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Abstract—This paper presents a coordination algorithm for data can be processed to obtain a geometric representation
mobile autonomous robots. Relying upon distributed sensing, of the area visible from a robot, e.g., see [6]. Thbots
the robots achieve rendezvous, that is, they move to a comMmoNy44 not have any global knowledge about the environment
location. Each robot is a point mass moving in a simply o
connected, nonconvex, unknown environment according to an or the position of other robots, do r_IOt share a common
omnidirectional kinematic model. It is equipped with line-of-sight ~ reference frame, and do not communicafée also assume
limited-range sensors, i.e., it can measure the relative position of that the algorithm regulating the robots’ motion is memesg,
any object (robots or environment boundary) if and only if the je. we consider static feedback laws. Given the aforesaid
object is within a given distance and there are no obstacles in- model, the goal is to design a discrete-time algorithm which

between. The Perimeter Minimizing Algorithm is designed using that th bot ¢ locati ithi
the notions of robust visibility, connectivity-preserving constrant ensures that the robots converge 1o a common location within

sets, and proximity graphs. The algorithm provably achieves the environment. Please refer to Figure 1 for a graphical
rendezvous if the inter-agent sensing graph is connected at any illustration of rendezvous in a nonconvex environment.

time during the evolution of the group. Simulations illustrate

the theoretical results and the performance of the proposed nital position of the agents Evolution of the network Final position of the agents
algorithm in asynchronous setups and with measurement errors,

control errors and non-zero robot size. Simulations to illustrate
the importance of visibility constraints and comparisons with the
optimal centralized algorithm are also included.

Index Terms—Multi-robot coordination, Cooperative control,

Distributed algorithm, Visibility, Nonlinear systems and control

Fig. 1. lllustration of rendezvous for a group of robots wdistted in a
nonconvex environment shaped like a typical floor plan. Titentst figure
I. INTRODUCTION shows the inter-robot sensing graph.

Multi-agent robotic systems have been receiving incregsin
attention in recent times due, in no small part, to the remark A sub-problem addressed in this paper is that of connegtivit
able advances made in recent years in the developmentmgintenance with visibility sensors; in other words, how
small, agile, relatively inexpensive sensor nodes. Latgeber should the robots move if they are to ensure that the graph
of such simple nodes offer a more economical, scalable, a@enerated by inter-robot visibility remains connected.
robust solution than the use of fewer more expensive andOur interest in the rendezvous problem is justified as
sophisticated ones. follows. First, rendezvous is the most basic formation knt
Inspired by the work in [1], we consider the multiroboproblem and can be used as a building block for more sophis-
rendezvous problem; in this basic coordination problem, wigated behaviors. A rendezvous algorithm can be used by the
aim to design distributed control laws to steer all robots torobots to agree on an origin of a global reference frame, or to
common location. The robots are assumed to move in a n@eme closer and form complex structures (modular robotics)
convex environment, and have minimal sensing capabiliti€sonstraints on power or the geometry of the environment may
Each robot is only equipped with amnidirectional limited- sometimes require that the robots come closer to be able to
range visibility sensgrthe nomenclature is adopted from [2communicate. Also, many data collection applications irequ
Section 11.5]. Such a sensor is a device that determinegwitdeploying robots over a region of interest and subsequently
its line of sight and its sensing range the following quaegit retrieving them. A rendezvous algorithm can enable easy
(i) the relative position of other robots, and (ii) the relat retrieval. The problem addressed in this paper is partiyula
position of the boundary of environment. Examples of sontelevant when the intended application is set in an urban or
such visibility sensors can be found in [3], [4], [5]. The sen indoor environment.
The sensing and communication limitations are motivated
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The connectivity maintenance sub-problem is another fuduring the system evolution, we design in Section IV novel
damental problem motivated by cooperative and distributednstraint sets that (i) ensure that the visibility between
robotics applications; see for example the recent articldné two robots is preserved, and (ii) change continuously (in
IEEE Transactions on Robotics [7]. The novel connectivitgn appropriate technical sense) with the robots’ positions
maintenance algorithm in this paper can be used in variowge define the novel locally-cliqueless visibility graph, ialn
problems concerning nonconvex environments and vigibilitcontains fewer edges than the visibility graph, and has the
based sensing beyond rendezvous, such as leader followsagne connected components. This construction is usefagin t
and formation control. connectivity maintenance problem because it imposes fewer

The literature on multirobot systems is very extensiv&Onstraints on the group evolution. In Section V, we provide

Examples include the survey [8] and the special issue [g]careful analysis of our solution to the rendezvous problem

of the IEEE Transaction on Robotics and Automation. O4f€ Perimeter Minimizing Algorithm. The main convergence
multi-robot model is inspired by the literature on netwodts result is proved via our recent version of the LaSalle Irarzece

mobile interacting robots: an early contribution is the miod Principle for set-valued maps [13]. As a novel Lyapunov

proposed in [10] consisting of a group of identical “distried function, we conside.r_ the peﬁmeter of the rellative convex

anonymous mobile robots” characterized as follows. Ea@y!l Of the robot positions. Finally, extensive simulasom

robot completes repeatedly a cycle of operations: it sethges Section V_I validate our results and (_astabllsh thg convergef _

relative position of all other robots, elaborates this infation, °Ur @lgorithm beyond the assumptions made in the theofetica

and moves. The robots share a common clock. A related mog8p!ySis- The simulations show that our algorithm perforcea

is presented in [11], where the robots evolve asynchrogpudp Still adequate assuming asynchronous agent operatese n

have limited visibility, and share a common reference framgT0rs in sensing and control, and finite-size disk robots.

For these types of systems, the “multi-agent rendezvoﬁdd't'on_a' anaIyS|_s results aqd all proofs are presenteithén

problem and the first “circumcenter algorithm” have beefi€ctronically available technical report [19].

introduced in [1]. This algorithm has been extended to vexio

asynchronous strategies in [12], [11], where rendezvous is [I. BASIC GEOMETRIC NOTIONS

referred to as the “gathering” problem. The circumcenter |n this section we introduce some useful geometric notions.

algorithm has been extended to arbitrary higher dimensiopst 7-,, R, R, and R~ denote the sets of nonnegative

in [13], where its robustness properties are also chaiaeter integer, real, nonnegative real, and positive real numbers

