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On Traveling Salesperson Problems for Dubins’ vehicle:
stochastic and dynamic environments

Ketan Savla Francesco Bullo Emilio Frazzoli

Abstract— In this paper we propose some novel planning and
routing strategies for Dubins’ vehicle, i.e., for a nonholonomic
vehicle moving along paths with bounded curvature, without
reversing direction. First, we study a stochastic version of the
Traveling Salesperson Problem (TSP): givenn targets randomly
sampled from a uniform distribution in a rectangle, what is the
shortest Dubins’ tour through the targets and what is its length?
We show that the expected length of such a tour isΩ(n2/3) and
we propose a novel algorithm that generates a tour of length
O(n2/3 log(n)1/3) with high probability. Second, we study a
dynamic version of the TSP (known as “Dynamic Traveling
Repairperson Problem” in the Operations Research literature):
given a stochastic process that generates targets, is there a policy
that allows a Dubins vehicle to stabilize the system, in the sense
that the number of unvisited targets does not diverge over time?
If such policies exist, what is the minimum expected waiting
period between the time a target is generated and the time
it is visited? We propose a novel receding-horizon algorithm
whose performance isalmost within a constant factor from the
optimum.

I. I NTRODUCTION

The Traveling Salesperson Problem (TSP) with its vari-
ations is one of the most widely known combinatorial
optimization problems. While extensively studied in the
literature, these problems continue to attract great interest
from a wide range of fields, including Operations Research,
Mathematics and Computer Science. The Euclidean TSP
(ETSP) [1], [2] is formulated as follows: given a finite point
set P in R

2, find the minimum-length tour ofP . It is
quite natural to formulate this problem in context of Dubins’
vehicle, i.e., a nonholonomic vehicle that is constrained to
move along paths of bounded curvature, without reversing
direction.

The focus of this paper is the analysis of the TSP for
Dubins’ vehicle; we shall refer to it as DTSP. Exact algo-
rithms, heuristics as well as polynomial-time constant factor
approximation algorithms are available for the Euclidean
TSP, see [3], [4], [5]. It is known that non-metric versions of
the TSP are, in general, not approximable in polynomial time
[6]. Furthermore, unlike most other variations of the TSP, it
is believed that the DTSP cannot be formulated as a problem
on a finite-dimensional graph, thus preventing the use of
well-established tools in combinatorial optimization. Onthe
other hand, it is reasonable to believe that exploiting the
geometric structure of Dubins’ paths one can gain insight into
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the nature of the solution, and possibly provide polynomial-
time approximation algorithms.

A fairly complete picture is available for the minimum-
time point-to-point path planning problem for Dubins’ ve-
hicle, see [7] and [8]. However, the DTSP seems not to
have been studied that extensively. In [9], we provided some
results for the worst case tours of DTSP. A lower bound
on the expected cost of a stochastic DTSP visiting ran-
domly generated points was provided in [10]. Here, we shall
specifically concentrate on the case when the target points
in the environment are generated stochastically accordingto
a uniform probability distribution function. We shall refer to
such a problem as stochastic DTSP.

The motivation to study the DTSP arises in robotics
and uninhabited aerial vehicles (UAVs) applications, e.g.,
see [11], [12], [13], [14]. In particular, we envision applying
our algorithm to the setting of an UAV monitoring a collec-
tion of spatially distributed points of interest. Additionally,
from a purely scientific viewpoint, it appears to be of general
interest to bring together the work on Dubins’ vehicle and
that on TSP. UAV applications also motivate us to study the
Dynamic Traveling Repairperson Problem (DTRP), in which
the aerial vehicle is required to visit a dynamically changing
set of targets. This problem was introduced by Bertsimas and
van Ryzin in [15] and then decentralized policies achieving
the same performances were proposed in [11]. However, as
with the TSP, the study of DTRP in context of Dubins’
vehicle has eluded attention from the research community.

