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Abstract. This paper presents a motion control algorithm for a planar mobile observer such
as a mobile robot equipped with an omnidirectional camera. We propose a nonsmooth gradient
algorithm for the problem of maximizing the area of the region visible to the observer in a non-
self-intersecting nonconvex polygon. First, we show that the visible area is almost everywhere a
locally Lipschitz function of the observer location. Second, we provide a novel version of LaSalle
Invariance Principle for discontinuous vector fields and Lyapunov functions with a finite number
of discontinuities. Finally, we establish the asymptotic convergence properties of the nonsmooth
gradient algorithm and we illustrate numerically its performance.

1. Introduction. Consider a single-point mobile robot in a planar nonconvex
environment modeled as a non-self-intersecting polygon: how should the robot move
in order to monotonically increase the area of its visible region (i.e., the region within
its line of sight)? This problem is the subject of this paper. The following are the
modeling assumptions in our method of approach. The dynamical model for the
robot’s motion is a first-order system of the form ṗ = u, where p refers to the position
of the robot in the environment and u is the driving input. The robot is equipped with
an omnidirectional line-of-sight range sensor; the range of the sensor is larger than
the diameter of the environment. The robot does not know the entire environment
nor its position in it, and its instantaneous motion depends only on what is within
line of sight (this assumption restricts our attention to memoryless feedback laws).

In broad terms, this work is related to numerous references on optimal sensor
location and motion planning coming from the computational geometry, geometric
optimization, and robotics literature. The problem we consider is akin to the Next
Best View problems in robotics for 2D map building. In these map-building problems
the objective is to compute the next position of a robot in an environment with ob-
stacles that maximizes the gain in visible area. A heuristic is proposed and simulated
in [10] and in the early work [13]. Other relevant references can be found in computa-
tional geometry. For example, the classic Art Gallery Problem is to find the smallest
number of such guards necessary for each point of the environment to be visible to
at least one guard; see [1, 7]. Also studied in computational geometry is the problem
of locating a guard in a non-self-intersecting polygon so as to maximize the visible
area. This problem is still open to the best of our knowledge and is the subject of
ongoing research; see [4, 12, 16]. Key differences exists between the computational
geometric approach to this problem and our sensor-based feedback approach. In the
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computational geometric version, the data about the entire polygon is available a pri-
ori, the difficulties are of combinatorial nature, and the solutions can be thought of as
open loop. In the problem of interest in this paper, we consider the feedback control
problem for a mobile robot based upon only local knowledge of the environment and
without recollection of past trajectories. The work that is perhaps closest in spirit to
our work is the numerical approach proposed in [3].

A second set of relevant references are those on nonsmooth stability analysis.
Indeed, our approach to maximizing visible area is to design a nonsmooth gradient
flow. To define our proposed algorithm we rely on the notions of generalized gradi-
ent [5] and of Filippov solutions for differential inclusions [9]. To study our proposed
algorithm we extend recent results on the stability and convergence properties of non-
smooth dynamical systems, as presented in [2, 15]. Finally, the present work has some
interesting connections with the study of the behavior of certain territorial animals.
A particularly relevant reference is the study of the effect of visibility on space use by
red-capped cardinals [8]. These are birds that defend territories along shorelines of
rivers and lakes and tend to spend the majority of their time near peninsulas (areas
that offer greater amount of visibility of their respective territories) rather than bays.

The contributions of this paper are threefold. First, we prove some basic proper-
ties of the area visible from a point observer in a nonconvex polygon Q, see Figure 1.1.
Namely, we show that the area of the visibility polygon, as a function of the observer
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Fig. 1.1. The figure on the left shows a nonconvex polygonal environment shaped like a typical
floor-plan. The figure on the right shows the variation of the visible area in the environment as a
function of the position of a point observer.

