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On Traveling Salesperson Problems for Dubins’ vehicle:
stochastic and dynamic environments

Ketan Savla Francesco Bullo Emilio Frazzoli

Abstract— In this paper we propose some novel planning and the nature of the solution, and possibly provide polynomial
routing strategies for Dubins’ vehicle, i.e., for a nonholonomic time approximation algorithms.
vehicle moving along paths with bounded curvature, without A fairly complete picture is available for the minimum-

reversing direction. First, we study a stochastic version of the fi int-t int path ol . bl for Dubins’
Traveling Salesperson Problem (TSP): givem targets randomly ime point-to-point path planning problem for Dubins: ve-

sampled from a uniform distribution in a rectangle, what is the ~ hicle, see [7] and [8]. However, the DTSP seems not to
shortest Dubins’ tour through the targets and what is its length?  have been studied that extensively. In [9], we provided some

We show that the expected length of such a tour i®(n*®) and  results for the worst case tours of DTSP. A lower bound
we propose a novel algorithm that generates a tour of length 4 the expected cost of a stochastic DTSP visiting ran-

O(n*31og(n)/?) with high probability. Second, we study a X . .
dynamic version of the TSP (known as “Dynamic Traveling domly generated points was provided in [10]. Here, we shall

Repairperson Problem” in the Operations Research literature): ~ SPecifically concentrate on the case when the target points
given a stochastic process that generates targets, is therealipy ~ in the environment are generated stochastically accortding
that allows a Dubins vehicle to stabilize the system, in the sense a uniform probability distribution function. We shall refe

that the number of unvisited targets does not diverge over time? ¢ ,ch g problem as stochastic DTSP.

If such policies exist, what is the minimum expected waiting - . . .
period between the time a target is generated and the time The motivation to study the DTSP arises in robotics

it is visited? We propose a novel receding-horizon algorithm and uninhabited aerial Vehid?S (UAVS) applipation;, ,€.0.
whose performance isalmost within a constant factor from the  see [11], [12], [13], [14]. In particular, we envision apjply

optimum. our algorithm to the setting of an UAV monitoring a collec-
| INTRODUCTION tion of spatially _d|st_r|_but_ed po_lnts_ of interest. Additialiy,
) o from a purely scientific viewpoint, it appears to be of gehera

The Traveling Salesperson Problem (TSP) with its variyerest to bring together the work on Dubins’ vehicle and
ations is one of the most widely known combinatoriakhat on TSP, UAV applications also motivate us to study the
qptlmlzat|on problems. While gxtenswely studied in thebynamic Traveling Repairperson Problem (DTRP), in which
literature, these problems continue to attract great @ster yq aeria vehicle is required to visit a dynamically chawgi
from a wide range of fields, including Operations Researclg; of targets. This problem was introduced by Bertsimas and
Mathematics and Computer Science. The Euclidean TSRn Ryin in [15] and then decentralized policies achieving
(ETSP) [1]'2[2] is formulated as follows: given a finite pointe same performances were proposed in [11]. However, as
set P in R®, find the minimum-length tour of?. It iS it the TSP, the study of DTRP in context of Dubins’
quite natural to formulate this problem in context of Dubins, ahicle has eluded attention from the research community.
vehicle, i.e., a nonholonomic vehicle that is constrained t Tha contributions of this paper are threefold. First, we

m_ove_along paths of bounded curvature, without reverSi'}gropose an algorithm for the stochastic DTSP through a
direction. . . . pointset P, called the EAD-TILING ALGORITHM, based
The focus of this paper is the analysis of the TSP fof, 5 smart tiling of the plane, and a strategy for the Dubins’
Dubins’ vehicle; we shall refer to it as DTSP. Exact algoyepicie to service targets from each tile. Second, we olaain
rithms, heuristics as well as polynomial-time constantdac ,,ner hound on the stochastic performance of the proposed
approximation algorithms are available for the E”CI'dea'algorithm and thus also establish a similar bound on the

TSP, see [3], [4], [5]. It is known that non-metric Versioris 0 g¢qchastic DTSP. The upper bound on the performance of
the TSP are, in general, not approximable in polynomial timg - 5T/ ING ALGORITHM belongs t0O(n2/3 log(n)"/3)

