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On synchronous robotic networks
Part II: Time complexity of rendezvous and deployment algorithms

Sonia Mart́ınez Francesco Bullo Jorge Cortés Emilio Frazzoli

Abstract— This paper analyzes a number of basic coordina-
tion algorithms running on synchronous robotic networks. We
provide upper and lower bounds on the time complexity of the
move-toward average and circumcenter laws, both achieving
rendezvous, and of the centroid law, achieving deployment over
a region of interest. The results are derived via novel analysis
methods, including a set of results on the convergence rates of
linear dynamical systems defined by tridiagonal Toeplitz and
circulant matrices.

I. I NTRODUCTION

Problem motivation: Although recent years have witnessed
the emergence of numerous coordination algorithms for
networked mobile systems, the fundamental limits in terms of
achievable performance, energy consumption and operational
time remain largely unknown. This is in part explained by the
inherent difficulty in integrating the various sensing, comput-
ing and communication aspects of problems involving groups
of mobile agents. In this paper, we analyze the performance
of several coordination algorithms achieving rendezvous and
deployment (see [3], [4] for a discussion on the practical
motivation of these tasks). To achieve this goal, we rely on
the general framework proposed in the companion paper [2]
to formally model the behavior of robotic networks. Our
research effort aims at developing tools and results to assess
to what extent coordination algorithms are scalable and
implementable in large mobile networks. Ultimately, we aim
at characterizing the minimum amount of communication,
sensing and control necessary to perform a desired task, and
at designing algorithms that achieve those limits.

Literature review: A survey on cooperative mobile robotics
is presented in [5] and an overview of control and commu-
nication issues is contained in [6]. Specific topics relatedto
the present treatment include rendezvous [3], [7], [8], [9],
[10], cyclic pursuit [11], deployment [4], flocking [12] and
consensus [13], [14]. The papers [15], [16], [17] discuss
convergence rates of various coordination algorithms. See
the aforementioned works for references on other cooperative
strategies designed to perform spatially-distributed tasks.

Statement of contributions: The companion paper [2] pro-
poses a general framework to model robotic networks and
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formally analyze their behavior. In particular, this work de-
fines notions of time and communication complexity aimed
at capturing the performance and cost of coordination algo-
rithms. Building on these notions, we establish here complex-
ity estimates for various algorithms that achieve rendezvous
and deployment. First, we analyze a simple averaging law
for a network of locally-connected agents moving on a
line, related to the widely known Vicsek’s model, see [12],
[18]. We show that this law achieves rendezvous (without
preserving connectivity) with time complexity belonging
to Ω(N) and O(N5). Second, for a network of locally-
connected agents moving on a line or on a segment, we show
that the circumcenter algorithm in [3] has time complexity
of order Θ(N). (This algorithm achieves rendezvous while
preserving connectivity with a communication graph with
O(N2) links.) We then consider a network based on a
different communication graph, called the limited Delaunay
graph, that arises naturally in computational geometry and
in wireless communication. For this less dense graph with
O(N) links, we show that the time complexity of the cir-
cumcenter algorithm grows toΘ(N2 log N). For a network
of agents moving onRd we introduce a novel “parallel-
circumcenter algorithm” and establish its time complexityof
orderΘ(N). Third and last, for a network of agents in a one-
dimensional environment, we show that the time complexity
of the deployment algorithm in [4] isO(N3 log N). To
obtain these complexity estimates, we develop novel analysis
methods, particularly a set of results on linear dynamical
systems defined by tridiagonal Toeplitz and circulant matri-
ces, and characterize their convergence rates. The interested
reader is referred to [1] for a complete discussion of the
proofs of all results presented here.

Organization: Section II develops some facts about con-
vergence rates of dynamical systems defined by tridiag-
onal Toeplitz and circulant matrices. Section III reviews
the general approach to the modeling of robotic networks
proposed in [2]. Sections IV and V define the rendezvous
and deployment tasks, respectively, and present coordination
algorithms that achieve them. We establish their asymp-
totic correctness and characterize their time complexity.We
present our conclusions in Section VI. We refer the reader
to [1] for the definition of various basic geometric concepts
used in the paper.

