CDC 2005, To appear

On rendezvous for visually-guided agents in a nonconvex polyn
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Abstract— This paper presents coordination algorithms for
mobile autonomous agents equipped with line-of-sight sensors
in a nonconvex polygon. The objective of the proposed algo-
rithms is to achieve rendezvous, that is, agreement over the
location of the agents in the network, using only information j

from the line-of-sight sensors. Two key novel components of the j j
algorithms are the notions of locally-cliqueless visibility graph

and of convex continuous constraint set.

|. INTRODUCTION Fig. 1. Execution of the Qircymcen_ter Algorithm describeﬂiéqtion IV-C
Consider a group of robotic agents moving n a nonconveff el sasis Bsbued v & pesrn hepee lopes oy
environment. For simplicity, we model the environment as 8 <
simple polygon and the agents as point masses. Assume that
each member of the group is equipped with omnidirectionzﬁl]
line-of-sight sensors. By a line-of-sight sensor, we meayy,
any device or combination of devices that can be use tge of the locations of all other network agents
to determine, in its line-of-sight, (i) the position or stat '

. ] The contribution of this paper is threefold. First, we
of ?”Other agent, and_ (.") the distance to the bounda_ry %tevelop a geometric framework which makes it possible to
environment. By omnidirectional, we mean that the field-

. ) . apply recently developed results on convergence analysis o
of-vision for the sensor i@r radians. We assume that the PPl y P 9 y

. ; L . _nonlinear systems, e.g., the LaSalle Invariance Prindiple
algorithm regulating the agents’ motion is memoryless, i.e y 9 tpl

. . . : set-valued maps, on a network of visually-guided agents in
we cons!der static feedback Iaw_s. G|ven_ this mod_el, the goanonconvex environment. More explicitly, we constrain the
is to design a provably correct discrete-time algorithmalahi

. .. motion of nts t ts that (i) ensure that the visibilit
ensures that the agents converge to a common location meno on of agents to sets that (i) ensure that the visibility

the environment. See Fig. 1 for a graphical description of O%etween two agents s preserved, and (i) changes continu-

obiective. Ideally. the alaorithm would work asvnchroneus usly as a function of the position of the agents. We call
) ' Y, 9 y 9US such sets convex continuous constraint sets and chagcteri
but here we confine ourselves to the synchronous case.

-~ their properties. Second, based on a discussion on vigibili

. N .Sraphs, we define a new proximity graph, called the locally-
study of groups OI mobile autonomous r,,Ol.)OtS' The mUItI'cquueIess visibility graph, which contains fewer edgeanth
agent rendezvous” problem and the first “circumcenter alg

rithm” have been introduced in [1]. The algorithm propose he visibility graph, and has the same connected components

in [1] has been extended to various asynchronous strateg'\ﬁ%is construction can be, in general, useful for any problem
in [2], [3]. A related algorithm, in which connectivity con- ere the connectivity of the visibility graph is importaamrtd

straints are not imposed. is pronosed in 14 fewer constraints on the agents, in terms of number of neigh-
X » 1S prop [4]. bors, is beneficial. Examples of such problems might include

One important difference between these works and tnleﬁe-of-sight wireless routing and consensus problems ove

present one Is that we cons[der visually-guided robots, IIri]ﬁe—of-sight wireless communication networks. Third, we
fact, technical advancement in sensor technology and mgj—

troduced in [6]. However, the proposed solution was not
stributed, in the sense that each agent required the knowl

bile robotics have facilitated the implementation of thes fopose a coordination algorithm to solve the rendezvous

. . roblem and provide a convergence proof.
algorithms on real systems. Examples of panoramic dep
sensors relevant to our work are (1) omnidirectional camera Il. CONVEX CONTINUOUS CONSTRAINT SETS