Multirobot rendezvous with line-of-sight sensors is coesed respectively. Forp € R? andr € R, let B(p,r) denote

in [14], where solutions are proposed based on the exptoratithe closed ballcentered ap of radiusr. Given a bounded

of the unknown environment and the selection of appropriaiet X ¢ R?, let co(X) denote the convex hull of, and

rendezvous points at pre-specified times. The problem |et CC(X) denote thecircumcenterof X, i.e., the center

computing a rendezvous point in polyhedral surfaces mage the smallest-radius circle enclosing. For p,q € R?,

of triangular faces is considered in [15]. Formation cohtrget |p,q[= {A\p + (1 —N)g | 0 < A < 1} and [p,q] =

and rendezvous problems have been widely investigated Wity + (1 — \)g | 0 < X < 1} denote theopen and closed

different assumptions on the inter-robot sensing. For @@m segmentith extreme pointg andq, respectively. Theersor

a control law for groups wittime-dependergensing topology map vers : R? — R? is defined byvers(0) = 0 and

is proposed in [16]; this and similar works, however, depengs(p) = p/||p|| for p # 0. Let | X| denote the cardinality

upon a critical assumption of connectivity of the inter{aige of a finite setX in R?. Given a compact set of points

sensing graph. This assumption is imposed without a sensiigc R?, and another poinp € R?, let dist(p, X) denote the

model. In this paper, we considposition-dependengraphs minimum Euclidean distance gf to any point in the sefX.

and, extending to visibility sensors a key idea in [1], wevBhoThe diameteriam(X) of a compact sefX is the maximum

how to constrain the robots’ motion to maintain connedfivitdistance between any two points .

of the inter-robot sensing graph. Now, let us turn our attention to the environments we are
Our main contribution is a novel, provably correct alinterested in. Given any compact and connected suBset

gorithm that achieves rendezvous in a simply connectdd:, let 9Q denote its boundary. A point of Q) is strictly

nonconvex, unknown environment among robots with ongoncaveif for all e > 0 there existsy; and gz in B(g,¢) N

nidirectional range-limited visibility sensors. Rendeas is 9@ such that the open intervayy, ¢»[ is outside@. A strict

achieved among all robots if the inter-agent sensing graphcPncavityof 0@ is either an isolated strictly concave point

connected at any time during the group evolution. Anoth&f @ connected set of strictly concave points. Accordingly,

relevant contribution is the introduction of a novel set oftrict concavity is either an isolated point (e.g., pointsand

notions and tools for connectivity maintenance in noncgnvé2 in Figure 2) or an arc (e.g., arg in Figure 2). Also, any

environments; these notions are applicable to visibtiaged Strictly concave point belongs to exactly one strict coityav

multi-robot scenarios beyond the rendezvous problem. The

technical approach proceeds as follows. In Section II, weefinition Il.1 (Allowable environment) A set@ C R* is

review useful geometric notions, such as robust visib[ifty] ~ allowableif

and proximity graphs [18], and introduce various novel vis- (i) @ is compact and simply connected,;

ibility graphs. In Section Ill, we state the rendezvous and(ii) 9Q is continuously differentiable except on a finite

connectivity maintenance problems. To maintain connigtiv number of points; and



(i) 0Q has a finite number of strict concavities.

Recall that, roughly speaking, a set is simply connected if i
is connected and it contains no holes. A particular caseef th
environment described above is a polygonal environmesnt, th
concavities being the reflex vertidesf the environment.

One can define thimternal tangent half-planéZg (v) at the
following strictly concave points:

(i) At any pointv whered(@ is continuously differentiable,
H is the half-plane whose boundary is tangent to
P Q(U) d wh p. ior d Y . 9 . _Fig. 3. Robust visibility notionsQ is the outer polygonal environment; the
Q atv an W ose 'nter!or 'oes_ not contain any p0|nt§-contractionQE is the region with the curved boundary and containing the
of the concavity; see point’ in Figure 2. point p; the visibility setV(p) is the region shaded in light gray; theobust
(ii) At any point v which is the end point of a strictly visibility set V(p, €) is the region shaded in darker gray. Note that the isolated
. concavities of@Q give rise to strictly concave arcs ..
concave arcHg(v) is the half-plane whose boundary
is tangent to the arc at and whose interior does not
contain any points of the concavity; see poirit in

Figure 2.

Remarks 11.4 (i) In light of Lemma I1.3(ii), in what fol-
lows we assume that is small enough forQ). to be
connected and therefore allowable.

(i) Robust visibility is a useful concept in many practigal
meaningful ways. For example, according to this notion,
points are visible only if they are at least at a distance

e from the boundary. This is useful when an object is

arbitrarily close to the boundary and is indistinguishable

from the boundary itself. Additionally, the parameter
might be thought of as a measure of the physical size
of the robot. Thus confining the robots to the&obust
visibility set guarantees free movement of the robot in
the environment. The notion afcontraction is related
to the classical work on motion planning [20], [2]0

ay

Fig-t2- An a"OWtablte enVifOUtmen}?} the C'_Oied afmlhand ttr?e i|S°|atedf We now define some graphs which are useful in describing
points r1,ro are strict concavitiesv’ is a point ona; where the slope o . .

0Q is defined.Hg (v') is the half-plane with the tangent @ atv’ as the the interactions between robots.
boundary and the interior in the direction of the arraW. is an end point
of arc a;1. Hg(v") is the half-plane with the tangent i@ at v’/ as the L A A .
boundary ang the interior in the direction of the arrow. Definition 1.5 (PI’OXImIty graphs) A proximity graph IS a

graph whose nodes are a set of poifits= {p1,...,p,} and
A point ¢ € Q is visible from p € Q if [p,g] C Q. The Whose edges are a function &% GivenP C @, € > 0 and
visibility setV(p) C Q is the set of points irQ visible from 7 > 0, define:

p. This notion can be extended as follows (see [17]): (i) Thevisibility graphGg at P is the graph with node set
P and with edges defined as followg;, p,) is an edge
Definition 11.2 (Robust visibility) Takee > 0 and Q c R2. if and only if [p;, p;] C Q.
() The pointg € Q is e-robustly visible from the point (i) Thee-robust visibility graphGg (¢) is the visibility graph
pEQIf UpeppgBld ) C Q. o atpifor Q. o _
(i) The e-robust visibility setV(p,e) ¢ @ fromp € Q is (i) Ther-rangee-robust visibility graphGe(e;r) at P is
the set of points inQ that are e-robustly visible fromp. the graph with node seP and with edges defined as
(iiiy The e-contraction Q. of the setQ is the set{p € follows: (p;, p;) is an edge if and only ifp;, p;] C Q.
Qlllp—ql| > € forall qedqQ}. and |p; — pjl| <.

These notions are illustrated in Figure 3. We present theln other words, two pointg, ¢ are neighbors in the-range
following properties without proof in the interest of brigvi  visibility graph, for instance, if and only if they are mutlya
visible and separated by a distance less than or equal to
Lemma 11.3 Given an allowable environmer and e > 0, Example graphs are shown in Figure 4. General properties of

the following statements hold: proximity graphs are defined in [18], [13].
() p,q € Q are e-robustly visible if and only ifp, q] C Q.; We say that two proximity graphg, and G, have the
(ii) if € is sufficiently small, ther). is allowable; and same connected componeiiftsfor all sets of pointsP, the
(iii) all strict concavities 0fdQ. have non-zero length and 9raphsgi1(P) andG,(P) have the same number of connected
are continuously differentiable. components consisting of the same vertices. Given a set of

points » = {p1,...,p,} and a proximity graphg, we let
LA vertex of a polygon is reflex if its interior angle is strictjreater thanr.  A;(G) at P denote theset of neighbors including itselff p;.