The contributions of this paper are threefold. First, we
propose an algorithm for the stochastic DTSP through a
pointsetP , called the BEAD-TILING ALGORITHM, based
on a smart tiling of the plane, and a strategy for the Dubins’
vehicle to service targets from each tile. Second, we obtainan
upper bound on the stochastic performance of the proposed
algorithm and thus also establish a similar bound on the
stochastic DTSP. The upper bound on the performance of
BEAD-TILING ALGORITHM belongs toO(n2/3 log(n)1/3)
whereas we know the lower bound on the achievable perfor-
mance belongs toΩ(n2/3). Third, we propose an algorithm
for DTRP in the heavy load case, called the RECEDING

HORIZON BEAD-TILING ALGORITHM, based on a receding
horizon version of the BEAD-TILING ALGORITHM. We
show that the performance guarantees for the stochastic
DTSP translate into stability guarantees for the average per-
formance of the DTRP problem for Dubins’ vehicle in heavy
load case. Specifically, we show that the performance of
RECEDING HORIZON BEAD-TILING ALGORITHM is almost
within a constant factor of the optimal policy. We contend



that the successful application to the DTRP does indeed
demonstrate the significance of the DTSP problem from a
control viewpoint.

The paper is organized as follows. In the remainder of
the Introduction we establish some basis useful notation. In
Section II we review our results on the worst-case Dubins’
TSP. In Section III we present the main results of this paper:
(i) a novel DTSP algorithm based on a periodic tiling, and
(ii) an upper bound on its performance in the stochastic
setting. Numerical results are also included. In Section IV
we consider the DTRP for Dubins’ vehicle and we propose
a receding horizon control policy for the heavy load case.
Concluding remarks are presented in Section V.

Notation

Here we collect some concepts that will be required in
the later sections. ADubins’ vehicleis a planar vehicle that
is constrained to move along paths of bounded curvature,
without reversing direction and maintaining a constant speed.
Accordingly, we define afeasible curve for Dubins’ vehicle
or a Dubins’ path, as a curveγ : [0, T ] → R

2 that is
twice differentiable almost everywhere, and such that the
magnitude of its curvature is bounded above by1/ρ, where
ρ > 0 is the minimum turn radius. We represent the vehicle
configurationby the triplet(x, y, ψ) ∈ SE(2), where(x, y)
are the Cartesian coordinates of the vehicle, andψ is its
heading, i.e.,ψ = atan2(y, x) (where atan2 is the four-
quadrant version of the arc tangent function).

Let P = {p1, . . . , pn} be a set ofn points in a compact
region Q ⊂ R

2 and Pn be the collection of all pointsets
P ⊂ Q with cardinalityn. Let ETSP(P ) denote the cost of
the Euclidean TSP overP , i.e., the length of the shortest
closed path through all points inP . Correspondingly, let
DTSPρ(P ) denote the cost of the Dubins’ TSP overP , i.e.,
the length of the shortest closed Dubins’ path through all
points inP . In what follows,ρ ∈ R+ is take constant, and
we study the dependence ofDTSPρ : Pn → R+ on n.

For f, g : N → R, we say thatf ∈ O(g) (respectively,
f ∈ Ω(g)) if there existN0 ∈ N and k ∈ R+ such that
|f(N)| ≤ k|g(N)| for all N ≥ N0 (respectively,|f(N)| ≥
k|g(N)| for all N ≥ N0). If f ∈ O(g) and f ∈ Ω(g), then
we use the notationf ∈ Θ(g).

II. T HE WORST-CASE DTSP

In this section, we review some of our results from [9]
where we proposed a simple algorithm, the ALTERNATING

ALGORITHM, that gives a sub-optimal tour for the traveling
salesperson problem for Dubins’ vehicle. We also established
a measure of its performance in the worst-case, and of the
worst-case cost of the DTSP.

1) Description of the Algorithm: The ALTERNATING

ALGORITHM works on the following principle: since the
optimal path between two configurations of a Dubins’ vehicle
has been completely characterized in [7], a solution for the
Dubins’ TSP consists of (i) determining the order in which
the Dubins’ vehicle visits the given set of points, and (ii)
assigning headings for the Dubins’ vehicle at the points.

