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On synchronous robotic networks
Part II: Time complexity of rendezvous and deployment algoribhms

Sonia Marinez  Francesco Bullo  Jorge Cest Emilio Frazzoli

Abstract— This paper analyzes a number of basic coordina- formally analyze their behavior. In particular, this work-d
tion algorithms running on synchronous robotic networks. We  fines notions of time and communication complexity aimed
provide upper and lower bounds on the time complexity of the - ot captyring the performance and cost of coordination algo-
move-toward average and circumcenter laws, both achieving . e . .
rendezvous, and of the centroid law, achieving deployment over _rlthms_. Building on these notlops, we establls_h here corple
a region of interest. The results are derived via novel analysis ity estimates for various algorithms that achieve rendegvo
methods, including a set of results on the convergence rates of and deployment. First, we analyze a simple averaging law
linear dynamical systems defined by tridiagonal Toeplitz and for a network of locally-connected agents moving on a
circulant matrices. line, related to the widely known Vicsek’s model, see [12],
[18]. We show that this law achieves rendezvous (without
preserving connectivity) with time complexity belonging

Problem motivation: Although recent years have witnessedo 2(N) and O(N®). Second, for a network of locally-
the emergence of numerous coordination algorithms fajonnected agents moving on a line or on a segment, we show
networked mobile systems, the fundamental limits in terins ahat the circumcenter algorithm in [3] has time complexity
achievable performance, energy consumption and opegationf order ©(N). (This algorithm achieves rendezvous while
time remain largely unknown. This is in part explained by theyreserving connectivity with a communication graph with
inherent difficulty in integrating the various sensing, guts  O(N?2) links.) We then consider a network based on a
ing and communication aspects of problems involving groupgifferent communication graph, called the limited Delayna
of mobile agents. In this paper, we analyze the performanegaph, that arises naturally in computational geometry and
of several coordination algorithms achieving rendezvous a in wireless communication. For this less dense graph with
deployment (see [3], [4] for a discussion on the practicah(N) links, we show that the time complexity of the cir-
motivation of these tasks). To achieve this goal, we rely osumcenter algorithm grows t©(N?1log N). For a network
the general framework proposed in the companion paper [8f agents moving orR? we introduce a novel “parallel-
to formally model the behavior of robotic networks. Ourcircumcenter algorithm” and establish its time complexity
research effort aims at developing tools and results tosasserder© (V). Third and last, for a network of agents in a one-
to what extent coordination algorithms are scalable angimensional environment, we show that the time complexity
implementable in large mobile networks. Ultimately, we ainof the deployment algorithm in [4] i<D(N?3log N). To
at characterizing the minimum amount of communicationebtain these complexity estimates, we develop novel aisalys
sensing and control necessary to perform a desired task, andthods, particularly a set of results on linear dynamical
at designing algorithms that achieve those limits. systems defined by tridiagonal Toeplitz and circulant matri

Literature review: A survey on cooperative mobile robotics ces, and characterize their convergence rates. The itadres
is presented in [5] and an overview of control and commureader is referred to [1] for a complete discussion of the
nication issues is contained in [6]. Specific topics related proofs of all results presented here.
the present treatment include rendezvous [3], [7], [8], [9]

[10], cyclic pursuit [11], deployment [4], flocking [12] and v : X S
: ergence rates of dynamical systems defined by tridiag-
consensus [13], [14]. The papers [15], [16], [17] discusg Toeplitz and circulant matrices. Section Ill reviews

coniergence raes of warous soordralon sortins, S general pprosch o he modeling of obot etk
M proposed in [2]. Sections IV and V define the rendezvous

strgtetgles :JEfSIgnEt:O_Ibtot.perTO_lfhm spatlally-.dlstrlbutedatztas and deployment tasks, respectively, and present cooroinat
atement of contributions: The companion paper [2] pro- algorithms that achieve them. We establish their asymp-

poses a general framework to model robotic networks aBtic correctness and characterize their time compleXity.

