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Multirobot rendezvous with visibility sensors
in nonconvex environments

Anurag Ganguli, Jorge Cortés, and Francesco Bullo

Abstract—This paper presents a coordination algorithm for
mobile autonomous robots. Relying upon distributed sensing,
the robots achieve rendezvous, that is, they move to a common
location. Each robot is a point mass moving in a simply
connected, nonconvex, unknown environment according to an
omnidirectional kinematic model. It is equipped with line-of-sight
limited-range sensors, i.e., it can measure the relative position of
any object (robots or environment boundary) if and only if the
object is within a given distance and there are no obstacles in-
between. The Perimeter Minimizing Algorithm is designed using
the notions of robust visibility, connectivity-preserving constraint
sets, and proximity graphs. The algorithm provably achieves
rendezvous if the inter-agent sensing graph is connected at any
time during the evolution of the group. Simulations illustrate
the theoretical results and the performance of the proposed
algorithm in asynchronous setups and with measurement errors,
control errors and non-zero robot size. Simulations to illustrate
the importance of visibility constraints and comparisons with the
optimal centralized algorithm are also included.

Index Terms—Multi-robot coordination, Cooperative control,
Distributed algorithm, Visibility, Nonlinear systems and control

I. I NTRODUCTION

Multi-agent robotic systems have been receiving increasing
attention in recent times due, in no small part, to the remark-
able advances made in recent years in the development of
small, agile, relatively inexpensive sensor nodes. Large number
of such simple nodes offer a more economical, scalable, and
robust solution than the use of fewer more expensive and
sophisticated ones.

Inspired by the work in [1], we consider the multirobot
rendezvous problem; in this basic coordination problem, we
aim to design distributed control laws to steer all robots toa
common location. The robots are assumed to move in a non-
convex environment, and have minimal sensing capabilities.
Each robot is only equipped with anomnidirectional limited-
range visibility sensor; the nomenclature is adopted from [2,
Section 11.5]. Such a sensor is a device that determines within
its line of sight and its sensing range the following quantities:
(i) the relative position of other robots, and (ii) the relative
position of the boundary of environment. Examples of some
such visibility sensors can be found in [3], [4], [5]. The sensor
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data can be processed to obtain a geometric representation
of the area visible from a robot, e.g., see [6]. Therobots
do not have any global knowledge about the environment
or the position of other robots, do not share a common
reference frame, and do not communicate.We also assume
that the algorithm regulating the robots’ motion is memoryless,
i.e., we consider static feedback laws. Given the aforesaid
model, the goal is to design a discrete-time algorithm which
ensures that the robots converge to a common location within
the environment. Please refer to Figure 1 for a graphical
illustration of rendezvous in a nonconvex environment.

Initial position of the agents Final position of the agentsEvolution of the network

Fig. 1. Illustration of rendezvous for a group of robots distributed in a
nonconvex environment shaped like a typical floor plan. The left-most figure
shows the inter-robot sensing graph.

A sub-problem addressed in this paper is that of connectivity
maintenance with visibility sensors; in other words, how
should the robots move if they are to ensure that the graph
generated by inter-robot visibility remains connected.

Our interest in the rendezvous problem is justified as
follows. First, rendezvous is the most basic formation control
problem and can be used as a building block for more sophis-
ticated behaviors. A rendezvous algorithm can be used by the
robots to agree on an origin of a global reference frame, or to
come closer and form complex structures (modular robotics).
Constraints on power or the geometry of the environment may
sometimes require that the robots come closer to be able to
communicate. Also, many data collection applications require
deploying robots over a region of interest and subsequently
retrieving them. A rendezvous algorithm can enable easy
retrieval. The problem addressed in this paper is particularly
relevant when the intended application is set in an urban or
indoor environment.

The sensing and communication limitations are motivated
in part by the problem of characterizing the minimal robot
capabilities necessary to perform the required task and in part
by the intended application setting. For example, in the urban
canyon or in indoor environments, GPS signals are unreliable.
Compass accuracies are affected by local magnetic anomalies.
Communication might be expensive or unreliable. Also, a
sensor-based approach avoids altogether the correspondence
problem between what a robot senses and what it receives
from communication with other robots.
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The connectivity maintenance sub-problem is another fun-
damental problem motivated by cooperative and distributed
robotics applications; see for example the recent article in the
IEEE Transactions on Robotics [7]. The novel connectivity
maintenance algorithm in this paper can be used in various
problems concerning nonconvex environments and visibility-
based sensing beyond rendezvous, such as leader following
and formation control.

The literature on multirobot systems is very extensive.
Examples include the survey [8] and the special issue [9]
of the IEEE Transaction on Robotics and Automation. Our
multi-robot model is inspired by the literature on networksof
mobile interacting robots: an early contribution is the model
proposed in [10] consisting of a group of identical “distributed
anonymous mobile robots” characterized as follows. Each
robot completes repeatedly a cycle of operations: it sensesthe
relative position of all other robots, elaborates this information,
and moves. The robots share a common clock. A related model
is presented in [11], where the robots evolve asynchronously,
have limited visibility, and share a common reference frame.
For these types of systems, the “multi-agent rendezvous”
problem and the first “circumcenter algorithm” have been
introduced in [1]. This algorithm has been extended to various
asynchronous strategies in [12], [11], where rendezvous is
referred to as the “gathering” problem. The circumcenter
algorithm has been extended to arbitrary higher dimensions
in [13], where its robustness properties are also characterized.
Multirobot rendezvous with line-of-sight sensors is considered
in [14], where solutions are proposed based on the exploration
of the unknown environment and the selection of appropriate
rendezvous points at pre-specified times. The problem of
computing a rendezvous point in polyhedral surfaces made
of triangular faces is considered in [15]. Formation control
and rendezvous problems have been widely investigated with
different assumptions on the inter-robot sensing. For example,
a control law for groups withtime-dependentsensing topology
is proposed in [16]; this and similar works, however, depend
upon a critical assumption of connectivity of the inter-agent
sensing graph. This assumption is imposed without a sensing
model. In this paper, we considerposition-dependentgraphs
and, extending to visibility sensors a key idea in [1], we show
how to constrain the robots’ motion to maintain connectivity
of the inter-robot sensing graph.

Our main contribution is a novel, provably correct al-
gorithm that achieves rendezvous in a simply connected,
nonconvex, unknown environment among robots with om-
nidirectional range-limited visibility sensors. Rendezvous is
achieved among all robots if the inter-agent sensing graph is
connected at any time during the group evolution. Another
relevant contribution is the introduction of a novel set of
notions and tools for connectivity maintenance in nonconvex
environments; these notions are applicable to visibility-based
multi-robot scenarios beyond the rendezvous problem. The
technical approach proceeds as follows. In Section II, we
review useful geometric notions, such as robust visibility[17]
and proximity graphs [18], and introduce various novel vis-
ibility graphs. In Section III, we state the rendezvous and
connectivity maintenance problems. To maintain connectivity

during the system evolution, we design in Section IV novel
constraint sets that (i) ensure that the visibility between
two robots is preserved, and (ii) change continuously (in
an appropriate technical sense) with the robots’ positions.
We define the novel locally-cliqueless visibility graph, which
contains fewer edges than the visibility graph, and has the
same connected components. This construction is useful in the
connectivity maintenance problem because it imposes fewer
constraints on the group evolution. In Section V, we provide
a careful analysis of our solution to the rendezvous problem:
the Perimeter Minimizing Algorithm. The main convergence
result is proved via our recent version of the LaSalle Invariance
Principle for set-valued maps [13]. As a novel Lyapunov
function, we consider the perimeter of the relative convex
hull of the robot positions. Finally, extensive simulations in
Section VI validate our results and establish the convergence of
our algorithm beyond the assumptions made in the theoretical
analysis. The simulations show that our algorithm performance
is still adequate assuming asynchronous agent operation, noise
errors in sensing and control, and finite-size disk robots.
Additional analysis results and all proofs are presented inthe
electronically available technical report [19].

