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On synchronous robotic networks – Part I:

Models, tasks and complexity

Sonia Mart́ınez Francesco Bullo Jorge Cortés Emilio Frazzoli

Abstract

This paper proposes a formal model for a network of robotic agents that move and communicate. Building on

concepts from distributed computation, robotics and control theory, we define notions of robotic network, control

and communication law, coordination task, and time and communication complexity. We illustrate our model and

compute the proposed complexity measures in the example of a network oflocally connected agents on a circle that

agree upon a direction of motion and pursue their immediate neighbors.

I. I NTRODUCTION

Problem motivation:The study of networked mobile systems presents new challenges that lie at the confluence

of communication, computing, and control. In this paper we consider the problem of designing joint communication

protocols and control algorithms for groups of agents with controlled mobility. For such groups of agents we define

the notion of communication and control law by extending theclassic notion of distributed algorithm in synchronous

networks. Decentralized control strategies are appealingfor networks of robots because they can be scalable and

they provide robustness to vehicle and communication failures.

One of our key objectives is to develop a theory of time and communication complexity for motion coordination

algorithms. Hopefully, our formal model will be suitable toanalyze objectively the performance of various coor-

dination algorithms. It is our contention that such a theoryis required to assess the complex trade-offs between
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computation, communication and motion control or, in otherwords, to establish what algorithms arescalable

and practically implementable in large networks of mobile autonomous agents. The need for modern models of

computation in wireless and sensor network applications isdiscussed in the well-known report [1], [2].

Literature review: To study complexity of motion coordination, our starting points are the standard notions of

synchronous and asynchronous networksin distributed and parallel computation, e.g., see [3] and,with an emphasis

on numerical methods, [4]. This established body of knowledge, however, is not applicable to the robotic network

setting because of the agents’ mobility and the ensuing dynamic communication topology.

An important contribution towards a network model of mobileinteracting robots is introduced in [5], see also [6].

This model consists of a group of identical “distributed anonymous mobile robots” characterized as follows: no

explicit communication takes place between them, and at each time instant of an “activation schedule,” each

robot senses the relative position of all other robots and moves according to a pre-specified algorithm. A related

model is presented in [7], where as few capabilities as possible are assumed on the agents, with the objective

of understanding the limitations of multi-agent networks.A brief survey of models, algorithms, and the need for

appropriate complexity notions is presented in [8]. Recently, a notion of communication complexity for control and

communication algorithms in multi-robot systems is analyzed in [9], see also [10]. A general modeling paradigm

is discussed in [11], which however does not take into account the specific features of robotic networks. The time

complexity of a class of coordinated motion planning problems is computed in [12]. The convergence rate and

communication overhead of two cyclic pursuit algorithms isexamined in [13].

Statement of contributions:A key contribution of this paper is a model for robotic networks, which properly

takes into account some important dynamical, communication and computational aspects of these systems. Our

model is meaningful and tractable, it describes feasible operations and their costs, and it allows us to study tradeoffs

between control and communication problems. We summarize our approach as follows. Arobotic networkis a

group of robotic agents moving in space and endowed with communication capabilities. The agents’ positions obey

a differential equation and the communication topology is afunction of the agents’ relative positions. Each agent

repeatedly performs communication, computation and physical motion as described next. At predetermined time

instants, the agents exchange information along the communication graph and update their internal state. Between

successive communication instants, the agents move according to a motion control law, computed as a function of

the agent location and of the available information gathered through communication with other agents. In short,

a control and communication lawfor a robotic network consists of a message-generation function (what do the
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agents communicate?), a state-transition function (how dothe agents update their internal state with the received

information?), and a motion control law (how do the agents move between communication rounds?). Thetime

complexityof a control and communication law (aimed at solving a given coordination task) is the minimum

number of communication rounds required by the agents to achieve the task. We also provide similar definitions

for mean and total communication complexity. We show that our notions of complexity satisfy a basic well-

posedness property that we refer to as “invariance under reschedulings.” To the best of our knowledge, the proposal

of studying the complexity of coordination algorithms for synchronous robotic networks under a comprehensive

modeling framework presented here is a novel contribution on its own. For a network of locally connected agents

evolving on the circle, we define a novel agree-and-pursue control and communication law. This example has the

advantages of being both simple to state and illustrative ofall aspects of the proposed framework. We prove that the

agree-and-pursue law achieves consensus on the agents’ direction of motion and equidistance between the agents’

positions. Furthermore, we provide upper and lower bounds on the time and total communication complexity to

achieve these tasks with the proposed law, and draw some connections with leader election algorithms, see [3]. The

complexity estimates build on novel results on the convergence rates of discrete-time dynamical systems defined

by tridiagonal Toeplitz and circulant matrices presented in the appendix. The companion paper [14] builds on

this framework to establish complexity estimates for motion coordination algorithms that achieve rendezvous and

deployment.

Organization: Section II presents a general approach to the modeling of robotic networks by formally intro-

ducing notions such as communication graph, control and communication law, and network evolution. Section III

defines the notions of task, and of time and communication complexity. We also study the invariance properties of

the complexity notions under rescheduling. Section IV provides bounds on the time and communication complexity

of the agree-and-pursue law. We gather our conclusions in Section V. The appendix contains the results on discrete-

time dynamical systems defined by tridiagonal Toeplitz and circulant matrices.

Notation: We letBooleSet be the set{true,false}. We let
∏

i∈{1,...,N} Si denote the Cartesian product of

setsS1, . . . , SN . We letR>0 andR≥0 denote the set of strictly positive and non-negative real numbers, respectively.

The set of positive natural numbers is denoted byN andN0 denotes the set of non-negative integers. Forx ∈ R
d,

we denote by‖x‖2 and‖x‖∞ the Euclidean and the∞-norm of x, respectively (recall‖x‖∞ ≤ ‖x‖2 ≤
√

d‖x‖∞

for x ∈ R
d). We define the vectors0 = (0, . . . , 0) and 1 = (1, . . . , 1) in R

d. For f, g : N → R, we say that

f ∈ O(g) (respectively,f ∈ Ω(g)) if there existN0 ∈ N andk ∈ R>0 such that|f(N)| ≤ k|g(N)| for all N ≥ N0
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(respectively,|f(N)| ≥ k|g(N)| for all N ≥ N0). If f ∈ O(g) andf ∈ Ω(g), then we use the notationf ∈ Θ(g).

II. A FORMAL MODEL FOR SYNCHRONOUS ROBOTIC NETWORKS

Here we introduce a notion of robotic network as a group of robotic agents with the ability to move and

communicate according to a specified communication topology. Our model is inspired by the synchronous network

model in [3] and has connections with recent hybrid systems models, e.g., see [15] and see the HIO model in [11].

A. The physical components of a robotic network

Here we introduce our basic definition of physical quantities such as the agents and such as the ability of agents

to communicate. We begin by providing a basic model for how each robotic agent moves in space. Acontrol system

is a tuple(X,U,X0, f), where

(i) X is a differentiable manifold, called thestate space;

(ii) U is a compact subset ofRm containing0, called theinput space;

(iii) X0 is a subset ofX, called theset of allowable initial states;

(iv) f : X × U → TX is a C∞-map withf(x, u) ∈ TxX for all (x, u) ∈ X × U .

We refer tox ∈ X andu ∈ U as astateand aninput of the control system, respectively. We will often consider

control-affine systems, i.e., control systems withf(x, u) = f0(x) +
∑m

a=1 fa(x)ua. In such a case, we representf

as the ordered family ofC∞-vector fields(f0, f1, . . . , fm) on X.

Definition II.1 (Network of robotic agents) A network of robotic agents(or robotic network) S is a tuple(I,A, Ecmm)

consisting of

(i) I = {1, . . . , N}; I is called theset of unique identifiers (UIDs);

(ii) A = {A[i]}i∈I = {(X [i], U [i],X0
[i], f [i])}i∈I is a set of control systems; this set is called theset of physical

agents;

(iii) Ecmm is a map from
∏

i∈I X [i] to the subsets ofI × I; this map is called thecommunication edge map.

If A[i] = (X,U,X0, f) for all i ∈ I, then the robotic network is calleduniform. •

Remarks II.2 (i) By convention, we let the superscript[i] denote the variables and spaces which correspond to

the agent with unique identifieri; for instance,x[i] ∈ X [i] andx
[i]
0 ∈ X

[i]
0 denote the state and the initial state

of agentA[i], respectively. We refer tox = (x[1], . . . , x[N ]) ∈∏i∈I X [i] as astateof the network.
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(ii) The map Ecmm models the topology of the communication service among the agents: at a network state

x = (x[1], . . . , x[N ]), two agents at locationsx[i] and x[j] can communicate if the pair(i, j) is an edge in

Ecmm(x[1], . . . , x[N ]). Accordingly, we refer to(I, Ecmm(x[1], . . . , x[N ])) as thecommunication graphat x.