€.g. [5], and (2) laser scanners with accurate distance mea oo e design motion constraint sets for pair of agents
surements at high angular density. We conclude our litezatuy,, 411y visible to one another. By constraining the motion

review by_ _mentioning that t,he problgm of rendezvousi.ngjf agents, we aim to preserve the connectivity of the network
at a specified location for visually-guided agents was firsiqitionally, we require that motion constraint sets chang
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positive and the nonnegative real numbers, respectivetyaF Definition 1.2 Let v be a reflex vertex of), and letw €
bounded seX C R?, we letco(X) denote the convex hull of Ve(Q) be visible fromv. The (v, w)-generalized inflection
X.Forp,q € R?, we let]p, q[= {\p+(1-N)g|0< A< 1} segmentl(v,w) is the set

and|[p, q] = co({p, q}) denote theopenand closed segment
with extreme pointsp and ¢, respectively. For a closed I(v,w) ={g € S(v) [ = v+ (1= Nw,A =1}
convex setX C R? andg € R? let projx(q) denote |f 4, e Ve (), then we call(v, w) a bitangent of@). Let

the orthzogonal projection of onto X. _For a bounded set {Io}aca be the set of bitangents @@. A reflex vertexy
X C R% we let CC(X) denote thecircumcenterof X,  of o is an anchor ofp € Q if it is visible from p and

i.e., the center of the smallest-radius circle enclosihgthe  (; c §(4) | g = Av + (1 — A)p, A > 1} # 0.

computation of the circumcenter is a strictly convex prohle

Let | X| denote the cardinality of a finite séf in R%. Next, In other words, a reflex vertex is an anchondf it occludes

we define continuous set-valued maps; see [7]. a portion of the environment fromp. Next we define and
characterize certain useful convex sets depicted in Fig. 3.

Definition 1.1 Let X andY be topological vector spaces _
(real and Hausdorff). A set-valued map: X — 2¥ with  Definition 1.3 Given @ € Q, let p,g¢ € @Q such that

non-empty and compact values is continuous at a pajre [P ¢] C Q- Letv € Ve (Q). Lete;, and e} be the edges of
X if given anye > 0, there exists @ > 0 such that for all @ determiningu. Then we definéi, (p, q) C R* as follows:
x € B(x,), we have @) if v ¢ [p,q], then H,(p,q) is the half-plane with
_ _ the following properties: (a) the boundary &f, (p, q)
f@yc |J Bly,e) and f(z)C |J Bly.e) containsv and is perpendicular to the line passing
yEf (o) yEf(x) throughv and proj;, ,, v, and (b)p and ¢ belong to

the interior of H,(p, q);

if v = p with p # ¢, then H,(p,q) is the half-
plane with the following properties: (a) the boundary
of H,(p, q) containsv and is perpendicular to the line
passing throughp and ¢, and (b) ¢ belongs to the
interior of H,(p,q) (Note: a similar definition holds
when we interchange and q);

if v €lp,q[ with p # ¢, then H,(p,q) is the half-
plane with the following properties: (a) the boundary
of H,(p, q) contains the line passing throughand g,
and (b) the interior ofH, (p, ¢) intersected withe, or
with e!/ is empty;

if v =p = q, then H,(p,q) is the setH) N H/'.
H! is a half-plane with the following properties: (a)
the boundary offf] contains the edge’,, and (b) the
interior of H, intersected withe! is empty. We define
H)' similarly with e!/ interchanged withe,,.