Let A = (a1, . . . , an) be an ordered set of points that is a
permutation ofP . Let Ψ = {ψ1, . . . , ψn} be a set of heading
of the Dubins’ vehicle at then pointsa1, . . . , an. Therefore
the configuration of Dubins’ vehicle atai is (xi, yi, ψi)
where(xi, yi) are the coordinates ofai, for i = 1, . . . , n.

Here is an informal description of ALTERNATING AL-
GORITHM over P . Compute an optimal ETSP tour ofP
and label the edges on the tour in order with consecutive
integers. A DTSP tour can be constructed by retaining all
odd-numbered edges (except thenth one), and replacing all
even-numbered edges with minimum-length Dubins’ paths
preserving the point ordering. The algorithm is formally
stated in Table I.

TABLE I

THE ALTERNATING ALGORITHM

Name: ALTERNATING ALGORITHM

Goal: To determine an orderingA and a set of
headingsΨ for the DTSP throughP

Requires: An algorithm ETSP-ALGO to compute
the optimal ETSP ordering of a pointset

1: setA := ETSP-ALGO(P )
2: setψ1 := orientation of segment froma1 to a2

3: for i = 2 to n− 1 do
4: if i is eventhen
5: setψi := ψi−1

6: else
7: setψi := orientation of segment fromai to ai+1

8: end if
9: end for

10: if n is eventhen
11: setψn := ψn−1

12: else
13: setψn := orientation of segment froman to a1

14: end if

2) Performance of the algorithm:We now state two
results, proved in [9], that characterize the worst-case per-
formance of the ALTERNATING ALGORITHM. Let LAA,ρ(P )
be the length of the closed path overP as given by the
ALTERNATING ALGORITHM.

Theorem 2.1: (Worst-case performance of theALTER-
NATING ALGORITHM) For n ≥ 2, ρ > 0, andP ∈ Pn,

DTSPρ(P ) ≤ LAA,ρ(P ) ≤ ETSP(P ) + κπρ
⌈n

2

⌉

,

whereκ ≈ 2.6575.

From the clear boundETSP(P ) ≤ DTSPρ(P ), it follows
that the ALTERNATING ALGORITHM provides anO(n) ap-
proximation to the DTSP in the general case. Furthermore,
the ALTERNATING ALGORITHM provides a constant-factor
approximation to large worst-case DTSPs:



Theorem 2.2:For n ≥ 2 andρ > 0,

sup
P∈Pn

DTSPρ(P )

≤ sup
P∈Pn

LAA,ρ(P )

≤ ETSP(P ) + κdn/2eπρ
ETSP(P ) + 2bn/2cπρ sup

P∈Pn

DTSPρ(P ).

Furthermore, asn→ +∞,

sup
P∈Pn

DTSPρ(P ) ≤ sup
P∈Pn

LAA,ρ(P ) ≤ κ

2
sup

P∈Pn

DTSPρ(P ).

III. T HE STOCHASTICDTSP

The discussion in the previous section showed that a
simple algorithm, the ALTERNATING ALGORITHM, performs
well when the points to be visited by the tour are chosen in an
adversarial manner. However, it is reasonable to argue that
this algorithm might not perform very well when dealing
with a random distribution of the target points. In particular,
one can expect that whenn points are chosen randomly, the
cost of the DTSP increases sub-linearly withn, i.e., that the
average length of the path between two points decreases as
n increases. In this section, we consider the scenario when
n target points are stochastically generated inQ according
to a uniform probability distribution function. We presenta
novel algorithm, the BEAD-TILING ALGORITHM, to service
these points and then establish bounds on its performance.

We assume that the environmentQ is a rectangle of width
W and heightH; different choices for the shape ofQ affect
our conclusions only by a constant. In what follows we select
a reference frame whose two axes are parallel to the sides of
Q. Let n target points be generated stochastically according
to uniform distribution in the regionQ. LetP = (p1, . . . , pn)
be the locations of these target points.