In other words, if{p;,,...,p;,, } are the neighbors af; in G I1l. SYNCHRONOUS ROBOTS WITH VISIBILITY SENSORS
at P, thenN;(G) at P is {pi,,---,pi, } U{pi}. AND THE RENDEZVOUS AND CONNECTIVITY

MAINTENANCE PROBLEMS
: In this section we model a group efrobots with visibility

sensors in a given allowable environmeént We assume that
Fig. 4. The figure on the left shows the visibility graph (wha=dges are

e is a known positive constant sufficiently small so tlgat
is allowable. Fori € {1,...,n}, we model theith robot as a
point p; € @ and we refer to Section VI for an extension to
a disk model. We make the following modeling assumptions:
Synchronized controlled motion modétobot i moves at
time t € Z>o for a unit period of time, according to
the discrete-time control system

the solid lines as well as the dashed lines) andetiebust visibility graph pi [t + 1] = Di [t] +u; [t] (1)
(whose edges are the solid lines alone) of a set of points imreanvex . . .
polygon. The figure on the right shows theangee-robust visibility graph. We assume that there is a maximum step sizg >
The disk in the figure shows the sensing range for one of thetsob 0 for any robot, that is,| UL|| < Smax- The robots are

synchronizedn the sense that the calculation oft] in

equation (1) takes place at the same timés all robots.

Sensing modellhe environmeng is unknown to the robots.
Robot i senses (i) the presence and the position of any
other robot that is visible and within distaneefrom
pi, and (ii) the subset 0@ that is visible and within
distance(r+e¢) from p;. This in turn implies that the robot
can sense the subset 8f). that is visible and within
distancer from p;. It is convenient to define thgensing
region from positiorp; to beS(p;) = V(p;, €) N B(pi, 7).
The ranger is the same for all robots.

The last key notion used in our technical approach is that
of relative convex hull.

Definition 1.6 (Relative convex hull) Take an allowable
environmentQ).
(i) X C @ is relatively convexif the shortest path inside
@ connecting any two points of is contained inX.
(i) Therelative convex hullrco(X, Q) of X C @ is the
smallest relatively convex subset @ that containsX .
(iii) If X is a finite set of points, then&ertexof rco(X, Q)
is a pointp € X with the property thatco(X \ {p}, Q)

Lscoa(\;tgc)t izué);?ct)tgscggf(e ,(CTQC)(;(;'(hZ;t.at of vertices of Remark 111.1 (No common reference _f_rame) The model
’ ’ presented above assumes the ability of robots to sense

The relative convex hull of an example set of points and ittbsolute positions of other robots; this assumption is only
vertices are shown in Figure 5. made to keep the presentation as simple as possible. In this
and subsequent remarks, we treat the more realistic setting
in which the n robots haven distinct reference frames
¥i,...,2,. We let ¥y denote a fixed reference frame.
Notation-wise, a poiny, a vectorw, and a set of points
expressed with respect to franms are denoted by, w’
and S?, respectively. For example, this means titis the
environment) as expressed in frane;. We assume that the
origin of 3J; is p; and that the orientation of;; with respect
to g is RY € SO(2). Therefore, changes of reference frames
are described by the equationg: = RYq" + p?, w° = R{w’,
Fig. 5.  Relative convex hulkco(X,Q.) of a set of pointsX (solid ands® = R?S’-—i—p?. If we let Vi (pj,e) denote the VISIb”'_ty
disks) inside a the-contraction of an allowable sep. The set of vertices Set expressed iR, for j € {0,1,...,n}, then one can define

Ve(rco(X, Q.)) is the set{v1,...,v7}. S . .
5(1’57 Qj) = VQj (pfv 6) N B(pg,T),

Th rimeter of the relativ nvex hull of llection of . oo ,

The perimeter of the relative convex hull of a collectio of 4 verify S(p0, Q%) = ROS(pi, O) + p°. Note thatp! = 0.
points is defined next. . i i X i

Finally, we can describe our motion and sensing model

Definition 11.7 (Perimeter) For an allowable envionmer) under the no common reference frame assumption. Robot
and a closed subseX C (@, the perimeter(rco(X,Q)) is Moves according to
the Ien_gth of the shortest measurable closed curve in€ide POl + 1] = pO[t] + R[t]us 2], @)
enclosingX.

and it senses the robot positiops and the subset ofdQ)’

The key property of Definition I1.7 is that, iX is a finite that are within the sensing regidﬂ(pﬁ,@l). 0O

set of points in@, then the perimeter ofco(X, ) depends
continuously on the points iX. We end this section by stating the two control design

2That is,rco(X, Q) is the intersection of all relatively convex subsets OPrOblemS addressed in this paper.

Q that containX.



Problem 111.2 (Rendezvous) The rendezvous problers to
steer each agent to a common location inside the environ-
ment().. This objective is to be achieved (1) with the limited
information flow described in the model above, and (2) unde
the reasonable assumption that the initial position of tits
Pl0] = {p1[0],...,pn[0]} gives rise to a connected robus
visibility graph Gq(¢) at P[0]. O

As one might imagine, the approach to solving the ren-

dezvous problem involves two main ideas: first, the undegdlyi rig 6. In the figure on the left, starting from; andp;, the robots

proximity graph should not lose connectivity during the €Vvaare restricted to move inside the disk centered’a#Z with radius
lution of the group; second, while preserving the connégtiv . In the figure on the right, the robots are constrained to move inside

of the graph, the robots must move closer to each other. THI§ shaded region Wﬂip@h is a convex subsetXfintersected with
discussion motivates a second complementary objective. the disk centered at>* with radius ;.

Problem 111.3 (Connectivity maintenance) The connectiv-

ity maintenance problens to design (state dependent) control | et ys now consider the case when a robistlocated ap;
control takes values in the control constraint set, then t pi, €)NB(p;,r). If at any time instant, we have thafip;[¢]—
robots move in such a way that the number of connected]|| < » and [p;[t], p;[t]] € Q.. then to ensure thatp; [t +

components OgQ(F) (evaluated at the robots’ states) doeﬂ —pj[t+ 1] < r and[p[t + 1], p;[t + 1]] € Q., it suffices
not increase with time. U to require that:

IV. THE CONNECTIVITY MAINTENANCE PROBLEM pilt + 1], pj t+1]eC,

In this section, we maintain the connectivity of the group QfhereC is any convex subset af. N B(m[t];m Uy 1); see
robots with visibility sensors by designing control coasit Figure 6 (right). Equivalently,
sets that guarantee that every edg&ofe; ) (i.e., every pair
of mutually range-limited visible robots) is preserved. hdee uift] € C —pilt], u;[t] € C — p;lt],

three objectives in doing so. First, the sets need to depgferec — pilt] andC — p;[t] are the setdp — p;[t] | p € C}
continuously on the position of the robots. Second, the sgjsy {p — p;[t] | p € C}, respectively. Note that both robots
need to be computed in a distributed way based only on tb%mdj must independently compute the same GeGiven
available sensory information. Third, the control coristraets e positionsp;, p; in an environmenty, Table | describes
should be as “large” as possible so as to minimally constraife Constraint Set Generator Algorithm, a geometric sisate
the motion of the robots. Our solution to this problem g, each robot to compute a constraint €et: Co(p;, p;) that

a geometric strategy that allows us to compute approprigiganges continuously with; and p;. Figure 7 illustrates a
constraint sets. We discuss it in detail in the next section. step-by-step execution of the algorithm.

