioif C,,4(?) = 0, and
S1 C 8o C IxIimpliesCq(S1) < Cihg(S2). A one-round cost functiof,, 4 is additiveif, for all S;,5, C I x I,

S1 NSy = 0 Implles Cmd(Sl U SQ) = Cmd(Sl) + Crnd(S2). °

More specific detail about the communication cost dependsssarily on the type of communication service (e.g.,
unidirectional versus omnidirectional) available betwdbhe agents. We postpone our discussion about specific

functionsC,,4 to the next subsection.

Definition 111.6 (Communication complexity) Let S be a robotic network and lefC be a control and commu-
nication law that achieves the task and letC, 4 be a one-round communication cost function.
(i) The (worst-case) mean communication complexatyd the (worst-case) total communication complexity

achieveT with CC from (g, wo) € [T,c; X5? x [1,e, W5 are, respectively,

i€l
A—1
1
MCC(T, CC, o, wo) = 5 > Crag o M(te, z(te), w(te)),
£=0
A—1
TCC(T,CC, 20, wp) = »_ Cpng o M(te, 2(te), w(tr)),
£=0

where A\ = TC(CC, T, zp,wo) and t — (x(¢), w(t)) is the evolution of(S,CC) from the initial condition
(20, wp). (Here MCC is defined only forxq, wq) with the property thatZ{xg,wp) = f al se.)

(i) The (worst-case) mean communication complexatyd the(worst-case) total communication complexity
achieveT with CC are the supremum of MCC(7,CC, xo,wo) | (20, wo) € [Lic; X' x [T,y Wi} and

{TCC(T,CC, z0,wo) | (w0, wo) € [L;c; X([f] X [Licr Wom}, respectively. °

Note that by (worst-case) mean communication complexitymesan to consider the worst-case over all initial

conditions and mean over the time required to achieve tHe tas
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Remark 111.7 (Infinite-horizon mean communication complexity) The mean communication complexityCC
measures the average cost of the communication roundsredqiai achieve a task over a finite time horizon; a
similar statement holds for the total communication comipleT'CC. One might be interested in a notion of mean
communication complexity required to maintain true thektfs all times. Accordingly, the infinite-horizon mean

communication complexity ofC from initial conditions(z, wg) is

A

1

IH-MCC(CC, xo, wo) = Jim < D Crng 0 M(tg, 2(te), wite)) -
=0

Note that a similar notion is presented in [9] for a differenbotic network model. °

C. Communication costs in unidirectional and omnidiregibwireless channels

Here, we discuss some modeling aspects of the one-round goitation cost function described in Defini-
tion 111.5. Broadly speaking, it is very difficult to encomgmwith a single abstract model the cost of all possible
communication technologies. lmidirectionalmodels of communication (e.g., wireless networks with iraittional
antennas, communication based on TCP-IP protocols) messag sent in a point-to-point-wise fashion. Instead,
in omnidirectional models of communication (e.g., wireless networks equippét omnidirectional antennas),
a single transmission made by a node can be heard by sevhml mbdes simultaneously. Motivated by these

considerations, the rest of this paper relies on the foligwsimplified models:

(i) For a unidirectional communication modél, (M) is proportional to the number messageshify that is,
Cng(M) = ¢g-cardinality (M), wherecy € R+ is the cost of sending a single message. This one-round cost
function is additive. This number is trivially bounded byite the number of edges of the complete graph,
which is N(N —1). Therefore, for unidirectional models of communicatio maveMCCy,iqi. (7) € O(N?).

(i) For an omnidirectional communication modél,4(M) is proportional to the number of turns employed
to complete a communication round without interferencewben the agents (this choice is justified in
Remark 111.8 below). This number is trivially upper boundeyl N. Therefore, for omnidirectional models of

communication, we hav®ICComnigir(7) € O(N).

Remark 111.8 (Omnidirectional wireless communication) Networking protocols for omnidirectional wireless net-
works rely on a many nested layers to handle, for example jarectess, power control, congestion control, and
routing, see for instance [2] and references therein.. kggrs and the non-trivial interactions among them make it

difficult to assess communication costs of individual mgesaFor example, the Medium Access Control problem
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14 SUBMITTED AS A REGULAR PAPER TO IEEE TRANSACTIONS ON AUTOMATIC CTROL

consists of determining a minimum number of broadcastingstuequired for all agents to communicate their
messages without interference. A schematic approach s theoblems geared towards our model is as follows:

first, from the communication grap{l, F'), one constructs theeighbor-inducedyraph (I, Ex) by
(i,j) € Exr ifand only if (i,j) € Eor (i, k), (j,k) € E, for somek € I.

In the new graph(1, E,/), the set of neighbors of the agents composed by its neighbors in the graph E),
together with their respective neighbors. As a second step,has to compute thehromatic numbenof the graph,

i.e., the minimum number of colorg Exr) needed to color the agents in such a way that there are no fgloboging
agents with the same color (Theorem 5.2.4 in [20] assertsiftteaconnected graph is neither complete, nor an
odd cycle, theny(Ey ) is less than or equal to the maximum valency of the graph).eQhe chromatic number
has been determined, broadcasting turns can be establishedling to an ordered sequence of the agents’ colors.