Now let us turn our attention to the environment. A (i)
polygon is simple if its vertices are the only points in
the plane common to two polygon edges and every vertex
belongs to at most two polygon edges. Such a polygon
has a well defined interior and exteridtote that a simple
polygon can contain holeset Q denote the set of all simple
polygons. LetQ € Q and letVe(Q) = (vy,...,v,) be the (ii)
list of vertices of(Q ordered counterclockwise. Thaterior
angle of a vertexw of @ is the angle formed insid€ by
the two edges of the boundary €fincident atv. The point
v € Ve(Q) is areflex vertexif its interior angle is strictly
greater thanr radians. LetVe,(Q) denote the list of reflex (v)
vertices of() ordered counterclockwise. X is a finite set
of points inQ", let MPP(X, Q) be theminimal perimeter
polygoncontainingX which is a subset of) (see Fig. 2 for
an example). Note tha® does not necessarily have to be

Fig. 2. Minimal perimeter polygon of a set of points inside nomeex
polygonal environments. The environments are representeldiyed lines,
while the polygons represented by the solid lines are themahperimeter
polygons of the points represented by the solid circles. b left, the
environment is a simple polygon whereas on the right the enmiemt is
polygonal, not simple, and still has a well-defined interind &xterior.

simple for the minimal perimeter polygon to be defined; it
only needs to have a well defined interior and exterior.

A point ¢ € Q is visible fromp € Q if [p,¢q] C Q. The
visibility polygonS(p) C @ from a pointp € @ is the set of
points inQ visible fromp. We can also think op +— S(p) Fig. 3. Definition of the setd/, (p, q)
as a map fron to the set of polygons contained .




Remark 1.4 With the above definition, wherever defined,

H,(p,q) is a closed and convex set containjngndg. Also,
if ¥V C @ is convex and compact, theH,(p,q) is well-
defined everywhere V)% and (p, q) — H,(p, q) is a set-
valued map over the domaif)? with range2(®").

Lemma Il.5 Given anyv € Ve, (Q) and a convex and com-
pact subseV of ), the set-valued mafp, q) — H,(p,q)NQ
restricted to(V \ Ve,(Q))? is continuous.

Lemma Il.6 Let V' C Ve, (Q) and V be a convex and
compact subset af. The following statements are true:
(i) the set-valued magp,q) — ()| S(p) N Hy(p, q) re-

veV
stricted to(V \ (Ve:(Q) (Uaeals)))? is continuous;

(i) the set-valued map — (1) S(p) N Hy(p,p) re-

veV
stricted toV \ (Ve,(Q) U(Uacaly)) is continuous.

Definition 11.7 (Convex Continuous Constraint Sets)

Let p,¢ € @ have the property thafp,q] C @ and let
Io(p,q) = Ve:(Q) N S(p) N S(g). The convex continuous
constraint set between and g is

(SN Hy(p,q).

velg(p,q)

Cq(p,q) =

Fig. 4 illustrates the constraint set.

Fig. 4. The figure on the left is an example of the constrainCgglp, q)
whereIg(p,q) = {vk,,Vk,, Uiy }- The figure on the right is an example
of Co(p, p) wherelg(p, p) = Ver(Q).

Theorem I1.8 LetV C @ be convex and compact. For any
two pointsp, g € V, the following statements are true:
() Cq(p,q) is convexCq(p,q) = Cq(g,p), and
(i) the set-valued magp,q) — Co(p,p) N Co(p,q)
restricted to(V \ Ve,(Q))? is continuous.

Ill. THE LOCALLY-CLIQUELESS VISIBILITY GRAPH

In Section Il we proposed the construction of motion
constraint sets to preserve the connectivity of the networ%f
The number of such constraints for an agent is the number

of the agents visible to it. It is intuitively clear that the

lesser the number of such constraints, the faster will be thqso, for p ¢ R?, define Ny,

In addition, we show that this graph can be computed based
on the information obtained only from the visibility graph.

We begin by introducing some concepts regarding prox-
imity graphs for point sets iiR%2. We assume the reader is
familiar with the standard notions of graph theory. We riecal
that aclique of a graph is a complete subgraph of it. A
maximal clique of an edges a clique of the graph that (i)
contains the edge and (ii) is not a strict subgraph of anyrothe
clique of the graph that also contains the edge.