The complete version of this work is [1]. This paper appear€C- present our conclusions in Section VI. We refer the reader

ECC'05 jointly with [2] . to [1] for the definition of various basic geometric concepts
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I. INTRODUCTION

Organization: Section Il develops some facts about con-



diag(S x §) = {(s,s) € S x S| s € S}. Forz € R, we let

|z] denote the floor ofr. For z € R?, we denote by|z||»

and||z| - the Euclidean and thec-norm of z, respectively.

Forz € RY andr € Ry, B(x,r) denotes the closed ball

.,eq be the

standard orthonormal basis&f.. Also, we define the vectors ATrid%; (a,b) = Tridy (a, b, a) +

in R% centered at: of radiusr. We leteq, ..

0=(0,...,00T and1 = (1,...,1)T in R%. For f,g: N —

R, we say thatf € O(g) (respectively,f € Q(g)) if there

exist Ny € N and k£ € R, such that|f(N)| < k|g(N)]
for all N > Ny (respectively,|f(N)| > k|g(N)| for all

For N > 2 anda,b € R, define theN x N matrices

ATrid}; (a,b) and ATrid y (a, b) by

a 0 ... ... O
o o ... ... 0
0o ... ... 0 O
0o ... ... 0 a

One can show [1] that these matrices are, respectivelyiagimi

N > No). If f € O(g) and f € Q(g), then we use the (in the algebraic sense) to the block diagonal matrices

notation f € O©(g).

Il. TRIDIAGONAL TOEPLITZ AND CIRCULANT
DYNAMICAL SYSTEMS

b+ 2a 0
0 Tridy—1(a,b,a)| "

To state the convergence properties of the dynamical sgstem
determined byATrid} (a,b) and ATridy (a,b), we define

This section presents some general results on certain = (1,—1,1,...,(—1)¥ =2 (-1D)N-"H)T c RV,
classes of Toeplitz matrices, see [19]. These are later em- ]
ployed to obtain complexity estimates in Sections IV and vVIheorem I1.2 Let N' > 2, £ €]0,1[, 0 # a,b € R with [b] +

For N > 2 anda,b,c € R, let the ToeplitzN x N-matrices

Tridy(a, b, ¢) and Circy (a, b, ¢) be

b ¢ 0 ... 0
a b c ... 0
Tridy(a,b,c) = [ . . i,
0 a b ¢
0 0 a b
and
0 0 a
0 0 O
Circy(a,b,c) = Tridy(a,b,c) + [ = - .
0O 0 ... 0 O
c 0 ... 0 O

2la| = 1. Let #: Ng — RY, 2: Ny — R be solutions to
x(041)=ATrid g (a,b) (), z(£+1)=ATridy/(a,b) z(¢),

with initial conditions z(0) = z, and z(0) = z, respec-
tively. The following statements hold:
(%17 z0)(b + 2a)¢, and the maximum time required
for [[2(£) — wayel€)1]}2 < llzo — zae(0)1]2 (over all
initial 7o € RY) is ©(N?loge™);

(i) limrioo (2(0) — zave()1-) = 0, where zawe(f) =
(£172)(b — 2a)*, and the maximum time required
for ||2(£) — zave(€)1_|l2 < €||z0 — zave(0)1_]|2 (Over
all initial zo € RY) is 6(N2 logs’l). .

Ill. SYNCHRONOUS ROBOTIC NETWORKS

The companion paper [2] proposes a formal model for
robotic networks, and defines the notions of control and

Trid; andCircy are tridiagonal and circulant, respectively.communication laws, tasks, and time and communication

They only differ in their(1, N) and (N, 1) entries.