A. Preserving mutual visibility: Th€onstraint Set Generator _ TABLEI .
. Constraint Set Generator Algorithm
Algorithm
ConSide'r' a pair of robots in an environmeftthat aree- Goal:  Generate convex sets to act as constraints to preserve mutual
robustly visible to each other and separated by a distante ho visibility

larger thanr. To preserve this range-limited mutual visibility Gti)vef‘: (pi;p;) € Q2 such ‘:atip”lilﬁpﬂ'_] € Qc andp; € B(pi,r)
property, we restrict the motion of the robots to an appadpri | R°P°t € {1:---.n} execztispf @ folowing computations:
subset of the environment. This idea is inspired by [1] and wek Cemp:= V(pi, ) N B(=5~*, 5)

. . . . 2: while 9Ctemp contains a concavitgo
begin by stating the result therein. Let the sensing region 03 ", ._ 3 strictly concave point 0Ciemp closest to the segmefi;, p,]

robot located atp; be S(p;) = B(p;,r), for somer > 0. If | 4 gemﬁ']: Ctemp Ho, (v)
at any time instant, |[p;[t] — p;[t]|| < r, then to ensure that| 5 end while =~

at the next time instant+ 1, ||p;[t + 1] — p;[t + 1]|| < r, it 6: return: Cq(pi, pj) := Ciemp
suffices to impose the following constraints on the motion of
robotsi and j:

Note that in step@ of the algorithm, there can be many

[t+1, pilt+1] € B(pi [t] 4 pjt] f) distinct points belonging to distinct concavities thaisfgtthe
bi » P 2 72/’ required property. In that case,can be chosen to beny one
or, equivalently, of them. The following lemma justifies this observation.

wlt] € B(M7 f)7 ujft] € B<M, f), Lemma IV.1 Throughout the execution of ti@onstraint Set
2 2 2 2 Generator Algorithm in Table |, letv,, v, be two strictly
In summary,B(%, %) is the control constraint set for concave points 0ACemp that are closest tdp;, p;]. Thenv; €
roboti. This constraint is illustrated in Figure 6 (left). CempN Hg, (v2) and vice versa.



Fig. 8. The green convex set in the center represétso (Vi (Go(e;7))).
The black disks represent the position of the robots. Tlagstt line segments
between pairs of robots represent edgesjef(e; ). Here, p; is the black
disk contained in the constraint set.

of the graph is preserved. This can be accomplished as fallow

Fig. 7. From left to right and top to bottom, a sample incomplete r For roboti atp; € Q., define the control constraint set

of the Constraint Set Generator Algorithm (cf. Table I). Ttop left figure . B

showsCtemp := V(pi, €) N B(p";pj ; 5). In all the other figures, the lightly Cp“Q(M(gQ(e’ 7’))) B ﬂ CQ (p“p]). (4)
and darkly shaded regions together represesmtp. The darkly shaded region i ENi(Gq(€m))
representSiempH¢ (v), Wherev is as described in step. The final outcome

of the algorithm,Cq (ps, p;), is shown in Figure 6 (right). Now, if u; € Cth(N’i (gQ (e; 7"))) — p;, for all i €

{1,...,n}, then all neighboring relationships @, (e; ) are
preserved at the next time instant. Using inputs that gatisf

Next, we characterize the main properties of the Constraifjt.se constraints. the number of edgegif(c; r) is guaran-
Set Generator Algorithm and the corresponding convex setg.q.q 1o pe nonde,creasing. '

Proposition 1V.2 (Properties of the Constraint Set Gen- _ R
erator Algorithm) Given an allowable environmer@ with B- The locally-cliqueless visibility graph

K strict concavities,e > 0 and (p;,p;) € J = {(pi,pj) € In this section, we propose the construction of constraint
Q? | [pi,pj] € Qe, |lpi — p;|| < 7}, the following hold: sets that are, in general, larger thap, o (N:(Go(e;7))). To

(i) the Constraint Set Generator Algorithnterminates in do this, we define the notion décally-cliqueless graphThe

at mosts steps; locally-cliqueless graph of a proximity graghis a subgraph

(i) Cq(pi,pj) is nonempty, compact, and convex; of G, and therefore has generally fewer edges, but it has the
(i) Co(pi,pj) =Col(pj,pi); and same number of connected componentgjaghis property

(iv) the set-valued maf, is closed at every point of/. is fundamental because it directly leads to the design af les

conservative constraint sets.

Remark 1V.3 (No common reference frame: continued) Before defining the locally-cliqueless graph, let us rettat

Consider a group of robots with visibility sensors and n@) a clique of a graph is a complete subgraph of it, and (i) a
common reference frame. With the notation and assumptiom@ximal clique of an edge a clique of the graph that contains
of Remark lIl.1, one can verify that the constraint setde edge and is not a strict subgraph of any other clique of the
transform under changes of coordinate frames according t@raph that also contains the edge. In the field of combireltori
0 o o Py 0 optimization, it is well-known that finding the maximal alig
Cao (i, pj) = RiCqi(p;; pj) + pi- ®) of a graph is an NP complete problem. However, efficient
We omit the proof in the interest of brevity. ] polynomial time heuristics exist [21]. Additionally, wefitee a
useful proximity graph. AEuclidean Minimum Spanning Tree
For each pair of mutually visible robots, the executiogeysr(G) at P of a proximity graphg is a minimum-length
of the Constraint Set Generator Algorithm outputs a contrgpanning tree of(P), where edges of the forip;, p;) have
constraint set such that, if the robots’ motions are comsth length ||p; —p;||. If G(P) is not connected, the@emst(G) at
to it, then the robots remain mutually visible. Clearly,&iv P is the union of Euclidean Minimum Spanning Trees of its
a connected graph at tintgif every robot remains connectedconnected components.
with all its neighbors at time¢ + 1 (i.e., each pair of mutually

visible robots remain mutually visible), then the connétiti pefinition IV.4 (Locally-cliqueless graph of a proximity

3 o ) graph) Given a point sef? and an allowable environmeidp,
Let Q map points m)_( to all p_ossmle subsets af. Ther_l the set-valued the locall -cquueIess grapl@ (g) at P of a proximit graph
map, 2, is open at a point € X if for any sequencgzy} in X, z — = - y b ~lc ) y
andy € Q(z) implies the existence of a numbes and a sequencéy,} G is the proximity graph with node s@t and with edges aP

in Y such thaty;, € Q(xy) for k > m andy;, — y. The mapQ is closed defined as follows(p,.».) is an edge i if and only if
at a pointz € X if for any sequencz} in X, z — x, yp — y and oV is an edae E)pg%)and ‘ g Isrglr(]:(egd) 6 of YQ
yr € Q(zy) imply thaty € Q(zx). Q is continuous at any point € X if it (pispj) g (P) (pi»pj) g emst(9)

is both open and closed at x. at P’ for any maximal cliqueP’ of the edge(p;,p;) in G.