Given a vector spac®, let F(V) be the collection of
finite subsets ofV. Accordingly, F(R?) is the collection of
finite point sets inR?; we shall denote an element B{R?)
by P = {p1,...,pn} C R?, wherepy,...,p, are distinct
points in R2. Let G(R?) be the set of undirected graphs
whose vertex set is an element&fR?). A proximity graph
function G : F(R?) — G(R?) associates to a point s@
an undirected graph with vertex sBtand edge sefg(P),
with & : F(R?) — F(R? x R?) such thattg(P) C P x P\
diag(P x P) for any P. Here,diag(P x P) = {(p,p) € P x
P | p € P}. In other words, the edge set of a proximity graph
depends on the location of its vertices. General propeofies
proximity graphs are defined in [8], [9]. Here, we define:

(i) a Euclidean Minimum Spanning Treef a proxim-

ity graph G, denotedGgustg, assigns to eactP a
minimum-length spanning tree @(P) whose edge
(pi,p;) is assigned a lengthip; — p;||. If G(P) is
not connected, the@emstg(P) is simply the union of
Euclidean Minimum Spanning Trees of its connected
components. For simplicity, whe@ is the complete
graph (P,P x P \ diag(P x P)), we denote the
Euclidean Minimum Spanning Tree I§£vsT;

(ii) the visibility graph Gyis o, for Q € Q, with (p;,p;) €
Egyso (P) if the line segmenip;, p;] € Q;

(iii) the locally-cliqueless visibility grapt@ic.vis o, for @ €
Q, with (p;,p;) € gglc-vis,Q (P) if (pi,pj) € Edusa (P)
and (p;, p;) belongs to a sefg,, (P’) for any maxi-
mal cliqueP’ of the edge(p;, p;) in Gyisg-

Fig. 5 contains some examples of proximity graphs in a
nonconvex polygor) shaped like a typical floor plan.

e
e

Fig. 5. From left to right, visibility graph, Euclidean Mimum Spanning
Tree for the five agents in the center, and locally-cliquelésibility graph.

To each proximity graph functiog, we associate thset
neighbors map\ : R? x F(R?) — F(RR?), defined by

Ng(p,P)={q€P|(p,q) € E(PU{p})}.
. F(R?) — F(R?) by

convergence of the algorithm. Here we introduce the notiogy, »(P) = Ng(p, P). LetG; andg, be two proximity graph

of locally-cliqueless visibility graph, which is a subghapf
the visibility graph. In general, it contains fewer edgeanh

the visibility graph but has the same connected components.

functions.g; is spatially distributed oveg; if, for all p € P,
Ngl,p(P) = Ngl,P(Ng%p(’P))'



It is straightforward to deduce that @, is spatially dis- a good property of any algorithm to rendezvous is that of

tributed overG,, then G; is a subgraph ofG,, that is, maintaining some form of connectivity between agents.

G1(P) C Go(P) for all P € F(R?). Two proximity graph i _

furgcti)onsgl ‘(amgjgg have the sagme) connecl?ted conx:pgnd?nts C. The Circumcenter Algorithm

for anyP € F(R?), G1(P) andG,(P) have the same number Here is an informal description of what we shall refer to

of connected components consisting of the same verticesas theCircumcenter Algorithm over a proximity gragg
Each agent performs the following tasks: (i) it de-

Theorem IIl.1 For @ € Q, the following statements hold: tects its neighbors according & (ii) it computes
(1) GemsTgusq C Yievis@ C Guisq; the circumcenter of the point set comprised of its
(i) Gievisq IS spatially distributed ovegyis o, for the case neighbors and of itself, and (iii) it moves toward
when @ does not contain any hole; this circumcenter while maintaining connectivity

(iii) Gicviso, Guiso have the same connected components.  with its neighbors.