II. BASIC GEOMETRIC NOTIONS

In this section we introduce some useful geometric notions.
Let Z≥0, R, R≥0, and R>0 denote the sets of nonnegative
integer, real, nonnegative real, and positive real numbers,
respectively. Forp ∈ R2 and r ∈ R>0, let B(p, r) denote
the closed ballcentered atp of radius r. Given a bounded
set X ⊂ R2, let co(X) denote the convex hull ofX, and
let CC(X) denote thecircumcenterof X, i.e., the center
of the smallest-radius circle enclosingX. For p, q ∈ R2,
let ]p, q[= {λp + (1 − λ)q | 0 < λ < 1} and [p, q] =
{λp + (1 − λ)q | 0 ≤ λ ≤ 1} denote theopen and closed
segmentwith extreme pointsp andq, respectively. Theversor
map vers : Rd → Rd is defined byvers(0) = 0 and
vers(p) = p/‖p‖ for p 6= 0. Let |X| denote the cardinality
of a finite set X in R2. Given a compact set of points
X ⊂ R2, and another pointp ∈ R2, let dist(p,X) denote the
minimum Euclidean distance ofp to any point in the setX.
The diameterdiam(X) of a compact setX is the maximum
distance between any two points inX.

Now, let us turn our attention to the environments we are
interested in. Given any compact and connected subsetQ of
R2, let ∂Q denote its boundary. A pointq of ∂Q is strictly
concaveif for all ǫ > 0 there existsq1 and q2 in B(q, ǫ) ∩
∂Q such that the open interval]q1, q2[ is outsideQ. A strict
concavityof ∂Q is either an isolated strictly concave point
or a connected set of strictly concave points. Accordingly,a
strict concavity is either an isolated point (e.g., pointsr1 and
r2 in Figure 2) or an arc (e.g., arca1 in Figure 2). Also, any
strictly concave point belongs to exactly one strict concavity.

Definition II.1 (Allowable environment) A set Q ⊂ R2 is
allowable if

(i) Q is compact and simply connected;
(ii) ∂Q is continuously differentiable except on a finite

number of points; and
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(iii) ∂Q has a finite number of strict concavities.

Recall that, roughly speaking, a set is simply connected if it
is connected and it contains no holes. A particular case of the
environment described above is a polygonal environment, the
concavities being the reflex vertices1 of the environment.

One can define theinternal tangent half-planeHQ(v) at the
following strictly concave points:

(i) At any pointv where∂Q is continuously differentiable,
HQ(v) is the half-plane whose boundary is tangent to
∂Q at v and whose interior does not contain any points
of the concavity; see pointv′ in Figure 2.

(ii) At any point v which is the end point of a strictly
concave arc,HQ(v) is the half-plane whose boundary
is tangent to the arc atv and whose interior does not
contain any points of the concavity; see pointv′′ in
Figure 2.

v′′

a1

r1 r2

v′

Fig. 2. An allowable environmentQ: the closed arca1 and the isolated
points r1, r2 are strict concavities.v′ is a point ona1 where the slope of
∂Q is defined.HQ(v′) is the half-plane with the tangent to∂Q at v′ as the
boundary and the interior in the direction of the arrow.v′′ is an end point
of arc a1. HQ(v′′) is the half-plane with the tangent toa1 at v′′ as the
boundary and the interior in the direction of the arrow.

A point q ∈ Q is visible from p ∈ Q if [p, q] ⊂ Q. The
visibility setV(p) ⊂ Q is the set of points inQ visible from
p. This notion can be extended as follows (see [17]):

Definition II.2 (Robust visibility) Takeǫ > 0 and Q ⊂ R2.

(i) The point q ∈ Q is ǫ-robustly visible from the point
p ∈ Q if ∪q′∈[p,q]B(q′, ǫ) ⊂ Q.

(ii) The ǫ-robust visibility setV(p, ǫ) ⊂ Q from p ∈ Q is
the set of points inQ that areǫ-robustly visible fromp.

(iii) The ǫ-contraction Qǫ of the setQ is the set{p ∈
Q | ||p − q|| ≥ ǫ for all q ∈ ∂Q}.

These notions are illustrated in Figure 3. We present the
following properties without proof in the interest of brevity.

Lemma II.3 Given an allowable environmentQ and ǫ > 0,
the following statements hold:

(i) p, q ∈ Q are ǫ-robustly visible if and only if[p, q] ⊂ Qǫ;
(ii) if ǫ is sufficiently small, thenQǫ is allowable; and
(iii) all strict concavities of∂Qǫ have non-zero length and

are continuously differentiable.

1A vertex of a polygon is reflex if its interior angle is strictly greater thanπ.

p

Fig. 3. Robust visibility notions.Q is the outer polygonal environment; the
ǫ-contractionQǫ is the region with the curved boundary and containing the
point p; the visibility setV(p) is the region shaded in light gray; theǫ-robust
visibility setV(p, ǫ) is the region shaded in darker gray. Note that the isolated
concavities ofQ give rise to strictly concave arcs inQǫ.

Remarks II.4 (i) In light of Lemma II.3(ii), in what fol-
lows we assume thatǫ is small enough forQǫ to be
connected and therefore allowable.

(ii) Robust visibility is a useful concept in many practically
meaningful ways. For example, according to this notion,
points are visible only if they are at least at a distance
ǫ from the boundary. This is useful when an object is
arbitrarily close to the boundary and is indistinguishable
from the boundary itself. Additionally, the parameterǫ
might be thought of as a measure of the physical size
of the robot. Thus confining the robots to theǫ-robust
visibility set guarantees free movement of the robot in
the environment. The notion ofǫ-contraction is related
to the classical work on motion planning [20], [2].�

We now define some graphs which are useful in describing
the interactions between robots.

Definition II.5 (Proximity graphs) A proximity graph is a
graph whose nodes are a set of pointsP = {p1, . . . , pn} and
whose edges are a function ofP. GivenP ⊂ Q, ǫ > 0 and
r > 0, define:

(i) Thevisibility graphGQ at P is the graph with node set
P and with edges defined as follows:(pi, pj) is an edge
if and only if [pi, pj ] ⊂ Q.

(ii) Theǫ-robust visibility graphGQ(ǫ) is the visibility graph
at P for Qǫ.

(iii) The r-rangeǫ-robust visibility graphGQ(ǫ; r) at P is
the graph with node setP and with edges defined as
follows: (pi, pj) is an edge if and only if[pi, pj ] ⊂ Qǫ

and ‖pi − pj‖ ≤ r.