A. A lower bound

First, we summarize a result from [10], that provides a
lower bound on the expected length of the stochastic DTSP.

Theorem 3.1: (Lower bound on stochastic DTSP)For all
ρ > 0, the expected cost of a stochastic DTSP visiting a set
P of n uniformly-randomly-generated points in a rectangle
of width W and heightH satisfies the following inequality:

lim
n→+∞

E[DTSPρ(P )]

n2/3
≥ 3

4
(3ρWH)1/3.

B. A constructive upper bound

In this section, we design a novel algorithm that computes
a Dubins’ path through a pointset in the squareQ. We will
show that the proposed algorithm provides aO(log(n)1/3)
approximation to the optimal DTSP with high probability.
We start by describing some useful geometric objects.

ρ

2l

p
−

p+

Bρ(l)

Fig. 1. Construction of the “bead”Bρ(l). The figure shows how the upper
half of the boundary is constructed, the bottom half is symmetric.

1) The basic geometric construction:Consider two points
p− = (−l, 0) and p+ = (l, 0) on the plane, withl ≤ 2ρ,
and construct the regionBρ(l) as detailed in Figure 1. In
the following, we will refer to such regions asbeads. The
regionBρ(l) enjoys the following asymptotic properties as
the (l/ρ) → 0+:
(P1) The maximum “thickness” of the region is equal to

w(l) = 4ρ

(

1 −
√

1 − l2

4ρ2

)

=
l2

2ρ
+ o

(

l3

ρ3

)

.

(P2) The area ofBρ(l) is equal to

Area[Bρ(l)] = lw(l) =
l3

2ρ
+ o

(

l4

ρ4

)

.

(P3) For anyp ∈ Bρ, there is at least one Dubins’ path
γp through the points{p−, p, p+}, entirely contained
within Bρ. The length of any such path is at most

Length(γp) ≤ 4ρ arcsin

(

l

2ρ

)

= 2l + o

(

l2

ρ2

)

.

These facts are verified using elementary planar geometry.
2) Periodic tiling of the plane:An additional property of

the geometric shape introduced above is that the plane can
be periodically tiled by identical copies ofBρ(l), for any l ∈
(0, 2ρ]. (Recall that a tiling of the plane is a collection of set
whose intersection has measure zero and whose union covers
the plane.) This tiling has the following critical property,
adapted from [16].

Proposition 3.2:Given the numbern of uniformly-
randomly-generated points in a rectangular environmentQ
of widthW and heightH (or equivalently, in a general envi-
ronment contained in a rectangle with the stated dimensions),
let

ln =
3

√

6ρWH log n

n
. (1)

Then, the maximum number of targets in any single bead
Bρ(ln) is 3e log n with high probability.



3) TheBEAD-TILING ALGORITHM : We here design an
algorithm, that we will call the BEAD-TILING ALGORITHM,
that calculates a Dubins’ path through a pointset in the
rectangleQ. The basic idea is to exploit an appropriate
beads-based tiling and the properties of the beads. In what
follows we shall tacitly assume thatn is sufficiently large so
that ln ∈ (0, 2ρ].

BEAD-TILING ALGORITHM: Given n targets,
compute a a periodic tiling of the plane based on
beadBρ(ln) and aligned with the sides ofQ as
shown in Figure 2 (the cusps of the beads are
aligned with the longer side). Next, compute the
Dubins’ tour with the following properties:

1) it visits all non-empty beads once,
2) it visits all rows1 in sequence top-to-down,

alternating between left-to-right and right-to-
left passes, and visiting all non-empty beads
in a row,

3) when visiting a non-empty bead, it services
at least one target in it.

Iterate until all targets are visited.

It is a consequence of bead’s property (P3) that there exists
a Dubins’ path visiting at least one target in any non-empty
bead.

Fig. 2. Sketch of the aligned periodic tiling and of the BEAD-TILING

ALGORITHM

Next, we let LBTA,ρ(P ) denote the length of the tour
designed by the BEAD-TILING ALGORITHM throughP with
a minimum turn radiusρ. To characterize this length, we start
by studying the path length needed to visit all non-empty
beads once.

