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Sensing limitations in the Lion and Man problem

Shaunak D. Bopardikar

Abstract— We address the discrete-time Lion and Man prob-
lem in a bounded, convex, planar environment in which both

players have identical sensing ranges, restricted to closed discs

about their current locations. The evader is randomly located

inside the environment and moves only when detected. The
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of the evader, reduces the problem to the previously-studie
problem with unlimited sensing. The analysis allows us to
give a novel upper bound on the time required for the pursuit
phase to terminate. Further, we give a sufficient condition o

players can step inside identical closed discs, centered at the value of the ratio of sensing to stepping radiusf the

their respective positions. We propose aweep-pursuit-capture

strategy for the pursuer to capture the evader. Thesweep phase

is a search operation by the pursuer to detect an evader within
its sensing radius. In thepursuit phase, the pursuer employs a
greedy strategy of moving to the last-sensed evader position. We
show that in finite time, the problem reduces to a previously-
studied problem with unlimited sensing, which allows us to use
the establishedLion strategy in the capture phase. We give a
novel upper bound on the time required for the pursuit phase
to terminate using the greedy strategy and a sufficient condition
for this strategy to work in terms of the value of the ratio of

sensing to stepping radius of the players.

I. INTRODUCTION

The classical Lion-Man problem is a game posed
to determine a strategy for a pursuer(lion) to capture
evader(man) in a given environment. Bgpture we mean

players, so that capture takes place in a given finite, convex
environment. Finally, we demonstrate using an example that
for sufficiently smallk, there exists a condition on the size of
the environment that guarantees escape for the evadesagain
the greedy strategy of the pursuer.

B. Related Work

The continuous time version of this problem has been
studied by Hoet al. [2], Lim et al. [3] and Pachter [4] to
cite a few. Recently, significant attention has been redeive
by the discrete-time version of the game. The paper by
Sgall [5] gives sufficient conditions for a single pursuer to

agapture an evader in a semi-open environment. This strategy
almas been extended by Kopparty and Ravishankar [6] to the
case of multiple pursuers,in an unbounded environment, to

that the evader and the pursuer at the same position aftecapture a single evader initially located inside their @nv
finite time. The aim of the pursuer is to capture the evaddwll. Recently, Alexandeet al. [7] proposed a simplgreedy

for any evader trajectory. The evader wins the game if it castrategy in which the pursuer moves towards the last positio
avoid capture indefinitely. Both the players have identicabf the evader and characterize environments in which the

motion capabilities. An important application of this plein
is in surveillance of robotic networks. It is also an intéires
case-study, instructive on its own right.

A. Contributions

strategy is guaranteed to work. Our analysis gives upper
bounds on the time in all three phases of our strategy.
We also provide an improved range of values forthat

ensures capture, compared to the earlier known results on
the strategy. The game has also been studied in different

We address the case of limited sensing capability: thgpes of bounded environments, e.g., circular environrbgnt
pursuer and the evader can sense each other's positiglonsoet al. [8], curved environments by LaVallet al. [9].
only if the distance between them is less than or equaiisibility-based pursuit evasion has been studied by Gaiiba
to a given sensing radius. The motion of both players ist al.[10], Sachset al. [11] and in polygonal environments
restricted to closed discs of given stepping radius, cedterpy Isler et al. [12].
at their respective current positions. The game is played in Each of above mentioned works proposes strategies which
a bounded, convex, planar environment which is assumegquire that the pursuers have unlimited sensing capauity.
to be known to both players. The evader is at an arbitrampis context, Gerkeyet al. [13] have studied a version of
location inside the environment, at the start of the game. \fsibility limited to an angle, instead of the entire region
follows areactive rabbitmodel, i.e., does not move until it This is termed asearching using a flashlighSuzuki and

senses a pursuer [1]. The pursisveepsthe environment

Yamashita have studied visibility limited t&-searchers,

in a definite path until the evader is sensed, which musihere the pursuer has such finite angle search flashlights
necessarily happen in finite time. We then establish how [a4]. Isler et al. [1] have considered the problem on a graph,

naturalgreedy strategyf moving to thelast-sensedocation
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C. Organization 1. THE SWEEP-PURSUIT-CAPTURE STRATEGY

The problem formulation is described in section Il. The We establish sufficient conditions on the parameteso
pursuer strategy is described using three phases giventhat the pursuer can capture the evader. We formally define
sections IlI-A, 11I-B and 11I-C, with section IlI-A descridbg  two notions ofcaptureas follows.
the sweep strategy, section IlI-B discussing the aspects of

the greedy strategy and finally section Ill-C showing thyefinition 111.1 (Capture notions) The pursuer is said to

application of the Lion strategy [5] for completing thepayecapturedihe evader if after finite time, independent of

capture. any evader policy:®, the pursuer is at the same position as
the evader.