When and what agents communicate is discussed in Section II-B. Maps from
∏

i∈I X [i] to the subsets ofI×I

are calledproximity edge mapsand arise in wireless networks and computational geometry,e.g., see [16].•

To make things concrete, let us present an interesting example of robotic network. LetS1 be the unit circle, and

measure positions onS1 counterclockwise from the positive horizontal axis. Forx, y ∈ S
1, we let dist(x, y) =

min{distc(x, y),distcc(x, y)}. Here,distc(x, y) = (x − y) (mod2π) is the clockwise distance, that is, the path

length fromx to y traveling clockwise. Similarly,distcc(x, y) = (y−x) (mod2π) is the counterclockwise distance.

Herex (mod2π) is the remainder of the division ofx by 2π.

Example II.3 (Locally-connected first-order agents on the circle) For r ∈ R>0, consider the uniform robotic

networkScircle = (I,A, Er-disk) composed of identical agents of the form(S1, R, S1, (0, e)). Heree is the vector

field on S
1 describing unit-speed counterclockwise rotation. We define ther-disk proximity edge mapEr-disk on

the circle by setting(i, j) ∈ Er-disk(θ
[1], . . . , θ[N ]) if and only if i 6= j and

dist(θ[i], θ[j]) ≤ r ,

wheredist(x, y) is the geodesic distance between the two pointsx, y on the circle. •

B. Control and communication laws for robotic networks

Here we present a discrete-time communication, continuous-time motion model for the evolution of a robotic

network. In our model, the robotic agents evolve in the physical domain in continuous-time and have the ability to

exchange information (position and/or dynamic variables)that affect their motion at discrete-time instants.

Definition II.4 (Control and communication law) Let S be a robotic network. A(synchronous, dynamic, feed-

back) control and communication lawCC for S consists of the sets:

(i) T = {t`}`∈N0
⊂ R≥0, an increasing sequence of time instants with no accumulation points, calledcommu-

nication schedule;

(ii) L, a set containing thenull element, called thecommunication alphabet; elements ofL are calledmessages;

(iii) W [i], i ∈ I, sets of values of somelogic variablesw[i], i ∈ I;
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(iv) W
[i]
0 ⊆ W [i], i ∈ I, subsets ofallowable initial valuesfor the logic variables;

and of the maps:

(i) msg[i] : T × X [i] × W [i] × I → L, i ∈ I, called message-generation functions;

(ii) stf[i] : T × W [i] × LN → W [i], i ∈ I, called state-transition functions;

(iii) ctl [i] : R≥0 × X [i] × X [i] × W [i] × LN → U [i], i ∈ I, called control functions.

If S is uniform and ifW [i] = W , msg[i] = msg, stf[i] = stf, ctl[i] = ctl, for all i ∈ I, thenCC is said to beuniform

and is described by a tuple(W, {W [i]
0 }i∈I , msg, stf, ctl). •

We will sometimes refer to a control and communication law asa motion coordination algorithm. Roughly

speaking, the rationale behind Definition II.4 is the following: for all i ∈ I, to theith physical agent corresponds a

logic process, labeledi, that performs the following actions. First, at each time instantt` ∈ T, the ith logic process

sends to each of its neighbors in the communication graph a message (possibly thenull message) computed by

applying the message-generation function to the current values of x[i] and w[i]. After a negligible period of time

(therefore, still at time instantt` ∈ T), the ith logic process updates the value of its logic variablesw[i] by applying

the state-transition function to the current value ofw[i], and to the messages received att`. Between communication

instants, i.e., fort ∈ [t`, t`+1), the motion of theith agent is determined by applying the control function to the

current value ofx[i], the value ofx[i] at t`, and the current value ofw[i]. This idea is formalized as follows.

Definition II.5 (Evolution of a robotic network) Let S be a robotic network andCC be a control and commu-

nication law for S. The evolution of (S, CC) from initial conditionsx
[i]
0 ∈ X0

[i] and w
[i]
0 ∈ W

[i]
0 , i ∈ I, is the

collection of curvesx[i] : [t0,∞) → X [i] and w[i] : T → W [i], i ∈ I, satisfying

ẋ[i](t) = f
(

x[i](t), ctl[i]
(

t, x[i](t), x[i](btc
T
), w[i](btc

T
), y[i](btc

T
)
)

)

,

wherebtc
T

= max{t` ∈ T | t` < t}, and

w[i](t`) = stf[i](t`, w
[i](t`−1), y

[i](t`)) ,

with x[i](t0) = x
[i]
0 , andw[i](t−1) = w

[i]
0 , i ∈ I. In the previous equations,y[i] : T → LN (describing the messages

received by agenti) has componentsy[i]
j (t`), for j ∈ I, given by

y
[i]
j (t`) =



















msg[j](t`, x[j](t`), w
[j](t`−1), i), if (i, j) ∈ Ecmm

(

x[1](t`), . . . , x
[N ](t`)

)

,

null, otherwise.

•
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With slight abuse of notation, we lett 7→ (x(t), w(t)) denote the curvesx[i] andw[i], for i ∈ {1, . . . , N}.

Remark II.6 (Properties of control and communication laws) A control and communication lawCC is:

(i) time-independentif all message-generation, state-transition and control functions are time-independent; in this

caseCC can be described by maps of the form msg[i] : X [i] ×W [i] × I → L, stf[i] : W [i] ×LN → W [i], and

ctl[i] : X [i] × X [i] × W [i] × LN → U [i], for i ∈ I;

(ii) staticif W [i] is a singleton for alli ∈ I; in this caseCC can be described by a tuple(T,L, {msg[i]}i∈I , {ctl[i]}i∈I ,

with msg[i] : T × X [i] × I → L, and ctl[i] : R≥0 × X [i] × X [i] × LN → U [i], for i ∈ I;

(iii) data-sampledif the control functions ctl[i], i ∈ I, have the following property: given a timet, a logic state

w[i] ∈ W [i], an array of messagesy[i] ∈ LN , a current statex[i], and a state at last sample timex
[i]
smpld, the

control input ctl(t, x[i], x
[i]
smpld, w

[i], y[i]) is independent ofx[i]. In this case the control functions inCC can be

described by maps of the form ctl[i] : R≥0 × X [i] × W [i] × LN → U [i], for i ∈ I. •

Remark II.7 (Idealized aspects of communication model)Let us discuss two limitations regarding the proposed

communication model. We refer toCC as asynchronouscontrol and communication law because the communications

between all agents takes always place at the same time for allagents. We do not discuss here the important setting

of asynchronous laws (see however the discussion in SectionV).

The setL is used to exchange information between two robotic agents;the messagenull indicates no commu-

nication. We assume that the messages in the communication alphabetL allow us to encode logical expressions

such astrue and false, integers, and real numbers. A realistic assumption onL would be to adopt a finite-

precision representation for integers and real numbers in the messages, e.g.,L = {null, 0, . . . , 2b−1} would allow

messages that can be encoded using up tob bits. Instead, in what follows, we neglect any inaccuraciesdue to

quantization (see however Section V); in other words, we will implicitly assume thatb is sufficiently large. In many

uniform control and communication laws, the messages interchanged among the network agents are (quantized

representations of) the agents’ states and logic states. Wewill identify the corresponding communication alphabet

with L = (X × W ) ∪ {null}; the message generation function msgstd(t, x, w, j) = (x,w) is referred to as the

standard message-generation function. •

Remark II.8 (Groups of robotic agents with relative-position sensing) In the model proposed in [5], robots

are referred to as “anonymous” and “oblivious” in preciselythe same way in which we defined control and
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communication laws to be uniform and static, respectively.As compared with our notion of robotic network,

the model in [5] is more general in that the robots’ activations schedules do not necessarily coincide (i.e., this

model is asynchronous), and at the same time it is less general in that (1) robots cannot communicate any

information other than their respective positions, and (2)each robot observes every other robot’s position (i.e.,

the complete communication graph is adopted; this limitation is not present for example in [6]). Note that a control

and communication law, as in our definition, can be implemented on a synchronous model [5] if the law (1) is

static and uniform, (2) only relies on communicating the agents’ positions (e.g., the message-generation function is

the standard one), and (3) entails a control function that only depends on relative positions (as opposed to absolute

positions). •

C. The agree-and-pursue control and communication law

Here we present an example of a dynamic control and communication law with the aim of illustrating the proposed

framework. The following coordination law is related to leader election algorithms as studied in the distributed

algorithms literature, e.g., see [3] (more will be said about this analogy in Remark IV.3), and to cyclic pursuit

algorithms as studied in the control literature, e.g., see [17], [13]. Despite the apparent simplicity, this example

is remarkable in that it combines a leader election task (in the logic variables) with a uniform agent deployment

task (in the state variables), arguably two of the most basictasks in distributed algorithms and cooperative control,

respectively. Another advantage of the agree-and-pursue law is that its correctness, performance and cost can be

fully characterized. We will come back to this later in Section IV.