Lemma 3.3:Consider a pointsetP ∈ Pn and a periodic
tiling of the plane into beads equal toBρ(ln). Take a pointset
P̃ ⊂ P such that each bead, with a nonempty intersection
with Q, contains at most one point. Then, asn→ +∞ and
asρ→ +∞,

DTSPρ(P̃ ) = O

(

ρ4/3

(

n

log n

)2/3
)

.

Proof: Let us first compute the length of a pass, in either
direction. The number of beads traversed will be no more
than

⌈

max{W,H}
2ln

⌉

=

⌈

c1

(

n

ρ log n

)1/3
⌉

,

1Here, by row we mean a maximal string of beads with non-empty
intersection withQ.

wherec1 = max{W,H}
2

3
√

6WH
is a constant. Hence, the total path

length per pass will be bounded by:

Lpass ≤ max{W,H} + 2ln + o

(

l2n
ρ2

)

,

as (ln/ρ) → 0+. Applying a result from [9], the cost of a
u-turn, i.e., the length of the path needed to reverse direction
and move to the next row of beads, is bounded by

Lu−turn ≤ 7

3
πρ+

w(ln)

2
=

7

3
πρ+

l2n
4ρ

+ o

(

l3n
ρ3

)

.

The total number of passes will be at most

Npass =

⌈

2min{W,H}
w(ln)

⌉

≤ 2min{W,H}
l2n/(2ρ) + o(l3n/ρ

3)
+ 1.

The cost of closing the tour is bounded by a constant, say

Lclosure ≤ min{W,H} +
w(ln)

2
+

7

3
πρ.

In summary, the total path length will be bounded by

DTSPρ(P̃ ) = Npass(Lpass + Lu−turn) + Lclosure.

Neglecting higher-order terms, this can be simplified to

DTSPρ(P̃ ) ≈ 4ρWH

l2n
+W +H +

14πρ

3

+ min{W,H}
(

1 +
8ρ

ln
+

28πρ2

3l2n

)

.

Recalling our selection ofln = 3

√

6ρWH log n/n from (1),
we obtain the desired result.

Based on the results obtained so far, we are now ready to
state an upper bound on the length of the path traveled by
Dubins’ vehicle to service all the targets while executing the
BEAD-TILING ALGORITHM.

Theorem 3.4: (Upper bound on the length of the total
path) Let P ∈ Pn be uniformly randomly generated in a
rectangle. For allρ > 0, there existsδ > 0 such that the
following inequality holds with high probability:

lim
n→+∞

E[LBTA,ρ(P )]

n2/3 log(n)1/3
< δ, w.h.p.

Proof: By Proposition 3.2 we know that each bead
contains at most orderlog(n) targets. Hence, at most order
log(n) tours through each bead are necessary. The proof
follows from the upper bound in Lemma 3.3.

C. Simulations

In this section we present the results of the BEAD-TILING

ALGORITHM and the ALTERNATING ALGORITHM. We sum-
marize the result in Figure 3. The points are stochastically
generated according to a uniform distribution in a square
with A = 25. The minimum turning radius for the Dubins’
vehicle, i.e.,ρ = 1. Each data point in the upper sequence of
points in the logarithmic plot in Figure 3 represents the mean
of lengths of Dubins’ path as given by the BEAD-TILING

ALGORITHM, taken over10 instances of the experiment
for the corresponding value ofn on a logarithmic scale,



whereas each data point in the lower sequence of points
represents the corresponding quantity for the ALTERNATING

ALGORITHM. The solid curve in the plot represents the
function log

(

β1n
2/3 log(n)1/3

)

, for β1 ≈ 115. The dashed
curve in the plot represents the functionlog

(

β2n
)

, for β2 ≈
3.5. The fact that all the dots for BEAD-TILING ALGORITHM

lie below the solid line is consistent with our results for the
BEAD-TILING ALGORITHM. The nature of these two curves
indicates that for high values ofn, the BEAD-TILING AL-
GORITHM will outperform the ALTERNATING ALGORITHM.
This is consistent with our asymptotic characterizations of
the two algorithms.