[6]. Furthermore, unlike most other variations of the TSP, \whereas we know the lower bound on the achievable perfor-
is believed that the DTSP cannot be formulated as a problef, e belongs t6(n2/3). Third, we propose an algorithm

on a finite-dimensional graph, thus preventing the use @f. pTRP in the heavy load case, called th&dEDING
well-established tools in combinatorial optimization. @@ |, - >oNBEAD-TILING ALGORITHM. based on a receding
other hand, it is reasonable to believe that exploiting thgi-on version of the BAD—TILIN(’B ALGORITHM. We
geometric structure of Dubins’ paths one can gain insigiat in g, that the performance guarantees for the stochastic
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that the successful application to the DTRP does indeedLet A = (a4,...,a,) be an ordered set of points that is a
demonstrate the significance of the DTSP problem from permutation ofP. Let ¥ = {¢4,...,,} be a set of heading

control viewpoint. of the Dubins’ vehicle at the pointsay,...,a,. Therefore
The paper is organized as follows. In the remainder dhe configuration of Dubins’ vehicle ai; is (z;, s, ;)
the Introduction we establish some basis useful notation. Where(x;, y;) are the coordinates af;, for: =1,...,n.

Section Il we review our results on the worst-case Dubins’ Here is an informal description of IAERNATING AL-
TSP. In Section Ill we present the main results of this papegoriTHM over P. Compute an optimal ETSP tour d?

(i) a novel DTSP algorithm based on a periodic tiling, anchnd label the edges on the tour in order with consecutive
(i) an upper bound on its performance in the stochastifitegers. A DTSP tour can be constructed by retaining all
setting. Numerical results are also included. In Section I\jdd-numbered edges (except thia one), and replacing all
we consider the DTRP for Dubins’ vehicle and we proposeven-numbered edges with minimum-length Dubins’ paths
a receding horizon control policy for the heavy load casgyreserving the point ordering. The algorithm is formally

Concluding remarks are presented in Section V. stated in Table I.
Notation TABLE |
Here we collect some concepts that will be required in THE ALTERNATING ALGORITHM
the later sections. Mubins’ vehicleis a planar vehicle that
is constrained to move along paths of bounded curvature,Name: ALTERNATING ALGORITHM
without reversing direction and maintaining a constanespe | Goal: To determine an orderingl and a set of
Accordingly, we define deasible curve for Dubins’ vehicle headingsV for the DTSP through?
or a Dubins’ path as a curvey : [0,7] — R? that is Requires: An algorithm ETSP-ALGO to compute
twice differentiable almost everywhere, and such that the the optimal ETSP ordering of a pointset

magnitude of its curvature is bounded abovelly, where
p > 0 is the minimum turn radius. We represent the vehicl
configurationby the triplet(z,y, ) € SE(2), where(z,y)
are the Cartesian coordinates of the vehicle, @ndb its
heading, i.e.b0 = atan2(y,x) (where atan2 is the four-

. setA:= ETSP-ALGQP)
sety; := orientation of segment from; to ao
fori=2ton—1do

if 7 is eventhen

11
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guadrant version of the arc tangent function). sety; == i
Let P = {p1,...,pn} be a set ofn points in a compact else
region @ C R? and P, be the collection of all pointsets sety; := orientation of segment from,; 10 a4,
P c Q with cardinalityn. Let ETSP(P) denote the cost of end if
the Euclidean TSP oveP, i.e., the length of the shortest| 9: end for

closed path through all points if. Correspondingly, let | 10: if n is eventhen
DTSP,(P) denote the cost of the Dubins’ TSP ovéri.e.,, |11 Setyy :=¢n_
the length of the shortest closed Dubins’ path through dlli2: €lse
points in P. In what follows, p € R is take constant, and | 13:  Se€ty, := orientation of segment from,, 10 a,
we study the dependence BfTSP, : P, — R, onn. 14: end if
For f,g : N — R, we say thatf € O(g) (respectively,
f € Q(g)) if there existNyg € N and k£ € R, such that .
If(N)| < klg(N)| for all N > N, (respectively,|f(N)| > 2) Performanc_:e of the algorlthm:We now state two
klg(N)| for all N > No). If £ € O(g) and f € Q(g), then results, proved in [9], that characterize the worst-cage pe

we use the notatiorf € O(g). formance of the ATERNATING ALGORITHM. LetLaa ,(P)
be the length of the closed path ovér as given by the
Il. THE WORSFCASEDTSP ALTERNATING ALGORITHM.