In other words, two pointsp, q are neighbors in ther-range
visibility graph, for instance, if and only if they are mutually
visible and separated by a distance less than or equal tor.
Example graphs are shown in Figure 4. General properties of
proximity graphs are defined in [18], [13].

We say that two proximity graphsG1 and G2 have the
same connected componentsif, for all sets of pointsP, the
graphsG1(P) andG2(P) have the same number of connected
components consisting of the same vertices. Given a set of
points P = {p1, . . . , pn} and a proximity graphG, we let
Ni(G) at P denote theset of neighbors including itselfof pi.
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In other words, if{pi1 , . . . , pim
} are the neighbors ofpi in G

at P, thenNi(G) at P is {pi1 , . . . , pim
} ∪ {pi}.

Fig. 4. The figure on the left shows the visibility graph (whose edges are
the solid lines as well as the dashed lines) and theǫ-robust visibility graph
(whose edges are the solid lines alone) of a set of points in a nonconvex
polygon. The figure on the right shows ther-rangeǫ-robust visibility graph.
The disk in the figure shows the sensing range for one of the robots.

The last key notion used in our technical approach is that
of relative convex hull.

Definition II.6 (Relative convex hull) Take an allowable
environmentQ.

(i) X ⊆ Q is relatively convexif the shortest path inside
Q connecting any two points ofX is contained inX.

(ii) The relative convex hullrco(X,Q) of X ⊂ Q is the
smallest2 relatively convex subset ofQ that containsX.

(iii) If X is a finite set of points, then avertexof rco(X,Q)
is a pointp ∈ X with the property thatrco(X \{p}, Q)
is a strict subset ofrco(X,Q). The set of vertices of
rco(X,Q) is denoted byVe(rco(X,Q)).

The relative convex hull of an example set of points and its
vertices are shown in Figure 5.

v2v1

v3

v4

v5
v6

v7

Fig. 5. Relative convex hullrco(X, Qǫ) of a set of pointsX (solid
disks) inside a theǫ-contraction of an allowable setQ. The set of vertices
Ve(rco(X, Qǫ)) is the set{v1, . . . , v7}.

The perimeter of the relative convex hull of a collection of
points is defined next.

Definition II.7 (Perimeter) For an allowable environmentQ
and a closed subsetX ⊂ Q, the perimeter(rco(X,Q)) is
the length of the shortest measurable closed curve insideQ
enclosingX.

The key property of Definition II.7 is that, ifX is a finite
set of points inQ, then the perimeter ofrco(X,Q) depends
continuously on the points inX.

2That is, rco(X, Q) is the intersection of all relatively convex subsets of
Q that containX.

III. SYNCHRONOUS ROBOTS WITH VISIBILITY SENSORS

AND THE RENDEZVOUS AND CONNECTIVITY

MAINTENANCE PROBLEMS

In this section we model a group ofn robots with visibility
sensors in a given allowable environmentQ. We assume that
ǫ is a known positive constant sufficiently small so thatQǫ

is allowable. Fori ∈ {1, . . . , n}, we model theith robot as a
point pi ∈ Q and we refer to Section VI for an extension to
a disk model. We make the following modeling assumptions:
Synchronized controlled motion model: Robot i moves at

time t ∈ Z≥0 for a unit period of time, according to
the discrete-time control system

pi[t + 1] = pi[t] + ui[t]. (1)

We assume that there is a maximum step sizesmax >
0 for any robot, that is,‖ui‖ ≤ smax. The robots are
synchronizedin the sense that the calculation ofu[t] in
equation (1) takes place at the same timest for all robots.

Sensing model: The environmentQ is unknown to the robots.
Robot i senses (i) the presence and the position of any
other robot that is visible and within distancer from
pi, and (ii) the subset of∂Q that is visible and within
distance(r+ǫ) from pi. This in turn implies that the robot
can sense the subset of∂Qǫ that is visible and within
distancer from pi. It is convenient to define thesensing
region from positionpi to beS(pi) = V(pi, ǫ)∩B(pi, r).
The ranger is the same for all robots.

Remark III.1 (No common reference frame) The model
presented above assumes the ability of robots to sense
absolute positions of other robots; this assumption is only
made to keep the presentation as simple as possible. In this
and subsequent remarks, we treat the more realistic setting
in which the n robots haven distinct reference frames
Σ1, . . . ,Σn. We let Σ0 denote a fixed reference frame.
Notation-wise, a pointq, a vectorw, and a set of pointsS
expressed with respect to frameΣi are denoted byqi, wi

and Si, respectively. For example, this means thatQi is the
environmentQ as expressed in frameΣi. We assume that the
origin of Σi is pi and that the orientation ofΣi with respect
to Σ0 is R0

i ∈ SO(2). Therefore, changes of reference frames
are described by the equations:q0 = R0

i q
i + p0

i , w0 = R0
i w

i,
andS0 = R0

i S
i +p0

i . If we let VQj (pj
i , ǫ) denote the visibility

set expressed inΣj , for j ∈ {0, 1, . . . , n}, then one can define

S(pj
i , Q

j) = VQj (pj
i , ǫ) ∩ B(pj

i , r),

and verifyS(p0
i , Q

0) = R0
iS(pi

i, Q
i) + p0

i . Note thatpi
i = 0.

Finally, we can describe our motion and sensing model
under the no common reference frame assumption. Roboti
moves according to

p0
i [t + 1] = p0

i [t] + R0
i [t]ui[t], (2)

and it senses the robot positionspi
j and the subset of(∂Q)i

that are within the sensing regionS(pi
i, Q

i). �

We end this section by stating the two control design
problems addressed in this paper.
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Problem III.2 (Rendezvous) The rendezvous problemis to
steer each agent to a common location inside the environ-
mentQǫ. This objective is to be achieved (1) with the limited
information flow described in the model above, and (2) under
the reasonable assumption that the initial position of the robots
P[0] = {p1[0], . . . , pn[0]} gives rise to a connected robust
visibility graph GQ(ǫ) at P[0]. �

As one might imagine, the approach to solving the ren-
dezvous problem involves two main ideas: first, the underlying
proximity graph should not lose connectivity during the evo-
lution of the group; second, while preserving the connectivity
of the graph, the robots must move closer to each other. This
discussion motivates a second complementary objective.

Problem III.3 (Connectivity maintenance) The connectiv-
ity maintenance problemis to design (state dependent) control
constraint sets with the following property: if each agent’s
control takes values in the control constraint set, then the
robots move in such a way that the number of connected
components ofGQ(ǫ) (evaluated at the robots’ states) does
not increase with time. �

IV. T HE CONNECTIVITY MAINTENANCE PROBLEM

In this section, we maintain the connectivity of the group of
robots with visibility sensors by designing control constraint
sets that guarantee that every edge ofGQ(ǫ; r) (i.e., every pair
of mutually range-limited visible robots) is preserved. Wehave
three objectives in doing so. First, the sets need to depend
continuously on the position of the robots. Second, the sets
need to be computed in a distributed way based only on the
available sensory information. Third, the control constraint sets
should be as “large” as possible so as to minimally constrain
the motion of the robots. Our solution to this problem is
a geometric strategy that allows us to compute appropriate
constraint sets. We discuss it in detail in the next section.