This approach provides a basic justification for our choit€ g, for omnidirectional communication modelss

D. Rescheduling of control and communication laws for s agents

In this section, we discuss the invariance properties ohthteons of time and communication complexity under
the reschedulingof a control and communication law. The idea behind resdimaglis to “spread” the execution of
the law over time without affecting the trajectories ddsed by the robotic agents. Our objective is to formalize
this idea and to examine the effect on the notions of comtylériroduced earlier. For simplicity we consider the
setting of static laws; similar results can be obtained Ifier general setting.

Let S = (I, A, Ecmm) be a robotic network where each physical agent is a driftbesdrol system. LeCC =
(No, £, {msgd? }ser, {ctl;c ;) be a static control and communication law. Next, we define \& centrol and
communication law by modifyin@C; to do so we introduce some notation. Lete N, with s < N, and let
Pr={ly,...,Is_1} be ans-partition of I, that is, I, ..., I,_; C I are disjoint and nonempty ant= U‘;;Blk.

For i € I, define the message-generation functions%sg\lo x Xl x T — £ by
msdli]l(tlvxaj) = msdi](tl_f/sjamvj)v (1)

if ¢ € I, andk = ¢(mods), and ms&}} (te,z,7) = nul | otherwise. According to this message-generation fungction
only the agents with unique identifier i3 will send messages at tinie, with ¢ € {k+ as}qcn,. Equivalently, this

can be stated as follows: according to (1), the messagemalligsent at the time instarit are now rescheduled

DRAFT June 25, 2006



MARTINEZ, BULLO, CORTES AND FRAZZOLI: MODELS, TASKS AND COMPLEXITY NOTIONS 15

to be sent at the time instantg ;) 11, . .., tp), WhereF': Ng — Ny is defined byF'(¢) = s(¢+1) — 1. Figure 2

illustrates this idea.

tR(0)—s+1 1730 tr@)+1

Fig. 2. Under the rescheduling, the messages that are séd #ine instant, under the control and communication |&€ are rescheduled

to be sent over the time instatg gy _s41,- - -, tr(e) under the control and communication |&€ ., p, ).

Fori € I, define the control functions €tl: R>q x X1 x XUl x £N — gl py

i tp—-1(p —tp-1(p i
Ctl'[P]I (t,x,xsmmd, y) = a (tlii — tj © Ctl[] (hf(t)a T, Tsmplds y)a (2)
if t € [ts,ter1] @and? = —1(mods) and ct[,i]I (t,z, zsmpisy y) = O otherwise. HereF'~!: Ny — Ny is the inverse

of F, defined byF~!(¢) = &2 — 1, and for¢ = —1(mods), the functionhy: [t;,to11] — [tp-1(e), tr-1(0)41) IS
the unique linear map between the two time intervals. Rgugpkaking, the control law rﬁ;ﬁ makes the agent
i wait for the time intervalgt,, toy1], with ¢ € {as — 1},¢n, t0 execute any motion. Accordingly, the evolution
of the robotic network under the original la@C during the time intervalt,, t,41] now takes place when all the
corresponding messages have been transmitted, i.e., tlerigne intervalt (), t 7(¢)+1]. The following definition

summarizes this construction.

Definition 111.9 (Rescheduling of control and communication laws) Let S = (I, A, Ecmm) be a robotic network
with driftless physical agents, and 16€ = (N, £, {msd? };c;, {ctl },c;) be a static control and communication
law. Lets € N, with s < N, and let?; be ans-partition of /. The control and communication laéC , p,) =

(No, L, {msd,i]l},»ef, {ctlgﬂl}ig) defined by equationgl) and (2) is called aP;-rescheduling of’C. .
The following result shows that the total communication ptewity of CC remains invariant under rescheduling.

Proposition 111.10 (Complexity of rescheduled laws) With the assumptions of Definition I11.9, f&t [],_, X[ —

Bool eSet be a coordination task fo6. Then, for allzg € [];; X([f],

TC(’T, CC(S77)I)7IO) =S TC(’T, CC, IO) .
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Moreover, ifC,,4 is additive, then, for alkeg € [, X([f]

1
MCC(’T, CC(S77>I),$0) = g . MCC(/T, CC,I()) s

and, thereforeTCC(7,CC , p,), vo) = TCC(7,CC, x0), i.€., the total communication complexitydf is invariant

under rescheduling. °

Proof: Lett+— z(t) andt — Z(t) denote the network evolutions starting fram < [ "I undercc and

zGI

CCs,p,), respectively. From the definition of rescheduling, one werify that, for allk € N,

Al F(k)—-1
{I?[ ](tF(k'—l)+1)7 fort e Ue (F) k— 1)+1[t57tZ+1] )

ll(t) = (3)

2l (hpy (1)), fort € [trpm), tr(k)+1] -

By definition of TC(7,CC, x¢), we haveT(xz(tx)) = true, forall k > TC(7,CC, xo), andZ(z(trc(7.ccm0)-1)) =
fal se. Let us rewrite these equalities in terms of the trajectoaeCC , »,). From equation (3), one can write

2l (ty) = 2 (hpuy (tray)) = 2 (tppy), for all i € T andk € No. Therefore, we have
T(&(tp))) = T(x(tx)) =true, for all F(k) > F(TC(7,CC,x)),
T(E(tp(raee.mo)-1)) = Ta(tre(ree z)-1)) = fal se,

where we have used the rescheduled message-generatigioriunc(1). Now, note that by equation (3)1(t,) =