For simplicity, we will refer to the locally-cliqueless gria a . A N
of the proximity graphsGg, Go(e) or Gg(e;r) as locally- i " i B

cligueless visibility graphsFigure 9 shows an example of a | . : 3 .
locally-cliqueless visibility graph. B P

s vt i

Fig. 11. The dashed circle is centeredpatand is of radiusr. The thick
[ [ curves represent the boundary@t; the one on the left represents the outer
boundary whereas the one on the right represents a hole ientheonment.

instant. Thus, we have found constraint sets (5) for thetinpu
that are larger than the constraint sets (4), and are yetiguifi
Fig. 9. \Visibility graph (left) and locally-cliqueless Vislity graph (right). o preserve the Connectivity of the overall group.

Remark IV.6 (Distributed computation of locally-
o I cligueless visibility graphs) According to the model
a proximity graph) Let G be a proximity graph. Then, the gnaified in Section 111, each robot can detect all other tobo
following statements hold: in its sensing regionS(p;) = V(pi,e) N B(p;,r), i.e., its
(1) Gemst(9) € Gie(9) € G; and neighbors in the grap8 (¢; ). Given the construction of the
(i) Gic(9) and G have the same connected components. constraint sets in this section, it is important to guararttet
the set of neighbors of robatin the locally-cliqueless graph
Gic(G) can be computed locally by robatFrom the definition
of the locally-cliqueless graph, this is indeed possible if
robot i can detect whether another robgtin its sensing

L] L] L] regionS(p;) belongs to a clique of the graghy (e; r). This is
equivalent to being able to check if two robets, p; € S(p;)
F satisfy the condition that; € S(p;) and vice versa. Note that

Theorem IV.5 (Properties of a locally-cliqueless graph of

In general, the inclusions in Theorem IV.5(i) are strictg+i
ure 10 shows an example withemst(Go) € Gic(Gg) € Go-

F F pr € S(py) is equivalent to||px, — pi|| < r and [pr, p1] C Q..
Given thatp, — p; = (px — pi) — (p — pi), the vectorp, —p;
j j j (and hence|lpr — pi]]) can be computed based on local
b b b sensing alone. Now, checking [px,p;] € Q. is possible
only if Q. does not contain any hole; see Figure 11. In such
I: % I: a case, it suffices to check if the entire line segmept

is visible fromp; or not.
Fig. 10. From left to right, visibility graph, locally-cligeless graph and  Along similar lines, we can state that the locally-cligssie

Euclidean Minimum Spanning Tree of the visibility graph. visibility graph is computable under the “no common refeeen
o frame” model described in Remarks Ill.1 and IV.3. [
We will invoke Theorem V.5 forGg, Go(e) or Go(e;r)
defined over allowable environmentsand Q., ¢ > 0. \.. THE RENDEZVOUS PROBLEM ALGORITHM DESIGN AND
We are now ready to define new constraint sets that are in ANALYSIS RESULTS

general larger than the ones defined in (4). For simplicdty, |

G = Go(e;r), and consider its locally-cliqueless gragh(G). In this section, we solve the rendezvous problem through

a novel Perimeter Minimizing Algorithm. The algorithm is

For roboti € {1,...,n} located ap;, define the constraint set.” "™ . . . . .
ied n} b inspired by the one introduced in [1] but is unique in many
Cp..0Ni(Gic(9))) = ﬂ Cq(pi,pj)- (5) different ways. The rendezvous algorithm uses differeaps
p; €N (Ge(G)) to maintain connectivity and to move closer to other robots.

. . . .., Instead of moving towards the circumcenter of the neighgpri
Sincedic(G) is a subgraph of according to Theorem IV.5(i)), robots, the robots move towards the center of a suitably eléfin

we haveN;(Ge(9)) € Ni(9) = Ni(Ga(er), and therefore i . onctraint set.

CriaWNi(Galer))) € Cp,qNi(Gie(9)))- We present the algorithm in Section V-A followed by its

. . . main convergence properties in Section V-B.
In general, sincej(G) is a strict subgraph ofj, the set g prop

Cp.a(Ni(Gie(G))) s strictly larger thatC,,, (N (Go (e;7))). _ o _

Note that, if u; € C,,q(Ni(Gie(G)) — pi for all i € A. ThePerimeter Minimizing Algorithm

{1,...,n}, then all neighboring relationships in the graph We begin with an informal description of the Perimeter
Gic(G) are preserved at the next time instant. As a consklinimizing Algorithm over graphsGsens and Geonst= The
quence, it follows from Theorem IV.5(ii) that the connectedensing graphGsens is Go(e;r) while the constraint graph
components oG (e;r) are also preserved at the next tim&consy iS €itherGsens O Gic(Gseny:



Every roboti performs the following tasks: (i) it B. Convergence properties
acquires the positions of other robots that are its
neighbors according tdjsens (i) it computes a

point that is “closer” to the robots it senses, and

To state the main results on the correctness of the Perimeter
Minimizing Algorithm, we require some preliminary notatio
Ly . . . Lo First, note that given the positions of the robdis, ..., p,}
(if) it moves t_or\]/vgrd thlshg)aomt Wh|Ied.ma|nta|n|ng at time instant, the algorithm computes the positions at time
conngctlwty with its neig grs agcor Ing mo“‘%"' _instantt + 1. The Perimeter Minimizing Algorithm, therefore,
The algorithm is formally described in Table II; Figure 1 ing 4 map, saf.. c...: Q" — Q™. Second, we work with tu-

the Introduction illustrates an example execution. ple of pointsP = (py, ..., pn) € Q" for convenience. We let
TABLE Il G(P) denote the proximity grapf(P) andrco(P, Q) denote
Perimeter Minimizing Algorithm the relative convex hull of the s inside (), whereP is the
point set given by{p; | ¢ € {1,...,n}}. Third, we introduce
Assumes: (i) Q is allowable a Lyapunov function that encodes the rendezvous objective.
(i) Gsensis G (€; 7); GeonstriS €itherGsensor Gic(Gsend Given an allowable environmerg, we recall the notions of

(ii) smax > 0 is the maximal step size

Lnerelative convex hull and of perimeter from Section I, and

Each robot € {1,...,n} executes the following steps at each time inst defi b
. . n

1: acquire{p;,, ... ,pi,, } := positions of robots withip; sensing region efine Vperimg : Q" — R0 by
2: computeN; (Gseny and. N (Geonstr) Voeri P) = i

= perimeter(rco(P, .
3: computeX; := Cy, @ (Ni(Geonsi)) N reo(N: (Gsend, V(P ©)) perim2(P) =P (reo(P, Q)
4: computep; := CC(X;) . .
5: return: w; := min (smax, [P} — p:ll) vers(pf — pi) Lemma V.3 (Properties of Lyapunov function) The func-

tion Vperimg has the following properties:

(1) Vperimg Is continuous and invariant under permutations
of its arguments; and

(i) Voerimg(P) = 0 for P = (p1,...,p,) if and only if
pi =p; forall 4,5 € {1,...,n}.