Theorem II.1 (Tridiagonal Toeplitz and circulant dy-
namical systems)Let N > 2, ¢ €]0,1[, and a,b,c € R.
Let z: Ng — RY, y: Ny — R" be solutions to

x({+1)=Tridy(a,b,c) z(¢), y({+1)=Circy(a,b,c)y(¢),

with initial conditions x(0) = xo and y(0) = yo, respec-
tively. The following statements hold:

(i) ifa=c#0and |b|+2]a| =1, then lim,_ o z(¢) =
0, and the maximum time required for ||z(¢)|2 <
el|zo||2 (over all initial zy € RY) is ©(N?loge™?);

(i) ifa#0,c=0and0 < |b] <1,thenlim, 4o z(f) =
0, and the maximum time required for ||z(¢)]2 <
el|xo||2 (over all initial zp € RY) is O(Nlog N +
loge™);

(i) ifa>0,¢>0b>0anda+b+c =1, then
limy—, 4 oo Y(£) = Yavel, WEre yave = %lTyOn and the
meximum time required for |y (¢) — yavel 2 < <[lyo —
Yavel |2 (over all initial yo € RY) is ©O(N?loge™!).e

complexity. We present here simplified versions of them.

Definition 11l.1 A uniform network of robotic agentgor
robotic networlk S is a tuple (I,.A, Ecmm) consisting of
() I={1,...,N},; I isthe set of unique identifiers

(i) A= {Al};c;, with A0 = (X, U, Xo, f), is a set of

identical control systems (the set of physical agenys

(iii) Ecmm isa map from J],.; X to the subsets of 7 x I\

diag(I x I) called the communication edge map e

Definition 111.2 A (synchronous, static, uniform, feedback)
control and communication la@C for S consists of the sets:

(i) T = {te}een, C R4, an increasing sequence of time
instants, called communication scheduleand (ii) L, a set
containing the nul | element, called the communication lan-
guage elements of L are called messagesand of the maps:

() msg: T x X x I — L, the message-generation functjon
(i) ctl: Ry x X x X x LV — U, the control function e

The lawCC is said to beime-independent if the message-
generation and control functions are of the form magx
I - Landcth X x X x LY — U, respectively.



Definition 111.3  The evolution of (S,CC) from initial con- The notions of time and communication complexity
ditions xé’] c XUM, i € I, is the sat of curves (cf. [2]) describe the performance and cost of a law achgevin
2Ll [te,ter1] — X, i €1, £ € Ny, satisfying a coordination task. Here, we focus on time complexity.

@) = f(2l @), ctl(t, 24 @), 4 (2,), y 1 (1)), Definition 111.9 (Time complexity) Let S be a robotic net-
work, 7 a coordination task for S and CC a law for S.

(i) Thetime complexity to achievd with CC from ¢ €
[Le, X is TC(T,CC x0) = inf{¢ | T(x(ty)) =

where ol1-(t,) = al11(t;) (with o= (1) = ai)) for
¢ € No. yll: T — LV describes the messages received by

agent i, with components ' (t,) = msg(te, 21~ (1), i), if true, foral k > ¢}, where ¢ — (x(1)) is the
(i-4) € Eemm(@1 k), ..., a1 () and gl (t) = evolution of (S, CC) from

nul | otherwise. o (i) The time complexity to achievd with CC is
Remarks 1l.4 (Notation) The projectionny, : LN — oL TC(T,CC) = sup {TC('T, CC,x0) | w0 € HX(QZ]}

maps an array of messaggdo the subset of. containing
only the nonaul | messages ig. In many uniform control ) ) )
and communication laws, the messages interchanged amofi§) The time complexity of 7 is TC(T) =
the agents are (quantized representations of) the agents’ nf{TC(7,CC) |CC achieves T}. .
states. The corresponding communication language is
X, and msg,: Tx X xI — X is referred to as thetandard
message-generation function, msg,4(t, z, j) = =. ° In this section, we introduce rendezvous coordinationgask

i ] and analyze various coordination algorithms that achieve
Let us introduce some examples of robotic networks. Weyem, providing upper and lower bounds on their time com-

start with a basic example and define some variations of 'tplexity. We will consider the networkSg. , g, andSga, o
Example 111.5 (Locally-([:(])nnecte[d] first-order agents in presented in Example 1.5 and Example 111.6, respectively
R%) ConsiderN pointsz!!, ... 2!Vl in the Euclidean space
R¢, d > 1, obeying a first-order dynamicg!l(t) = A. Rendezvous tasks