H(tF(LE/sj 1 +1) for all £ € Ny and alli € I. Therefore,7(z (tF(TC(T,CC’IO),l)Jrl)) = T(j(tF(TC(T,CC,xo))))

and we can rewrite the previous identities as
T(z(ty)) =true, forallk > F(TC(7,CC,xzp) —1)+1,
T(#(tp(re(T.cc,z0)-1))) = fal se,

which imply that TC(7,CC s p,, z0) = F(TC(T,CC,x¢) — 1) + 1 = s TC(Z,CC, o). As for the mean commu-

nication complexity, additivity ofC,,4 implies

Crna 0 M(te,z(te)) = Crngo M(tpp)—st1, T(tpe)—st1)) + -+ + Crng 0 M(tr(e), T(tpr))) ,

where we have usefl(¢{ — 1) + 1 = F(¢) — s + 1. We conclude the proof by computing

TC(T,CC o p,)w0) 1 F(TC(T,CC,x0)—1)
Z Cing © M(te, Z(te)) = Z Crna © M(te, 2(tr))
£=0 £=0
TC(T,CCoz0)—1  F(£) TC(T,CC o) —1
= Z Z Cina © M(tk, T(tx)) = Z Cina © M(te, z(te)) -
=0 k=F(£)—s+1 =0

DRAFT June 25, 2006



MARTINEZ, BULLO, CORTES AND FRAZZOLI: MODELS, TASKS AND COMPLEXITY NOTIONS 17

Remark 111.11 (Appropriate complexity notions for driftle ss agents)Given the results in the previous theorem,
one should be careful in choosing what notion of commuracatiomplexity to evaluate control and communication
laws. For driftless physical agents, rather thanrtfeancommunication complexiti/ICC, one should really consider
the total communication complexity'CC, since the latter is invariant with respect to reschedulMgte that the
notion of infinite-horizon mean communication complexity-MCC defined in Remark 1Il.7 satisfies the same

relationship asVICC, that is, IH-MCC(CC (s p,, t0) = + IH-MCC(CC, z0). .

IV. AGREEMENT ON DIRECTION OF MOTION AND EQUIDISTANCE

From Examples 11.3, 1I-C and 111.3, recall the definition afitorm networkSgie Of locally-connected first-order
agents irS', the agree-and-pursue control and communicationd8yyr-pursuic and the two coordination taskg ¢ n

and7..eqastne The following result characterizes the complexity to aghithese coordination tasks Wil agr-pursuit

Theorem IV.1 (Time complexity of agree-and-pursue law)For kpop €]0, %[, r €]0,2n], « = Nr — 27 and
e €]0, 1], the networkScicie, the 1awWCCagrpursuic @nd the taskg, ¢t n and Zz_eqdsinctogether satisfy:

(|) the bound’TC(’Zarctn7CCagr_pursuia E @(7“_1);

(i) if > 0, the upper bound'C(7:-eqdstne CCagr-pursui) € O(N?log(Ne~!) + Nloga~!) and the lower bound

TC(7z-eqdstne CCagr-pursui) € LUN?log(e71)). If a < 0, thenCCagr-pursuitdoes not achieve:.eqasincin general.

(These estimates are to be understoodvas+ +oc, € — 0%, r — 07T, and for any possible limit of = Nr —27.)

Proof: In the following four STEPSwe prove the four boundSTEP 1:We start by proving the upper bound
in (i). We reason by induction on the number of agentsf N = 1, the result is trivially true. Assume then that the
result is true forV —1 and let us prove it folV. Without loss of generality, assurde ct nlV1(0) = ¢, and thatZg, ¢;
is f al se at time0 (otherwise, we have finished). Therefore, at least one agenbving counterclockwise at time
0, and we can defing = max{i € I | dr ct nl}(0) = cc}. Definet, = inf({¢ € Ny | dr ct n[¥l(¢) = c}U{+00}).

In what follows we provide an upper bound on For £ < t;, define

j () = argmin{distc (01 (¢), 01 (¢)) | prior (¢) = N, i e I}.
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In other words, for all instants of time when agénis moving counterclockwise, the agefit) haspri or equal

to N, is moving clockwise, and is the agent closest to agenith these two properties. Clearly,
o > diste (1V1(0), 0171 (0)) = distc (Y ©1(0), 61 (0)).
Additionally, for ¢ < t;, — 1, we claim that
distc (AU (2), UEADI (0 1)) > Kpropr

This happens because either (1) there is no agent cloclakisad ofgl7(9)](¢) within clockwise distance and,
therefore, the claim is obvious, or (2) there are such agémtsase (2), letn denote the agent whose clockwise

distance to agent(¢) is maximal within the set of agents with clockwise distancieom 01791 (¢). Then,
diste (091 (), 00D (¢ 4 1)) = diste (09O (2), 6™ (¢ + 1))
= diste (VD) (), 0 (£)) + diste (0™ (2), 0™ (¢ + 1))
> diste (091(€), 01 (€)) + kprop(r — diste (07 (0), 8771 (¢)))
= kpropr” + (1 — kprop) distc (991 (£),00™ (0)) > kpropr,
where the first inequality follows from the fact that at timi¢here can be no agent whose clockwise distance to

agentm is less than(r — distc (9V1(¢), 8"1(¢))). In summary, either agerit changes direction of motion or at

each instant of time its distance to the closest agent piithor equal toN decreases b¥popr. This implies