Remarks V.1 (i) In the algorithm proposed in [1], robots
move towards the circumcenter of their neighbors’ po-
sition. In the Perimeter Minimizing Algorithm, robots

__ Mmove towards the circumcenter of their constraint set. Thjs result implies that achieving the rendezvous objedtiv

(if) One can prove that the sét; is convex; see [19]. There- gqyjvalent to makindperimo. equal to zero. The proof strategy
fore, CC(X;) € X, and hence; € X;. Also, p; € Xi. s pased on establishing the monotonic decreasing evolutio
Therefore,u; € Xi —pi C Cp, (Ni(Geonst)) — Pi of this function along the executions of Perimeter Minimii

and, in turn, p; at the next time instant belongs toa|gorithm. We now state the main result of the paper.
Cp,,@(Ni(Geonst)). From Section 1V, this implies that

the graphconsy remains connected (or, more genera"yI'heorem V.4 (Rendezvous is achieved via the Perimeter

that the number of connected component§gfisi does A i )
not decrease). Therefore, by Theorem IV.5, the numb'(\:(llm'mIZIng Algorithm) - Let ¢ and Q. be allowablg envi-
ronments. Lepy,...,p, be a group of robots with visibility

of connected components Gf.salso does not decrease. - i
(iii) If the initial positions of the robots are i), then the SCNSOS IMQe. Any trajectory{P[]}ez., C Q. generated by

robots will remain forever ir),. because; € X; C Q.. Pt + 1] = Tgemgenss( Plt]) has the following properties:

(iv) All information required to execute the steps in the (i) if the locations of two robots belong to the same con-
algorithm is available to a robot through the sensing ~ nected component dsens at P[to] for someto, then
model described in Section Ill. The constraint on the  they remain in the same connected componer§sgfs
input size,||u;|| < smax is enforced in stes. O at P[t] for all ¢ > to;

: . . _ (i) Voerimg. (P[t 4 1]) < Vperimg. (P[t]); and
Finally, we conclude this section by completing our treatyjii) the trajectory{ P[t]}cz., converges to a poinP* € Q,
ment of robots without a common reference frame. such that eitherp; = p or p; ¢ S(p5) for all i,j €

1,...,n}.
Remark V.2 (No common reference frame: continued) { n}

Consider a group of robots with visibility sensors and ngs a direct consequence of the theorem, note that if the graph

common reference frame as discussed in Remarks gL, is connected at any time during the evolution of the

and IV.3. Because the relative convex hull and theystem, then all the robots converge to the same locatigh.in
circumcenter of a set transform under changes of coordinate
frames in the same way as the constraint set does in
equation (3), one can verify that VI. PRACTICAL IMPLEMENTATION ISSUES

The analysis of the Perimeter Minimizing Algorithm pre-
sented in Section V is valid for an ideal modelmint robots,
whereu;(p{, ..., p}) is computed with environmer®® and  gperatingsynchronouslywith perfect sensing and actuation
u;(py, - - -, py,) is computed with environmer@@”. This equal- capabilities However, such an ideal model is not realistic
ity implies that the robot motion with contral;(p{,...,p)) in practical situations. In this section, we investigatéa v
in equation (1) is identical to the robot motion with contropxtensive computer simulations, the effects of deviatfoos
u;(py, - ... py) in equation (2). O this ideal scenario.

Ui(p(l)7 S 7p2) = R?ui(piv s 7]);)7



A. Nominal experimental set-up 3) Direction error in sensing and controlThe visibility
The computer simulation was written in C++ using th&€€NsSOrs measure the relative angular location of anothectob
Computational Geometry Algorithmic Library [22]. Howeyeraccording to the following additive noise model.(Mc is the
it was found that Boolean operations on polygons using t}fstual angular location of any object in the I.ocal' reference
utilities present in CGAL were not sufficiently fast for thefame of a robot, the measured angular location is given by
purpose of running extensive simulations. Hence, Boolefm:t+ €0, Wheree, is a random variable uniformly distributed
operations on polygons were performed using the Geneffajthe interval[=5,5]. As before, the actuators moving the
Polygon Clipping Library [23]. robots are also subject to an additive noise directionalehod
For the purpose of simulations, the environment consider&dh the same error parameter.

is a typical floor plan; see Figure 1. The environment size 4) Disk robot model (with asynchronism, distance error,
is roughly 80 x 70, the step size of a robot ismax = 0.5 @nd direction error): The robots are assumed to be disks

and the sensing radius = 30. For simplicity, Geonst IS the of radiusO0.5. _This disk model also implies that robots may
same a¥sens TO Use the-robust visibility notion in providing occlude the view of other robots. We assume that two robots

robustness to asynchronism and sensing and control eaors;an detect each other only if the line segment joining their
each time instant; is set to be0.97 times the value of at centers does not intersect with any other robot disk. Alag, a
the previous time instant. Initially; is equal to3. In case a Strictly concave point of the boundary is visible from a robo
robot approaches a reflex vertex of the environment clogelyonly if the line segment joining the center of the robot tottha
reduces its speed. This is done to reduce the risk of cailisipoint does not intersect with another robot disk. During any
due to errors in sensing the exact location of the reflex xertétep, a robot moves a distance of at megtx = 0.5. The
The algorithm performance is then evaluated using ttgXxt position of the center of the robot, therefore, lies in a
following measures: (i) the average number of steps takgption diskof radius1.0 centered at the center of the robot.
by the robots to achieve the rendezvous objective; and () colliding neighborof a robot: is any neighbor according
the number of connected components @f.ns at the end !0 GsensSuch that the motion disks afand j intersect and
of the simulation compared with the number of connectdfat the motion disk ofj intersects the physical disk aof
components at the start. on the path between and its next point. If a robot has no
colliding neighbors, then its motion is executed accordimg
B. Robustness against asynchronism, sensing and Conﬁarimeter Minimizing Algorithm. On the other hand, if a robo
noise, and finite-size disk robot models as exactly one colliding neighbor, then it tries to swerve
around it while reducing its speed. Finally, if the robot has

In this section, we begin by describing the various nondideg, e than two colliding neighbors then it stays at the curren
conditions introduced into the experiments. We then dBecrij,.ation. To ensure free movement of the robots inside the

the performance of th_e. Perimeter Minimizing Algorithm undeenvironment,e is not allowed to fall below).5, which is the
these non-ideal conditions.