Il. PROBLEM SET-UP Similarly, the pursuer is said to haveappedthe evader
ithin its sensing radius if after a finite time, independent
f any evader policy:¢, the motion circle of the evader is

cpmpletely contained within the sensing circle of the persu
fter sensing the evader, thepping timet* is defined as

We assume that initially the evader is arbitrarily locate
inside a bounded, convex, planar environme@t,C R2.
We assume a discrete-time model with alternate motion
the-evader and Fhe pursuer. Both pla_yers knoyv the em'[ﬁe time taken by the pursuer to trap the evader within its
environment. Defin@, = QU¢, whereQ is the environment sensing radius
and ¢ is the null element. Here, the null element refers to '
the fact that during sensing, the measurement of the positio \we now describe theweep-pursuit-capturstrategy.
of an evader may not be available to the pursuer. d[gt
andplt] denote the absolute positions of the evader and the The Sweep phase
pursuer respectively, at time The equations of motion, in

discrete-time, can be written as, Let diam(Q) denote the diameter of. The pursuer

moves along a path with maximum step size such that the
union of the sensing discs of the pursuer at the end of each
e[t + 1] = e[t] + u®(e[t], y*[t]), step containg). We term such a path assaveeping path
plt+ 1] = plt] + uP(e[t], y°[t + 1], plt]), for Q. Consider placing inside a square region of length
diam(Q) and the pursuer moving along a sweeping path
where y?[t] € Q. is the measurement of the pursuerfor the square region, as shown in Figure 1. The sweeping
position taken by the evader at th& time instant and path is between strips of WidtBrsiep /K2 — i, parallel to

y°[t + 1] € Qe is the measurement of the evader position % diam(Q)

27'step\/ K2— i
- + [y/K? — 1| to sweep one strip
step

completely and position the pursuer at the start of a new

strip. We obtain the following result.

taken by the pursuer at the+1)!" time instant. We assume the side. There would b
that the players can sense each other only if the distanc dic

. K .@(es at mos diam(Q)
between them is less than or equal to the sensing radi
Tsens THUS,

w such strips and it

yP[t] = {p[t], if [[p[t] — e[t]|l < rsens

9, otherwise. Lemma 111.2 Along a sweeping path, the
pursuer senses the evader in at most
Similarly, diam(Q) (’Vdiam(Q)-‘ ’V 2 1 ) .
[mep T e | T |\/K° — 1) time steps.
elt+1], if ||p[t] —e[t+1]]| <r
yelt 4+ 1) = [ ] [p] ] [ JII < 7sens
o, otherwise.
The functionsu® : Qe x Q@ — Q and u? : Qe X Qe X Fig. 1. A sweeping path

Q — Q are termed astrategiesfor the evader and pursuer
respectively. We assume that both players can move with a
maximum step size ofsiep This gives,

This phase ends when the pursuer senses the evader.

B. The Pursuit phase

luell, [[uP]] < Tstep Once the pursuer has sensed the evader (and vice-versa),
the evader needs to move in such a way that its new position

The sensing radiuseens is « times the motion radiusie,  is not within the current sensing radius of the pursuer.
Throughout this paper, we assumds greater than 1, i.e., Otherwise the pursuer can move towards the new position
both players can sense further than they can move. From tbethe evader, with maximum step and thus trap it within
reactive rabbitmodel for the evader, we hawe¢ = 0 until its sensing disc. We now propose a greedy policy for the
the evader is detected. After this happens, the problem is poirsuer according to which the pursuer must move towards
determineu? that guarantees capture for any evader strategi)e last sensed position of the evader so as to ensure that it
u®. would sense the evader again. Thieedystrategy applies



very naturally in our problem set-up. We define it formally
using the following control input for the pursuer,

P _ Tstepvers(ye[t + 1] - p[t]), if ye[t + 1] 5& 0,
ugreedy_ :
rstepvers(elt] — plt]), otherwise.
where,
v 0
vers(v) = ¢ Il e 0
0, if v=0.

We now present our main result.

Theorem I11.3 (Greedy Pursuit) After sensing the evader,
the pursuer will trap it within its sensing radius using the
greedy strategyf

K € (V2 + 2cos e, 00),

and the trapping time* satisfies,

1 k—1
o< 08 (\/rczsin2 ﬁccosﬂc1>

< T +1| N (D)
log &
where
1 -1 1 'rstep )
- 7 tan — =< B
fe ’7diam(g)—‘ (4 diam(Q)
/3
5 T'step
A=1-— 1Losﬁc, and
K
N* = Fi\afm(g)w .
TBTstep

To prove Theorem I11.3, we need some preliminary defini-

tions and results which we present now.