2
tk S T .
kpfop

Now, we distinguish two cases: (&)= N — 1, and (b)k < N — 1. In case (a), aftety_; < ﬁr—l steps, the

agentN — 1 moves in the clockwise direction and hasi or [V =1l (

tn—1) = N. In the remainder of the evolution,
the messag@ri or = N travels faster throughout the network composed\ofigents than if only agents with
identities in{1,..., N—1} were present. Therefore, by the induction hypothéB(Zgr ct n, CCagr-pursu) € O(r™1).
In case (b), the message i or = N travels faster throughout the network composedVofagents than if only
agents with identities i{1,..., N — 2} U {N} were present. Again by the induction hypothesis, we cormclud
TC(Z4r ctny CCagr-pursui) € O(r71).

STEP 2:We now prove the lower bound in (i). # > T, then% < % and the upper bound read$>(Zyr ct n, CCagr-pursuiy €

O(1). Obviously, the time complexity of any evolution with antial configuration wherelr ct nl?l(0) = cc for

ie{l,...,N=1},drct nfN(0) = c andE,4isk(011(0), . . ., 61V (0)) is the complete graph, is lower boundediby
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Therefore, TC(Zgr ct n, CCagr-pursuiy € §2(1). Sincer > m, we concludeT' C(Zgr ¢t n, CCagr-pursui) € O(r~1). Assume
thenr < 7. Consider an initial configuration wheds ct n[/(0) = cc for i € {1,..., N — 1}, drct ni¥(0) = c,

and the agents are placed as depicted in Figure 3. Note thatithlacement of each agent is upper bounded by

Fig. 3.  Initial condition for the lower bound foffC(Zgrctn,CCagrpursu, With 0 < distc (OIN=1(0),0V1(0)) — r» < ¢ and

distc (0111(0), 01N —11(0)) < r — ¢, for some fixeds > 0.

kpropr < 5. Therefore, the number of time steps that takes agetot receive the messag® i or = N is lower
bounded by| 2= — 2|. We conclude€TC(Z; ct n, CCagr-pursuip € 2(r™1).

STEP 3:We now prove the upper bound in (ii). We assume that;, has been achieved (so that all agents are
moving clockwise), and we first prove a fact regarding cotimiéz At time ¢ € Ny, let H(¢) be the union of all

the empty “circular segments” of length at leasthat is, let

H(t)={z eS| min distc (z, 01 (0)) + mei?distcc(x,o[ﬂ 0) >r}.
A J

In other words,H (¢) does not contain any point between two agents separated Isyamak less than, and each
connected component df (¢) has length at least. Let ny(¢) be the number of connected componentdf¥),

if H(¢) is empty, then we take the convention that(¢) = 0. Clearly,ng (¢) < N. We claim that, ifng (¢) > 0,
thent — ny (£ +t) is non-increasing. Led(¢) < r be the distance between any two consecutive agents at’time

Because both agents move in the same direction, a simplelatdn shows that
d(0 +1) < d(£) + Fprop(r — d(£)) = (1 = kprop)d(£) + kprogr < (1 = Kprop) + kprops = -

This means that the two agents remain within distan@nd, therefore connected, at the following time instant.
Because the number of connected componentB, @b, ... 0N]) does not increase, it follows that the number
of connected components &f cannot increase. Next we claim thatyif; (¢) > 0, then there exists > ¢ such that
ny(t) < ng(€). By contradiction, assumey (¢) = ny(t) for all t > ¢. Without loss of generality, lef1, ..., m}

be a set of agents with the properties thatcc (67)(¢),00F1(¢)) < r, fori € {1,...,m}, thatolt)(¢) andol™(¢)
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belong to the boundary aoff (¢), and that there is no other set with the same properties amd agents. (Note

that this implies that the agents...,m are in counterclockwise order.) One can show thattfor/,

oM (t 4 1) = 01 (1) — Kpropr,

Ol (t 4 1) = 01 (1) — Epropdiste (011 (1), 081 (2)), i€ {2,...,m}.

If we defined(t) = (distec (01(2), 02(2)), ..., distec (9™~ U(2),0m)(2))) € Ry, then the previous equations

can be rewritten as
d(t 4+ 1) = Trid,,—1 (kprop, 1 — kprop: 0) d(t) + 7[kprop, 0, -+, 0]%,

where the linear maga, b, ¢) — Trid,,_1(a,b,c) € R(m=Dx(m=1) is defined in Appendix A. This is a discrete-
time affine time-invariant dynamical system with unique igtum point »(1,...,1). By Theorem A.3(ii) in
Appendix A, forn €]0, 1], the solutiont — d(t) to this system reaches a ball of radiusentered at the equilibrium
point in time O(m logm + logn~!). (Here we used the fact that the initial condition of thisteys is bounded.)
In turn, this implies that — > d;(t) is larger than(m — 1)(r — n) in time O(mlogm + logn~'). We are
now ready to find the contradiction and show that(¢) cannot remain equal tag (¢) for all time ¢. After time

O(mlogm +logn~t) = O(Nlog N +logn~1), we have:

ng (£)
21 > np(Or+ Y (r—n)(m; —1) = np()r + (N —ng(0)(r —n) = nu(O)n+ N(r —n).
j=1
Herem,,...,m,, ) are the number of agents in each isolated group, and eaclec@dncomponent off (¢) has

length at least. Now, taken = 72 — 2 and the contradiction follows from

%l
2r > ng(@)n+ Nr— Nn=ng(l)n+ Nr+ 27 — Nr =ng({)n + 2r.