From Example II.3, we consider the uniform networkScircle of locally-connected first-order agents inS1. We

now define the agree-and-pursue law, denoted byCCagr-pursuit, as the uniform, time-independent and data-sampled

law loosely described as follows:

[Informal description] The logic variables aredrctn (the agent’s direction of motion) taking values

in {c,cc} and prior (the agent’s priority) taking values inI. At each communication round, each

agent transmits its position and its logic variables and sets its logic variables to those of the incoming

message with the largest value ofprior. (Therefore, the logic state with the largestprior will propagate

throughout the network.) Between communication rounds, each agent moves in the counterclockwise or

clockwise direction depending on whether its logic variable drctn is cc or c. For kprop ∈]0, 1
2 [, each

agent moveskprop times the distance to the immediately next neighbor in the chosen direction, or, if no
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neighbors are detected,kprop times the communication ranger.

Next, we define the law formally. Each agent has logic variablesw = (w1, w2), wherew1 = drctn ∈ {cc,c}, with

arbitrary initial value, andw2 = prior ∈ I, with initial value set equal to the agent’s identifieri. In other words,

we defineW = {cc,c}×I, and we setW [i]
0 = {cc,c}×{i}. Each agenti ∈ I operates with the standard message-

generation function, i.e., we setL = (S1 × W ) ∪ {null} and msg[i] = msgstd, where msgstd(θ, w, j) = (θ, w).

Given a logic statew ∈ W and an array of messagesy ∈ LN , the state-transition function is defined by

stf(w, y) = max{wrcvd ∈ W | ∃θrcvd ∈ S
1 s.t. (θrcvd, wrcvd) = yj , for somej ∈ I},

where we define an ordering in the logic setW by saying that(drctn1,prior1) > (drctn2,prior2) if

prior1 > prior2. For kprop ∈ R>0, given a logic statew ∈ W , an array of messagesy ∈ LN , and a state at

last sample timeθsmpld, the control function is

ctl(θsmpld, w, y) = kprop



















min({r} ∪ {distcc(θsmpld, θrcvd) | for all non-null(θrcvd, wrcvd) ∈ y}), if drctn = cc,

−min({r} ∪ {distc(θsmpld, θrcvd) | for all non-null(θrcvd, wrcvd) ∈ y}), if drctn = c.

An implementation of this control and communication law is shown in Figure 1. Along the evolution, all agents

agree upon a common direction of motion and, after suitable time, they reach a uniform distribution.

Fig. 1. The agree-and-pursue control and communication law inSection II-C withN = 45, r = 2π/40, and kprop = 7/16. Disks and

circles correspond to agents moving counterclockwise and clockwise, respectively. The initial positions and the initial directions of motion are

randomly generated. The five pictures depict the network state at times0, 9, 24, 100, 800.

III. C OORDINATION TASKS AND COMPLEXITY MEASURES

In this section we introduce concepts and tools useful to analyze a communication and control law. We address

the following questions: What is a coordination task for a robotic network? When does a control and communication

law achieve a task? And with what time and communication complexity?
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A. Coordination tasks

Our first analysis step is to characterize the correctness properties of a communication and control law. We do

so by defining the notion of task and of task achievement by a robotic network.

Definition III.1 (Coordination task) Let S be a robotic network and letW be a set.

(i) A coordination taskfor S is a mapT :
∏

i∈I X [i] ×WN → BooleSet.

(ii) If W = ∅, then the coordination task is said to bestatic and is described by a mapT :
∏

i∈I X [i] →

BooleSet.

Additionally, letCC a control and communication law forS.

(i) The lawCC is compatiblewith the taskT :
∏

i∈I X [i] ×WN → BooleSet if its logic variables take values

in W, that is, if W [i] = W, for all i ∈ I.

(ii) The lawCC achievesthe taskT if it is compatible with it and if, for all initial conditionsx[i]
0 ∈ X

[i]
0 and

w
[i]
0 ∈ W

[i]
0 , i ∈ I, the corresponding network evolutiont 7→ (x(t), w(t)) has the property that there exists

T ∈ R>0 such thatT(x(t), w(t)) = true for all t ≥ T . •

Remark III.2 (Temporal logic) Loosely speaking, achieving a task means obtaining and maintaining a specified

pattern in the position of the agents or of their logic variables. In other words, the task is achieved ifat some

time and for all subsequent timesthe predicate evaluates to true along system trajectories.It is possible to consider

more general tasks based on more expressive predicates on trajectories. Such predicates can be defined through

various forms of temporal and propositional logic, e.g., see [18]. In particular, (linear) temporal logic contains

certain constructs that allow reasoning in terms of time andis hence appropriate for robotic applications, as argued

for example in [19]. Network tasks such as periodically visiting a desired set of configurations could easily be

encoded with such temporal logic statements. •

Example III.3 (Agreement and equidistance tasks)From Example II.3, consider the uniform networkScircle of

locally-connected first-order agents inS1. From Example II-C, recall the agree-and-pursue control and communi-

cation lawCCagr-pursuitwith logic variables taking values inW = {cc,c}× I. There are two tasks of interest. First,
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we define theagreement taskTdrctn : (S1)N × WN → BooleSet by

Tdrctn(θ, w) =



















true, if drctn[1] = · · · = drctn[N ],

false, otherwise,

whereθ = (θ[1], . . . , θ[N ]), w = (w[1], . . . , w[N ]), and w[i] = (drctn[i],prior[i]), for i ∈ I. Furthermore, for

ε ∈ R>0, we define the staticequidistance taskTeqdstnc: (S1)N → BooleSet by

Tε-eqdstnc(θ) =



















true, if
∣

∣minj 6=i distc(θ
[i], θ[j]) − minj 6=i distcc(θ

[i], θ[j])
∣

∣ < ε, for all i ∈ I,

false, otherwise.

In other words,Tε-eqdstnc is true when, for every agent, the clockwise distance to the closest clockwise neighbor

and the counterclockwise distance to the closest counterclockwise neighbor are approximately equal. •

B. Complexity notions for control and communication laws and for coordination tasks

We are finally ready to define the key notions of time and communication complexity. These notions describe

the cost that a certain control and communication law incurswhile completing a certain coordination task. We also

define the complexity of a task to be the infimum of the costs incurred by all laws that achieve that task.

First, we define the time complexity of an achievable task as the minimum number of communication rounds

needed by the agents to achieve the taskT.

Definition III.4 (Time complexity) Let S be a robotic network and letT be a coordination task forS. Let CC be

a control and communication law forS compatible withT.

(i) The (worst-case) time complexity to achieveT with CC from (x0, w0) ∈
∏

i∈I X
[i]
0 ×∏i∈I W

[i]
0 is

TC(T, CC , x0, w0) = inf {` | T(x(tk), w(tk)) = true , for all k ≥ `} ,

wheret 7→ (x(t), w(t)) is the evolution of(S, CC) from the initial condition(x0, w0).

(ii) The (worst-case) time complexity to achieveT with CC is

TC(T, CC) = sup
{

TC(T, CC , x0, w0) | (x0, w0) ∈
∏

i∈I

X
[i]
0 ×

∏

i∈I

W
[i]
0

}

. •

The time complexity of a task can be also defined by taking the infimum among all compatible laws that achieve it.

Next, we define the notions of mean and total communication complexities for an algorithm. As usual, consider

a networkS and a control and communication lawCC . With these data we can discuss the cost of realizing one
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communication round. At time instants inT, each agent generates a certain number of messages inL, destined to

neighboring agents as defined by the communication edge map.Indicate the set of all non-null messages generated

during one communication round with

M(t, x, w) = {(i, j) ∈ Ecmm(x) | msg[i](t, x[i], w[i], j) 6= null}.

To compute the cost of delivering all such messages to the intended recipient, we introduce the following function.

Definition III.5 (One-round cost) A functionCrnd: 2I×I → R≥0 is a one-round cost functionif Crnd(∅) = 0, and

S1 ⊂ S2 ⊂ I × I impliesCrnd(S1) ≤ Crnd(S2). A one-round cost functionCrnd is additive if, for all S1, S2 ⊂ I × I,

S1 ∩S2 = ∅ impliesCrnd(S1 ∪ S2) = Crnd(S1) + Crnd(S2). •

More specific detail about the communication cost depends necessarily on the type of communication service (e.g.,

unidirectional versus omnidirectional) available between the agents. We postpone our discussion about specific

functionsCrnd to the next subsection.

Definition III.6 (Communication complexity) Let S be a robotic network and letCC be a control and commu-

nication law that achieves the taskT, and letCrnd be a one-round communication cost function.

(i) The (worst-case) mean communication complexityand the(worst-case) total communication complexityto

achieveT with CC from (x0, w0) ∈
∏

i∈I X
[i]
0 ×∏i∈I W

[i]
0 are, respectively,

MCC(T, CC , x0, w0) =
1

λ

λ−1
∑

`=0

Crnd ◦M(t`, x(t`), w(t`)),

TCC(T, CC , x0, w0) =

λ−1
∑

`=0

Crnd ◦M(t`, x(t`), w(t`)),

whereλ = TC(CC , T, x0, w0) and t 7→ (x(t), w(t)) is the evolution of(S, CC) from the initial condition

(x0, w0). (Here MCC is defined only for(x0, w0) with the property thatT(x0, w0) = false.)