This algorithm is inspired by the one introduced in [1]. Let
us clarify which proximity graphs are allowable and how
connectivity is maintained. Firstly, we are allowed to desi
over any proximity graply that is spatially distributed over

L L | L | Guis- This is a direct consequence of our modeling assump-
tion that each agent can acquire the location of every other
[Uj agent visible to it. Secondly, we maintain connectivity by

In general, the inclusions in Theorem II1.1(i) are stridy.F6
shows an example whe@vstg,., S Gicvis@ & Gvisq-

N NE restricting the allowable motion of each agent. In partcul

b if agentsp; and p; are neighbors in the proximity graph

i i g, then their subsequent positions are required to belong to
Co(pi, p;) as defined in Theorem I1.8.
Fig. 6. From left to right, visibility graph, locally-cliceless visibility graph If an agentp; has its neighbors at locatiods;, ..., q},
and Euclidean Minimum Spanning Tree of the visibility graph. then defineM; = {q,...,q} U {p;}. We define the

constraint setC,, o (M;) by
IV. RENDEZVOUS VIA PROXIMITY GRAPHS
o CpoMi) = [ Colpirq)-
Here we state the model, the control objective, the coor- dEM;
dination algorithm, and the closed-loop system properties

Remark IV1 o C,, o(M,;) is a convex subset of)

A. A synchronous network of visually-guided agent . : L
sy us visualy-gul gens containing p;. This follows from the definition of

By a visually-guided agentwe refer to any agent, oc- C,,.0(M;) and Theorem I1.8 (i).
cupying a location in@ € Q, and capable of measuring |t A4, 0 Ve,(Q) is empty and the set of neighbors of
th_e _relqtlve po_smon of every other_ ag_ent visible to it,,i.e p: is fixed, thenC,,, o(M,) changes continuously as a
within line-of-sight. In addition to this, it can also sertbe function of p; and of the positions of its neighbors.

boundary ofQ. Each agent has a processor with the ability  Thig fgllows from the fact that for each;, € M,
. . . . J 1’
of allocating continuous and discrete states and perf@min p; is constrained to remain ifig(p;,p;) Which is a

operations on them. A collection of finite number, sayof convex and compact subset@f The statement is then
such agents form a network. Note that as a consequence of 4 consequence of Theorem I1.8 (iii) and the fact that
the above, whenevé) contains no hole, the processor on any .o(M,) is an intersection of continuous maps.

agent has the capability to answer the query as to whether
two agents visible to it are mutually visible to one another. With this, we are ready to formally describe the algorithm.
Theith agent in such a network is capable of moving at a

<

time m € N, for any unit period of time, according to the| Name: _ Circumcenter Algorithm oveg
synchronizedliscrete-time control system Assumes: E!_)) ngax EQR+ IS maximum step size
i €
pi(m +1) =pi(m) + u;. (1) (i) G is a spatially distributed proximity
We also assume that there is a maximum stepsigee R, graph overGisq
for all agents, that is||u;|| < smax fori € {1,...,n}.
. o Fori e {1,...,n}, agenti executes the following at each
B. The rendezvous motion coordination problem time instant inN:

We now state the control design problem for the network .
of visually-guided agents. Theendezvous objectives to L acquire{qs, .., ae} = Nousq p: (P)
steer each agent to a common location. This objective fis2 COMPUteM; := N, ({a1,-- -, i }) U {pi}
to be achieved with the limited information flow described 3: computeX; := Cy, o(M;) N co(M;)
in the model above. Typically, it will be impossible to solve| 4: computeg; := projy, (CC(M;))
the rendezvous problem if the agents are placed in such &. 4, - Min(Smaxlgf pll\)(q‘ — i)
way that they do not form a connected graph. Arguably, lla7 =l v




See Fig. 7 for examples of the constraint s€fs o (M;). We are now ready to state the following convergence result.