In summary this shows that, in tim@(N log N + logn~1) = O(Nlog N + loga~!), the number of connected
components off will decrease by one. Therefore, in tintg N2 log N + N log a~!) the setH will become empty.

At that time, the resulting network will obey the discreite¢ linear time-invariant dynamical system:
d(t + 1) = Circy (Kprops 1 — Kprop, 0) d(t). 4

Hered(t) = (distec(01(¢),0121(2)),. .., distec (0 (¢), 01N+ (1)) € RY,, with the conventioV+1 = glil,
By Theorem A.3(iii) in Appendix A, in timeO(N2 log a—l), the error2-norm satisfies the contraction inequality

ld(£) — d*||2 < e[|d(0) — d.||2, for d. = 2Z1. We convert this inequality o-norms into an appropriate inequality
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on co-norms as follows. Note thatd(0) — d. ||oe = max;e; |dli1(0) — di| < 2r. For ¢ of order N2 logn~!,
Id(£) = dulloo < [|d(£) = dull2 < 7l|d(0) = dull2 < 7V N|[d(0) = duloe < n27V'N.

This means that the desired configuration is achievegder/N = ¢, thatis, in timeO(N2logn ') = O(N?log(Ne™1)).
In summary, the equidistance task is achieved in t{&vV? log(Ne~!) + Nloga™1).

STEP 4:Finally, we prove the lower bound in (ii). We consider anialitonfiguration with the properties that
(i) agents are counterclockwise-ordered according ta tineique identifier, (ii) the set is empty, and (iii) the

inter-agent distanced(0) = (distcc (8111(0), 0121(0)), .. ., distcc (91V1(0), 611(0))) are given by

2
d(0) = ﬁwl +Ek(vy +VN),

wherev y is the eigenvector of'irc (kprop, 1 — kprop: 0) corresponding to the eigenvalile- kprop+ kpropcos (3F) —
kpropy/—1sin (22) (see Appendix A), andop > 0 is chosen sufficiently small so tha(0) € RY. By Theo-
rem A.3(iii) in Appendix A, the solutiont — d(t) reaches the desired configuration in ti®é/N?logz~1) with
an error whose-norm, and therefore, itso-norm is of orderz. This concludes the result. |

To conclude this section, we study the total communicatiommexity of the agree-and-pursue control and
communication law. We consider the case of a unidirecti@oahmunication model with one-round cost function
depending linearly on the cardinality of the communicatgraph. Because it is always true tHB€C(7,CC) <

MCC(7,CC) - TC(7,CC) and because of Theorem IV.1, we deduce the following bounds

TCCunidir (,]ar ctny Ccagr-pursuia c O(N2’[“71),

TCCunidir (Ts—equtns Ccagr—pursuia € O(N4 log(NE_l) + N? log 04_1)7

since the number of edges i.qisk is in O(NN?). The next result gives a more accurate estimate.

Theorem V.2 (Total communication complexity of agree-andpursue law) For kpop €]0, 3[, 7 €]0,27], o =

Nr —2m ande €]0, 1], the networkSgirle, the 1awCCagrpursuic and the taskgr ¢t n and Z¢eqasinctogether satisfy:

@) the bOUﬂdTCCunidir(Tdr ct mccagr-pursuia = @(N27"71);
(i) if « > 0, the upper boun@ CCypidir (7z-eqdstne CCagr-pursuiy € O((a+1)N?(N log N+log o)+ N*log(e 1))

and the lower bound2(N3aloge™1).

(These estimates are to be understoodVas+ +oo, ¢ — 0%, r — 0T, and for any possible limit ok = Nr —27.)
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Proof. We follow the steps and notation in the proof of Theorem I\ ke lower bound in (i) can be readily
deduced by examining the evolution of the two initial confegions employed in the proof of Theorem IV.1 to prove
the lower bound on the time complexity. Regarding (i), Istaonsider first the case when; (0) = 0. In this case,
the network obeys the discrete-time linear time-invarthmamical system (4). By Theorem A.3(iii) in Appendix A,
the desired configuration is reached in ti@éN? log s ~1) with an error whose-norm, and therefore, itso-norm
is of ordere. In this case, one can see that the number of edgés. i is upper bounded by (N?) and lower
bounded byQ(aN). From here, we deduce the upper boun@V* loge~!) and the lower boun@(N3aloge™1)
on the total communication complexity.