(ii) The (worst-case) mean communication complexityand the(worst-case) total communication complexityto

achieveT with CC are the supremum of{MCC(T, CC , x0, w0) | (x0, w0) ∈ ∏i∈I X
[i]
0 ×∏i∈I W

[i]
0 } and

{TCC(T, CC , x0, w0) | (x0, w0) ∈
∏

i∈I X
[i]
0 ×∏i∈I W

[i]
0 }, respectively. •

Note that by (worst-case) mean communication complexity wemean to consider the worst-case over all initial

conditions and mean over the time required to achieve the task.
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Remark III.7 (Infinite-horizon mean communication complexity) The mean communication complexityMCC

measures the average cost of the communication rounds required to achieve a task over a finite time horizon; a

similar statement holds for the total communication complexity TCC. One might be interested in a notion of mean

communication complexity required to maintain true the task for all times. Accordingly, the infinite-horizon mean

communication complexity ofCC from initial conditions(x0, w0) is

IH-MCC(CC , x0, w0) = lim
λ→+∞

1

λ

λ
∑

`=0

Crnd ◦M(t`, x(t`), w(t`)) .

Note that a similar notion is presented in [9] for a differentrobotic network model. •

C. Communication costs in unidirectional and omnidirectional wireless channels

Here, we discuss some modeling aspects of the one-round communication cost function described in Defini-

tion III.5. Broadly speaking, it is very difficult to encompass with a single abstract model the cost of all possible

communication technologies. Inunidirectionalmodels of communication (e.g., wireless networks with unidirectional

antennas, communication based on TCP-IP protocols) messages are sent in a point-to-point-wise fashion. Instead,

in omnidirectionalmodels of communication (e.g., wireless networks equippedwith omnidirectional antennas),

a single transmission made by a node can be heard by several other nodes simultaneously. Motivated by these

considerations, the rest of this paper relies on the following simplified models:

(i) For a unidirectional communication model,Crnd(M) is proportional to the number messages inM, that is,

Crnd(M) = c0 ·cardinality(M), wherec0 ∈ R>0 is the cost of sending a single message. This one-round cost

function is additive. This number is trivially bounded by twice the number of edges of the complete graph,

which isN(N−1). Therefore, for unidirectional models of communication, we haveMCCunidir(T) ∈ O(N2).

(ii) For an omnidirectional communication model,Crnd(M) is proportional to the number of turns employed

to complete a communication round without interference between the agents (this choice is justified in

Remark III.8 below). This number is trivially upper boundedby N . Therefore, for omnidirectional models of

communication, we haveMCComnidir(T) ∈ O(N).

Remark III.8 (Omnidirectional wireless communication) Networking protocols for omnidirectional wireless net-

works rely on a many nested layers to handle, for example, media access, power control, congestion control, and

routing, see for instance [2] and references therein.. These layers and the non-trivial interactions among them make it

difficult to assess communication costs of individual messages. For example, the Medium Access Control problem
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consists of determining a minimum number of broadcasting turns required for all agents to communicate their

messages without interference. A schematic approach to these problems geared towards our model is as follows:

first, from the communication graph(I, E), one constructs theneighbor-inducedgraph(I, EN ) by

(i, j) ∈ EN if and only if (i, j) ∈ E or (i, k), (j, k) ∈ E , for somek ∈ I.

In the new graph(I, EN ), the set of neighbors of the agenti is composed by its neighbors in the graph(I, E),

together with their respective neighbors. As a second step,one has to compute thechromatic numberof the graph,

i.e., the minimum number of colorsχ(EN ) needed to color the agents in such a way that there are no two neighboring

agents with the same color (Theorem 5.2.4 in [20] asserts that if a connected graph is neither complete, nor an

odd cycle, thenχ(EN ) is less than or equal to the maximum valency of the graph). Once the chromatic number

has been determined, broadcasting turns can be establishedaccording to an ordered sequence of the agents’ colors.

This approach provides a basic justification for our choice of Crnd for omnidirectional communication models.•

D. Rescheduling of control and communication laws for driftless agents

In this section, we discuss the invariance properties of thenotions of time and communication complexity under

the reschedulingof a control and communication law. The idea behind rescheduling is to “spread” the execution of

the law over time without affecting the trajectories described by the robotic agents. Our objective is to formalize

this idea and to examine the effect on the notions of complexity introduced earlier. For simplicity we consider the

setting of static laws; similar results can be obtained for the general setting.

Let S = (I,A, Ecmm) be a robotic network where each physical agent is a driftlesscontrol system. LetCC =

(N0,L, {msg[i]}i∈I , {ctl[i]}i∈I) be a static control and communication law. Next, we define a new control and

communication law by modifyingCC ; to do so we introduce some notation. Lets ∈ N, with s ≤ N , and let

PI = {I0, . . . , Is−1} be ans-partition of I, that is,I0, . . . , Is−1 ⊂ I are disjoint and nonempty andI = ∪s−1
k=0Ik.

For i ∈ I, define the message-generation functions msg[i]
PI

: N0 × X [i] × I → L by

msg[i]PI
(t`, x, j) = msg[i](tb`/sc, x, j), (1)

if i ∈ Ik andk = `(mods), and msg[i]PI
(t`, x, j) = null otherwise. According to this message-generation function,

only the agents with unique identifier inIk will send messages at timet`, with ` ∈ {k+as}a∈N0
. Equivalently, this

can be stated as follows: according to (1), the messages originally sent at the time instantt` are now rescheduled
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to be sent at the time instantstF (`)−s+1, . . . , tF (`), whereF : N0 → N0 is defined byF (`) = s(`+1)−1. Figure 2

illustrates this idea.

tF (`)+1tF (`)−s+1

. . .

t` t`+1

. . .

tF (`)

Fig. 2. Under the rescheduling, the messages that are sent at the time instantt` under the control and communication lawCC are rescheduled

to be sent over the time instantstF (`)−s+1, . . . , tF (`) under the control and communication lawCC (s,PI ).

For i ∈ I, define the control functions ctl[i] : R≥0 × X [i] × X [i] × LN → U [i] by

ctl[i]PI
(t, x, xsmpld, y) =

tF−1(`)+1 − tF−1(`)

t`+1 − t`
ctl[i] (h`(t), x, xsmpld, y) , (2)

if t ∈ [t`, t`+1] and ` = −1(mods) and ctl[i]PI
(t, x, xsmpld, y) = 0 otherwise. HereF−1 : N0 → N0 is the inverse

of F , defined byF−1(`) = `+1
s − 1, and for` = −1(mods), the functionh` : [t`, t`+1] → [tF−1(`), tF−1(`)+1] is

the unique linear map between the two time intervals. Roughly speaking, the control law ctl[i]
PI

makes the agent

i wait for the time intervals[t`, t`+1], with ` ∈ {as − 1}a∈N, to execute any motion. Accordingly, the evolution

of the robotic network under the original lawCC during the time interval[t`, t`+1] now takes place when all the

corresponding messages have been transmitted, i.e., alongthe time interval[tF (`), tF (`)+1]. The following definition

summarizes this construction.

Definition III.9 (Rescheduling of control and communication laws) Let S = (I,A, Ecmm) be a robotic network

with driftless physical agents, and letCC = (N0,L, {msg[i]}i∈I , {ctl[i]}i∈I) be a static control and communication

law. Let s ∈ N, with s ≤ N , and letPI be ans-partition of I. The control and communication lawCC (s,PI) =

(N0,L, {msg[i]PI
}i∈I , {ctl[i]PI

}i∈I) defined by equations(1) and (2) is called aPI -rescheduling ofCC . •

The following result shows that the total communication complexity of CC remains invariant under rescheduling.

Proposition III.10 (Complexity of rescheduled laws) With the assumptions of Definition III.9, letT :
∏

i∈I X [i] →

BooleSet be a coordination task forS. Then, for allx0 ∈∏i∈I X
[i]
0 ,

TC(T, CC (s,PI), x0) = s · TC(T, CC , x0) .
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Moreover, ifCrnd is additive, then, for allx0 ∈∏i∈I X
[i]
0

MCC(T, CC (s,PI), x0) =
1

s
· MCC(T, CC , x0) ,

and, therefore,TCC(T, CC (s,PI), x0) = TCC(T, CC , x0), i.e., the total communication complexity ofCC is invariant

under rescheduling. •

Proof: Let t 7→ x(t) andt 7→ x̃(t) denote the network evolutions starting fromx0 ∈∏i∈I X
[i]
0 underCC and

CC (s,PI), respectively. From the definition of rescheduling, one canverify that, for allk ∈ N0,

x̃[i](t) =



















x̃[i](tF (k−1)+1), for t ∈ ⋃F (k)−1
`=F (k−1)+1[t`, t`+1] ,

x[i](hF (k)(t)), for t ∈ [tF (k), tF (k)+1] .