ull(t). These are identical agents of the formh = Let S = (I, A, Ecmm) be a uniform robotic network. The
(R%, R4, R?, (0,e,...,eq4)). Assume that each agent can(exact) rendezvous task Zrmdzvs: X — Bool eSet for S is
communicate to any other agent within Euclidean disZmans(z!!, ..., 2N) =trueiff 2I1 = 2Vl for all (4, ) €
tance r, that is, adopt as communication edge map th&cmm(zl, ... z[N). Second, letS = (I, A, Ecnm) be a
r-disk proximity edge mapFE,.qsk defined by (i,5) € uniform robotic network with agents’ state spa¥ecC R<.
E,gisk(zM, .. Ny iff |20 —2U)||, < 7. These data define Examples networks of this form ar§a, . See Exam-
the uniform robotic networkSyu | g = (I, A, Er-disk)-  ® ples IlI.5 and IV-B, andSg. ., see Examples II1.6. For

, . &> 0, thee-rendezvous task 7;.mazvs: (RY)N — Bool eSet
Example 1.6 (LD-connected first-order agents in R%) gor S is defined byZ-.madx) = t r ue iff

Consider the set of physical agents defined in Example 111
Forr € Ry, adopt as communication graph thdimited De- Hl_[i] ~avre ({2 U L0 | (57 € B H <e
launay mapE,..p defined by(i, j) € E,.o(zl, ... M) g (U 1. ) € Fomm()}) 2

iff (V; N B(f{”[z]a%))ﬁ (V; n B(.x[.ﬂ],%)) f 0, where ¢ all i ¢ I. Herex = (M, .. 2Ny e XN ¢ (RN, In
{V[117]. ) .7V1\g]]ls the Voronoi partition ofR .generated_ by other WOrds Tomansis t 1 ue atz € (RHN if, for all i € 1,
{z', ..., 2™} (cf. [20]). These data define the uniform .(i] js ot distance less than from the average of its own
robotic networkSya . = (I, A, Er-1p). ®  position with the position of it¥emm-neighbors.

Example 111.7 (Locally- co-connected first-order agents
in R?) Consider the set of physical agents defined in th
previous two examples. For € R, define the proximity

icl

IV. RENDEzVOUS

g. Rendezvous without connectivity via the move-toward-
average control and communication law

edge MapE,.ogisk bY (i,§) € Eroogisk(zY, ..., M) iff Consider the networkSg« . g (cf. Example 111.5). Let
|zt — 2U)||o < r, i # j These data define the uniform us define the static, uniform and time-independent move-
robotic networkSga .. gk = (15 A, Er-oo-disk)- o toward-average law, denotéll’,,q. We describe it as:

[Informal description] Communication rounds take
place at each natural instant of time. At each round,
agents transmit their position. Between rounds,
each agent moves towards and reaches the average
Definition 111.8 (Coordination task) Let S be a robotic of its own position and its neighbors’ positions.
network. A (static) coordination taskior S is a map Next, we define the lawWormally. First, we takeT = Nj.
T: TI;c; X! — Bool eSet . Additionally, let CC a control  Each agent operates with the standard message-generation
and communication law for S. The law CC achieveshetask  function, i.e.,L = R? and msgy(r,j) = z. Second, we
T if for all initial conditions z{{' € X[, i € I, the network  define the control function ctiR? x RY x LN — Rd
evolution t — z(t) hasthe property that there exists 7' € R

such that 7(x(t)) =t rue for all t > T. o Cl(z, Zempia y) = —kprop vers (z — avrg(y U {zsmpia})),

In order to analyze the performance of a communication
and control law, we first define the notion of coordination
task, and of task achievement by a robotic network.



where kprop > 7, vers: R? — R? is defined byvers(0) = 0  Second, to maximize the displacement toward the circumcen-
andvers(v) = v/||v||2 for v # 0, and the mapvrg computes ter, each agent solves a convex optimization problem thmat ca

the average of a finite point set &’ be stated in general as follows. Fgrandg; in R¢, and for
1 a convex closed saf) c R? with ¢ € Q, let A(qo, q1,Q)
avig(S) = ——=— > p. denote the solution to the strictly convex problem:
1
peﬂZR(S) pem(S) maximize \, subject toA <1, (1 —\)go + A1 € Q.