Notation: Let BooleSet = {true,false}. We
let

∏

i∈{1,...,N} Si denote the Cartesian product of sets
S1, . . . , SN . We let R+ and R+ denote the set of strictly
positive and non-negative real numbers, respectively. The
set of of positive natural numbers is denoted byN and N0

denote the set of non-negative integers. IfS is a set, then



diag(S × S) = {(s, s) ∈ S × S | s ∈ S}. For x ∈ R, we let
bxc denote the floor ofx. For x ∈ R

d, we denote by‖x‖2

and‖x‖∞ the Euclidean and the∞-norm ofx, respectively.
For x ∈ R

d and r ∈ R+, B(x, r) denotes the closed ball
in R

d centered atx of radius r. We let e1, . . . , ed be the
standard orthonormal basis ofR

d. Also, we define the vectors
0 = (0, . . . , 0)T and1 = (1, . . . , 1)T in R

d. For f, g : N →
R, we say thatf ∈ O(g) (respectively,f ∈ Ω(g)) if there
exist N0 ∈ N and k ∈ R+ such that|f(N)| ≤ k|g(N)|
for all N ≥ N0 (respectively,|f(N)| ≥ k|g(N)| for all
N ≥ N0). If f ∈ O(g) and f ∈ Ω(g), then we use the
notationf ∈ Θ(g).

II. T RIDIAGONAL TOEPLITZ AND CIRCULANT

DYNAMICAL SYSTEMS

This section presents some general results on certain
classes of Toeplitz matrices, see [19]. These are later em-
ployed to obtain complexity estimates in Sections IV and V.
For N ≥ 2 anda, b, c ∈ R, let the ToeplitzN ×N -matrices
TridN (a, b, c) andCircN (a, b, c) be

TridN (a, b, c) =













b c 0 . . . 0
a b c . . . 0
...

.. .
. . .

.. .
...

0 . . . a b c
0 . . . 0 a b













,

and

CircN (a, b, c) = TridN (a, b, c) +













0 . . . . . . 0 a
0 . . . . . . 0 0
...

.. .
.. .

. . .
...

0 0 . . . 0 0
c 0 . . . 0 0













.

TridN andCircN are tridiagonal and circulant, respectively.
They only differ in their(1, N) and (N, 1) entries.

Theorem II.1 (Tridiagonal Toeplitz and circulant dy-
namical systems)Let N ≥ 2, ε ∈]0, 1[, and a, b, c ∈ R.
Let x : N0 → R

N , y : N0 → R
N be solutions to

x(`+1)=TridN (a, b, c)x(`), y(`+1)=CircN (a, b, c) y(`),

with initial conditions x(0) = x0 and y(0) = y0, respec-
tively. The following statements hold:

(i) if a = c 6= 0 and |b|+2|a| = 1, then lim`→+∞ x(`) =
0, and the maximum time required for ‖x(`)‖2 ≤
ε‖x0‖2 (over all initial x0 ∈ R

N ) is Θ
(

N2 log ε−1
)

;
(ii) if a 6= 0, c = 0 and 0 < |b| < 1, then lim`→+∞ x(`) =

0, and the maximum time required for ‖x(`)‖2 ≤
ε‖x0‖2 (over all initial x0 ∈ R

N ) is O
(

N log N +
log ε−1

)

;
(iii) if a ≥ 0, c ≥ 0, b > 0, and a + b + c = 1, then

lim`→+∞ y(`) = yave1, where yave = 1
N

1
T y0, and the

maximum time required for ‖y(`)− yave1‖2 ≤ ε‖y0 −
yave1‖2 (over all initial y0 ∈ R

N ) is Θ
(

N2 log ε−1
)

.•

For N ≥ 2 and a, b ∈ R, define theN × N matrices
ATrid+

N (a, b) andATrid−
N (a, b) by

ATrid±
N (a, b) = TridN (a, b, a) ±













a 0 . . . . . . 0
0 0 . . . . . . 0
...