Theorem IV.4 Let pq,...,p, be a network of visually-
guided agents iff) € Q, with maximum step Sizgax € R

Assume that) does not contain any holes, and that the
proximity graphgG is spatially distributed oveiG,s and
has the same connected componentsGaso. Then, any
trajectory { P, }menuqoy of Tg has the following properties:

(i) if the locations of two agents belong to the same con-
nected component &is o (Py;) for somek € NU{0},
then they remain in the same connected component of
Guiso(Pr) for all m > k,
VperimQ (P7rz+1) < Vperim,Q(Pm)a for all m €e NU {0},

Fig. 7. Constraint set€’,, o(Mj;) generated by the algorithm encoded (")

as described in Section V iii) if { P }menugoy satisfies (A), thed Py, }r,enuoy CON-
verges to a point”* € ™ such that eitherp; = pj
In what follows we shall refer to the Circumcenter Algo- or [pj,pjl € Q forall i, j € {1,...,n}.

rithm over the proximity graply as the mafig : Q" — Q". The proof for Theorem IV.4 is based on the following

D. Asymptotic correctness of the Circumcenter Algorithm Useful results. The technical approach in what follows is

. similar to the one in [9].
Henceforth, P shall refer to tuples of elements i) of L . . . L
the form (pr, ..., pn). With & sligfn abuse of notati?n we To a proximity graph functio that is spatially distributed

. 1 1 n i
shall useP interchangeably with a point s@ of the form over Gyisg, and a configuratior® € Q, one may associate

. a graphGgpy = ({1,...,n}, E) by defining (4,j) € E
{p1,...,pn}. Before proceeding to analyze the convergenc RN "
properties of the Circumcenter Algorithm, let us first definéd (pi»p;) is an edge ofj(P). Clearly, for eachP € Q",

. : o N, 0 (i) is equal to the set of neighbors gf; with
a candidate Lyapunov functiotperimg : Q" — R+, by resf)(eét to the grapfi(P). Given an undirected grapfi =

Voerimg (P) = perimeter(MPP (P, @Q)). ({1,...,n}, E), define theCircumcenter Algorithm at Fixed
TopologyTe : @™ — Q™ whoseith component is
Lemma V.2 For any polygony with a well-defined interior

and exterior, we have the following: (T6)i(pr, - pn) = (Tg)i(p1s - Pn)-
(|) fOI‘ P S Qn' 1\/_[PP(P7 Q) ContainS a.” the V|S|b|||ty Lemma |V5 FOI’G — ({1 . n} E) the maMG . Qn N
edges 0lyiso(P); Q" has the following properties:

(i) for P, € Q™ and P, € @™, we have that
(i) %vIPP(Pl’Q? < MPP(Fy LCJQPQ’.Qh); l-defined i continuous, and
iii) for any polygon X C with a well-defined in- i, ) o
terior and exterior andP € X", we have that (i) MPP(Ta(P),Q) € MPP(P,Q), for P € Q".
MPP(P, X) C MPP(P,Q); Given Q € Q, define theCircumcenter Algorithm at All
(V) Cp,.@(Mi) N MPP(M,;,S(pi)) = Cp,@(Mi) N Connected Topologie® : Q" — 2(Q") by
co(M;), wherep; and M; are as in the description N .
of the Circumcenter Algorithm in Section IV-C; T(P) ={Tc(P) € Q" | G = ({1,...,n}, E) is connectegl
V) Cp,.0(M;) NMPP(M,, S(p;)) is convex; » . .
(vi) if MPP(P’,Q) is a strict subset ocKIPP(P”, Q), then Proposmo_n IV.6 For .Q € Q, the mapl : Q" — 2(@") has
_ / _ ” the following properties:
Vperma(F") < Voerima (£7). (i) th P — T(P) restricted toX t subset
i) the mapP — restricted toX’, a compact subse
Finally, we state an important lemma that is crucial in of (@ \ Ve, (Q))™, is upper semicontinuous, and
characterizing the set to which the sequence of the position(iiy MPP(T(P),Q) c MPP(P,Q), for P € Q" if there
of the agents converges. existsp;, p; € P such that p; # p;.