position, is a locally Lipschitz function almost everywhere, and that the finite point
set of discontinuities consists of the reflex vertices of the polygon Q. Additionally,
we compute the generalized gradient of the function and show that the function is
not, in general, regular. Second, we provide a generalized version of certain stability
theorems for discontinuous vector fields available in the literature [2, 15]. Specifically,
we provide a generalized nonsmooth LaSalle Invariance Principle for discontinuous
vector fields, Filippov solutions, and Lyapunov functions that are locally Lipschitz
almost everywhere (except for a finite set of discontinuities). Third and last, we use
these novel results to design a nonsmooth gradient algorithm that monotonically in-
creases the area visible to a point observer. To the best of our knowledge, this is
the first provably correct algorithm for this version of the Next Best View problem.
We illustrate the performance of our algorithm via simulations for some interesting
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polygons.
Before proceeding with the technical content, we provide here a detailed compar-

ison between our proposed local feedback method and a two-phase approach, where
the guard first explores the entire environment and later finds the approximate loca-
tion of the maximum. The approximate global maximum could be computed using,
for example, the method in [4]. Let us refer to the latter approach as the explore and
optimize method. Clearly in this latter method, the optimal location of the observer
is a global maximum whereas in the former it is a local maximum. However, our
approach does not require any memory for the observer. In the explore and optimize
method, the observer needs to remember the environment as it is being explored. As
the size of the environment increases, so does the amount of memory and run time
required by the observer. Another problem that arises in the exploration of unknown
environments in the absence of accurate global positioning is that of simultaneous
location and mapping (SLAM). To explain briefly, to build a map of the environment
accurately, one needs an accurate estimate of the position of the observer. This is
not available due to odometry errors and lack of global positioning ability. There-
fore, to accurately localize the observer inside the environment, an accurate map of
the environment is needed but which is again unavailable due to measurement sen-
sor errors. Various approaches to solving the SLAM problem have been studied but
most of the accurate approaches again are intensive in terms of computation and
memory. In contrast, the fact that our approach is local and requires no memory
renders it more robust to errors in computation and sensor measurements. Another
advantage of being memoryless is that it works for environments that may change
quasi-statically where as any other method relying on memory is ineffective in this
case. Finally, note that out local optimization approach might be used in conjunction
with a global search method to find the globally optimum position. For example, after
finding the position of a local optimum, the observer could perform a random walk in
the environment. While executing the random walk, the observer must compare the
magnitude of the visible area with the value at the previously discovered optimum.
If the value is greater, find the local optimum using the approach in the paper. This
procedure is repeated and one can expect to find the global optimum after sufficient
time has elapsed.

The paper is organized as follows. Section 2 contains the analysis of the smooth-
ness properties and of the generalized gradient of the function of interest. Section 3
contains the novel results on nonsmooth stability analysis. Section 4 presents the
nonsmooth gradient algorithm and the properties of the resulting closed-loop sys-
tem. Finally, the simulations in Section 5 illustrate the convergence properties of the
algorithm.

2. The area visible from an observer. In this section we study the area
of the region visible to a point observer equipped with an omnidirectional camera.
We show that the visible area, as a function of the location of the observer, is locally
Lipschitz, except at a finite point set. We prove that, for general nonconvex polygons,
the function is not regular. We also provide expressions for the generalized gradient
of the visible area function wherever it is locally Lipschitz. We have included the
notions of locally Lipschitz functions and related concepts whenever they first appear
in the text of the paper.

Let us start by introducing the set of lines on the plane R2. For (a, b, c) ∈
R3 \

{
(0, 0, c) ∈ R3 | c ∈ R

}
, define the equivalence class [(a, b, c)] by

[(a, b, c)] =
{
(a′, b′, c′) ∈ R3 | (a, b, c) = λ(a′, b′, c′), λ ∈ R

}
.
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The set of lines on R2 is defined as

L =
{
[(a, b, c)] ⊂ R3 | (a, b, c) ∈ R3, a2 + b2 6= 0

}
.

It is possible to show that L is a 2-dimensional manifold, sometimes referred to as the
affine Grassmannian of lines in R2; see [11].