. ..
.. .

.. .
...

0 . . . . . . 0 0
0 . . . . . . 0 a













.

One can show [1] that these matrices are, respectively, similar
(in the algebraic sense) to the block diagonal matrices

[

b ± 2a 0
0 TridN−1(a, b, a)

]

.

To state the convergence properties of the dynamical systems
determined byATrid+

N (a, b) and ATrid−
N (a, b), we define

1− = (1,−1, 1, . . . , (−1)N−2, (−1)N−1)T ∈ R
N .

Theorem II.2 Let N ≥ 2, ε ∈]0, 1[, 0 6= a, b ∈ R with |b|+
2|a| = 1. Let x : N0 → R

N , z : N0 → R
N be solutions to

x(`+1)=ATrid+
N (a, b)x(`), z(`+1)=ATrid−

N (a, b) z(`),

with initial conditions x(0) = x0 and z(0) = z0, respec-
tively. The following statements hold:

(i) lim`→+∞

(

x(`) − xave(`)1
)

= 0, where xave(`) =
( 1

N
1

T x0)(b + 2a)`, and the maximum time required
for ‖x(`) − xave(`)1‖2 ≤ ε‖x0 − xave(0)1‖2 (over all
initial x0 ∈ R

N ) is Θ
(

N2 log ε−1
)

;
(ii) lim`→+∞

(

z(`) − zave(`)1−

)

= 0, where zave(`) =
( 1

N
1

T
−z0)(b − 2a)`, and the maximum time required

for ‖z(`) − zave(`)1−‖2 ≤ ε‖z0 − zave(0)1−‖2 (over
all initial z0 ∈ R

N ) is Θ
(

N2 log ε−1
)

. •

III. SYNCHRONOUS ROBOTIC NETWORKS

The companion paper [2] proposes a formal model for
robotic networks, and defines the notions of control and
communication laws, tasks, and time and communication
complexity. We present here simplified versions of them.

Definition III.1 A uniform network of robotic agents(or
robotic network) S is a tuple (I,A, Ecmm) consisting of

(i) I = {1, . . . , N}; I is the set of unique identifiers;
(ii) A = {A[i]}i∈I , with A[i] = (X,U,X0, f), is a set of

identical control systems (the set of physical agents);
(iii) Ecmm is a map from

∏

i∈I X to the subsets of I × I \
diag(I × I) called the communication edge map. •

Definition III.2 A (synchronous, static, uniform, feedback)
control and communication lawCC for S consists of the sets:
(i) T = {t`}`∈N0

⊂ R+, an increasing sequence of time
instants, called communication schedule; and (ii) L, a set
containing the null element, called the communication lan-
guage; elements of L are called messages; and of the maps:
(i) msg: T × X × I → L, the message-generation function;
(ii) ctl : R+ × X × X × LN → U , the control function. •

The lawCC is said to betime-independent if the message-
generation and control functions are of the form msg: X ×
I → L and ctl: X × X × LN → U , respectively.
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Definition III.3 The evolution of (S, CC) from initial con-
ditions x

[i]
0 ∈ X0

[i], i ∈ I , is the set of curves
x[i],` : [t`, t`+1] → X , i ∈ I , ` ∈ N0, satisfying

ẋ[i],`(t) = f
(

x[i],`(t), ctl(t, x[i],`(t), x[i],`(t`), y
[i](t`))

)

,

where x[i],`(t`) = x[i],`−1(t`) (with x[i],−1(t0) = x
[i]
0 ) for

` ∈ N0. y[i] : T → LN describes the messages received by
agent i, with components y

[i]
j (t`) = msg(t`, x[j],`−1(t`), i), if

(i, j) ∈ Ecmm(x[1],`−1(t`), . . . , x
[N ],`−1(t`)) and y

[i]
j (t`) =

null otherwise. •

Remarks III.4 (Notation) The projectionπL : LN → 2L

maps an array of messagesy to the subset ofL containing
only the non-null messages iny. In many uniform control
and communication laws, the messages interchanged among
the agents are (quantized representations of) the agents’
states. The corresponding communication language isL =
X, and msgstd: T×X×I → X is referred to as thestandard
message-generation function, msgstd(t, x, j) = x. •

Let us introduce some examples of robotic networks. We
start with a basic example and define some variations of it.