A. Preserving mutual visibility: TheConstraint Set Generator
Algorithm

Consider a pair of robots in an environmentQ that areǫ-
robustly visible to each other and separated by a distance not
larger thanr. To preserve this range-limited mutual visibility
property, we restrict the motion of the robots to an appropriate
subset of the environment. This idea is inspired by [1] and we
begin by stating the result therein. Let the sensing region of
robot i located atpi be S(pi) = B(pi, r), for somer > 0. If
at any time instantt, ‖pi[t] − pj [t]‖ ≤ r, then to ensure that
at the next time instantt + 1, ‖pi[t + 1] − pj [t + 1]‖ ≤ r, it
suffices to impose the following constraints on the motion of
robotsi and j:

pi[t + 1], pj [t + 1] ∈ B
(pi[t] + pj [t]

2
,
r

2

)

,

or, equivalently,

ui[t] ∈ B
(pj [t] − pi[t]

2
,
r

2

)

, uj [t] ∈ B
(pi[t] − pj [t]

2
,
r

2

)

.

In summary,B(
pj−pi

2 , r
2 ) is the control constraint set for

robot i. This constraint is illustrated in Figure 6 (left).

pj

pi

pj

pi

Fig. 6. In the figure on the left, starting frompi andpj , the robots
are restricted to move inside the disk centered at

pi+pj

2
with radius

r
2
. In the figure on the right, the robots are constrained to move inside

the shaded region which is a convex subset ofQǫ intersected with
the disk centered at

pi+pj

2
with radius r

2
.

Let us now consider the case when a roboti is located atpi

in a nonconvex environmentQ with sensing regionS(pi) =
V(pi, ǫ)∩B(pi, r). If at any time instantt, we have that‖pi[t]−
pj [t]‖ ≤ r and [pi[t], pj [t]] ∈ Qǫ, then to ensure that‖pi[t +
1] − pj [t + 1]‖ ≤ r and [pi[t + 1], pj [t + 1]] ∈ Qǫ, it suffices
to require that:

pi[t + 1], pj [t + 1] ∈ C,

whereC is any convex subset ofQǫ ∩ B
(pi[t]+pj [t]

2 , r
2

)

; see
Figure 6 (right). Equivalently,

ui[t] ∈ C − pi[t], uj [t] ∈ C − pj [t],

whereC − pi[t] andC − pi[t] are the sets{p − pi[t] | p ∈ C}
and {p − pj [t] | p ∈ C}, respectively. Note that both robots
i and j must independently compute the same setC. Given
the positionspi, pj in an environmentQ, Table I describes
the Constraint Set Generator Algorithm, a geometric strategy
for each robot to compute a constraint setC = CQ(pi, pj) that
changes continuously withpi and pj . Figure 7 illustrates a
step-by-step execution of the algorithm.

TABLE I
Constraint Set Generator Algorithm

Goal: Generate convex sets to act as constraints to preserve mutual
visibility

Given: (pi, pj) ∈ Q2
ǫ such that[pi, pj ] ⊆ Qǫ andpj ∈ B(pi, r)

Robot i ∈ {1, . . . , n} executes the following computations:

1: Ctemp := V(pi, ǫ) ∩ B(
pi+pj

2
, r
2
)

2: while ∂Ctemp contains a concavitydo
3: v := a strictly concave point of∂Ctemp closest to the segment[pi, pj ]
4: Ctemp := Ctemp∩ HQǫ

(v)
5: end while
6: return: CQ(pi, pj) := Ctemp

Note that in step3 of the algorithm, there can be many
distinct points belonging to distinct concavities that satisfy the
required property. In that case,v can be chosen to beany one
of them. The following lemma justifies this observation.

Lemma IV.1 Throughout the execution of theConstraint Set
Generator Algorithm in Table I, let v1, v2 be two strictly
concave points on∂Ctemp that are closest to[pi, pj ]. Thenv1 ∈
Ctemp∩ HQǫ

(v2) and vice versa.
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pj

pi

vpj

pi

pj

pi

v

pi

v

pj

Fig. 7. From left to right and top to bottom, a sample incomplete run
of the Constraint Set Generator Algorithm (cf. Table I). Thetop left figure
showsCtemp := V(pi, ǫ) ∩ B(

pi+pj

2
, r
2
). In all the other figures, the lightly

and darkly shaded regions together representCtemp. The darkly shaded region
representsCtemp∩HQ(v), wherev is as described in step3. The final outcome
of the algorithm,CQ(pi, pj), is shown in Figure 6 (right).

Next, we characterize the main properties of the Constraint
Set Generator Algorithm and the corresponding convex sets.

Proposition IV.2 (Properties of the Constraint Set Gen-
erator Algorithm) Given an allowable environmentQ with
κ strict concavities,ǫ > 0 and (pi, pj) ∈ J = {(pi, pj) ∈
Q2

ǫ | [pi, pj ] ∈ Qǫ, ‖pi − pj‖ ≤ r}, the following hold:

(i) the Constraint Set Generator Algorithmterminates in
at mostκ steps;

(ii) CQ(pi, pj) is nonempty, compact, and convex;
(iii) CQ(pi, pj) = CQ(pj , pi); and
(iv) the set-valued mapCQ is closed3 at every point ofJ .

Remark IV.3 (No common reference frame: continued)
Consider a group of robots with visibility sensors and no
common reference frame. With the notation and assumptions
of Remark III.1, one can verify that the constraint sets
transform under changes of coordinate frames according to

CQ0(p0
i , p

0
j ) = R0

i CQi(pi
i, p

i
j) + p0

i . (3)

We omit the proof in the interest of brevity. �

For each pair of mutually visible robots, the execution
of the Constraint Set Generator Algorithm outputs a control
constraint set such that, if the robots’ motions are constrained
to it, then the robots remain mutually visible. Clearly, given
a connected graph at timet, if every robot remains connected
with all its neighbors at timet+1 (i.e., each pair of mutually
visible robots remain mutually visible), then the connectivity

3Let Ω map points inX to all possible subsets ofY . Then the set-valued
map,Ω, is open at a pointx ∈ X if for any sequence{xk} in X, xk → x
and y ∈ Ω(x) implies the existence of a numberm and a sequence{yk}
in Y such thatyk ∈ Ω(xk) for k ≥ m andyk → y. The mapΩ is closed
at a pointx ∈ X if for any sequence{xk} in X, xk → x, yk → y and
yk ∈ Ω(xk) imply that y ∈ Ω(x). Ω is continuous at any pointx ∈ X if it
is both open and closed at x.

Fig. 8. The green convex set in the center representsCpi,Q(Ni(GQ(ǫ; r))).
The black disks represent the position of the robots. The straight line segments
between pairs of robots represent edges ofGQ(ǫ; r). Here,pi is the black
disk contained in the constraint set.

of the graph is preserved. This can be accomplished as follows.
For roboti at pi ∈ Qǫ, define the control constraint set

Cpi,Q(Ni(GQ(ǫ; r))) =
⋂

pj∈Ni(GQ(ǫ;r))

CQ(pi, pj). (4)

Now, if ui ∈ Cpi,Q(Ni(GQ(ǫ; r))) − pi, for all i ∈
{1, . . . , n}, then all neighboring relationships inGQ(ǫ; r) are
preserved at the next time instant. Using inputs that satisfy
these constraints, the number of edges inGQ(ǫ; r) is guaran-
teed to be nondecreasing.