(3)

By definition ofTC(T, CC , x0), we haveT(x(tk)) = true, for all k ≥ TC(T, CC , x0), andT(x(tTC(T,CC ,x0)−1)) =

false. Let us rewrite these equalities in terms of the trajectories of CC (s,PI). From equation (3), one can write

x[i](tk) = x[i](hF (k)(tF (k))) = x̃[i](tF (k)), for all i ∈ I andk ∈ N0. Therefore, we have

T(x̃(tF (k))) = T(x(tk)) = true , for all F (k) ≥ F (TC(T, CC , x0)) ,

T(x̃(tF (TC(T,CC ,x0)−1))) = T(x(tTC(T,CC ,x0)−1)) = false ,

where we have used the rescheduled message-generation function in (1). Now, note that by equation (3),x̃[i](t`) =

x̃[i](tF (b`/sc−1)+1), for all ` ∈ N0 and all i ∈ I. Therefore,T(x̃(tF (TC(T,CC ,x0)−1)+1)) = T(x̃(tF (TC(T,CC ,x0))))

and we can rewrite the previous identities as

T(x̃(tk)) = true , for all k ≥ F (TC(T, CC , x0) − 1) + 1 ,

T(x̃(tF (TC(T,CC ,x0)−1))) = false ,

which imply thatTC(T, CC (s,PI), x0) = F (TC(T, CC , x0) − 1) + 1 = sTC(T, CC , x0). As for the mean commu-

nication complexity, additivity ofCrnd implies

Crnd ◦M(t`, x(t`)) = Crnd ◦M(tF (`)−s+1, x̃(tF (`)−s+1)) + · · · + Crnd ◦M(tF (`), x̃(tF (`))) ,

where we have usedF (` − 1) + 1 = F (`) − s + 1. We conclude the proof by computing

TC(T,CC (s,PI ),x0)−1
∑

`=0

Crnd ◦M(t`, x̃(t`)) =

F (TC(T,CC ,x0)−1)
∑

`=0

Crnd ◦M(t`, x̃(t`))

=

TC(T,CC ,x0)−1
∑

`=0

F (`)
∑

k=F (`)−s+1

Crnd ◦M(tk, x̃(tk)) =

TC(T,CC ,x0)−1
∑

`=0

Crnd ◦M(t`, x(t`)) .
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Remark III.11 (Appropriate complexity notions for driftle ss agents)Given the results in the previous theorem,

one should be careful in choosing what notion of communication complexity to evaluate control and communication

laws. For driftless physical agents, rather than themeancommunication complexityMCC, one should really consider

the total communication complexityTCC, since the latter is invariant with respect to rescheduling. Note that the

notion of infinite-horizon mean communication complexityIH-MCC defined in Remark III.7 satisfies the same

relationship asMCC, that is,IH-MCC(CC (s,PI), x0) = 1
s IH-MCC(CC , x0). •

IV. A GREEMENT ON DIRECTION OF MOTION AND EQUIDISTANCE

From Examples II.3, II-C and III.3, recall the definition of uniform networkScircle of locally-connected first-order

agents inS1, the agree-and-pursue control and communication lawCCagr-pursuit, and the two coordination tasksTdrctn

andTε-eqdstnc. The following result characterizes the complexity to achieve these coordination tasks withCCagr-pursuit.

Theorem IV.1 (Time complexity of agree-and-pursue law)For kprop ∈]0, 1
2 [, r ∈]0, 2π], α = Nr − 2π and

ε ∈]0, 1[, the networkScircle, the lawCCagr-pursuit, and the tasksTdrctn and Tε-eqdstnc together satisfy:

(i) the boundTC(Tdrctn, CCagr-pursuit) ∈ Θ(r−1);

(ii) if α > 0, the upper boundTC(Tε-eqdstnc, CCagr-pursuit) ∈ O(N2 log(Nε−1) + N log α−1) and the lower bound

TC(Tε-eqdstnc, CCagr-pursuit) ∈ Ω(N2 log(ε−1)). If α ≤ 0, thenCCagr-pursuitdoes not achieveTε-eqdstncin general.

(These estimates are to be understood asN → +∞, ε → 0+, r → 0+, and for any possible limit ofα = Nr−2π.)

Proof: In the following fourSTEPSwe prove the four bounds.STEP 1:We start by proving the upper bound

in (i). We reason by induction on the number of agentsN . If N = 1, the result is trivially true. Assume then that the

result is true forN−1 and let us prove it forN . Without loss of generality, assumedrctn[N ](0) = c, and thatTdrctn

is false at time0 (otherwise, we have finished). Therefore, at least one agentis moving counterclockwise at time

0, and we can definek = max{i ∈ I | drctn[i](0) = cc}. Definetk = inf({` ∈ N0 | drctn[k](`) = c}∪{+∞}).

In what follows we provide an upper bound ontk. For ` < tk, define

j(`) = argmin{distc(θ
[i](`), θ[k](`)) | prior[i](`) = N, i ∈ I}.

June 25, 2006 DRAFT



18 SUBMITTED AS A REGULAR PAPER TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL

In other words, for all instants of time when agentk is moving counterclockwise, the agentj(l) hasprior equal

to N , is moving clockwise, and is the agent closest to agentk with these two properties. Clearly,

2π > distc(θ
[N ](0), θ[k](0)) = distc(θ

[j(0)](0), θ[k](0)).

Additionally, for ` < tk − 1, we claim that

distc(θ
[j(`)](`), θ[j(`+1)](` + 1)) ≥ kpropr.

This happens because either (1) there is no agent clockwise-ahead ofθ[j(`)](`) within clockwise distancer and,

therefore, the claim is obvious, or (2) there are such agents. In case (2), letm denote the agent whose clockwise

distance to agentj(`) is maximal within the set of agents with clockwise distancer from θ[j(`)](`). Then,

distc(θ
[j(`)](`), θ[j(`+1)](` + 1)) = distc(θ

[j(`)](`), θ[m](` + 1))

= distc(θ
[j(`)](`), θ[m](`)) + distc(θ

[m](`), θ[m](` + 1))

≥ distc(θ
[j(`)](`), θ[m](`)) + kprop

(

r − distc(θ
[j(`)](`), θ[m](`))

)

= kpropr + (1 − kprop) distc(θ
[j(`)](`), θ[m](`)) ≥ kpropr,

where the first inequality follows from the fact that at time` there can be no agent whose clockwise distance to

agentm is less than(r − distc(θ
[j(`)](`), θ[m](`))). In summary, either agentk changes direction of motion or at

each instant of time its distance to the closest agent withprior equal toN decreases bykpropr. This implies

tk ≤ 2π

kprop
r−1.

Now, we distinguish two cases: (a)k = N − 1, and (b)k < N − 1. In case (a), aftertN−1 ≤ 2π
kprop

r−1 steps, the

agentN −1 moves in the clockwise direction and hasprior[N−1](tN−1) = N . In the remainder of the evolution,

the messageprior = N travels faster throughout the network composed ofN agents than if only agents with

identities in{1, . . . , N−1} were present. Therefore, by the induction hypothesis,TC(Tdrctn, CCagr-pursuit) ∈ O(r−1).

In case (b), the messageprior = N travels faster throughout the network composed ofN agents than if only

agents with identities in{1, . . . , N − 2} ∪ {N} were present. Again by the induction hypothesis, we conclude

TC(Tdrctn, CCagr-pursuit) ∈ O(r−1).

STEP 2:We now prove the lower bound in (i). Ifr > π, then1
r < 1

π , and the upper bound readsTC(Tdrctn, CCagr-pursuit) ∈

O(1). Obviously, the time complexity of any evolution with an initial configuration wheredrctn[i](0) = cc for

i ∈ {1, . . . , N−1}, drctn[N ](0) = c andEr-disk(θ
[1](0), . . . , θ[N ](0)) is the complete graph, is lower bounded by1.

DRAFT June 25, 2006
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Therefore,TC(Tdrctn, CCagr-pursuit) ∈ Ω(1). Sincer > π, we concludeTC(Tdrctn, CCagr-pursuit) ∈ Θ(r−1). Assume

thenr ≤ π. Consider an initial configuration wheredrctn[i](0) = cc for i ∈ {1, . . . , N − 1}, drctn[N ](0) = c,

and the agents are placed as depicted in Figure 3. Note that the displacement of each agent is upper bounded by

N − 1

1

N

Fig. 3. Initial condition for the lower bound forTC(Tdrctn, CCagr-pursuit), with 0 < distc(θ[N−1](0), θ[N ](0)) − r < ε and

distc(θ[1](0), θ[N−1](0)) ≤ r − ε, for some fixedε > 0.

kpropr ≤ r
2 . Therefore, the number of time steps that takes agent1 to receive the messageprior = N is lower

bounded by
⌊

2π
r − 2

⌋

. We concludeTC(Tdrctn, CCagr-pursuit) ∈ Ω(r−1).

STEP 3:We now prove the upper bound in (ii). We assume thatTdrctn has been achieved (so that all agents are

moving clockwise), and we first prove a fact regarding connectivity. At time ` ∈ N0, let H(`) be the union of all

the empty “circular segments” of length at leastr, that is, let

H(`) =
{

x ∈ S
1 | min

i∈I
distc(x, θ[i](`)) + min

j∈I
distcc(x, θ[j](`)) > r

}

.