Under the stated assumptions the solution exists and is
unique. Third, since the agents operate with gsghe
projection mr« Maps the messageg’ (¢) received at time

In summary we seCCaug = (Nde,msgbtd, ctl). Fig. 1
shows an execution faf = 1. Along the evolution, (1) sev-

eral agentgendezvous, i.e., agree upon a common Iocatlon,éote No by the agenti € I onto the positions of its

and (2) some agents are connected at the beginning and , .
connected at the end. This law is related to the wcsekgelghbors. We are now ready to define the control function

. d d N d
model discussed in [12], [18]. The next result characterizeCtI' REXREx LT —RT by
ctl(x, xsmpig, y) = A - (Circum(mga (y) U{zsmpia}) — fsmplzi) 5

1
with A, = A @smpo, (Circum(mra(y) U {@smpid}),
Do (Tra(y))). Evolving under this control law, it
is clear that, at timét] + 1, each agent reaches the point
(1= A)zlI([#]) + Ar Cireum(mga (yF([£])) U {z17([2))}).

Next, we consider the networlS, .. .disk» See Exam-
ple 111.7. For this network we define thearallel circumcen-
Fig. 1. Evolution of a robotic network under the move-towak@rage tgr law, Ccpll—crcmcntn by designingj decoup|ed circumcenter

control and communication law in Example 1V-B implemented overith . . . .
disk graph, withr = 1.5. The vertical axis corresponds to the elapsed timelaWS running in parallel on each coordinate axisksf. As

and the horizontal axis to the positions of the agents in &a line. The ~before, this law is uniform, static and time-independene. W

51 agents are initially randomly deployed over the interjal 5, 15]. setT = Ny, L = R?, and ms@] = msgy ¢ € I. We define
the control function ctl R? x R¢ x LY — R? by

the complexity of this law. The proof can be found in [1].

ERNWACIONN
FPRWACION

ctl(x, vy) = ( Ci M)) — ,
Theorem IV.1 For d = 1, the network Sp, g, the law (&, Zsmpies ) ( ireum(1 (M) = 71 (zsmpid)

CCaurg and the task Trndzys Satisfy TC(Zmdzvs CCavig) € ..., Circum(r4(M)) —Td(xsmpm)), @)
O(N?) and TC(Tongzvs CCaug) € Q(N).

) o o . where M = 7pa(y) U {Zsmpia}, and 7,...,74: RY — R
C. Rendezvous with connectivity constraint via the circum+  denote the canonical projections &f' onto R. See Fig. 2
center control and communication law for an illustration of this law inR?.

Here we define theircumcenter control and communica- . .
tion law CCoerementr for both Spa i @Nd Spa . - This is a OO P TR _
uniform, static, time-independent law originally intrachd . e :
by [3] and later studied in [8], [10]. Loosely speaking, the
evolution of the network under this law is: S °

[Informal description] Communication rounds take e

place at each natural instant of time. At each round, Lot

each agent performs the following tasks: (i) it - ST

transmits its position and receives its neighbors’

positions; (ii) it computes the circumcenter of the

point set comprised of its neighbors and of itself;

and (iii) it moves toward this circumcenter while

maintaining connectivity with its neighbors. Fig. 2. Parallel circumcenter control and communication lavRfh The
Next, We. define the Iavforrmlly. We ;eﬂl’ =Ny, L= Rd, t(acr?ritugi()(lslt(f/(\)/:[}]r;i é?fcrgnlqs('rzlg/t\t/?g])l;]).“ght gray and has coordinates
and ms§! = msg,, i € I. To define the control func-
tion, we introduce some constructions. First, connegtiist Asymptotic behavior and complexity analysis: The follow-
maintained by restricting the allowable motion of agents asg theorem summarizes the results known in the literature
follows. If agents; and;j are neighbors at € Ny, then we re- about the asymptotic properties of the circumcenter law.