Consider now the case wheny(0) > 0. Let ¢, be the time it takes the network to reduce the number of
connected components @f to ng(0) — 1. We treat the two possible situations {i) € ©(Nlog N + loga™!)
and (i) t, < ©(Nlog N +loga™!). In the case (i), each isolated group of agents reaches afatiusy = &
centered at the equilibrium point1,...,1). Up tot,, the total communication complexity is then upper bounded
by O(N3log N +N2%loga~1). After timet,, each agent haS(a) neighbors, and therefore we obtain the following

upper bound on the total communication complexity
O(N3alog N + N2aloga™)

up to the instant when the séf becomes empty. In the case (ii), let us redefipgo be the time it takes the
network to reduce the number of connected component$ tf ny (0) — 2. Again, either (i) or (ii) might hold true
for ¢.. Proceeding inductively, we only have to upper bound thal toommunication complexity whet, keeps
falling in case (ii). In this situation, one can bound theat@ommunication complexity up to the instant when the

set H becomes empty b@ (N3 log N + N2 loga~!). The statement of the theorem then follows. [ |

Remark 1V.3 (Comparison with leader election) Let us compare the agree-and-pursue control and communica-
tion law with the classical Lann-Chang-Roberts (LCR) alldpon for leader election (see [3, Chapter 3.3]). The
leader election coordination task consists of electingiguenagent among all agents in the network. It is therefore
slightly different from, but closely related to, the coordiion task7y, ¢t n. The LCR algorithm operates on a static
network with the ring communication topology, and achielesder election with time and total communication
complexity, respectively® (V) and©(N?). The agree-and-pursue law operates on a robotic networktiadt--disk
communication topology, and achievég ¢;» with time and total communication complexity, respectiy@ (r—1)

and©(N2r~1). Interestingly, the mobility of the network together withetricher communication topology speeds
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up the completion of the task, without compromising theltotanmunication complexity. °

V. CONCLUSIONS

We have introduced a formal model for the design and anabfsieordination algorithms executed by networks
composed of robotic agents. In this framework motion cawtion algorithms are formalized as feedback control
and communication laws. Drawing analogies with the dige#lof distributed algorithms, we have defined two
measures of complexity for control and communication lathe: time and the mean communication complexity
of achieving a specific task. We have defined the notion ofcheduling of a control and communication law
and analyzed the invariance of the proposed complexity uneasunder this operation. These concepts and results
are illustrated in a network of locally connected agentshendircle executing a novel “agree-and-pursue” motion
coordination algorithm that combines elements of the leatlection and cyclic pursuit problems.

The proposed notions allow us to compare the scalabilitypgntges of different coordination algorithms with
regards to performance and communication costs. Numexamias for future research appear open. An incomplete
list include: (i) modeling of asynchronous networks (seeéwer [21], [22], [7]); (i) robustness analysis with respe
to failures in the agents (arrivals/departures) and in thraraunication links (see however [16], [23], [24], [25]);
(i) probabilistic versions of the complexity measuresttitapture, for instance, the expected performance and
cost of coordination algorithms (see however [9]); (iv) niization and delays in the communication channels (see
however [26] and the literature on quantized control); awndparallel, sequential and hierarchical composition
of control and communication laws. On the algorithmic sithe, companion paper [14] provides time-complexity

estimates for coordination algorithms that achieve rewolez and deployment, and discusses other open questions.
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APPENDIXA

TRIDIAGONAL TOEPLITZ AND CIRCULANT DYNAMICAL SYSTEMS

This section presents some key facts about convergenceafadescrete-time dynamical systems defined by certain
classes of Toeplitz matrices, see [27]. To the best of oundedye, the results presented below in Theorems A.3
and A.4 are novel contributions; see also [13], [28] for samlated results for a different class of circulant matrices

For N > 2 anda,b,c € R, define theN x N Toeplitz matricesItidy (a, b, ¢) and Circy (a, b, c) by

-b c 0 ... 0_ _0 B a_

a b ¢ ... 0 0O ... ... 0 O
Tridy(a,b,c) = |+ -0 -0 et Circy(a,b, ¢) = Tridy(a, b, ) +

0 ... a b ¢ 0O 0 ... 0 O

0 ... 0 a b] lc 0 ... 0 0]

The matricedlrid y andCircy are tridiagonal and circulant, respectively. The two neasionly differ in their(1, V)

b a—+c
and (N, 1) entries. Note our convention thét(a,b,c) = . The following results are discussed,

a+c b
for example, in [27, Example 7.2.5 and Exercise 7.2.20].

Lemma A.1 (Eigenvalues of tridiagonal Toeplitz and circulant matrices) For N > 2 and a,b,c € R, the

following statements hold:
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(i) for ac # 0, the eigenvalues and eigenvectorslofd y (a, b, c) are, fori € {1,..., N},

b—l—QC\/zcos (Nzi 1) , [(%)UZSin <NZZ: 1) , (%)2/28111 (;Zj:l) T (%)Nﬂsm (]\JTVIT1> }T;

(i) the eigenvalues and eigenvectors(ifcy (a,b,c) are, forw = exp(Lﬁ) and fori € {1,...,N},

9 9 . ‘
b+ (a+ c)cos <z]\;r> ++v—=1(c—a)sin <ZZ\;T> , and [1, ', -, w(N—l)z]T. .

Remarks A.2 (i) The set of eigenvalues dfridy(a, b, ¢) is contained in the real interv@l — 2+/ac, b+ 2+/ac],
if ac > 0, and in the interval in the complex plafie— 2/—1+/[ac|, b + 2v/—1+/]ac|], if ac < 0.
(i) The set of eigenvalues ofircy(a,b,c) is contained in the ellipse on the complex plane with center
horizontal axis2|a + ¢| and vertical axi|c — a|.
(i) Recall from [27] that (1) a square matrix is normal if litas a complete orthonormal set of eigenvectors,
(2) circulant matrices and real-symmetric matrices aranabrand (3) if a normal matrix has eigenvalues

{A1,..., A}, then its singular values afg\|, ..., |\.|} o

We can now state the main result of this section.