B. The locally-cliqueless visibility graph

In this section, we propose the construction of constraint
sets that are, in general, larger thanCpi,Q(Ni(GQ(ǫ; r))). To
do this, we define the notion oflocally-cliqueless graph. The
locally-cliqueless graph of a proximity graphG is a subgraph
of G, and therefore has generally fewer edges, but it has the
same number of connected components asG. This property
is fundamental because it directly leads to the design of less
conservative constraint sets.

Before defining the locally-cliqueless graph, let us recallthat
(i) a clique of a graph is a complete subgraph of it, and (ii) a
maximal clique of an edgeis a clique of the graph that contains
the edge and is not a strict subgraph of any other clique of the
graph that also contains the edge. In the field of combinatorial
optimization, it is well-known that finding the maximal clique
of a graph is an NP complete problem. However, efficient
polynomial time heuristics exist [21]. Additionally, we define a
useful proximity graph. AEuclidean Minimum Spanning Tree
GEMST(G) at P of a proximity graphG is a minimum-length
spanning tree ofG(P), where edges of the form(pi, pj) have
length‖pi − pj‖. If G(P) is not connected, thenGEMST(G) at
P is the union of Euclidean Minimum Spanning Trees of its
connected components.

Definition IV.4 (Locally-cliqueless graph of a proximity
graph) Given a point setP and an allowable environmentQ,
the locally-cliqueless graphGlc(G) at P of a proximity graph
G is the proximity graph with node setP and with edges atP
defined as follows:(pi, pj) is an edge inGlc(G) if and only if
(pi, pj) is an edge ofG(P) and(pi, pj) is an edge ofGEMST(G)
at P ′ for any maximal cliqueP ′ of the edge(pi, pj) in G.
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For simplicity, we will refer to the locally-cliqueless graph
of the proximity graphsGQ, GQ(ǫ) or GQ(ǫ; r) as locally-
cliqueless visibility graphs. Figure 9 shows an example of a
locally-cliqueless visibility graph.

Fig. 9. Visibility graph (left) and locally-cliqueless visibility graph (right).

Theorem IV.5 (Properties of a locally-cliqueless graph of
a proximity graph) Let G be a proximity graph. Then, the
following statements hold:

(i) GEMST(G) ⊆ Glc(G) ⊆ G; and
(ii) Glc(G) and G have the same connected components.

In general, the inclusions in Theorem IV.5(i) are strict. Fig-
ure 10 shows an example withGEMST(GQ) ( Glc(GQ) ( GQ.

Fig. 10. From left to right, visibility graph, locally-cliqueless graph and
Euclidean Minimum Spanning Tree of the visibility graph.

We will invoke Theorem IV.5 forGQ, GQ(ǫ) or GQ(ǫ; r)
defined over allowable environmentsQ andQǫ, ǫ > 0.

We are now ready to define new constraint sets that are in
general larger than the ones defined in (4). For simplicity, let
G = GQ(ǫ; r), and consider its locally-cliqueless graphGlc(G).
For roboti ∈ {1, . . . , n} located atpi, define the constraint set

Cpi,Q(Ni(Glc(G))) =
⋂

pj∈Ni(Glc(G))

CQ(pi, pj). (5)

SinceGlc(G) is a subgraph ofG according to Theorem IV.5(i)),
we haveNi(Glc(G)) ⊆ Ni(G) = Ni(GQ(ǫ; r)), and therefore

Cpi,Q(Ni(GQ(ǫ; r))) ⊆ Cpi,Q(Ni(Glc(G))).

In general, sinceGlc(G) is a strict subgraph ofG, the set
Cpi,Q(Ni(Glc(G))) is strictly larger thatCpi,Q(Ni(GQ(ǫ; r))).
Note that, if ui ∈ Cpi,Q(Ni(Glc(G))) − pi for all i ∈
{1, . . . , n}, then all neighboring relationships in the graph
Glc(G) are preserved at the next time instant. As a conse-
quence, it follows from Theorem IV.5(ii) that the connected
components ofGQ(ǫ; r) are also preserved at the next time

pi

pk
pl

pi

pk pl

Fig. 11. The dashed circle is centered atpi and is of radiusr. The thick
curves represent the boundary ofQǫ; the one on the left represents the outer
boundary whereas the one on the right represents a hole in theenvironment.

instant. Thus, we have found constraint sets (5) for the input
that are larger than the constraint sets (4), and are yet sufficient
to preserve the connectivity of the overall group.

Remark IV.6 (Distributed computation of locally-
cliqueless visibility graphs) According to the model
specified in Section III, each robot can detect all other robots
in its sensing regionS(pi) = V(pi, ǫ) ∩ B(pi, r), i.e., its
neighbors in the graphGQ(ǫ; r). Given the construction of the
constraint sets in this section, it is important to guarantee that
the set of neighbors of roboti in the locally-cliqueless graph
Glc(G) can be computed locally by roboti. From the definition
of the locally-cliqueless graph, this is indeed possible ifa
robot i can detect whether another robotj in its sensing
regionS(pi) belongs to a clique of the graphGQ(ǫ; r). This is
equivalent to being able to check if two robotspk, pl ∈ S(pi)
satisfy the condition thatpk ∈ S(pl) and vice versa. Note that
pk ∈ S(pl) is equivalent to‖pk − pl‖ ≤ r and [pk, pl] ⊆ Qǫ.
Given thatpk − pl = (pk − pi)− (pl − pi), the vectorpk − pl

(and hence‖pk − pl‖) can be computed based on local
sensing alone. Now, checking if[pk, pl] ⊆ Qǫ is possible
only if Qǫ does not contain any hole; see Figure 11. In such
a case, it suffices to check if the entire line segment[pk, pl]
is visible frompi or not.

Along similar lines, we can state that the locally-cliqueless
visibility graph is computable under the “no common reference
frame” model described in Remarks III.1 and IV.3. �

V. THE RENDEZVOUS PROBLEM: ALGORITHM DESIGN AND

ANALYSIS RESULTS

In this section, we solve the rendezvous problem through
a novel Perimeter Minimizing Algorithm. The algorithm is
inspired by the one introduced in [1] but is unique in many
different ways. The rendezvous algorithm uses different graphs
to maintain connectivity and to move closer to other robots.
Instead of moving towards the circumcenter of the neighboring
robots, the robots move towards the center of a suitably defined
motion constraint set.

We present the algorithm in Section V-A followed by its
main convergence properties in Section V-B.

A. ThePerimeter Minimizing Algorithm

We begin with an informal description of the Perimeter
Minimizing Algorithm over graphsGsens and Gconstr. The
sensing graphGsens is GQ(ǫ; r) while the constraint graph
Gconstr is eitherGsens or Glc(Gsens):
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Every robot i performs the following tasks: (i) it
acquires the positions of other robots that are its
neighbors according toGsens; (ii) it computes a
point that is “closer” to the robots it senses, and
(iii) it moves toward this point while maintaining
connectivity with its neighbors according toGconstr.

The algorithm is formally described in Table II; Figure 1 in
the Introduction illustrates an example execution.