. ) . — 2l ()2l (e) _
quire their subsequent positions to beB'@W7 3)-  Theorem IV.2 (Correctness of the circumcenter law)For

If an agenti has its neighbors at locatios:,...,q} at{, ge N, r e R, and = € R, the following statements hold:
then itsconstraint set D, g),,({q1,- - @i}) I8 (i) on the network Sy, g the 18w CCerementr achieves
i the exact rendezvous task Zimgzvs
—rzl()y+q r . .
D, 11 (@)T({ql, e q}) = ﬂ B (#, 5) . (if) onthe network Spa ., the law CCerementrachieves the
a€{q1,.,a1} e-rendezvous task 7;.mdzvs



(iii) on the network SR -oo-disks the law CCpi.cremenr 10 ONne of the agents is minimized. Let us define this task
achieves the exact rendezvous task Zrndzvs formally. Consider the following network objective furmti
(v) the evolutions of  (Sga, gisw CCoroment),  Of  Hdepimnt: QN - R,
(SRd,r-LD’ Cccrcmcntr)a and of (SRd,r-oo-diSk’ CCpII—crcmcntr)
have the property that, if two agerits belong to the same — Hggpmnd =, ... 2[M) = / min [|¢ — =173 ¢(q)dg. (3)
connected component of the communication graph Q €l
at £ € No, then they belong to the same connected  Thjs function and variations of it are studied in the fa-
component of the graph for all subsequent k > £. e (jjity |ocation and resource allocation research literatu
Next, we provide complete results for the time complexitfee .[20]’ [4].' Itis convenient [A.'] to study a g_enerahzauon
of CCoremeny Whend — 1. As we see next, the complexity of of this function. Forr € R, define the saturation function

CCerementr differs dramatically for the two robotic networks S?rt{: R — E by Sa{i{ () d:f'm Ifthx = ant? Sattf(x% = {
with different communication graphs. The proof of this HESU;J_( erW|s§. J\?rr ER b*’ efine the new objective function
relies on Theorems I1.1 and 1.2 (see [1]). r-depimnt: Q7 — R by

Theorem IV.3 (Time complexity of circumcenter law) Hy-depmn ... 2N = / min satz (|lg—="|3) ¢(q)dg .
For » € R, and ¢ €]0, 1], the following statements hold: Q i€l 4
TC(Tmdzvs CCorement) € O(N); (vl ... VINI} be the Voronoi partition of) associated

@iy for d = 1, on the network Sgrip, ith {01
TC(T(ra)—rndzvs CCerementy) € 9(N2 1Og(NE_1)); i
(i) for d € N, on the network Sga

..,zM1. The partial derivative of the cost

function takes the following meaningful form
,r-o0o-disk’

T C(Zrndzvs CCpl- € O(N). ° OH,.. L
(Tmdzvs p crementr) (N) %t(xm7 o ,x[N]) _ 2MaSS(V[7’] ﬂB(mM, %))
Remark 1V.4 Theorem IV.3 induces a lower bound on the . (Centroid(V[i] mg(x[ih ) — m[i]) , iel.
time communication complexity ofCcremenr Whend > 2. _
Indeed, as a consequence of this result, we have (HereMass(S) and Centroid(S) are, respectively, the mass

()for d € N, on the network Sp,aq 2nd the centroid ofS C R?, see [1].) Clearly, the crit-
TC(Tondavs CCcrcmcnj[r) € Q(N); T ical points of H,.gepimnt are network states wherel’ =
@) for d e N, on the network Spoip, Centroid(VIINB(zl, £)). We call such configurations-

TC(T, ey smdzve Clerement) € N2log(Ne—1)). centroidal Voronoi configurations. Fer> 2 diam(Q), they