Theorem A.3 (Tridiagonal Toeplitz and circulant dynamical systems)Let N > 2, £ €]0,1[, and a,b,c € R.

Letz: Ng — RY andy: Ng — R be solutions to
z({+1) = Tridy(a, b, c) z(£), y(£ + 1) = Ciren(a, b, ) y(¢),

with initial conditionsz(0) = z¢ and y(0) = yo, respectively. The following statements hold:

() ifa = c# 0and|b|+2|a| = 1, thenlim,_, o z(£) = 0, and the maximum time required fe:(¢) |2 < e|zo]|2
(over all initial conditionszy € RY) is ©(N?loge™1);

(i) ifa#0,c=0and0 < |b| < 1, thenlim,_, ;- z(¢) = 0, and the maximum time required fdr(¢)|2 <
gl|zo||2 (over all initial conditionszy € RY) is O(Nlog N +loge™);

iy ifa>0,¢>0,b>0,anda+b+c =1, thenlim/_, o y(£) = yavel, Whereyae = +17y, and the maximum
+ N

time required for|y(¢) — yavel |2 < €[|lyo — yavel|l2 (over all initial conditionsy, € RY) is ©(N?loge™!).e

Proof: Let us prove fact (i). We start by bounding from above the migkie with largest absolute value, that

is, the largest singular value, @fridy(a,b,a):

max ‘b+2acos <Nlj—1>‘ < o] +2|a|ie max__ |cos (sz— 1)‘ < [b] + 2]a cos <N7j—1> ’

ie{l,...,N} {1,...,N}
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Becauseros(+7) < 1 for any N > 2, the matrixTridy(a, b, a) is stable. Additionally, fo® > 0, we bound from

N+1

above the magnitude of the curveas

£
. ™
Jo(6)lz = | Trid(a.b.0) ol < (184 2l cos (5757 ) ) ol

In order to havd|z(¢)||2 < e]|zo]|2, it is sufficient that/ log <|b| + 2|a| cos (N7_r|_ 1)) < loge, that is

loge™!

~1og (|b] + 2lal cos (7))

To show the upper bound, note thattas> 0 we have

> (A.5)

1 1
log(1 —2[al(1 —cost))  |alt?

+0(1).

Now, assume without loss of generality thét> 0 and consider the eigenvalbe- 2a cos( of Tridy (a, b, a).

N+1)

Note that|b+ 2a cos(25 )| = |b] + 2|a| cos( <=

). (If ab < 0, then consider the eigenvalie- 2a cos( 2 -).) For

N+1 N+1 N+1

N > 2, define the unit-length vector

/2 T Nrm 1T
= i e &l RN A.6
VN N+1[SmN+1’ ’SmNJrl] € , (A.6)

Note

and note that, by Lemma A.1(i}x is an eigenvector offridy (a, b, a) with eigenvalueb + 2a cos( 7).

also that all components of y are positive. The trajectory: with initial condition vy satisfies||z(¢)|l2 =

J4
(\b| + 2|a| cos (N+1)> vz and, therefore, it will enteBB(0,¢||vy||2) only when/ satisfies (A.5). This com-
pletes the proof of fact (i).

Next we consider statement (ii). Clearlridy (a, b,0) is stable. For > 0, we compute

0!

ST (%)j Tridy (1,0,0)7

N—-1
Tridy (a, b, 0)¢ = b (IN + %TridN(l, 0, 0)) Y ]Z

because of the nilpotency @fridy (1,0,0). Now we can bound from above the magnitude of the cunaes

N-1 .
. 2 J . .
()2 = 1 Trida,5.0) ol < b 3 7=y ()| Trid(1,0,0P 2

< &/P N b Yo 2.

Here we used| Tridy (1,0, 0) o2 < ||zoll2 andmax{ﬁ |j€{0,...,N —1}} < ¢N—1 Therefore, in order

to have||z(f)||2 < €||zol|2, it suffices thatlog(e*/?) + (N — 1) log ¢ + £log |b| < loge, that is

N -1 2 _—loge
- logl>t =",
~Tog [ *" 7 log ]
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A sufficient condition for¢ — alog? > (3, for a, 8 > 0, is that¢ > 28 + 2amax{1,log«}. For, if £ > 2«, then
log ¢ is bounded from above by the lifg2« + log . Furthermore, the liné/2a + log « is a lower bound for the

line (¢ — GB)/a if £ > 28+ 2aloga. In summary, it is true thaz(¢)]|2 < ||(0)||2 whenever

—loge N-—-1 N -1
0> zb 2 1,log —— % .
“log ] | “—Tlogb] ma"{ o8 }

This completes the proof of the upper bound, that is, fagt (ii

The proof of fact (iii) is similar to that of fact (i). We analg the singular values dfircy (a, b, c). It is clear
that the eigenvalue correspondingite- NV is equal tol; this is the largest singular value 6fircy (a, b, ¢) and the
corresponding eigenvector s In the orthogonal decomposition induced by the eigenveaiéCircy (a, b, ¢), the

vectory, has a componenj,e along the eigenvectar. We now compute the second largest singular value:

max
ie{1,..,N—1}

b+(a+c)cos(N>+W(c—a)sm<2]2\;r>

‘1(a+6)(1(305( ))*F(Ca)m(?\j)‘

Here| - | is the norm inC. Because of the assumptions arb, ¢, the second largest singular value is strictly less
than1. For ¢ > 0, we bound the distance of the curyé’) from yal as
lly(£) — yavele = || Circy(a, b, C)éyo — Yavel||2 = H Circy(a, b, C)l (yO - yavel) II2

<li-(a+o 1—cos( ™) + vI(c - a)sin ( 27 " 10 — v
- toa ) (%)

This proves thatim,_, ;o ¥(¢) = yavel. Also, fora = a+ ¢, = ¢ — a and ast — 0, we have
1 2
— = + O(1).
1/2 _ 32)+2
log ((1 —a(l- cost))2 + 32sin? t) (o= B2t

Here 3? < o becauser, ¢ €]0, 1[. From this, one deduces the upper bound in (iii).