In other words,H(`) does not contain any point between two agents separated by a distance less thanr, and each

connected component ofH(`) has length at leastr. Let nH(`) be the number of connected components ofH(`),

if H(`) is empty, then we take the convention thatnH(`) = 0. Clearly,nH(`) ≤ N . We claim that, ifnH(`) > 0,

then t 7→ nH(` + t) is non-increasing. Letd(`) < r be the distance between any two consecutive agents at time`.

Because both agents move in the same direction, a simple calculation shows that

d(` + 1) ≤ d(`) + kprop(r − d(`)) = (1 − kprop)d(`) + kpropr < (1 − kprop)r + kpropr = r.

This means that the two agents remain within distancer and, therefore connected, at the following time instant.

Because the number of connected components ofEr(θ
[1], . . . , θ[N ]) does not increase, it follows that the number

of connected components ofH cannot increase. Next we claim that, ifnH(`) > 0, then there existst > ` such that

nH(t) < nH(`). By contradiction, assumenH(`) = nH(t) for all t > `. Without loss of generality, let{1, . . . ,m}

be a set of agents with the properties thatdistcc
(

θ[i](`), θ[i+1](`)
)

≤ r, for i ∈ {1, . . . ,m}, thatθ[1](`) andθ[m](`)
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belong to the boundary ofH(`), and that there is no other set with the same properties and more agents. (Note

that this implies that the agents1, . . . ,m are in counterclockwise order.) One can show that, fort ≥ `,

θ[1](t + 1) = θ[1](t) − kpropr,

θ[i](t + 1) = θ[i](t) − kpropdistc(θ
[i](t), θ[i−1](t)), i ∈ {2, . . . ,m}.

If we defined(t) =
(

distcc(θ
[1](t), θ[2](t)), . . . ,distcc(θ

[m−1](t), θ[m](t))
)

∈ R
m−1
>0 , then the previous equations

can be rewritten as

d(t + 1) = Tridm−1(kprop, 1 − kprop, 0) d(t) + r[kprop, 0, · · · , 0]T ,

where the linear map(a, b, c) 7→ Tridm−1(a, b, c) ∈ R
(m−1)×(m−1) is defined in Appendix A. This is a discrete-

time affine time-invariant dynamical system with unique equilibrium point r(1, . . . , 1). By Theorem A.3(ii) in

Appendix A, forη ∈]0, 1[, the solutiont 7→ d(t) to this system reaches a ball of radiusη centered at the equilibrium

point in timeO(m log m + log η−1). (Here we used the fact that the initial condition of this system is bounded.)

In turn, this implies thatt 7→ ∑m
i=1 di(t) is larger than(m − 1)(r − η) in time O(m log m + log η−1). We are

now ready to find the contradiction and show thatnH(t) cannot remain equal tonH(`) for all time t. After time

O(m log m + log η−1) = O(N log N + log η−1), we have:

2π ≥ nH(`)r +

nH(`)
∑

j=1

(r − η)(mj − 1) = nH(`)r + (N − nH(`))(r − η) = nH(`)η + N(r − η).

Herem1, . . . ,mnH(`) are the number of agents in each isolated group, and each connected component ofH(`) has

length at leastr. Now, takeη = Nr−2π
N = α

N , and the contradiction follows from

2π ≥ nH(`)η + Nr − Nη = nH(`)η + Nr + 2π − Nr = nH(`)η + 2π.

In summary this shows that, in timeO(N log N + log η−1) = O(N log N + log α−1), the number of connected

components ofH will decrease by one. Therefore, in timeO(N2 log N +N log α−1) the setH will become empty.

At that time, the resulting network will obey the discrete-time linear time-invariant dynamical system:

d(t + 1) = CircN (kprop, 1 − kprop, 0) d(t). (4)

Here d(t) =
(

distcc(θ
[1](t), θ[2](t)), . . . ,distcc(θ

[N ](t), θ[N+1](t))
)

∈ R
N
>0, with the conventionθ[N+1] = θ[1].

By Theorem A.3(iii) in Appendix A, in timeO
(

N2 log ε−1
)

, the error2-norm satisfies the contraction inequality

‖d(`)− d∗
∥

∥

2
≤ ε‖d(0)− d∗‖2, for d∗ = 2π

N 1. We convert this inequality on2-norms into an appropriate inequality
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on ∞-norms as follows. Note that‖d(0) − d∗‖∞ = maxi∈I |d[i](0) − d
[i]
∗ | ≤ 2π. For ` of orderN2 log η−1,

‖d(`) − d∗‖∞ ≤ ‖d(`) − d∗‖2 ≤ η‖d(0) − d∗‖2 ≤ η
√

N‖d(0) − d∗‖∞ ≤ η2π
√

N.

This means that the desired configuration is achieved forη2π
√

N = ε, that is, in timeO(N2 log η−1) = O(N2 log(Nε−1)).

In summary, the equidistance task is achieved in timeO(N2 log(Nε−1) + N log α−1).

STEP 4:Finally, we prove the lower bound in (ii). We consider an initial configuration with the properties that

(i) agents are counterclockwise-ordered according to their unique identifier, (ii) the setH is empty, and (iii) the

inter-agent distancesd(0) =
(

distcc(θ
[1](0), θ[2](0)), . . . ,distcc(θ

[N ](0), θ[1](0))
)

are given by

d(0) =
2π

N
1 + k(vN + vN ),

wherevN is the eigenvector ofCircN (kprop, 1−kprop, 0) corresponding to the eigenvalue1−kprop+kpropcos
(

2π
N

)

−

kprop
√
−1 sin

(

2π
N

)

(see Appendix A), andkprop > 0 is chosen sufficiently small so thatd(0) ∈ R
N
>0. By Theo-

rem A.3(iii) in Appendix A, the solutiont 7→ d(t) reaches the desired configuration in timeΘ(N2 log ε−1) with

an error whose2-norm, and therefore, its∞-norm is of orderε. This concludes the result.

To conclude this section, we study the total communication complexity of the agree-and-pursue control and

communication law. We consider the case of a unidirectionalcommunication model with one-round cost function

depending linearly on the cardinality of the communicationgraph. Because it is always true thatTCC(T, CC) ≤

MCC(T, CC) · TC(T, CC) and because of Theorem IV.1, we deduce the following bounds

TCCunidir(Tdrctn, CCagr-pursuit) ∈ O(N2r−1),

TCCunidir(Tε-eqdstnc, CCagr-pursuit) ∈ O(N4 log(Nε−1) + N3 log α−1),

since the number of edges inEr-disk is in O(N2). The next result gives a more accurate estimate.

Theorem IV.2 (Total communication complexity of agree-and-pursue law) For kprop ∈]0, 1
2 [, r ∈]0, 2π], α =

Nr − 2π and ε ∈]0, 1[, the networkScircle, the lawCCagr-pursuit, and the tasksTdrctn and Tε-eqdstnc together satisfy:

(i) the boundTCCunidir(Tdrctn, CCagr-pursuit) = Θ(N2r−1);

(ii) if α > 0, the upper boundTCCunidir(Tε-eqdstnc, CCagr-pursuit) ∈ O((α+1)N2(N log N+log α−1)+N4 log(ε−1))

and the lower boundΩ(N3α log ε−1).

(These estimates are to be understood asN → +∞, ε → 0+, r → 0+, and for any possible limit ofα = Nr−2π.)
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Proof: We follow the steps and notation in the proof of Theorem IV.1.The lower bound in (i) can be readily

deduced by examining the evolution of the two initial configurations employed in the proof of Theorem IV.1 to prove

the lower bound on the time complexity. Regarding (ii), let us consider first the case whennH(0) = 0. In this case,

the network obeys the discrete-time linear time-invariantdynamical system (4). By Theorem A.3(iii) in Appendix A,

the desired configuration is reached in timeΘ(N2 log ε−1) with an error whose2-norm, and therefore, its∞-norm

is of orderε. In this case, one can see that the number of edges inEr-disk is upper bounded byO(N2) and lower

bounded byΩ(αN). From here, we deduce the upper boundO(N4 log ε−1) and the lower boundΩ(N3α log ε−1)

on the total communication complexity.

Consider now the case whennH(0) > 0. Let t∗ be the time it takes the network to reduce the number of

connected components ofH to nH(0) − 1. We treat the two possible situations (i)t∗ ∈ Θ(N log N + log α−1)

and (ii) t∗ � Θ(N log N + log α−1). In the case (i), each isolated group of agents reaches a ballof radiusη = α
N

centered at the equilibrium pointr(1, . . . , 1). Up to t∗, the total communication complexity is then upper bounded

by O(N3 log N +N2 log α−1). After time t∗, each agent hasO(α) neighbors, and therefore we obtain the following

upper bound on the total communication complexity

O(N3α log N + N2α log α−1)

up to the instant when the setH becomes empty. In the case (ii), let us redefinet∗ to be the time it takes the

network to reduce the number of connected components ofH to nH(0)−2. Again, either (i) or (ii) might hold true

for t∗. Proceeding inductively, we only have to upper bound the total communication complexity whent∗ keeps

falling in case (ii). In this situation, one can bound the total communication complexity up to the instant when the

setH becomes empty byO(N3 log N + N2 log α−1). The statement of the theorem then follows.