In this section, we review some of our results from [9] Theorem 2.1: (Worst-case performance of tAeTER-
where we proposed a simple algorithm, theTARNATING ~ NATING ALGORITHM) Forn > 2, p > 0, and P € P,
ALGORITHM, that gives a sub-optimal tour for the traveling
salesperson pr_oblem for Dubins_’ vehicle. We also estaddish DTSP,(P) < Laa.,(P) < ETSP(P) + xp [ﬁw 7
a measure of its performance in the worst-case, and of the ’ 2
worst-case cost of the DTSP.

1) Description of the Algorithm: The ALTERNATING Wheres =~ 2.6575.

ALGORITHM works on the following principle: since the

optimal path between two configurations of a Dubins’ vehicle From the clear boun8TSP(P) < DTSP,(P), it follows

has been completely characterized in [7], a solution for théat the ATERNATING ALGORITHM provides anO(n) ap-
Dubins’ TSP consists of (i) determining the order in whichProximation to the DTSP in the general case. Furthermore,
the Dubins’ vehicle visits the given set of points, and (iithe€ ALTERNATING ALGORITHM provides a constant-factor

assigning headings for the Dubins’ vehicle at the points. approximation to large worst-case DTSPs:



Theorem 2.2:Forn > 2 andp > 0, -7 RN - =l

sup DTSP,(P) /// /\/\/\ \\\
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I1l. THE STOCHASTICDTSP . S

The discussion in the previous section showed that a
simple algorithm, the ATERNATING ALGORITHM, performs  Fig. 1. Construction of the “beadB,(l). The figure shows how the upper
well when the points to be visited by the tour are chosen in Jiqif of the boundary is constructed, the bottom half is symimetr
adversarial manner. However, it is reasonable to argue that
this algorithm might not perform very well when dealing 1) The basic geometric constructiofonsider two points
with a random distribution of the target points. In partal , — (_; 0) and p,. = ({,0) on the plane, with < 2p,
one can expect that whenpoints are chosen randomly, theang construct the regios, (1) as detailed in Figure 1. In
cost of the DTSP increases sub-linearly withi.e., that the  tne following, we will refer to such regions dsads The
average length of the path between two points decreasesggjon B,(1) enjoys the following asymptotic properties as
n increases. In this section, we consider the scenario whewe (7/,) — 0+:
n target points are stochastically generatedraccording
to a uniform probability distribution function. We presemt
novel algorithm, the BAD-TILING ALGORITHM, to service 12 2 3
these points and then establish bounds on its performance. w(l) = 4p <1 - 4,@) - 2p to <p3> ‘

We assume that the environmedtis a rectangle of width
W and heightH; different choices for the shape ¢f affect , )
our conclusions only by a constant. In what follows we select l l
a reference frame whose two axes are parallel to the sides of ArealBy ()] = hw(l) = 2p to (p4>
Q. Let n target points be generated stochastically accordingg:;) For anyp € B,, there is at least one Dubins’ path
to uniform di.stribution in the regio@.. LetP = (p1,-..,Pn) + through the points(p_, p, p, }, entirely contained
be the locations of these target points. within B,. The length of any such path is at most

(P1) The maximum “thickness” of the region is equal to

(P2) The area oB,(l) is equal to

l 12
A. A lower bound Length(y,) < 4parcsin <2p) =2l+o ([)2) :

First, we summarize a result from [10], that provides arhese facts are verified using elementary planar geometry.
lower bound on the expected length of the stochastic DTSP.2) Periodic tiling of the plane:An additional property of
Theorem 3.1: (Lower bound on stochastic DT$®) all the geometric shape introduced above is that the plane can
p > 0, the expected cost of a stochastic DTSP visiting a séle periodically tiled by identical copies &,(l), for anyl €
P of n uniformly-randomly-generated points in a rectangl€0, 2p]. (Recall that a tiling of the plane is a collection of set
of width W and heightH satisfies the following inequality: whose intersection has measure zero and whose union covers
the plane.) This tiling has the following critical property
§(3pWH)1/3. adapted from [16].
4 Proposition 3.2:Given the numbern of uniformly-
randomly-generated points in a rectangular environmgnt
of width W and heightH (or equivalently, in a general envi-
ronment contained in a rectangle with the stated dimenyions
In this section, we design a novel algorithm that computdst
a Dubins’ path through a pointset in the squa@eWe will Lo 8/ SPWH logn 1)
show that the proposed algorithm provide®&og(n)'/?) " n '
approximation to the optimal DTSP with high probability. Then, the maximum number of targets in any single bead
We start by describing some useful geometric objects.  B,(l,,) is 3elogn with high probability.