Now, consider the eigenvaluesy = b+ (a + ¢)cos (3F) + v—1(c — a)sin (3F) and Ay = b+ (a +

¢) cos (W) ++v—1(c—a)sin ((N’%) of Circn (a, b, ¢), and its associated eigenvectors (cf. Lemma A.1(ii))
T T
VN:|:1, w,~--,wN_1} eCV, VN:[L wN_l,--~,w} eCV. (A.7)

Note that the vectoxy + vy belongs toRY. Moreover, its componenjae along the eigenvectot is 0. The
trajectoryy with initial condition vy + vy satisfies||y(¢)||2 = [|\qvN + A ¥xllz = Pvlfva + ¥z and,

therefore, it will enterB(0, ¢||vy + Vx||2) only when

loge™!

_1og’1—a+c)(1—cos( )>+F(C—a)51n(ﬁw)

>
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This completes the proof of fact (iii). |
Next, we extend these results to another interesting setatficaes. ForN > 2 anda, b € R, define theN x N

augmented tridiagonal matrice&Trid}; (a, b) and ATridy (a, b) by

a 0 ... ... 0
o o0 ... ... 0
ATrid¥, (a,b) = Tridy (a,b,a) +
0 0 0
_0 . 0 a
If we define
_1 1 0 0 0_ i 1 1 0 0 O_
1 -1 1 0 0 -1 1 1 0 0
1 0 -1 1 0 1 0 1 1 0
P, = , P_ = )
1 0 ... 0 -1 1 (-2 0 ... 0 1 1
10 ... 0 0 -1 =D¥t o0 ... 0 0 1]
then the following similarity transforms are satisfied:
ATrid% (a,b) = Py bz 0 Py, (A.8)

0 Tridy_1(a, b, a)
To analyze the convergence properties of the dynamicaesystetermined byTrid}; (a,b) and ATridy (a, b),

we recall thatt” = (1,...,1) € RY, and we defind _ = (1, -1,1,...,(-1)V =2, (-1)¥N-"HT c RV,

Theorem A.4 (Augmented tridiagonal Toeplitz dynamical sygems) Let N > 2, ¢ €]0,1[, and a,b € R with

a# 0 and|b| +2|a| = 1. Letz: Ng — RY and z: Ny — RY be solutions to
z(0+1) = ATrid (a, b) z(¢), z(0+ 1) = ATrid y (a, b) 2(¢),

with initial conditionsz(0) = z¢ and z(0) = zo, respectively. The following statements hold:
(i) limy—ioo (2(€) — zav(f)1) = 0, Whereza(f) = (%17z0)(b + 2a)*, and the maximum time required for
2(€) — ave(€)1]|2 < €lzo — zave(0)1]|2 (over all initial conditionszy € RY) is ©(N?loge™?);
(i) limy— oo (2(£) — zave(€)1-) = 0, wherezae(¢) = (%17 20)(b — 2a)*, and the maximum time required for

[2(£) — zave(£)1_ |2 < €|z0 — zave(0)1_||2 (over all initial conditionszy € RY) is ©(N?loge™). .
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Proof. We prove fact (i) and remark that the proof of fact (ii) is agaus. Consider the change of coordinates

o) 0
ac(f) =Py e = :L“;\,e(é)l + Py )
y(0) y(0)
where zj,((¢) € R andy(¢) € R¥~1. A quick calculation shows that},(¢) = +17z(¢), and the similarity

transformation described in equation (A.8) implies
y(l +1) = Tridy_1(a,b,a) y(¢), and zL, (¢ +1) = (b+ 2a)xlyef).

Therefore,zave = x4, It is also clear that
0 0 0 .
x(l+1) —zae(l + 1)1 = Py =| Py P77 (2(0) — zave(€)1).
y(£+1) 0 Tridy_1(a,b,a)
Consider the matrix in parenthesis determining the trajgot — (2(¢) — zave(¢)1). This matrix is symmetric, its
eigenvalues aré and the eigenvalues &fridy_;(a, b,a), and its eigenvectors a, (1,0,...,0) € RY and the
eigenvectors offridy_1(a, b, a), padded with an extra zero and premultiplied By. These facts are sufficient to
duplicate, step by step, the proof of fact (i) in Theorem A Berefore, fact (i) follows. |

We conclude this append with some useful bounds whose psastfaightforward in coordinates.

Lemma A.5 Assumer € RY, y ¢ RVN~! and z € RV~ jointly satisfy

0 0
x =Py , r=P_
Y z
Theng|lzll2 < flyll2 < (N = Dllz[l2 and 3l|z(l2 < [lz]2 < (N = D] .
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