Remark IV.3 (Comparison with leader election) Let us compare the agree-and-pursue control and communica-

tion law with the classical Lann-Chang-Roberts (LCR) algorithm for leader election (see [3, Chapter 3.3]). The

leader election coordination task consists of electing a unique agent among all agents in the network. It is therefore

slightly different from, but closely related to, the coordination taskTdrctn. The LCR algorithm operates on a static

network with the ring communication topology, and achievesleader election with time and total communication

complexity, respectively,Θ(N) andΘ(N2). The agree-and-pursue law operates on a robotic network with ther-disk

communication topology, and achievesTdrctn with time and total communication complexity, respectively, Θ(r−1)

andΘ(N2r−1). Interestingly, the mobility of the network together with the richer communication topology speeds
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up the completion of the task, without compromising the total communication complexity. •

V. CONCLUSIONS

We have introduced a formal model for the design and analysisof coordination algorithms executed by networks

composed of robotic agents. In this framework motion coordination algorithms are formalized as feedback control

and communication laws. Drawing analogies with the discipline of distributed algorithms, we have defined two

measures of complexity for control and communication laws:the time and the mean communication complexity

of achieving a specific task. We have defined the notion of re-scheduling of a control and communication law

and analyzed the invariance of the proposed complexity measures under this operation. These concepts and results

are illustrated in a network of locally connected agents on the circle executing a novel “agree-and-pursue” motion

coordination algorithm that combines elements of the leader election and cyclic pursuit problems.

The proposed notions allow us to compare the scalability properties of different coordination algorithms with

regards to performance and communication costs. Numerous avenues for future research appear open. An incomplete

list include: (i) modeling of asynchronous networks (see however [21], [22], [7]); (ii) robustness analysis with respect

to failures in the agents (arrivals/departures) and in the communication links (see however [16], [23], [24], [25]);

(iii) probabilistic versions of the complexity measures that capture, for instance, the expected performance and

cost of coordination algorithms (see however [9]); (iv) quantization and delays in the communication channels (see

however [26] and the literature on quantized control); and (v) parallel, sequential and hierarchical composition

of control and communication laws. On the algorithmic side,the companion paper [14] provides time-complexity

estimates for coordination algorithms that achieve rendezvous and deployment, and discusses other open questions.
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APPENDIX A

TRIDIAGONAL TOEPLITZ AND CIRCULANT DYNAMICAL SYSTEMS

This section presents some key facts about convergence rates of discrete-time dynamical systems defined by certain

classes of Toeplitz matrices, see [27]. To the best of our knowledge, the results presented below in Theorems A.3

and A.4 are novel contributions; see also [13], [28] for somerelated results for a different class of circulant matrices.

For N ≥ 2 anda, b, c ∈ R, define theN × N Toeplitz matricesTridN (a, b, c) andCircN (a, b, c) by

TridN (a, b, c) =





























b c 0 . . . 0

a b c . . . 0

...
.. .

. . .
.. .

...

0 . . . a b c

0 . . . 0 a b





























, CircN (a, b, c) = TridN (a, b, c) +





























0 . . . . . . 0 a

0 . . . . . . 0 0

...
. . .

. ..
. . .

...

0 0 . . . 0 0

c 0 . . . 0 0





























.

The matricesTridN andCircN are tridiagonal and circulant, respectively. The two matrices only differ in their(1, N)

and (N, 1) entries. Note our convention thatC2(a, b, c) =







b a + c

a + c b






. The following results are discussed,

for example, in [27, Example 7.2.5 and Exercise 7.2.20].

Lemma A.1 (Eigenvalues of tridiagonal Toeplitz and circulant matrices) For N ≥ 2 and a, b, c ∈ R, the

following statements hold:
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(i) for ac 6= 0, the eigenvalues and eigenvectors ofTridN (a, b, c) are, for i ∈ {1, . . . , N},

b+2c

√

a

c
cos

(

iπ

N + 1

)

,
[ (a

c

)1/2

sin

(

iπ

N + 1

)

,
(a

c

)2/2

sin

(

2iπ

N + 1

)

, · · · ,
(a

c

)N/2

sin

(

Niπ

N + 1

)

]T

;

(ii) the eigenvalues and eigenvectors ofCircN (a, b, c) are, for ω = exp(2π
√−1
N ) and for i ∈ {1, . . . , N},

b + (a + c) cos

(

i2π

N

)

+
√
−1(c − a) sin

(

i2π

N

)

, and
[

1, ωi, · · · , ω(N−1)i
]T

. •

Remarks A.2 (i) The set of eigenvalues ofTridN (a, b, c) is contained in the real interval[b−2
√

ac, b+2
√

ac],

if ac ≥ 0, and in the interval in the complex plane[b − 2
√
−1
√

|ac|, b + 2
√
−1
√

|ac|], if ac ≤ 0.

(ii) The set of eigenvalues ofCircN (a, b, c) is contained in the ellipse on the complex plane with centerb,

horizontal axis2|a + c| and vertical axis2|c − a|.

(iii) Recall from [27] that (1) a square matrix is normal if ithas a complete orthonormal set of eigenvectors,

(2) circulant matrices and real-symmetric matrices are normal, and (3) if a normal matrix has eigenvalues

{λ1, . . . , λn}, then its singular values are{|λ1|, . . . , |λn|}. •

We can now state the main result of this section.

Theorem A.3 (Tridiagonal Toeplitz and circulant dynamical systems)Let N ≥ 2, ε ∈]0, 1[, and a, b, c ∈ R.

Let x : N0 → R
N and y : N0 → R

N be solutions to

x(` + 1) = TridN (a, b, c)x(`), y(` + 1) = CircN (a, b, c) y(`),

with initial conditionsx(0) = x0 and y(0) = y0, respectively. The following statements hold:

(i) if a = c 6= 0 and|b|+2|a| = 1, thenlim`→+∞ x(`) = 0, and the maximum time required for‖x(`)‖2 ≤ ε‖x0‖2

(over all initial conditionsx0 ∈ R
N ) is Θ

(

N2 log ε−1
)

;

(ii) if a 6= 0, c = 0 and 0 < |b| < 1, then lim`→+∞ x(`) = 0, and the maximum time required for‖x(`)‖2 ≤

ε‖x0‖2 (over all initial conditionsx0 ∈ R
N ) is O

(

N log N + log ε−1
)

;

(iii) if a ≥ 0, c ≥ 0, b > 0, anda+b+c = 1, thenlim`→+∞ y(`) = yave1, whereyave = 1
N 1

T y0, and the maximum

time required for‖y(`)− yave1‖2 ≤ ε‖y0 − yave1‖2 (over all initial conditionsy0 ∈ R
N ) is Θ

(

N2 log ε−1
)

.•

Proof: Let us prove fact (i). We start by bounding from above the eigenvalue with largest absolute value, that

is, the largest singular value, ofTridN (a, b, a):

max
i∈{1,...,N}

∣

∣

∣

∣

b + 2a cos

(

iπ

N + 1

)∣

∣

∣

∣

≤ |b| + 2|a| max
i∈{1,...,N}

∣

∣

∣

∣

cos

(

iπ

N + 1

)∣

∣

∣

∣

≤ |b| + 2|a| cos

(

π

N + 1

)

.
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Becausecos( π
N+1 ) < 1 for anyN ≥ 2, the matrixTridN (a, b, a) is stable. Additionally, for̀ > 0, we bound from

above the magnitude of the curvex as

‖x(`)‖2 = ‖TridN (a, b, a)`x0‖2 ≤
(

|b| + 2|a| cos

(

π

N + 1

))`

‖x0‖2.

In order to have‖x(`)‖2 < ε‖x0‖2, it is sufficient that̀ log
(

|b| + 2|a| cos
(

π
N + 1

))

< log ε, that is

` >
log ε−1

− log
(

|b| + 2|a| cos
(

π
N + 1

)) . (A.5)

To show the upper bound, note that ast → 0 we have

− 1

log(1 − 2|a|(1 − cos t))
=

1

|a|t2 + O(1).

Now, assume without loss of generality thatab > 0 and consider the eigenvalueb+2a cos( π
N+1 ) of TridN (a, b, a).

Note that|b + 2a cos( π
N+1 )| = |b|+ 2|a| cos( π

N+1 ). (If ab < 0, then consider the eigenvalueb + 2a cos( Nπ
N+1 ).) For

N > 2, define the unit-length vector

vN =

√

2

N + 1

[

sin
π

N + 1
, · · · , sin

Nπ

N + 1

]T

∈ R
N , (A.6)

and note that, by Lemma A.1(i),vN is an eigenvector ofTridN (a, b, a) with eigenvalueb + 2a cos( π
N+1 ). Note

also that all components ofvN are positive. The trajectoryx with initial condition vN satisfies‖x(`)‖2 =
(

|b| + 2|a| cos
(

π
N+1

))`

‖vN‖2 and, therefore, it will enterB(0, ε‖vN‖2) only when` satisfies (A.5). This com-

pletes the proof of fact (i).