. E[DTSP,(P)]
nl{r-‘,r-loc n2/3

B. A constructive upper bound



max

3) TheBEAD-TILING ALGORITHM : We here design an wherec; = # is a constant. Hence, the total path
algorithm, that we will call the BAD-TILING ALGORITHM, length per pass will be bounded by:
that calculates a Dubins’ path through a pointset in the 2
rectangle @. The basic idea is to exploit an appropriate Lpass < max{W,H}+2l, +o <’;) ,
beads-based tiling and the properties of the beads. In what p
follows we shall tacitly assume thatis sufficiently large so as(l,,/p) — 0". Applying a result from [9], the cost of a

thatl,, € (0, 2p]. u-turn, i.e., the length of the path needed to reverse dect
BEAD-TILING ALGORITHM: Given n targets, and move to the next row of beads, is bounded by
compute a a periodic tiling of the plane based on 7 w(ly) 7 12 13
beadB,(l,,) and aligned with the sides of as Ly—turn < 3Pt —5 - =gmpt ﬁ +o (p’;)

shown in Figure 2 (the cusps of the beads are
aligned with the longer side). Next, compute the  The total number of passes will be at most
Dubins’ tour with the following properties: 2min{W, H} 2 min{W, H}
1) it visits all non-empty beads once, Npass = { w(ly,) W < 12/(2p) + o(13/p?)
2) it visits all rows in sequence top-to-down, . .
alternating between left-to-right and right-to- The cost of closing the tour is bounded by a constant, say
left passes, and visiting all non-empty beads w(ly,) n 7
in a row, 2 37P:
3) when visiting a non-empty bead, it services  |n summary, the total path length will be bounded by

at least one target in it. ~
Iterate until all targets are visited. DTSP,(P) = Npass(Lpass + Lu—turn) + Letosure-

It is a consequence of bead’s property (P3) that there exidtiglecting higher-order terms, this can be simplified to
a Dubins’ path visiting at least one target in any non-empty AW H
AP

bead. DTSP,(P) ~

+ 1

Lclosurc S II’liIl{W, H} +

147mp
W4+ H+ ——
2 +W+H+ 3

2 2
+ min{W, H} (1 Loy Zf ) .

l

<> Recalling our selection of, = /6pW H logn/n from (1),
|

we obtain the desired result.

Based on the results obtained so far, we are now ready to
state an upper bound on the length of the path traveled by
Dubins’ vehicle to service all the targets while executihg t
Fig. 2. Sketch of the aligned periodic tiling and of th&Ad-TILING BEAD-TILING ALGORITHM.

ALGORITHM Theorem 3.4: (Upper bound on the length of the total
path) Let P € P, be uniformly randomly generated in a
rectangle. For allb > 0, there existsy > 0 such that the
following inequality holds with high probability:

Next, we letLgta ,(P) denote the length of the tour
designed by the BAD-TILING ALGORITHM throughP with
a minimum turn radiug. To characterize this length, we start

by studying the path length needed to visit all non-empty lim  ElLeTa,(P)] <5 Whp
beads once. n—-+oo n2/3log(n)'/3 ’ Bl
Lemma 3.3:Consider a pointsel € 7, and a periodic Proof: By Proposition 3.2 we know that each bead

tiling of the plane into beads equal &) (I,,). Take a pointset ¢ontains at most orddbg(n) targets. Hence, at most order
P C P such that each bead, with a nonempty intersectiopy ;) tours through each bead are necessary. The proof
with Q, contains at most one point. Then,as— +oo and  g|lows from the upper bound in Lemma 3.3. -
asp — +09o,
2/3 C. Simulations
DTSP,(P) = O <p4/3 (n) ) . In this section we present the results of theA®-TILING
logn ALGORITHM and the ATERNATING ALGORITHM. We sum-