Example III.5 (Locally-connected first-order agents in
R

d) ConsiderN pointsx[1], . . . , x[N ] in the Euclidean space
R

d, d ≥ 1, obeying a first-order dynamicṡx[i](t) =
u[i](t). These are identical agents of the formA =
(Rd, Rd, Rd, (0, e1, . . . , ed)). Assume that each agent can
communicate to any other agent within Euclidean dis-
tance r, that is, adopt as communication edge map the
r-disk proximity edge mapEr-disk defined by (i, j) ∈
Er-disk(x

[1], . . . , x[N ]) iff ‖x[i]−x[j]‖2 ≤ r. These data define
the uniform robotic networkS

R
d,r-disk = (I,A, Er-disk). •

Example III.6 (LD-connected first-order agents in R
d)

Consider the set of physical agents defined in Example III.5.
Forr ∈ R+, adopt as communication graph ther-limited De-
launay mapEr-LD defined by(i, j) ∈ Er-LD(x[1], . . . , x[N ])
iff

(

Vi ∩ B(x[i], r
2 )

)

∩
(

Vj ∩ B(x[j], r
2 )

)

6= ∅,, where
{V1, . . . , VN} is the Voronoi partition ofRd generated by
{x[1], . . . , x[N ]} (cf. [20]). These data define the uniform
robotic networkS

R
d,r-LD = (I,A, Er-LD). •

Example III.7 (Locally-∞-connected first-order agents
in R

d) Consider the set of physical agents defined in the
previous two examples. Forr ∈ R+, define the proximity
edge mapEr-∞-disk by (i, j) ∈ Er-∞-disk(x

[1], . . . , x[N ]) iff
‖x[i] − x[j]‖∞ ≤ r, i 6= j These data define the uniform
robotic networkS

R
d,r-∞-disk = (I,A, Er-∞-disk). •

In order to analyze the performance of a communication
and control law, we first define the notion of coordination
task, and of task achievement by a robotic network.

Definition III.8 (Coordination task) Let S be a robotic
network. A (static) coordination taskfor S is a map
T :

∏

i∈I X [i] → BooleSet. Additionally, let CC a control
and communication law for S. The law CC achievesthe task
T if for all initial conditions x

[i]
0 ∈ X

[i]
0 , i ∈ I , the network

evolution t 7→ x(t) has the property that there exists T ∈ R+

such that T(x(t)) = true for all t ≥ T . •

The notions of time and communication complexity
(cf. [2]) describe the performance and cost of a law achieving
a coordination task. Here, we focus on time complexity.

Definition III.9 (Time complexity) Let S be a robotic net-
work, T a coordination task for S and CC a law for S.

(i) The time complexity to achieveT with CC from x0 ∈
∏

i∈I X
[i]
0 is TC(T, CC , x0) = inf {` | T(x(tk)) =

true , for all k ≥ `}, where t 7→ (x(t)) is the
evolution of (S, CC) from x0.

(ii) The time complexity to achieveT with CC is

TC(T, CC) = sup
{

TC(T, CC , x0) | x0 ∈
∏

i∈I

X
[i]
0

}

.

(iii) The time complexity of T is TC(T) =
inf{TC(T, CC) | CC achieves T}. •

IV. RENDEZVOUS

In this section, we introduce rendezvous coordination tasks
and analyze various coordination algorithms that achieve
them, providing upper and lower bounds on their time com-
plexity. We will consider the networksS

R
d,r-disk andS

R
d,r-LD

presented in Example III.5 and Example III.6, respectively.