TABLE II
Perimeter Minimizing Algorithm

Assumes: (i) Q is allowable
(ii) Gsensis GQ(ǫ; r); Gconstr is eitherGsensor Glc(Gsens)
(iii) smax > 0 is the maximal step size

Each roboti ∈ {1, . . . , n} executes the following steps at each time instant:

1: acquire{pi1 , . . . , pim} := positions of robots withinpi sensing region
2: computeNi(Gsens) andNi(Gconstr)

3: computeXi := Cpi,Q(Ni(Gconstr)) ∩ rco(Ni(Gsens),V(pi, ǫ))

4: computep∗i := CC(Xi)

5: return: ui := min
`

smax, ‖p
∗

i − pi‖
´

vers(p∗i − pi)

Remarks V.1 (i) In the algorithm proposed in [1], robots
move towards the circumcenter of their neighbors’ po-
sition. In the Perimeter Minimizing Algorithm, robots
move towards the circumcenter of their constraint set.

(ii) One can prove that the setXi is convex; see [19]. There-
fore, CC(Xi) ∈ Xi, and hencep∗i ∈ Xi. Also, pi ∈ Xi.
Therefore,ui ∈ Xi − pi ⊆ Cpi,Q(Ni(Gconstr)) − pi

and, in turn, pi at the next time instant belongs to
Cpi,Q(Ni(Gconstr)). From Section IV, this implies that
the graphGconstr remains connected (or, more generally,
that the number of connected components ofGconstr does
not decrease). Therefore, by Theorem IV.5, the number
of connected components ofGsensalso does not decrease.

(iii) If the initial positions of the robots are inQǫ, then the
robots will remain forever inQǫ becausep∗i ∈ Xi ⊆ Qǫ.

(iv) All information required to execute the steps in the
algorithm is available to a robot through the sensing
model described in Section III. The constraint on the
input size,‖ui‖ ≤ smax, is enforced in step5. �

Finally, we conclude this section by completing our treat-
ment of robots without a common reference frame.

Remark V.2 (No common reference frame: continued)
Consider a group of robots with visibility sensors and no
common reference frame as discussed in Remarks III.1
and IV.3. Because the relative convex hull and the
circumcenter of a set transform under changes of coordinate
frames in the same way as the constraint set does in
equation (3), one can verify that

ui(p
0
1, . . . , p

0
n) = R0

i ui(p
i
1, . . . , p

i
n),

whereui(p
0
1, . . . , p

0
n) is computed with environmentQ0 and

ui(p
i
1, . . . , p

i
n) is computed with environmentQi. This equal-

ity implies that the robot motion with controlui(p
0
1, . . . , p

0
n)

in equation (1) is identical to the robot motion with control
ui(p

i
1, . . . , p

i
n) in equation (2). �

B. Convergence properties

To state the main results on the correctness of the Perimeter
Minimizing Algorithm, we require some preliminary notation.
First, note that given the positions of the robots{p1, . . . , pn}
at time instantt, the algorithm computes the positions at time
instantt+1. The Perimeter Minimizing Algorithm, therefore,
is a map, sayTGsens,Gconstr : Qn

ǫ → Qn
ǫ . Second, we work with tu-

ple of pointsP = (p1, . . . , pn) ∈ Qn for convenience. We let
G(P ) denote the proximity graphG(P) andrco(P,Q) denote
the relative convex hull of the setP insideQ, whereP is the
point set given by{pi | i ∈ {1, . . . , n}}. Third, we introduce
a Lyapunov function that encodes the rendezvous objective.
Given an allowable environmentQ, we recall the notions of
relative convex hull and of perimeter from Section II, and
defineVperim,Q : Qn → R≥0 by

Vperim,Q(P ) = perimeter(rco(P,Q)).

Lemma V.3 (Properties of Lyapunov function) The func-
tion Vperim,Q has the following properties:

(i) Vperim,Q is continuous and invariant under permutations
of its arguments; and

(ii) Vperim,Q(P ) = 0 for P = (p1, . . . , pn) if and only if
pi = pj for all i, j ∈ {1, . . . , n}.

This result implies that achieving the rendezvous objective is
equivalent to makingVperim,Qǫ

equal to zero. The proof strategy
is based on establishing the monotonic decreasing evolution
of this function along the executions of Perimeter Minimizing
Algorithm. We now state the main result of the paper.

Theorem V.4 (Rendezvous is achieved via the Perimeter
Minimizing Algorithm) Let Q and Qǫ be allowable envi-
ronments. Letp1, . . . , pn be a group of robots with visibility
sensors inQǫ. Any trajectory{P [t]}t∈Z≥0

⊂ Qǫ generated by
P [t + 1] = TGsens,Gconstr(P [t]) has the following properties:

(i) if the locations of two robots belong to the same con-
nected component ofGsens at P [t0] for somet0, then
they remain in the same connected component ofGsens

at P [t] for all t ≥ t0;
(ii) Vperim,Qǫ

(P [t + 1]) ≤ Vperim,Qǫ
(P [t]); and

(iii) the trajectory{P [t]}t∈Z≥0
converges to a pointP ∗ ∈ Qǫ

such that eitherp∗i = p∗j or p∗i /∈ S(p∗j ) for all i, j ∈
{1, . . . , n}.

As a direct consequence of the theorem, note that if the graph
Gsens is connected at any time during the evolution of the
system, then all the robots converge to the same location inQǫ.

VI. PRACTICAL IMPLEMENTATION ISSUES

The analysis of the Perimeter Minimizing Algorithm pre-
sented in Section V is valid for an ideal model ofpoint robots,
operatingsynchronously, with perfect sensing and actuation
capabilities. However, such an ideal model is not realistic
in practical situations. In this section, we investigate, via
extensive computer simulations, the effects of deviationsfrom
this ideal scenario.
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A. Nominal experimental set-up

The computer simulation was written in C++ using the
Computational Geometry Algorithmic Library [22]. However,
it was found that Boolean operations on polygons using the
utilities present in CGAL were not sufficiently fast for the
purpose of running extensive simulations. Hence, Boolean
operations on polygons were performed using the General
Polygon Clipping Library [23].

For the purpose of simulations, the environment considered
is a typical floor plan; see Figure 1. The environment size
is roughly 80 × 70, the step size of a robot issmax = 0.5
and the sensing radiusr = 30. For simplicity, Gconstr is the
same asGsens. To use theǫ-robust visibility notion in providing
robustness to asynchronism and sensing and control errors,at
each time instant,ǫ is set to be0.97 times the value ofǫ at
the previous time instant. Initially,ǫ is equal to3. In case a
robot approaches a reflex vertex of the environment closely,it
reduces its speed. This is done to reduce the risk of collision
due to errors in sensing the exact location of the reflex vertex.

The algorithm performance is then evaluated using the
following measures: (i) the average number of steps taken
by the robots to achieve the rendezvous objective; and (ii)
the number of connected components ofGsens at the end
of the simulation compared with the number of connected
components at the start.

B. Robustness against asynchronism, sensing and control
noise, and finite-size disk robot models

In this section, we begin by describing the various non-ideal
conditions introduced into the experiments. We then describe
the performance of the Perimeter Minimizing Algorithm under
these non-ideal conditions.