Proof: Let us first compute the length of a pass, in eitheMarize the result in Figure 3. The points are stochastically

direction. The number of beads traversed will be no mor@enerated according to a uniform distribution in a square

than with A = 25. The minimum turning radius for the Dubins’
max{W, H} no \Y3 vehicle, i.e.,p = 1. Each data point in the upper sequence of
2, =€ plogn ’ points in the logarithmic plot in Figure 3 represents the mea

of lengths of Dubins’ path as given by theeBD-TILING
IHere, by row we mean a maximal string of beads with non-emptyALGOR”HM' taken_ over10 instances of th? e>§per|ment
intersection withQ. for the corresponding value af on a logarithmic scale,



whereas each data point in the lower sequence of poinfStrictly speaking, the above equation holds in the case in
represents the corresponding quantity for the BRNATING ~ which targets are not being removed from the quéu¢
ALGORITHM. The solid curve in the plot represents theServicing of a target; € D, and its removal from the set
function log (311 log(n)/?), for B ~ 115. The dashed D, is achieved when the UAV moves to the target’s position.
curve in the plot represents the functibrg (BQn), for Gy ~ A static feedback control policy for the Dubins’ vehicle is
3.5. The fact that all the dots for AD-TILING ALGORITHM  a map® : SE(2) x 22 — [~1/p,1/p], assigning a control

lie below the solid line is consistent with our results foe th input to each vehicle, as a function of the current state of
BEAD-TILING ALGORITHM. The nature of these two curvesthe system. We will also consider policies that compute a
indicates that for high values of, the BEAD-TILING AL-  control input for the vehicles based on a snapshot of the
GORITHM will outperform the ATERNATING ALGORITHM. target configuration at a certain time in the past, at which

This is consistent with our asymptotic characterizatiohs certain computations are made. &t = {t1,t2,...,t;,...}
the two algorithms. be a strictly increasing sequence of times at which such
computations are started: with some abuse of terminology,

log(LpTa,1(P)), log(Laa1(P)) we will say that® is areceding horizon strategy it is based

11 on the most recent target data availablBn(t), with

10 Drh(t) = D(max{trh €T :th < t})

The (receding horizon) policyp is stable if, under its
action,

ey . 5 5 log(n) ne == lim E[n(t)[p = @(p, Dm)| < +oo,

t——+oo

that is, if the UAV is able to service targets at a rate that

Fig. 3. Numerical experimental results of th&&-TILING ALGORITHM is-on average-at least as fast as the rate at which new garget
and the ATERNATING ALGORITHM. The solid and dashed curves are theare generated

functions log (81n%/3 log(n)'/3), for B1 ~ 115, and log (B2n), for C ) .

B> ~ 3.5, respectively. The upper and lower sequence of points are th L€t T; be the time that thg-th target spends within the

averageLpra,1(P) and the averagka 4,1 () over 10 random instances  setD, i.e., the time elapsed from the tinae is generated to
of P € P, respectively. the time it is serviced. If the system is stable, then we can
write the balance equation (known as Little’s formula [17])
IV. THE DTRPFORDUBINS' VEHICLE

We now turn our attention to a related problem which
is known as the Dynamic Traveling Repairperson ProblemhereTs := lim;_. ., E[T}] is the steady-state system time
(DTRP), and was introduced by Bertsimas and van Ryzionder the policy®. Our objective is to minimize the steady-
in [15]. Our problem is different from the single-vehicle-state system time, over all possible static feedback cbntro
DTRP in [15] since we consider here Bubins’ vehicle policies, i.e.,
for targets servicing task, i.e., we impose the same non- T* = inf Tp.
holonomic constraint on the vehicle dynamics that we have @
been considering so far in this paper. B. Lower and constructive upper bounds

A. Model and problem statement In what follows, we are interested in designing a control
In this subsection we describe in some detail the vehicROlicy that provide a constant-factor approximation of the

and sensing model and the DTRP definition. The key aspe%?timal achievable performance. Consistent with the theme
of the DTRP is that the aerial vehicle is required to visi®f the paper, we shall consider the casehevy load i.e.,
a dynamically growing set of targets, generated by somfd€ Problem as\ — +oc. We shall review a known lower

stochastic process. We assume that the Dubins’ vehicle Hgund for the system time, and present a novel approximation
unlimited range and target-servicing capacity. To siryplif algorithm providing an upper bound on the performance that

notations, we also assume that the Dubins’ vehicle mov&¥!ds with high probability. .
constantly at a unit speed. We start by summarizing a result from [10], that provides