1 A hronism-Th b h i radius of a robot disk.
) Asynchronism:The robots operate asynchronously, i.e., Experiments were performed under the aforesaid non-ideal

%gnditions with20 robots starting fromi00 randomly gener-

gperatlngslt the .?amf t'g."et'.Eatd:j robc::]s (.:kiCk zil);eld 'i\ta "afed initial conditions from a uniform distribution. To @emt
om number uniformly distributed on the intervalo, 1]. for the non-zero robot size for the purpose of simulations,

integral multiples of its clock speed, a robot wakes up, 8&€NShe rendezvous objective is considered to be achieved if the

the positions of other robots within its sensing region, andp ots belonging to each connected componerggfs form
takes a step according to the Perimeter Minimizing Alganith a “cohesive” grouf We also place an upper bound on the

2) Distance error in sensing and controlThe visibility total time for which any given experiment can run. The

sensors measure the relative distance of another object g@’orithm performance in each experiment is evaluatedgusin

;?rdm,? t? (;?Ef[ fsllov;/lnt% muglpllfa;'::vi ?r?lsren mOdfl.d%d;;;Itsn the following two measures: (i) the ratio of the number of
1€ actual distance 1o the object, then the measure BNCohesive groups at the end of the experiment to the number
given by (1 + e1dist + €2 disdact)dact, Where eq gist and ez dist

: > - ! . of connected components in the sensing gréphs at the
are random variables uniformly distributed in the intesval P 99 °

) beginning of the experiment; and (ii) the number of steps
[_0'1’0'1(]1 ant [—0.0QB,0.003],trespfctlvely. Thereffore, Fheon average taken by a robot until the completion of the
measured "distance 1S correct up to-an error ot MaxXimulg,.iment. For the sake of convenience, we shall refer to

. 0 . .
magmtu_de equal to 20% of the actual distance. The Objeastﬁg above measures simply as Measure 1 and Measure 2 in
which distances are measured are other robots in the sen M9 rest of the paper

range and the boundary of the environment. For simplicity, Experiments are conducted to investigate if the Perimeter

instead of measuring a sequence of points along the bound?\‘/ﬁ\i’nimizing Algorithm under various non-ideal conditions

as a real range sensor does, we assume that only the vertices.,. . : o
. - 7. IS &till able to achieve the primary rendezvous objective -
of the environment are measured and the sensed region is Te-

constructed from that information. The sensor error, thoeee preserve the connected components of the initial sensaangr

) . and bring all the robots within each connected componeat int
occurs in the measurement of other robots and environment

vertices. The actuators moving the robots are also subject .
S . . . For each connected component Gfens the graph having nodes as
to a multiplicative noise distance model with the same ergf, oot locations and with an edge between two nodes whertbe

parameter. corresponding motion disks of the robots intersect is comaec
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a cohesive group. We compare three variants of the Perimetalues within thed5 percent confidence interval for the average
Minimizing Algorithm: (a) the synchronous implementatiorof Measure 1 are strictly less than one. This implies that the
assuming no errors and a point robot model, (b) the asymimber of cohesive groups at the end of the simulation is less
chronous implementation with sensing and control errots hinan the number of connected components in the sensing graph
with a point robot model, and (c) the asynchronous impleme@sens at the start of the experiment. In other words, all robots
tation with sensing and control errors with a disc robot nhodenitially connected inGsens do converge to form a cohesive
The associated mean values and $hepercent intervals [24] group.

of the averages of the two performance measures describ@d The performance of the Perimeter Minimizing Algorithm
earlier are shown in Figure 12. The standard deviation for

Measure 1 for cases (a), (b), and (c) above @&s, 0.34 , TABLE 1l
. L TUDENT S T-TEST RESULTS FOR DEMONSTRATING THE ROBUSTNESS OF
and 0.29 respectively. The standard deviation for Measure THE PERIMETER MINIMIZING ALGORITHM
for cases (a), (b), and (c) above are64, 12.76 and 80.94
respectively. Our observations are as follows. Mean | Standard deviation df | ¢—value | p—value
0.83 0.29 99 | —5.85 | 3.19x10°°

1r

0.95- . . . . .
worsens with the introduction of non-ideal behavior as can

be seen by the larger number of connected components
(Measure 1) in cases (b) and (c) as compared to case (a) in
Figure 12(top).
ool (iii) The disc robot model performance in the presence of
oed | errors (case (c)) is similar to the point robot model per-
formance in the presence of errors (case (b)) in terms of
Measure 1. We test this hypothesis as follows. We record the
difference between the Measure 1 values of cases (b) and (c)

0.9r

0.85-

0.8r

0.75-

0.6r

Average values of Measure 1

0.55-

0.5

@ Algoritiith variant © for each of thel00 experiments. We perform the Student’s
180r t—test with the null hypothesis being that the average of the
1600 aforesaid differences is zero against the alternate hggath
1400 that the difference is not equal to zero at the percent
120 confidence level. The results, summarized in Table 1V, show

that the null hypothesis cannot be rejected. A comparison of
the average Measure 2 values between case (b) and case (c)

100-

Average values of Measure 2

ZZ ! in Figure 12(bottom) shows that the average number of steps
. taken by the robots to converge is much greater in the case of

“a the disc robot model.

20r (iv) The cohesive groups at the end of the experiments

(@) () i (©
Algorithm variant TABLE IV
STUDENT'S T-TEST RESULTS FOR COMPARISON OF PERFORMANCE

) ) ) MEASURE 1 OF THE DISC ROBOT MODEL WITH THE POINT ROBOT MODEL
Fig. 12. Figure showing the average values of Measure 1 éng)Measure

2 (bottom) for three different variants of the Perimeter Mirgmg Algorithm. Mean | Standard deviatio] df | ¢—value | p—value
Also shown are the associated percent confidence intervals of the averages. —0.02 0.82 99 | —0.1968 0.84

(i) The Perimeter Minimizing Algorithm is robust in the

presence of errors, asynchronism and finite robot size,ime. are sometimes arranged in chain-like formations as seen in
all the cases (a), (b), and (c), the primary rendezvous tisgec Figure 13(bottom).

is achieved. We test this hypothesis, for example for case (c The above discussion shows that the Perimeter Minimizing
as follows. We perform the Student's-test [24] with the null Algorithm is robust to various deviations from the ideal
hypothesis being that the average of the Measure 1 valgesnario in terms of preserving the connected components of
is one against the alternate hypothesis that the averagdhis sensing graph and bringing the robots together.

less than one at th@5 percent confidence level. The-test
results are shown in Table Ill. The fieldf refers to the
degrees of freedom. We assume that the Measure 1 va%e
across different experiments is an independent and idgiytic ~ Apart from being robust to asynchronism and errors in sens-
distributed random variable. Because of the large numberinf and control, it is also important to understand how much
data points, we can assume that the average Measure 1 valuegact do the visibility constraints have on the performeanc
normally distributed according to the Central Limit Theore of the algorithm. By visibility constraints, we refer to the
thus thet—test is applicable in this case [24]. The test resultonstraints placed on the motion of a robot to ensure that any
imply that we can reject the null hypothesis in favor of thether robot within its line-of-sight at a certain time insta
alternate one. This is also evidenced by the fact that all themains within line-of-sight at the next time instant.