1) Asynchronism:The robots operate asynchronously, i.e.,
do not share a common processor clock. All the robots start
operating at the same time. Each robot’s clock speed is a ran-
dom number uniformly distributed on the interval[0.9, 1]. At
integral multiples of its clock speed, a robot wakes up, senses
the positions of other robots within its sensing region, and
takes a step according to the Perimeter Minimizing Algorithm.

2) Distance error in sensing and control:The visibility
sensors measure the relative distance of another object ac-
cording to the following multiplicative noise model. Ifdact is
the actual distance to the object, then the measured distance is
given by (1 + e1,dist + e2,distdact)dact, where e1,dist and e2,dist

are random variables uniformly distributed in the intervals
[−0.1, 0.1] and [−0.003, 0.003], respectively. Therefore, the
measured distance is correct up to an error of maximum
magnitude equal to 20% of the actual distance. The objects to
which distances are measured are other robots in the sensing
range and the boundary of the environment. For simplicity,
instead of measuring a sequence of points along the boundary,
as a real range sensor does, we assume that only the vertices
of the environment are measured and the sensed region is re-
constructed from that information. The sensor error, therefore,
occurs in the measurement of other robots and environment
vertices. The actuators moving the robots are also subject
to a multiplicative noise distance model with the same error
parameter.

3) Direction error in sensing and control:The visibility
sensors measure the relative angular location of another object
according to the following additive noise model. Ifθact is the
actual angular location of any object in the local reference
frame of a robot, the measured angular location is given by
θact+ eθ, whereeθ is a random variable uniformly distributed
in the interval [−5, 5]. As before, the actuators moving the
robots are also subject to an additive noise directional model
with the same error parameter.

4) Disk robot model (with asynchronism, distance error,
and direction error): The robots are assumed to be disks
of radius0.5. This disk model also implies that robots may
occlude the view of other robots. We assume that two robots
can detect each other only if the line segment joining their
centers does not intersect with any other robot disk. Also, any
strictly concave point of the boundary is visible from a robot
only if the line segment joining the center of the robot to that
point does not intersect with another robot disk. During any
step, a robot moves a distance of at mostsmax = 0.5. The
next position of the center of the robot, therefore, lies in a
motion diskof radius1.0 centered at the center of the robot.
A colliding neighborof a roboti is any neighborj according
to Gsens such that the motion disks ofi and j intersect and
that the motion disk ofj intersects the physical disk ofi
on the path betweeni and its next point. If a robot has no
colliding neighbors, then its motion is executed accordingto
Perimeter Minimizing Algorithm. On the other hand, if a robot
has exactly one colliding neighbor, then it tries to swerve
around it while reducing its speed. Finally, if the robot has
more than two colliding neighbors then it stays at the current
location. To ensure free movement of the robots inside the
environment,ǫ is not allowed to fall below0.5, which is the
radius of a robot disk.

Experiments were performed under the aforesaid non-ideal
conditions with20 robots starting from100 randomly gener-
ated initial conditions from a uniform distribution. To account
for the non-zero robot size for the purpose of simulations,
the rendezvous objective is considered to be achieved if the
robots belonging to each connected component ofGsens form
a “cohesive” group4. We also place an upper bound on the
total time for which any given experiment can run. The
algorithm performance in each experiment is evaluated using
the following two measures: (i) the ratio of the number of
cohesive groups at the end of the experiment to the number
of connected components in the sensing graphGsens at the
beginning of the experiment; and (ii) the number of steps
on average taken by a robot until the completion of the
experiment. For the sake of convenience, we shall refer to
the above measures simply as Measure 1 and Measure 2 in
the rest of the paper.

Experiments are conducted to investigate if the Perimeter
Minimizing Algorithm under various non-ideal conditions
is still able to achieve the primary rendezvous objective -
preserve the connected components of the initial sensing graph
and bring all the robots within each connected component into

4For each connected component ofGsens, the graph having nodes as
the robot locations and with an edge between two nodes whenever the
corresponding motion disks of the robots intersect is connected.
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a cohesive group. We compare three variants of the Perimeter
Minimizing Algorithm: (a) the synchronous implementation
assuming no errors and a point robot model, (b) the asyn-
chronous implementation with sensing and control errors but
with a point robot model, and (c) the asynchronous implemen-
tation with sensing and control errors with a disc robot model.
The associated mean values and the95 percent intervals [24]
of the averages of the two performance measures described
earlier are shown in Figure 12. The standard deviation for
Measure 1 for cases (a), (b), and (c) above are0.25, 0.34
and 0.29 respectively. The standard deviation for Measure 2
for cases (a), (b), and (c) above are17.64, 12.76 and 80.94
respectively. Our observations are as follows.
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Fig. 12. Figure showing the average values of Measure 1 (top)and Measure
2 (bottom) for three different variants of the Perimeter Minimizing Algorithm.
Also shown are the associated95 percent confidence intervals of the averages.

(i) The Perimeter Minimizing Algorithm is robust in the
presence of errors, asynchronism and finite robot size, i.e., in
all the cases (a), (b), and (c), the primary rendezvous objective
is achieved. We test this hypothesis, for example for case (c),
as follows. We perform the Student’st−test [24] with the null
hypothesis being that the average of the Measure 1 values
is one against the alternate hypothesis that the average is
less than one at the95 percent confidence level. Thet−test
results are shown in Table III. The fielddf refers to the
degrees of freedom. We assume that the Measure 1 value
across different experiments is an independent and identically
distributed random variable. Because of the large number of
data points, we can assume that the average Measure 1 value is
normally distributed according to the Central Limit Theorem;
thus thet−test is applicable in this case [24]. The test results
imply that we can reject the null hypothesis in favor of the
alternate one. This is also evidenced by the fact that all the

values within the95 percent confidence interval for the average
of Measure 1 are strictly less than one. This implies that the
number of cohesive groups at the end of the simulation is less
than the number of connected components in the sensing graph
Gsens at the start of the experiment. In other words, all robots
initially connected inGsens do converge to form a cohesive
group.
(ii) The performance of the Perimeter Minimizing Algorithm

TABLE III
STUDENT’ S T-TEST RESULTS FOR DEMONSTRATING THE ROBUSTNESS OF

THE PERIMETER M INIMIZING ALGORITHM

Mean Standard deviation df t−value p−value
0.83 0.29 99 −5.85 3.19 × 10−8

worsens with the introduction of non-ideal behavior as can
be seen by the larger number of connected components
(Measure 1) in cases (b) and (c) as compared to case (a) in
Figure 12(top).
(iii) The disc robot model performance in the presence of
errors (case (c)) is similar to the point robot model per-
formance in the presence of errors (case (b)) in terms of
Measure 1. We test this hypothesis as follows. We record the
difference between the Measure 1 values of cases (b) and (c)
for each of the100 experiments. We perform the Student’s
t−test with the null hypothesis being that the average of the
aforesaid differences is zero against the alternate hypothesis
that the difference is not equal to zero at the95 percent
confidence level. The results, summarized in Table IV, show
that the null hypothesis cannot be rejected. A comparison of
the average Measure 2 values between case (b) and case (c)
in Figure 12(bottom) shows that the average number of steps
taken by the robots to converge is much greater in the case of
the disc robot model.