A. Rendezvous tasks

Let S = (I,A, Ecmm) be a uniform robotic network. The
(exact) rendezvous task Trndzvs: XN → BooleSet for S is
Trndzvs(x

[1], . . . , x[N ]) = true iff x[i] = x[j], for all (i, j) ∈
Ecmm(x[1], . . . , x[N ]). Second, letS = (I,A, Ecmm) be a
uniform robotic network with agents’ state spaceX ⊂ R

d.
Examples networks of this form areS

R
d,r-disk, see Exam-

ples III.5 and IV-B, andS
R

d,r-LD , see Examples III.6. For
ε > 0, theε-rendezvous task Tε-rndzvs: (Rd)N → BooleSet
for S is defined byTε-rndzvs(x) = true iff

∥

∥

∥
x[i] − avrg

(

{x[i]} ∪ {x[j] | (i, j) ∈ Ecmm(x)}
)

∥

∥

∥

2
< ε,

for all i ∈ I. Herex = (x[1], . . . , x[N ]) ∈ XN ⊂ (Rd)N . In
other words,Tε-rndzvs is true at x ∈ (Rd)N if, for all i ∈ I,
x[i] is at distance less thanε from the average of its own
position with the position of itsEcmm-neighbors.

B. Rendezvous without connectivity via the move-toward-
average control and communication law

Consider the networkS
R

d,r-disk (cf. Example III.5). Let
us define the static, uniform and time-independent move-
toward-average law, denotedCCavrg. We describe it as:

[Informal description] Communication rounds take
place at each natural instant of time. At each round,
agents transmit their position. Between rounds,
each agent moves towards and reaches the average
of its own position and its neighbors’ positions.

Next, we define the lawformally. First, we takeT = N0.
Each agent operates with the standard message-generation
function, i.e.,L = R

d and msgstd(x, j) = x. Second, we
define the control function ctl: R

d × R
d × LN → R

d

ctl(x, xsmpld, y) = −kprop vers
(

x − avrg(y ∪ {xsmpld})
)

,

3



wherekprop ≥ r, vers : R
d → R

d is defined byvers(0) = 0
andvers(v) = v/‖v‖2 for v 6= 0, and the mapavrg computes
the average of a finite point set inRd:

avrg(S) =
1

∑

p∈πR(S)

1

∑

p∈πR(S)

p .

In summary we setCCavrg = (N0, R
d, msgstd, ctl). Fig. 1

shows an execution ford = 1. Along the evolution, (1) sev-
eral agentsrendezvous, i.e., agree upon a common location,
and (2) some agents are connected at the beginning and not
connected at the end. This law is related to the Vicsek’s
model discussed in [12], [18]. The next result characterizes

11
22
33
44

77
66
55

Fig. 1. Evolution of a robotic network under the move-toward-average
control and communication law in Example IV-B implemented over the r-
disk graph, withr = 1.5. The vertical axis corresponds to the elapsed time,
and the horizontal axis to the positions of the agents in the real line. The
51 agents are initially randomly deployed over the interval[−15, 15].

the complexity of this law. The proof can be found in [1].

Theorem IV.1 For d = 1, the network S
R

d,r-disk, the law
CCavrg, and the task Trndzvs satisfy TC(Trndzvs, CCavrg) ∈
O(N5) and TC(Trndzvs, CCavrg) ∈ Ω(N).

C. Rendezvous with connectivity constraint via the circum-
center control and communication law

Here we define thecircumcenter control and communica-
tion law CCcrcmcntr for bothS

R
d,r-disk andS

R
d,r-LD . This is a

uniform, static, time-independent law originally introduced
by [3] and later studied in [8], [10]. Loosely speaking, the
evolution of the network under this law is:

[Informal description] Communication rounds take
place at each natural instant of time. At each round,
each agent performs the following tasks: (i) it
transmits its position and receives its neighbors’
positions; (ii) it computes the circumcenter of the
point set comprised of its neighbors and of itself;
and (iii) it moves toward this circumcenter while
maintaining connectivity with its neighbors.

Next, we define the lawformally. We setT = N0, L = R
d,

and msg[i] = msgstd, i ∈ I. To define the control func-
tion, we introduce some constructions. First, connectivity is
maintained by restricting the allowable motion of agents as
follows. If agentsi andj are neighbors at̀∈ N0, then we re-
quire their subsequent positions to be inB(x[i](`)+x[j](`)

2 , r
2 ).