Importance of the visibility constraints
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TABLE V
STUDENT'S T-TEST RESULTS FOR COMPARISON OF THPERIMETER
MINIMIZING ALGORITHM WITH AND WITHOUT ENFORCING THE
VISIBILITY CONSTRAINTS FOR CONNECTIVITY MAINTENANCE.

Mean | Standard deviation df | t—value p—value
0.42 0.94 99 | —6.1878 | 6.92 x 10~?

D. Near-optimality with respect to distance traveled byatsh

We include a comparison of the Perimeter Minimizing Al-
gorithm with the optimal algorithm in terms of the maximum
distance by any robot to rendezvous. Given a group of point
robots in a nonconvex environment, the optimal rendezvous
location is given byargmin, ., max;cy1,... n} AgeodesiéPis 7).
where Qeodesiép, ¢) denotes the length of the shortest curve

.. contained inQ that connect® andgq. Of course, this location
can only be computed centrally with full information about
the environment and the robots’ location.

Experiments were run for the one hundred randomly gen-
erated initial conditions described in Section VI-B for the
point robot model with asynchronism and errors in contral an

sensing. In each case, for every group of robots that coaeserg
Fig. 13. Computer simulation results taking into account eByonism, tg g single location, we recorded the optimal rendezvoustpoi

sensing and control errors, and non-zero robot size. Thpltdpepresents the . . .
initial condition: green disks represent the robot posgiothe graph depicts and compute the ratio of the maximum distance that any

the sensing graphGsens the portion of the environment interior to the redrobot covers until rendezvous under the Perimeter Miningzi

boundary is), wheree = 3. Initially, Gsenshas four connected components.Algorithm and the optimal distance to rendezvous. The mean

One of the components is a single robot isolated from otheestduhe fact - L .

that its distance from the boundary is less tharand hence it cannot be and the Stan_dard deviation of the I’atI.O IS g|\{en bby9 and

sensed by any other robot. The bottom plot represents thiechnéiguration:  0.23, respectively. Theéd5 percent confidence interval of the

black disks represent the final positions of the robots. Nb& the robots mean ratio is given by1.13,1.24]. This shows that, at least

converge in two groups. The group on the left was discondéeoten the other . -

robots in the initial configuration and remained disconre:¢teoughout the for Fhe point .ro_bo,t _mOdeI' the perfprmance of th? (distreolt

evolution. Perimeter Minimizing Algorithm with asynchronism and sen-
sor and actuator noise is reasonably close to that of thenapti

(centralized) algorithm.

E. Computational complexity with finite resolution sensing

We performed several executions of the Perimeter Minimiz- An important consideration in the practical implementatio
ing Algorithm with and without enforcing the visibility cen of the Perimeter Minimizing Algorithm is the time taken for a
straints for connectivity maintenance. Since it is thehiigy ~ robot to complete each step of the algorithm. This is depeinde
constraint that we are interested in, we use a sensing radiisthe computational complexity, that we characterize .next
of 600, which is much greater than the diameter of the envi- A Visibility sensor, e.g., a range scanner, will sense the
ronment. Experiments are performed for a disk robot mod@lpSition of other robots and the bOUndary of the environment
with asynchronism and sensing and actuation errors. Fér edéth some finite resolution; in particular, the boundary of
initial condition, we record the ratio of the number of calies the sensing region will be described by a set of points. It is
groups obtained when enforcing the visibility constraitas reasonable to assume that the cardinality of this set oftpoin
the number of cohesive groups obtained without enforcileg ti bounded, say by/, for all robots, irrespective of the shape
visibility constraints. We then test the null hypothesiattthe 0f the environment and the location of the robot in it. For
mean of the ratios is one against the alternative hypothe§¥ample, if a laser range sensor is used to measure theadistan
that the mean of the ratio is less than one. As before, we 8¢he boundary and a measurement is taken at intervals of one
the Student'si—test to test the above null hypothesis at théegree, thenV/ is equal to360.

95 percent confidence level. The results, reported in Table V,

lead us to reject the null hypothesis in favor of the altegnaProposition VI.1 (Computational complexity) Let @ be

hypothesis. This also follows from tH& percent confidence any allowable environment. Let/ be the resolution of the
interval of the mean ratio which is given by).20,0.64]. Visibility sensor located at any robot iy. Then the following
The 95 percent confidence intervals show that, on averagéatements are true:

we can expect the Perimeter Minimizing Algorithm with (i) the computational complexity of tl@onstraint Set Gen-
visibility constraints to result in significantly fewer nioer of erator Algorithmis O(xM);

cohesive groups. This illustrates the importance of eiigrc (i) the computational complexity of therimeter Minimiz-

the visibility constraints. ing Algorithm is 7(M) + O(M?3 log M); and



(iii) if Geonstr = Gsens then the computational complexity of [7]

the Perimeter Minimizing Algorithmis O(M? log M),
wherer(M) is time taken for the computation &;(Gconstr)
given the setV;(Gsend assuming|N;(Gsend| < M, and k is
the number of strict concavities 6j.

(8]

El
As discussed in Section IV-B, iGconstr = Gic(Fsend, then
the computation ofjconstr from Gsenscan be performed using [10]
efficient polynomial time heuristics. The time()\/) above
depends on the specific heuristic used. Thus, the running
time of each step of the Perimeter Minimizing Algorithm
is polynomial in the number of data points obtained by trﬁz
visibility sensor. Based on the above analysis, we conclude
the algorithm can be implemented on actual robots without
demanding an unreasonable computational power.

(13]

VIl. CONCLUSIONS

In this paper, we have presented a provably correéfl
discrete-time synchronous Perimeter Minimizing Algamith
that achieves rendezvous of robots equipped with vispbilif15]
sensors in a honconvex environment. The proposed algorithm
builds on a novel solution to the connectivity maintenance
problem also developed in the paper. Extensive simulations]
have shown that the performance of the algorithm is satis-
factory under asynchronous robot operation, noise in sgns'[m
and control, and nontrivial robot dimension. We have also
compared the performance of Perimeter Minimizing Algo[-ls]
rithm against a similar geometric centering strategy thostsd
not incorporate any connectivity constraint and against th
optimal (centralized) strategy in terms of distance tregddy [19]
the robots. These comparisons have shown the near-oggimali
of our (distributed ) algorithm in terms of distance traekle [20]
and the superior performance in terms of achievement of tE%
rendezvous objective. Finally, we have characterized time-c
putational complexity of the algorithm under the assumptio
of finite sensing resolution and found it to be feasible fo[Ez]
implementation in real robotic systems. 23]
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