Next we consider statement (ii). Clearly,TridN (a, b, 0) is stable. For̀ > 0, we compute

TridN (a, b, 0)` = b`
(

IN +
a

b
TridN (1, 0, 0)

)`

= b`
N−1
∑

j=0

`!

j!(` − j)!

(a

b

)j

TridN (1, 0, 0)j

because of the nilpotency ofTridN (1, 0, 0). Now we can bound from above the magnitude of the curvex as

‖x(`)‖2 = ‖TridN (a, b, 0)`x0‖2 ≤ |b|`
N−1
∑

j=0

`!

j!(` − j)!

(a

b

)j
∥

∥TridN (1, 0, 0)jx0

∥

∥

2

≤ ea/b`N−1 |b|` ‖x0‖2.

Here we used‖TridN (1, 0, 0)jx0‖2 ≤ ‖x0‖2 andmax{ `!
(`−j)! | j ∈ {0, . . . , N − 1}} ≤ `N−1. Therefore, in order

to have‖x(`)‖2 < ε‖x0‖2, it suffices thatlog(ea/b) + (N − 1) log ` + ` log |b| ≤ log ε, that is

` − N − 1

− log |b| log ` >
a
b − log ε

− log |b| .
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A sufficient condition for` − α log ` > β, for α, β > 0, is that` ≥ 2β + 2α max{1, log α}. For, if ` ≥ 2α, then

log ` is bounded from above by the linè/2α + log α. Furthermore, the linè/2α + log α is a lower bound for the

line (` − β)/α if ` ≥ 2β + 2α log α. In summary, it is true that‖x(`)‖2 ≤ ε‖x(0)‖2 whenever

` ≥ 2
a
b − log ε

− log |b| + 2
N − 1

− log |b| max

{

1, log
N − 1

− log |b|

}

.

This completes the proof of the upper bound, that is, fact (ii).

The proof of fact (iii) is similar to that of fact (i). We analyze the singular values ofCircN (a, b, c). It is clear

that the eigenvalue corresponding toi = N is equal to1; this is the largest singular value ofCircN (a, b, c) and the

corresponding eigenvector is1. In the orthogonal decomposition induced by the eigenvectors of CircN (a, b, c), the

vectory0 has a componentyave along the eigenvector1. We now compute the second largest singular value:

max
i∈{1,...,N−1}

∣

∣

∣

∣

b + (a + c) cos

(

i2π

N

)

+
√
−1(c − a) sin

(

i2π

N

)∣

∣

∣

∣

=

∣

∣

∣

∣

1 − (a + c)
(

1 − cos
(2π

N

)

)

+
√
−1(c − a) sin

(

2π

N

)
∣

∣

∣

∣

.

Here | · | is the norm inC. Because of the assumptions ona, b, c, the second largest singular value is strictly less

than1. For ` > 0, we bound the distance of the curvey(`) from yave1 as

‖y(`) − yave1‖2 = ‖CircN (a, b, c)`y0 − yave1‖2 = ‖CircN (a, b, c)`
(

y0 − yave1
)

‖2

≤
∣

∣

∣

∣

1 − (a + c)
(

1 − cos
(2π

N

)

)

+
√
−1(c − a) sin

(

2π

N

)∣

∣

∣

∣

`

‖y0 − yave1‖2.

This proves thatlim`→+∞ y(`) = yave1. Also, for α = a + c, β = c − a and ast → 0, we have

− 1

log
(

(

1 − α(1 − cos t)
)2

+ β2 sin2 t
)1/2

=
2

(α − β2)t2
+ O(1).

Hereβ2 < α becausea, c ∈]0, 1[. From this, one deduces the upper bound in (iii).

Now, consider the eigenvaluesλN = b + (a + c) cos
(

2π
N

)

+
√
−1(c − a) sin

(

2π
N

)

and λN = b + (a +

c) cos
(

(N−1)2π
N

)

+
√
−1(c−a) sin

(

(N−1)2π
N

)

of CircN (a, b, c), and its associated eigenvectors (cf. Lemma A.1(ii))

vN =
[

1, w, · · · , wN−1
]T

∈ C
N , vN =

[

1, wN−1, · · · , w
]T

∈ C
N . (A.7)

Note that the vectorvN + vN belongs toR
N . Moreover, its componentyave along the eigenvector1 is 0. The

trajectoryy with initial condition vN + vN satisfies‖y(`)‖2 = ‖λ`
NvN + λ

`

NvN‖2 = |λN |`‖vN + vN‖2 and,

therefore, it will enterB(0, ε‖vN + vN‖2) only when

` >
log ε−1

− log
∣

∣

∣
1 − (a + c)

(

1 − cos
(

2π
N

)

)

+
√
−1(c − a) sin

(

2π
N

)

∣

∣

∣

.
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This completes the proof of fact (iii).

Next, we extend these results to another interesting set of matrices. ForN ≥ 2 anda, b ∈ R, define theN × N

augmented tridiagonal matricesATrid+
N (a, b) andATrid−

N (a, b) by

ATrid±
N (a, b) = TridN (a, b, a) ±





























a 0 . . . . . . 0

0 0 . . . . . . 0

...
. ..

. ..
. ..

...

0 . . . . . . 0 0

0 . . . . . . 0 a





























.

If we define

P+ =





































1 1 0 0 . . . 0

1 −1 1 0 . . . 0

1 0 −1 1 . . . 0

...
. ..

. . .
. ..

1 0 . . . 0 −1 1

1 0 . . . 0 0 −1





































, P− =





































1 1 0 0 . . . 0

−1 1 1 0 . . . 0

1 0 1 1 . . . 0

...
. ..

. . .
. ..

(−1)N−2 0 . . . 0 1 1

(−1)N−1 0 . . . 0 0 1





































,

then the following similarity transforms are satisfied:

ATrid±
N (a, b) = P±







b ± 2a 0

0 TridN−1(a, b, a)






P−1
± , (A.8)

To analyze the convergence properties of the dynamical systems determined byATrid+
N (a, b) and ATrid−

N (a, b),

we recall that1T = (1, . . . , 1) ∈ R
N , and we define1− = (1,−1, 1, . . . , (−1)N−2, (−1)N−1)T ∈ R

N .

Theorem A.4 (Augmented tridiagonal Toeplitz dynamical systems) Let N ≥ 2, ε ∈]0, 1[, and a, b ∈ R with

a 6= 0 and |b| + 2|a| = 1. Let x : N0 → R
N and z : N0 → R

N be solutions to

x(` + 1) = ATrid+
N (a, b)x(`), z(` + 1) = ATrid−

N (a, b) z(`),

with initial conditionsx(0) = x0 and z(0) = z0, respectively. The following statements hold:

(i) lim`→+∞
(

x(`) − xave(`)1
)

= 0, wherexave(`) = ( 1
N 1

T x0)(b + 2a)`, and the maximum time required for

‖x(`) − xave(`)1‖2 ≤ ε‖x0 − xave(0)1‖2 (over all initial conditionsx0 ∈ R
N ) is Θ

(

N2 log ε−1
)

;

(ii) lim`→+∞
(

z(`) − zave(`)1−
)

= 0, wherezave(`) = ( 1
N 1

T
−z0)(b − 2a)`, and the maximum time required for

‖z(`) − zave(`)1−‖2 ≤ ε‖z0 − zave(0)1−‖2 (over all initial conditionsz0 ∈ R
N ) is Θ

(

N2 log ε−1
)

. •
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Proof: We prove fact (i) and remark that the proof of fact (ii) is analogous. Consider the change of coordinates

x(`) = P+







x′
ave(`)

y(`)






= x′

ave(`)1 + P+







0

y(`)






,

where x′
ave(`) ∈ R and y(`) ∈ R

N−1. A quick calculation shows thatx′
ave(`) = 1

N 1
T x(`), and the similarity

transformation described in equation (A.8) implies

y(` + 1) = TridN−1(a, b, a) y(`), and x′
ave(` + 1) = (b + 2a)x′

ave(`).

Therefore,xave = x′
ave. It is also clear that

x(` + 1) − xave(` + 1)1 = P+







0

y(` + 1)






=

(

P+







0 0

0 TridN−1(a, b, a)






P−1

+

)

(x(`) − xave(`)1).

Consider the matrix in parenthesis determining the trajectory ` 7→ (x(`) − xave(`)1). This matrix is symmetric, its

eigenvalues are0 and the eigenvalues ofTridN−1(a, b, a), and its eigenvectors areP+(1, 0, . . . , 0) ∈ R
N and the

eigenvectors ofTridN−1(a, b, a), padded with an extra zero and premultiplied byP+. These facts are sufficient to

duplicate, step by step, the proof of fact (i) in Theorem A.3.Therefore, fact (i) follows.

We conclude this append with some useful bounds whose proof is straightforward in coordinates.

Lemma A.5 Assumex ∈ R
N , y ∈ R

N−1 and z ∈ R
N−1 jointly satisfy

x = P+







0

y






, x = P−







0

z






.

Then 1
2‖x‖2 ≤ ‖y‖2 ≤ (N − 1)‖x‖2 and 1

2‖x‖2 ≤ ‖z‖2 ≤ (N − 1)‖x‖2. •
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