If an agenti has its neighbors at locations{q1, . . . , ql} at `,
then itsconstraint set Dx[i](`),r({q1, . . . , ql}) is

Dx[i](`),r({q1, . . . , ql}) =
⋂

q∈{q1,...,ql}

B
(x[i](`) + q

2
,
r

2

)

.

Second, to maximize the displacement toward the circumcen-
ter, each agent solves a convex optimization problem that can
be stated in general as follows. Forq0 andq1 in R

d, and for
a convex closed setQ ⊂ R

d with q0 ∈ Q, let λ(q0, q1, Q)
denote the solution to the strictly convex problem:

maximize λ, subject toλ ≤ 1, (1 − λ)q0 + λq1 ∈ Q.

Under the stated assumptions the solution exists and is
unique. Third, since the agents operate with msgstd, the
projection πRd maps the messagesy[i](`) received at time
` ∈ N0 by the agenti ∈ I onto the positions of its
neighbors. We are now ready to define the control function
ctl : R

d × R
d × LN → R

d by

ctl(x, xsmpld, y) = λ∗ ·(Circum(πRd(y)∪{xsmpld})−xsmpld) ,
(1)

with λ∗ = λ(xsmpld, (Circum(πRd(y) ∪ {xsmpld}),
Dxsmpld,r(πRd(y))). Evolving under this control law, it
is clear that, at timebtc + 1, each agenti reaches the point
(1− λ∗)x

[i](btc) + λ∗ Circum(πRd(y[i](btc))∪ {x[i](btc)}).
Next, we consider the networkSr-∞-disk, see Exam-

ple III.7. For this network we define theparallel circumcen-
ter law, CCpll-crcmcntr, by designingd decoupled circumcenter
laws running in parallel on each coordinate axis ofR

d. As
before, this law is uniform, static and time-independent. We
setT = N0, L = R

d, and msg[i] = msgstd, i ∈ I. We define
the control function ctl: R

d × R
d × LN → R

d by

ctl(x, xsmpld, y) =
(

Circum(τ1(M)) − τ1(xsmpld),

. . . , Circum(τd(M)) − τd(xsmpld)
)

, (2)

whereM = πRd(y) ∪ {xsmpld}, and τ1, . . . , τd : R
d → R

denote the canonical projections ofR
d onto R. See Fig. 2

for an illustration of this law inR2.

x
[i]

x
[k]

x
[j]

x
[l]

Fig. 2. Parallel circumcenter control and communication law inR
2. The

target point for the agenti is plotted in light gray and has coordinates
(Circum(τ1(M[i])), Circum(τ2(M[i]))).

Asymptotic behavior and complexity analysis: The follow-
ing theorem summarizes the results known in the literature
about the asymptotic properties of the circumcenter law.

Theorem IV.2 (Correctness of the circumcenter law)For
d ∈ N, r ∈ R+ and ε ∈ R+, the following statements hold:

(i) on the network S
R

d,r-disk, the law CCcrcmcntr achieves
the exact rendezvous task Trndzvs;

(ii) on the network S
R

d,r-LD , the law CCcrcmcntr achieves the
ε-rendezvous task Tε-rndzvs;
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(iii) on the network S
R

d,r-∞-disk, the law CCpll-crcmcntr

achieves the exact rendezvous task Trndzvs;
(iv) the evolutions of (S

R
d,r-disk, CCcrcmcntr), of

(S
R

d,r-LD , CCcrcmcntr), and of (S
R

d,r-∞-disk, CCpll-crcmcntr)
have the property that, if two agents belong to the same
connected component of the communication graph
at ` ∈ N0, then they belong to the same connected
component of the graph for all subsequent k ≥ `. •

Next, we provide complete results for the time complexity
of CCcrcmcntr whend = 1. As we see next, the complexity of
CCcrcmcntr differs dramatically for the two robotic networks
with different communication graphs. The proof of this result
relies on Theorems II.1 and II.2 (see [1]).