. . . : coincide with the standard centroidal Voronoi configunasio
We have performed extensive numerical simulations for thé

cased = 2 and the networkSg. - Starting from generic on Q. Fig. 3 illustrates these notions.
initial configurations (where, in particular, agents’ pimsis

are not aligned) contained in a bounded regionR3im

we have consistently obtained that the time complexity to
achieveZmgzvs With CCerementr IS independent of the number
of agents. This leads us to conjecture that, in fact, initial
configurations where all agents are aligned (i.e., the
dimensional case) give rise to the worst possible algorithm
performance. In more formal terms, we conjecture that, for
d>2, Tc(ﬁndzv& CCcrcmcntr) = @(N) L4

Fig. 3. Centroidal and;-centroidal Voronoi configurations. The density
V. DEPLOYMENT function ¢ is depicted by a contour plot. For each agentthe set
) _ _ _ . VIINB(p;, ) is plotted in light gray.
In this section, we introduce the deployment coordination
task and analyze a coordination algorithm that achieves it
providing upper and lower bounds on its time complexitythe —r-denlo t task T . ON _, Bool eSet b
Along the section, we consider the uniform robotic network, P 37 ¢ Terr-depimnt: 0 — y
. . s.r.dep|mn[(x) - t rue |ﬁ:
Sga .1 p Presented in Example 111.6 with parametee R,
We assume that thg initial positions. of thg agents belong to||x[i] _ Centroid(Vm mg(x[i], 5))“2 <e, foralliel.
Q c R?, a convex simple polytope with an integrable density . _
function¢: Q — R... We intend to design a control law that Roughly speaking;Z...qepimnt is t r ue for those network
keeps them iR for subsequent times. configurations where each agent is sufficiently close to the
centroid of an appropriate regidrl’ N B(z", £).

' Motivated by these observations, we define,/ffar € R,

A. Deployment task

By optimal deployment on the convex simple polytope?: Centroid law
Q c R? with density functiong: @ — R,, we mean To achieve thes-r-deployment task discussed in Exam-
the following objective: place the agents ¢hso that the ple V-A, we define thecentroid control and communication
expected square Euclidean distance from any poinQin law CCcentrg This is a uniform, static, time-independent law



studied in [4]. Loosely speaking, the evolution of the netwo
under this law is:

[Informal description] Communication rounds take
place at each natural instant of time. At each round
each agent performs the following tasks: (i) it
transmits its position and receives its neighbors’
positions; (ii) it computes the centroid of the in-
tersection between the agent’s Voronoi cell and a
closed ball centered at its position and of radiys
and (iii) it moves toward this centroid.
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Let us present this description in more formal terms. We set!!

T = Ny, L = R%, and ms§! = msg,,, i € I. We define the
control function ctt R? x R? x LN — R? by

ctl(z, Tsmpig, ¥) = Centroid(X) — zsmpld,

with X = QﬂB(.rsmpkj, %)ﬁ(ﬂpeﬂL(y)Hgsmpld,p) andesmpW
is the half-spacgq € R? | |lg — zsmpid|2 < [[¢ — pll2}. One
can show that)? is positively invariant for this law.

The following theorem o1€Ccentrg SUMMarizes the known

(2]

(3]

(4]

results about the asymptotic properties and the noveltsesul

on the complexity of this law. In characterizing complexity

we assumediam(Q) is independent ofV, r and e, and
we do not calculate how the bounds dependrorAs for

(5]

the circumcenter law, we provide complete time-complexity

results for the casé = 1. The proof of this result relies on
Theorems II.1 and 1.2 (see [1]).

Theorem V.1 (Time complexity of centroid law) For r €
R, and € € R, consider the network Spa . p With initial
conditions in Q. The following statements hold:
(i) for d € N, thelaw CCentrg achieves the e-r-deployment
task Ta-r-deplmnr;
(i) for d = 1 and ¢ = 1, TC(Zz-r-depimns CCeentrd) €
O(N3log(Ne™1)). .

VI. CONCLUSIONS
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