Definition 111.4 (Deviation and Evasion angles)
Angle of deviationa[t] £ Ze[t + 1]p[t + 1]e[t],
Angle of evasion3[t] £ a[t] + Zp[t + 1]e[t + 1]e[t],

Fig. 2. Relation between angle of deviation and evasioneang|

pltoelto] as the angle bisector, extended to meet the
Q at point X as shown in Figure 3. LeY'Z be of
length =® and perpendicular top[tole[to] at X and
with X as its midpoint.£Y p[to] Z is called thecone
angle The cone is fixed as long as the evader is in the
interior of the cone.

For k¥ > 0, let t;, denote the time at which the evader
steps out of thé¢k—1)!" cone. Construaf;, analogous

to part (i) of this definition by replacing|to] by p[t]

and e[to] by e[tr]. Once the evader leaves the cone, a
new cone is constructed which has the same properties
as described in part (i).

Fig. 3. Construction of conéy,.

The cone described above can be shown to have some useful

where the notatioor ABC refers to the angle between Seg_propemes such as,

mentsAB and BC'. These angles are illustrated in Figure 2.
We have the following result.

Proposition IIl.7 (Cone properties)

(i) There exists a
positive angled less than or equal to any cone angle.

Proposition 111.5 When the pursuer uses the greedy strat- (i) The number of stepsy”, for which the evader can

egy, for every instant of timg

|B[t]] = lat]]- )

Note that equality in Equation (2) only holds when the evader

moves along the ling|t]e]t].

remain inside the cone without being captured, is
upper-bounded by,

Nt < {diam(g)—‘ . 3)

/3
“3 T'step

It can be deduced that when the pursuer employs the Proof:
greedy strategythe distance between the pursuer and evader(j) The first claim follows from the fact that the region is

is non-increasing.

Definition 111.6 (Cone) A sequence of coneg, for £k €
Z>¢ are defined as follows:

bounded has a finite diameteliam(Q). Hence,

i g —2tan! [ — )
p[o]I,Iel[lg]leQ a <4diam(Q)

(i) Letto denote the time at the end of the sweep phase(ii) As the pursuer moves in the cone, its step radius always

Define coneCy with p[tg] as its vertex and the line

divides the cone into 2 disjoint regions. So, the evader



cannot go from one disjoint region into the other as it
will have to move into the step radius of the pursuer,
in which case the problem is over. We claim that the
worst time path for the pursuer inside the cone, with
maximum step size at each time instant, is as shown in
Figure 4, where the length of each dotted segment is . )
Tstep 1NE Motion disc is never tangent to any boundary N2
of the cone and hence after a finite number of steps,
the pursuer will sweep the entire cone. This can be
seen by comparing the path in Figure 4 to the path in
Figure 5, where we consider a path inside a rectangle,
which is clearly greater than the path in the cone. Thwhered and N* are given in Proposition I11.7
length L of the rectangle is at most equal dtam(Q).
Thus, equation (3) follows.

Fig. 6. Constraint on maximum evasion angle

Proof: For the evader to step out of codg, the sum
of the angles of deviation for the pursuer must satisfy,

t=tr
This is illustrated in Figure 7. From Proposition II.5, we
have,

tr41
>8> 5.

t=tg
Equation (5) now follows from using the lower bound on
6, derived in part 1 of Proposition 111.7 and witN* as the
upper bound on the number of steps for the evader to remain
in the cone without being captured, as derived in part 2 of
Proposition II1.7. |

Fig. 4. A maximum length path inside a cone

Pl +’srep

Fig. 5. Upper bound on the number of steps inside a cone foruhgupr

We now state two key results which would be used shortly.

Fig. 7.

Lemma 111.8 (Maximum evasion angle) While the pur- lllustrating Lemma 111.9
suer employs the greedy policy, the maximum value of the
evasion anglefmax for the evader without stepping inside We are now ready to prove Theorem lII.3.
the pursuer’s sensing disc is given by, Proof of Theorem 111.3:Two cases need to be considered:
(i) Evader does not move out of a cofike cone has been
1 (HQ - 1)r§tep_ SQM
Bmax = cos™ )

so defined that the stepping disc of the pursuer sweeps
2S[t]rstep
Ip[t] — elt]]].