Information on the outstanding targets — the demand a lower bound on the system time for any policy in the heavy

at time ¢ is summarized as a finite set of target positionioad case. _ .
D(t) € Q, with n(t) := card(D(t)). Targets are generated, Thgorem 4.1.Th_e system tim&™ for the DTRP problem,
and inserted intoD, according to a homogeneous (i_e‘,satlsﬂes the following lower bound for the heavy load case:

time-invariant) spatio-temporal Poisson process, witheti ) T 81
intensity A > 0, and uniform spatial density. In other words, AETOO 2z @”WH'
given a setS C Q, the expected number of targets generated

in S within the time intervallt, t'] is

ne = )\’T@7

Note that the system time depends quadratically on the
parameter\, whereas in the Euclidean case it depends only
Elcard(D(t') NS) — card(D(t) N S)] = A(t' — t) Area(S). linearly on it.



The bound derived in Theorem 3.4 can be directly usegksult differs from the result in the Euclidean case, where
to derive a constructive upper bound on the system timé. is known that the system time belongs &\). As a

We propose a simple strategy, that we call theCRDING

HORIZONBEAD-TILING ALGORITHM (RH-BTA), based on
an iterative invocation the BAD-TILING ALGORITHM. The

strategy consists of the following two steps:

consequence, bounded-curvature constraints make thearsyst

much more sensitive to increases in the target generatien ra
In the future, we plan to study centralized and decentral-

ized versions of the DTRP and general task assignment and

1) attimety, execute the BAD-TILING ALGORITHM for
all the outstanding targets, and
2) update the target list and iterate.

Theorem 4.2:The RECEDING HORIZON BEAD-TILING

surveillance problems for various non-holonomic vehicles
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ALGORITHM is a stable policy for the stochastic DTRP
problem in heavy load. The performance of thed®DING
HORIZON BEAD-TILING ALGORITHM provides the follow-
ing upper bound on the system time: for any 0,

* 7 TP 3 [1]
I <9.88° WH(1 77) .
Ao A2+e = 799 S (W, HY
Note that the achievable performance of thedRDING 2
HORIZON BEAD-TILING ALGORITHM provides analmost
constant-factor approximation to the lower bound esthblis  [3]

in Theorem 4.1 in the sense that the exponent of the

last equation can be selected arbitrarily close2toThe

ratio between the constants of the upper bound and lower
bound is still significant. We believe that the lower bound is[4]
exceedingly optimistic: the large value of the approximiati
factor may be due to the lack of a tight lower bound. On the
other hand, the RH-BTA algorithm is the first polynomial- (5]
time algorithm to provide such a guarantee.

Finally, note that there exists no stable policy for the DTRP[6]
when the targets are generated in an adversarial worst-case
fashion with high intensity. This fact is a consequence ef th |7
linear lower bound on the worst-case DTSP in Theorem 2.2.

V. CONCLUSIONS

Here and in the companion paper [9], we have studieégl
the TSP problem for vehicles that follow paths of bounded(®]
curvature in the plane. We have obtained lower and upper
bounds in the worst-case and stochastic settings; the upps
bounds are constructive in the sense that they are achigved b
two novel algorithms. It is interesting to compare our resul [11]
with the Euclidean setting (i.e., the setting in which cusrde
not have curvature constraints). For a given compact sehand
pointsetP of n points, it is known [1], [2] that th& TSP (P) [12]
belongs ta®(/n). This is true for both stochastic and worst-
case settings. In this paper, we showed that, given a fixdtl
p > 0, the stochasticDTSP,(P) belongs toQ2(n?/?) and
to O(n?/?log(n)'/?). In the companion paper [9], we have
showed that thevorst-caseDTSP,(P) belongs to©(n). [14]

Remarkably, the differences between these various bounds
play a crucial role when studying the DTRP problemis)
e.g., stable policies exist only when the TSP cost grows
strictly sub-linearly withn. For the DTRP problem we have 16]
proposed the novel receding-horizon policy RH-BTA an(g
shown its stability for a uniform target-generation praces
with intensity A\. Based on this policy, we have shown
that the system time for the DTRP problem for Dubins’
vehicle belongs td2(\?) and O(\%*€) for any e > 0. This

17]
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