Theorem IV.3 (Time complexity of circumcenter law)
For r ∈ R+ and ε ∈]0, 1[, the following statements hold:

(i) for d = 1, on the network SR,r-disk,
TC(Trndzvs, CCcrcmcntr) ∈ Θ(N);

(ii) for d = 1, on the network SR,r-LD ,
TC(T(rε)-rndzvs, CCcrcmcntr) ∈ Θ(N2 log(Nε−1));

(iii) for d ∈ N, on the network S
R

d,r-∞-disk,
TC(Trndzvs, CCpll-crcmcntr) ∈ Θ(N). •

Remark IV.4 Theorem IV.3 induces a lower bound on the
time communication complexity ofCCcrcmcntr when d ≥ 2.
Indeed, as a consequence of this result, we have

(i) for d ∈ N, on the network SR,r-disk,
TC(Trndzvs, CCcrcmcntr) ∈ Ω(N);

(ii) for d ∈ N, on the network SR,r-LD ,
TC(T(rε)-rndzvs, CCcrcmcntr) ∈ Ω(N2 log(Nε−1)).

We have performed extensive numerical simulations for the
cased = 2 and the networkS

R
d,r-disk. Starting from generic

initial configurations (where, in particular, agents’ positions
are not aligned) contained in a bounded region ofR

2m
we have consistently obtained that the time complexity to
achieveTrndzvs with CCcrcmcntr is independent of the number
of agents. This leads us to conjecture that, in fact, initial
configurations where all agents are aligned (i.e., the1-
dimensional case) give rise to the worst possible algorithm
performance. In more formal terms, we conjecture that, for
d ≥ 2, TC(Trndzvs, CCcrcmcntr) = Θ(N). •

V. DEPLOYMENT

In this section, we introduce the deployment coordination
task and analyze a coordination algorithm that achieves it,
providing upper and lower bounds on its time complexity.
Along the section, we consider the uniform robotic network
S

R
d,r-LD presented in Example III.6 with parameterr ∈ R+.

We assume that the initial positions of the agents belong to
Q ⊂ R

d, a convex simple polytope with an integrable density
functionφ : Q → R+. We intend to design a control law that
keeps them inQ for subsequent times.

A. Deployment task

By optimal deployment on the convex simple polytope
Q ⊂ R

d with density functionφ : Q → R+, we mean
the following objective: place the agents onQ so that the
expected square Euclidean distance from any point inQ

to one of the agents is minimized. Let us define this task
formally. Consider the following network objective function
Hdeplmnt: QN → R,

Hdeplmnt(x
[1], . . . , x[N ]) =

∫

Q

min
i∈I

‖q − x[i]‖2
2 φ(q)dq . (3)

This function and variations of it are studied in the fa-
cility location and resource allocation research literature;
see [20], [4]. It is convenient [4] to study a generalization
of this function. Forr ∈ R+, define the saturation function
satr : R → R by satr(x) = x if x ≤ r and satr(x) = r
otherwise. Forr ∈ R+, define the new objective function
Hr-deplmnt: QN → R by

Hr-deplmnt(x
[1], . . . , x[N ]) =

∫

Q

min
i∈I

sat r
2
(‖q−x[i]‖2

2)φ(q)dq .

(4)
Note that if r ≥ 2 diam(Q), thenHdeplmnt = Hr-deplmnt. Let
{V [1], . . . , V [N ]} be the Voronoi partition ofQ associated
with {x[1], . . . , x[N ]}. The partial derivative of the cost
function takes the following meaningful form

∂Hr-deplmnt

∂x[i]
(x[1], . . . , x[N ]) = 2Mass(V [i] ∩B(x[i], r

2 ))·

·
(

Centroid(V [i] ∩B(x[i], r
2 )) − x[i]

)

, i ∈ I .

(HereMass(S) andCentroid(S) are, respectively, the mass
and the centroid ofS ⊂ R

d, see [1].) Clearly, the crit-
ical points of Hr-deplmnt are network states wherex[i] =
Centroid(V [i] ∩B(x[i], r

2 )). We call such configurationsr2 -
centroidal Voronoi configurations. Forr ≥ 2 diam(Q), they
coincide with the standard centroidal Voronoi configurations
on Q. Fig. 3 illustrates these notions.