(4)

whereslt] =
Thus, the result follows.

through the cone and the stepping disc of the evader
This can be seen by applying cosine ruleplt]e[t]e[t +1],

falls completely in the sensing disc of the pursuer, in
finite time, as a result of part 2 of Proposition 111.7.

shown in Figure 6. The notatioh ABC' stands for triangle

formed by pointsA, B andC.

Lemma 111.9 (Constraint on maximum evasion angle)

For the evader to move out of any cone, described in

Definition 111.6, the maximum evasion angl@max, Must

satisfy,
0

é
IN* 501

(®)

|5max| >

Evader moves out of a contn this case, we seek to
show that the evader cannot leave an arbitrarily large
number of cones. If the evader steps outside the cone
Ck, then for somer € {tx,...,tp+1 — 1}, B[7] > Be.
Applying cosine rule toAp[r]e[r]e[r + 1], we obtain,

(ii)

$° [T+ 1] = raep+ (s[7] — rstep)”
+ 2rstep(8[7'] Tstep) cos ([],

= 52[7'] — 32[7' + 1] = 2rsieds[7] — rsiep) (1 — cos B[7]).



Using Equation (5) and the fact that,

s[T] + s[T + 1] < 2K7step,

we obtain,
. 0
S+ 1] —reep < (1 - W) (5[] Tt
(6)
Define xi = s[tx] — rseep Thus,
Xk+1 < 5[7' + 1] — T'step
_ _0
< <1 _ ““V”) (5[] — rotep
. <1 - <1<N>>> - %

where the first and third inequalities follow from the
fact that distance]t] is non-increasing in the greedy
policy and the second inequality follows from Equa-
tion (6). Since the term in the parenthesis is strictly
less than 1, the, — 0 asymptotically, which means
that the distance between the pursuer and evader tends
to rsep asymptotically. Fors > 2, the distance will
reduce to(k — 1)rsep after finite time and thus, the
motion circle of the evader is completely contained
within the sensing circle of the pursuer. Hence, the
result follows.

The case ok = 2: We have seen that the distandé
between the pursuer and evader tends asymptotically to
Tstep From Lemma I11.9, we obtain that a$t] — rstep

the anglefmax — 0. So, after some finite time,

s < oy 2 .
Thus, evader is confined to the current cone according
to Lemma 111.9 and from Proposition Ill.7 and we can
see from part (i) of this proof, that the pursuer will
trap the evader within its sensing radius.
If kK < 2: There exists a maximum value of the evasion
angle at each step, so that the evader’s next step is not
in the pursuer’s present sensing disc. This is shown in
Figure 8. The key idea of this part of the proof is that
if we ensure that this maximum angle is less than the
minimum value needed for the evader to escape a cone,
then the evader is forced to remain inside the cone and
trapping follows from part (i). The pursuer employs the
greedy strategyintil the distance is reduced to such a
value that the maximum evasion angle is less than or
equal toy(1 + ¢), where~ is the maximum evasion
angle if the evader is at'[t], on the stepping radius
of the pursuer and is some positive number. At this
time instanttsn,, let the pursuer construct a new cone,
Cﬁna|. Now if,

Fig. 8. lllustrating parameters in Equation (8)

0) = [3; for the evader to leavéna. This means that
the evader is forced to step inside the current sensing
radius of the pursuer or remain inside the final cone
Ciinal- IN both cases, the pursuer traps the evader within
its sensing radius. From Equation (8),

< mi 4 J6/
min —— = .
7 p,ecQ 2N* ¢

Applying cosine rule toAp[tle'[t]e’[t + 1],

Kk =1/242cos",
> /2 + 2cos f.

Computing upper bound on tim&Ve have seen that
when the pursuer uses the greedy policy, the evader
cannot leave arbitrarily large number of cones. Thus,
to compute an upper bound on the trapping time, we
compute an upper bound on the number of cones the
evader can leave. We have seen that ugiegdy strat-

eqgy Bmax < LB, after finite time. From Equation (4), we
want to determine that distanggfor which Gmax = e,

so that subsequently, the evader is confined to the same
cone. Thus,

sc = (y/ K2 — sin? B — cos Be)T'step

If k£ is the final cone index, then using Equation (7),

Sc— Tstep < Xk < A1 <0 < Ak(’i - 1)7’step

lfcos(wi*

where\ = 1 — ) and the worst-casgo =
(k — 1)rsep Upon simplifying,
K—1 )
\/nzfsin2 Bc—cos Bc—1
log§

log(
k<

The result now follows from the fact that for the case
of k < 2, we construct an extra final cone and the
maximum number of steps in each cone can\oe

We now provide a sufficient condition to ensure evasion,

(14 6)N* = min o 8) if the pursuer uses thgreedy strategy

pecQ 2’

where N* and# are defined in Proposition 1.7, then Remark 111.10 (Example of evasion) For x < /2, if the

for somer € {tfinal, - - -, tina + N*}, B[7] > (1 +

pursuer is following theyreedy strategynd if there exists a



closed curve2 € Q satisfying,

T'step
> _Tstep 9
Pz s C)

wherep is the radius of curvature at any point 6 then
the evader can avoid capture.