6 7 8 9

8

9

10

11

log(LBTA,1(P )), log(LAA,1(P ))

log(n)

Fig. 3. Numerical experimental results of the BEAD-TILING ALGORITHM

and the ALTERNATING ALGORITHM. The solid and dashed curves are the
functions log

`

β1n2/3 log(n)1/3
´

, for β1 ≈ 115, and log
`

β2n
´

, for
β2 ≈ 3.5, respectively. The upper and lower sequence of points are the
averageLBTA,1(P ) and the averageLAA,1(P ) over10 random instances
of P ∈ Pn, respectively.

IV. T HE DTRP FOR DUBINS’ VEHICLE

We now turn our attention to a related problem which
is known as the Dynamic Traveling Repairperson Problem
(DTRP), and was introduced by Bertsimas and van Ryzin
in [15]. Our problem is different from the single-vehicle-
DTRP in [15] since we consider here aDubins’ vehicle
for targets servicing task, i.e., we impose the same non-
holonomic constraint on the vehicle dynamics that we have
been considering so far in this paper.

A. Model and problem statement

In this subsection we describe in some detail the vehicle
and sensing model and the DTRP definition. The key aspect
of the DTRP is that the aerial vehicle is required to visit
a dynamically growing set of targets, generated by some
stochastic process. We assume that the Dubins’ vehicle has
unlimited range and target-servicing capacity. To simplify
notations, we also assume that the Dubins’ vehicle moves
constantly at a unit speed.

Information on the outstanding targets – the demand –
at time t is summarized as a finite set of target positions
D(t) ⊂ Q, with n(t) := card(D(t)). Targets are generated,
and inserted intoD, according to a homogeneous (i.e.,
time-invariant) spatio-temporal Poisson process, with time
intensityλ > 0, and uniform spatial density. In other words,
given a setS ⊆ Q, the expected number of targets generated
in S within the time interval[t, t′] is

E[card(D(t′) ∩ S) − card(D(t) ∩ S)] = λ(t′ − t)Area(S).

(Strictly speaking, the above equation holds in the case in
which targets are not being removed from the queueD.)
Servicing of a targetej ∈ D, and its removal from the set
D, is achieved when the UAV moves to the target’s position.

A static feedback control policy for the Dubins’ vehicle is
a mapΦ : SE(2) × 2Q → [−1/ρ, 1/ρ], assigning a control
input to each vehicle, as a function of the current state of
the system. We will also consider policies that compute a
control input for the vehicles based on a snapshot of the
target configuration at a certain time in the past, at which
certain computations are made. LetTΦ = {t1, t2, . . . , ti, . . .}
be a strictly increasing sequence of times at which such
computations are started: with some abuse of terminology,
we will say thatΦ is areceding horizon strategyif it is based
on the most recent target data available -Drh(t), with

Drh(t) = D(max{trh ∈ TΦ : trh < t}).

The (receding horizon) policyΦ is stable if, under its
action,

nΦ := lim
t→+∞

E[n(t)|ṗ = Φ(p,Drh)] < +∞,

that is, if the UAV is able to service targets at a rate that
is-on average-at least as fast as the rate at which new targets
are generated.

Let Tj be the time that thej-th target spends within the
setD, i.e., the time elapsed from the timeej is generated to
the time it is serviced. If the system is stable, then we can
write the balance equation (known as Little’s formula [17])

nΦ = λTΦ,

whereTΦ := limj→+∞ E[Tj ] is the steady-state system time
under the policyΦ. Our objective is to minimize the steady-
state system time, over all possible static feedback control
policies, i.e.,

T ∗ = inf
Φ
TΦ.