Fig. 3. Centroidal andr
2

-centroidal Voronoi configurations. The density
function φ is depicted by a contour plot. For each agenti, the set
V [i] ∩B(pi,

r

2
) is plotted in light gray.

Motivated by these observations, we define, forr, ε ∈ R+,
the ε-r-deployment task Tε-r-deplmnt: QN → BooleSet by
Tε-r-deplmnt(x) = true iff

∥

∥x[i] − Centroid(V [i] ∩B(x[i], r
2 ))

∥

∥

2
≤ ε, for all i ∈ I.

Roughly speaking,Tε-rdeplmnt is true for those network
configurations where each agent is sufficiently close to the
centroid of an appropriate regionV [i] ∩B(x[i], r

2 ).

B. Centroid law

To achieve theε-r-deployment task discussed in Exam-
ple V-A, we define thecentroid control and communication
law CCcentrd. This is a uniform, static, time-independent law
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studied in [4]. Loosely speaking, the evolution of the network
under this law is:

[Informal description] Communication rounds take
place at each natural instant of time. At each round
each agent performs the following tasks: (i) it
transmits its position and receives its neighbors’
positions; (ii) it computes the centroid of the in-
tersection between the agent’s Voronoi cell and a
closed ball centered at its position and of radiusr

2 ,
and (iii) it moves toward this centroid.

Let us present this description in more formal terms. We set
T = N0, L = R

d, and msg[i] = msgstd, i ∈ I. We define the
control function ctl: R

d × R
d × LN → R

d by

ctl(x, xsmpld, y) = Centroid(X ) − xsmpld,

with X = Q∩B(xsmpld,
r
2 )∩

(

∩p∈πL(y)Hxsmpld,p

)

andHxsmpld,p

is the half-space{q ∈ R
d | ‖q − xsmpld‖2 ≤ ‖q − p‖2}. One

can show thatQN is positively invariant for this law.
The following theorem onCCcentrd summarizes the known

results about the asymptotic properties and the novel results
on the complexity of this law. In characterizing complexity,
we assumediam(Q) is independent ofN , r and ε, and
we do not calculate how the bounds depend onr. As for
the circumcenter law, we provide complete time-complexity
results for the cased = 1. The proof of this result relies on
Theorems II.1 and II.2 (see [1]).

Theorem V.1 (Time complexity of centroid law) For r ∈
R+ and ε ∈ R+, consider the network S

R
d,r-LD with initial

conditions in Q. The following statements hold:
(i) for d ∈ N, the law CCcentrdachieves the ε-r-deployment

task Tε-r-deplmnt;
(ii) for d = 1 and φ = 1, TC(Tε-r-deplmnt, CCcentrd) ∈

O(N3 log(Nε−1)). •

VI. CONCLUSIONS

Building on the framework proposed in the compan-
ion paper [2] to model and analyze robotic networks, we
have formalized various coordination algorithms: the move-
toward-average and the circumcenter laws, achieving the
rendezvous task, and the centroid law, achieving the de-
ployment task. We have computed the time complexity of
these algorithms, providing upper and lower bounds as the
number of agents tends to infinity. To obtain these complexity
estimates, we have developed some novel analysis methods
involving linear dynamical systems defined by tridiagonal
Toeplitz and circulant matrices. These results demonstrate the
usefulness of the proposed formal model. We hope that they
will help assess the complex trade-offs between computation,
communication and motion control in robotic networks.

A number of research avenues look now promising and
exciting. In this paper, our analysis results essentially consist
of a time-complexity analysis of some basic algorithms, but
many more open algorithmic questions remain unresolved
including (i) analysis of the communication complexity for
different models of communication; (ii) analysis of other
known algorithms for flocking, cohesion, formation, motion
planning and a long etcetera; and (iii) complexity analysis
results for coordination tasks, as opposed to for algorithms.
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