(iv) The cohesive groups at the end of the experiments

TABLE IV
STUDENT’ S T-TEST RESULTS FOR COMPARISON OF PERFORMANCE

MEASURE1 OF THE DISC ROBOT MODEL WITH THE POINT ROBOT MODEL

Mean Standard deviation df t−value p−value
−0.02 0.82 99 −0.1968 0.84

are sometimes arranged in chain-like formations as seen in
Figure 13(bottom).

The above discussion shows that the Perimeter Minimizing
Algorithm is robust to various deviations from the ideal
scenario in terms of preserving the connected components of
the sensing graph and bringing the robots together.

C. Importance of the visibility constraints

Apart from being robust to asynchronism and errors in sens-
ing and control, it is also important to understand how much
impact do the visibility constraints have on the performance
of the algorithm. By visibility constraints, we refer to the
constraints placed on the motion of a robot to ensure that any
other robot within its line-of-sight at a certain time instant
remains within line-of-sight at the next time instant.
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Fig. 13. Computer simulation results taking into account asynchronism,
sensing and control errors, and non-zero robot size. The topplot represents the
initial condition: green disks represent the robot positions, the graph depicts
the sensing graph,Gsens, the portion of the environment interior to the red
boundary isQǫ, whereǫ = 3. Initially, Gsenshas four connected components.
One of the components is a single robot isolated from others due to the fact
that its distance from the boundary is less thanǫ, and hence it cannot be
sensed by any other robot. The bottom plot represents the final configuration:
black disks represent the final positions of the robots. Notethat the robots
converge in two groups. The group on the left was disconnected from the other
robots in the initial configuration and remained disconnected throughout the
evolution.

We performed several executions of the Perimeter Minimiz-
ing Algorithm with and without enforcing the visibility con-
straints for connectivity maintenance. Since it is the visibility
constraint that we are interested in, we use a sensing radius
of 600, which is much greater than the diameter of the envi-
ronment. Experiments are performed for a disk robot model
with asynchronism and sensing and actuation errors. For each
initial condition, we record the ratio of the number of cohesive
groups obtained when enforcing the visibility constraintsto
the number of cohesive groups obtained without enforcing the
visibility constraints. We then test the null hypothesis that the
mean of the ratios is one against the alternative hypothesis
that the mean of the ratio is less than one. As before, we use
the Student’st−test to test the above null hypothesis at the
95 percent confidence level. The results, reported in Table V,
lead us to reject the null hypothesis in favor of the alternate
hypothesis. This also follows from the95 percent confidence
interval of the mean ratio which is given by[0.20, 0.64].
The 95 percent confidence intervals show that, on average,
we can expect the Perimeter Minimizing Algorithm with
visibility constraints to result in significantly fewer number of
cohesive groups. This illustrates the importance of enforcing
the visibility constraints.

TABLE V
STUDENT’ S T-TEST RESULTS FOR COMPARISON OF THEPERIMETER

M INIMIZING ALGORITHM WITH AND WITHOUT ENFORCING THE
VISIBILITY CONSTRAINTS FOR CONNECTIVITY MAINTENANCE.

Mean Standard deviation df t−value p−value
0.42 0.94 99 −6.1878 6.92 × 10−9

D. Near-optimality with respect to distance traveled by robots

We include a comparison of the Perimeter Minimizing Al-
gorithm with the optimal algorithm in terms of the maximum
distance by any robot to rendezvous. Given a group of point
robots in a nonconvex environment, the optimal rendezvous
location is given byargminq∈Q maxi∈{1,...,n} dgeodesic(pi, q),
where dgeodesic(p, q) denotes the length of the shortest curve
contained inQ that connectsp andq. Of course, this location
can only be computed centrally with full information about
the environment and the robots’ location.

Experiments were run for the one hundred randomly gen-
erated initial conditions described in Section VI-B for the
point robot model with asynchronism and errors in control and
sensing. In each case, for every group of robots that converges
to a single location, we recorded the optimal rendezvous point,
and compute the ratio of the maximum distance that any
robot covers until rendezvous under the Perimeter Minimizing
Algorithm and the optimal distance to rendezvous. The mean
and the standard deviation of the ratio is given by1.19 and
0.23, respectively. The95 percent confidence interval of the
mean ratio is given by[1.13, 1.24]. This shows that, at least
for the point robot model, the performance of the (distributed)
Perimeter Minimizing Algorithm with asynchronism and sen-
sor and actuator noise is reasonably close to that of the optimal
(centralized) algorithm.

E. Computational complexity with finite resolution sensing

An important consideration in the practical implementation
of the Perimeter Minimizing Algorithm is the time taken for a
robot to complete each step of the algorithm. This is dependent
on the computational complexity, that we characterize next.

A visibility sensor, e.g., a range scanner, will sense the
position of other robots and the boundary of the environment
with some finite resolution; in particular, the boundary of
the sensing region will be described by a set of points. It is
reasonable to assume that the cardinality of this set of points
is bounded, say byM , for all robots, irrespective of the shape
of the environment and the location of the robot in it. For
example, if a laser range sensor is used to measure the distance
to the boundary and a measurement is taken at intervals of one
degree, thenM is equal to360.

Proposition VI.1 (Computational complexity) Let Q be
any allowable environment. LetM be the resolution of the
visibility sensor located at any robot inQ. Then the following
statements are true:

(i) the computational complexity of theConstraint Set Gen-
erator Algorithmis O(κM);

(ii) the computational complexity of thePerimeter Minimiz-
ing Algorithm is τ(M) + O(M3 log M); and
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(iii) if Gconstr = Gsens, then the computational complexity of
the Perimeter Minimizing Algorithmis O(M2 log M),

whereτ(M) is time taken for the computation ofNi(Gconstr)
given the setNi(Gsens) assuming|Ni(Gsens)| ≤ M , and κ is
the number of strict concavities ofQ.

As discussed in Section IV-B, ifGconstr = Glc(Gsens), then
the computation ofGconstr from Gsens can be performed using
efficient polynomial time heuristics. The timeτ(M) above
depends on the specific heuristic used. Thus, the running
time of each step of the Perimeter Minimizing Algorithm
is polynomial in the number of data points obtained by the
visibility sensor. Based on the above analysis, we conclude
the algorithm can be implemented on actual robots without
demanding an unreasonable computational power.

VII. C ONCLUSIONS

In this paper, we have presented a provably correct
discrete-time synchronous Perimeter Minimizing Algorithm
that achieves rendezvous of robots equipped with visibility
sensors in a nonconvex environment. The proposed algorithm
builds on a novel solution to the connectivity maintenance
problem also developed in the paper. Extensive simulations
have shown that the performance of the algorithm is satis-
factory under asynchronous robot operation, noise in sensing
and control, and nontrivial robot dimension. We have also
compared the performance of Perimeter Minimizing Algo-
rithm against a similar geometric centering strategy that does
not incorporate any connectivity constraint and against the
optimal (centralized) strategy in terms of distance traveled by
the robots. These comparisons have shown the near-optimality
of our (distributed ) algorithm in terms of distance traveled,
and the superior performance in terms of achievement of the
rendezvous objective. Finally, we have characterized the com-
putational complexity of the algorithm under the assumption
of finite sensing resolution and found it to be feasible for
implementation in real robotic systems.
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