R

elt+l]  pit Rl

= Xl(= Xlto+17)

Fig. 10. Using the Lion strategy

the pursuit phase. The Lion strategy gives us the following
result.

Theorem II1.11 (Lion strategy [5]) After trapping the
evader within the sensing radius, the pursuer captures the

. 2
. . evader using thé.ion strategyin at most [d‘ami(g) time
This can be deduced from the following evader strategyé: g 9y TSep

Consider a closed curn to be a circle of radius equal to teps.

p» Which satisfies equation (9). Suppose the pursuer and theThe following result follows from a simple analysis of the
evader are orf2 as shown in Figure 9. The evader strategy jon strategy.

would be to choose a poirft + 1] on 2 such that]|e[t] —

e[t+1]]| = rsiep Sincep satisfies equation (9[t+1] willlie  Lemma I11.12 The distances|t] = ||p[t] — e[t]||, is non-

outside the pursuer's Sensing disc at timin Theorem II1.3, increasing after every move using the Lion strategy by the
we have shown that using thgreedy strategys[t| — rsep  pursuer.

asymptotically. Thus, using this strategy, the evader gaida
stepping inside the pursuer’s current sensing disc indefjni ~ The pursuit-evasion problem with limited sensing is now
solved when we state the final result.

The pursuit phase ends once the pursuer traps the evader
within its sensing radius. Theorem 111.13 When the pursuer employs the Lion strat-
egy, the motion disc of the evader is always contained inside
the sensing disc of the pursuer.

Once the evader is trapped within the sensing range of
the pursuer, the pursuer employs thien strategy[5] to Befe) (7step) © By (rsens, (10)
complete the capture. For the sake of completion, we nofér every time instant in the capture phase.
give a brief description of the Lion strategy, adapted to the
present problem setting and an upper bound on the time to Proof: Equation (10) is satisfied at the end of pursuit
capture. An upper bound for capture time has been obtaingfiase from the definition of trapping within the sensing
by Isler et al. for polygonal environments [12]. Consider aradius. The distance between pursuer and evader never
single pursuer and a single evader inside a bounded, convégreases during the greedy pursuit and the Lion strategy.
environment. In this phase, the next position of the evasler $0, equation (10) will continue to hold at each time instant
within the current sensing range of the pursuer and henceh the capture phase. u

Fig. 9. Evasion using the closed cur¢e

C. The Capture phase

Y[t + 1] = eft +1]. IV. CONCLUSION AND FUTURE DIRECTIONS

We have shown that even with sensing constrained to a
'closed disc, it is possible for a pursuer to capture an evader
(i) Atthe beginning of the(t + 1) move of the pursuer, in a bounded, convex environment. An interesting direction

the pursuer constructs the lingt]p[t], as shown in for future research is to determine the expected time the
Figure 10. Let this line intersect the environment ahyrsuer would take to capture an evader, when the evader is
X[t] such thatp[t] lies betweere[t] and X[t]. allowed to move randomly until it first senses the pursuer,
(i) The pursuer constructs the lingt + 1].X[t]. It moves jnstead of the reactive rabbit model. This problem has been
to the intersection of this line and the circle centeredolved on a finite graph by Islet al. [1].
at p[t] and of radiusrsiep Of the two possible points,  \we have shown that given any bounded, convex environ-
the pursuer moves to the point closerefo + 1]. ment, there exists a range of values for the ratio of sensing
A simple analysis reveals tha&[¢] is the same aX[toc+ to stepping radius of the players, for which the greedy
t*], fort > (to+1t*), where(to+t*) is the time at the end of strategyis guaranteed to work. We further noted that if

The Lion strategy can be applied to this phase as follows



Kk < /2, then there exists environments large enough for
which the evader has an escape policy if the pursuer uses the
greedy strategy proposed in this paper. A natural diredton
future research consists of searching for alternativeyiurs
strategies that guarantee capture for every bounded convex
environment whens < /2. Also, in the Lion strategy, the
pursuer needs to memorize either the environment or the
location of the centersX|t]. It is not clear whether there
exists any pursuer strategy which relies solely on the atirre
and possibly next positions of the evader.
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