B. Lower and constructive upper bounds

In what follows, we are interested in designing a control
policy that provide a constant-factor approximation of the
optimal achievable performance. Consistent with the theme
of the paper, we shall consider the case ofheavy load, i.e.,
the problem asλ → +∞. We shall review a known lower
bound for the system time, and present a novel approximation
algorithm providing an upper bound on the performance that
holds with high probability.

We start by summarizing a result from [10], that provides
a lower bound on the system time for any policy in the heavy
load case.

Theorem 4.1:The system timeT ∗ for the DTRP problem,
satisfies the following lower bound for the heavy load case:

lim
λ→+∞

T ∗

λ2
≥ 81

64
ρWH.

Note that the system time depends quadratically on the
parameterλ, whereas in the Euclidean case it depends only
linearly on it.



The bound derived in Theorem 3.4 can be directly used
to derive a constructive upper bound on the system time.
We propose a simple strategy, that we call the RECEDING

HORIZON BEAD-TILING ALGORITHM (RH-BTA), based on
an iterative invocation the BEAD-TILING ALGORITHM. The
strategy consists of the following two steps:

1) at timet0, execute the BEAD-TILING ALGORITHM for
all the outstanding targets, and

2) update the target list and iterate.

Theorem 4.2:The RECEDING HORIZON BEAD-TILING

ALGORITHM is a stable policy for the stochastic DTRP
problem in heavy load. The performance of the RECEDING

HORIZON BEAD-TILING ALGORITHM provides the follow-
ing upper bound on the system time: for anyε > 0,

lim
λ→+∞

T ∗

λ2+ε
≤ 9.883ρWH

(

1 +
7

3

πρ

max{W,H}
)3

.

Note that the achievable performance of the RECEDING

HORIZON BEAD-TILING ALGORITHM provides analmost
constant-factor approximation to the lower bound established
in Theorem 4.1 in the sense that the exponent ofλ in the
last equation can be selected arbitrarily close to2. The
ratio between the constants of the upper bound and lower
bound is still significant. We believe that the lower bound is
exceedingly optimistic: the large value of the approximation
factor may be due to the lack of a tight lower bound. On the
other hand, the RH-BTA algorithm is the first polynomial-
time algorithm to provide such a guarantee.

Finally, note that there exists no stable policy for the DTRP
when the targets are generated in an adversarial worst-case
fashion with high intensity. This fact is a consequence of the
linear lower bound on the worst-case DTSP in Theorem 2.2.

V. CONCLUSIONS

Here and in the companion paper [9], we have studied
the TSP problem for vehicles that follow paths of bounded
curvature in the plane. We have obtained lower and upper
bounds in the worst-case and stochastic settings; the upper
bounds are constructive in the sense that they are achieved by
two novel algorithms. It is interesting to compare our results
with the Euclidean setting (i.e., the setting in which curves do
not have curvature constraints). For a given compact set anda
pointsetP of n points, it is known [1], [2] that theETSP(P )
belongs toΘ(

√
n). This is true for both stochastic and worst-

case settings. In this paper, we showed that, given a fixed
ρ > 0, the stochasticDTSPρ(P ) belongs toΩ(n2/3) and
to O(n2/3 log(n)1/3). In the companion paper [9], we have
showed that theworst-caseDTSPρ(P ) belongs toΘ(n).

Remarkably, the differences between these various bounds
play a crucial role when studying the DTRP problem;
e.g., stable policies exist only when the TSP cost grows
strictly sub-linearly withn. For the DTRP problem we have
proposed the novel receding-horizon policy RH-BTA and
shown its stability for a uniform target-generation process
with intensity λ. Based on this policy, we have shown
that the system time for the DTRP problem for Dubins’
vehicle belongs toΩ(λ2) andO(λ2+ε) for any ε > 0. This

result differs from the result in the Euclidean case, where
it is known that the system time belongs toΘ(λ). As a
consequence, bounded-curvature constraints make the system
much more sensitive to increases in the target generation rate.

In the future, we plan to study centralized and decentral-
ized versions of the DTRP and general task assignment and
surveillance problems for various non-holonomic vehicles.
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