(i) The mapP — T¢(P) restricted to(Q \ Ve, (Q))™ is

Lemma IV.3 Let P € (Q \ Ve:(Q))". Let G(P) be Now that we have analyzed the smoothnesg olet us
any graph spatially distributed ovegisq(P). There ex- study the properties of the functidrperim, Q" — R
ists at least one agent with p; € Ve(MPP(P,Q)) \

Ve, (MPP(P,Q)) such that the following are true: Lemma IV.7 The functionVperim; @™ — R has the follow-
(i) there existp € X; such thatp # p; and [p;,p] C X;; N Properties: _ o
(i) ||pi — projx. CC(M;)|| > 0. (i) Vperimg is continuous, and is invariant under permu-

tations of its arguments;
We shall also require, at some times, to make the following (i) Vyerimo(P) = 0 if and only if p; = p; for all p; €
assumption on a sequen¢e, },,enuoy C Q™ Pie{l,...,n};
(A) There exists a compact seéf C (Q \ Ve,(Q)) such (i) Vperimg is strictly decreasing alongl’ as long as
that {Pm}mENU{()} c X", Voerim@ (P) > 0.



Initial position of the agents Final position of the agents

Evolution of the network

We now present the asymptotic convergence properties o
the algorithmT'. The proof of this relies on a discrete-time | |
LaSalle Invariance Principle for set-valued maps; see [9]. E{
any holes, and that the proximity gragh is spatially dis-
tributed overGyis o and has the same connected components
as Giisq. Then, any sequenceP,},enuqo}, defined by _ _ _ _

&ig. 8. Simulation results of the Circumcenter Algorithm on etwork

Prnia € T(Pm) and SatISfymg Assumption (A)’ converges tof agents distributed in a spiral polygon. The locationshef agents, at all

a point P* € X" such thatp; = pj forall i, j € {1,...,n}. times, do not belong to reflex vertices. However, at some itstaaflex
vertices are approached very closely. The algorithm is reT Gyis .

Lemma IV.8 Let Q € Q. Assume that) does not contain

E. A variant of the Circumcenter Algorithm

In Section IV-D, we conjecture that the Circumcenter i posiion of the agents
Algorithm solves the rendezvous problem for visually-gud

Evolution of the network

L
st

Final position of the agents

T

agents if the network evolves in a compact subset)of
Ve, (Q). In what follows we describe an algorithm that we
conjecture guarantees convergence without this assumptio

Name: Modified Circumcenter Algorithm oveg

Assumes:
() smax € R4 is maximum step size Fig. 9. Simulation results of the Circumcenter Algorithm on etwork
(i) Qe of agents distributed in a polygon shaped like a typical flptan. The

(iii) G is a spatially distributed proximity graph ov@js |  29°MM 1S un oveGic.is q-

with the property that two agents at the same loca
have identical sets of neighbors.

tion
Acknowledgments:This material is based upon work

Fori e {1,...,n}, agenti executes the following at each

time instant inN:

1: acquire{qi, ..., qx} = Ngyeq.p: (P)

2: computeW, :={q; | ¢; = pi, j €{1,...,n}}
3: computeB; := (Ngp, ({q1,- - qx}) \ Wi)

4: computeM; := B; U {p;}

5. if B; = {v}, for v € Ve, (Q), andp; ¢ Ve,(Q) then
6: computeg :=v

7. else

8. computeX; := Cp, o(M;) N MPP(M,)

9:  computeg; := projy, (CC(M;))

10: end if

11: u; = w(q? — i)

lla; —p:ll

Remark IV.9 The graphGicisg fulfills assumption (jii) in
the statement of the Modified Circumcenter Algorithm.

V. SIMULATION RESULTS

To conduct experiments, a two-layer simulation environ
ment has been developed Mat | ab®. Figs. 1, 8 and 9
illustrate the performance of the Circumcenter Algorithm i
Section IV-C.

VI. CONCLUSIONS
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