Next, two useful functions are defined. Let fpl : R2 × R2 \ {(p, p) ∈ R2 × R2 | p ∈
R2} → L map two distinct points in R2 to the line passing through them. Given
distinct (x1, y1), (x2, y2) ∈ R2, we have that

fpl ((x1, y1), (x2, y2)) = [(y2 − y1, x1 − x2, y1x2 − x1y2)].

If l1 ‖ l2 denotes that two lines l1, l2 ∈ L are parallel, then let flp : L2 \ {(l1, l2) ∈
L2 | l1 ‖ l2} → R2 map two non-parallel lines to their unique intersection point. Given
two lines [(a1, b1, c1)] and [(a2, b2, c2)], we have that

flp ([(a1, b1, c1)], [(a2, b2, c2)]) =

(
b2c1 − b1c2

a2b1 − a1b2
,
a1c2 − a2c1

a2b1 − a1b2

)
.

Note that the maps fpl and flp are class Cω, i.e., they are analytic over their domains.
Now, let us turn our attention to the polygonal environment. Let Q be a non-self-

intersecting polygon, possibly nonconvex. A polygon is said to be non-self-intersecting
if the only points in the plane belonging to two polygon edges are the polygon ver-
tices. Such a polygon has a well-defined interior and exterior. Note that a non-self-
intersecting polygon can contain holes. Let Q̊ and ∂Q denote the interior and the
boundary of Q, respectively. Let Ve(Q) = (v1, . . . , vn) be the list of vertices of Q
ordered counterclockwise. The interior angle of a vertex v of Q is the angle formed
inside Q by the two edges of the boundary of Q incident at v. The point v ∈ Ve(Q)
is a reflex vertex if its interior angle is strictly greater than π. Let Ver(Q) be the list
of reflex vertices of Q. If S is a finite set, then let |S| denote its cardinality.

A point q ∈ Q is visible from p ∈ Q if the segment between q and p is contained
in Q. The visibility polygon S(p) ⊂ Q from a point p ∈ Q is the set of points in
Q visible from p. It is convenient to think of p 7→ S(p) as a map from Q to the
set of polygons contained in Q. It must be noted that the visibility polygon is not
necessarily a non-self-intersecting polygon.

Definition 2.1. Let v be a reflex vertex of Q, and let w ∈ Ve(Q) be visible from
v. The (v, w)-generalized inflection segment I(v, w) is the set

I(v, w) = {q ∈ S(v) | q = λv + (1 − λ)w, λ ≥ 1} .

A reflex vertex v of Q is an anchor of p ∈ Q if it is visible from p and if {q ∈ S(v) | q =
λv + (1 − λ)p, λ > 1} is not empty.

In other words, a reflex vertex is an anchor of p if it occludes a portion of the
environment from p. Figure 2.1 illustrates the various notions defined above. Given
a point q and a line l, let dist(q, l) denote the distance between them.

Note that any generalized inflection segment I(v, w) splits the polygonal environ-
ment into two smaller polygons. The vertex w is visible from any point on I(v, w)
and from the interior of only one of the two smaller polygons. Intuitively, it then
follows that if p belongs to the interior of a polygon and does not lie on a generalized
inflection segment, then in a neighborhood of p the number of vertices of the visibility
polygon does not change and their positions vary smoothly as a function of p. This
is described formally in the following theorem.

4



I(v1, w)

p
v1

w

va

v2

Fig. 2.1. Reflex vertices v1 and v2, a generalized inflection segment I(v1, w), an anchor va of
p and the visibility polygon (shaded region) from p. Note that the polygonal environment has a hole.

Theorem 2.2. Let {Iα}α∈A be the set of generalized inflection segments of Q, and
let P be a connected component of Q \ ⋃

α∈A Iα. For all p ∈ P , the visibility polygon
S(p) is non-self-intersecting and has a constant number of vertices, say Ve(S(p)) =
{u1(p), . . . , uk(p)}. For all i ∈ {1, . . . , k}, the map P 3 p 7→ ui(p) is Cω and

dui(p) =





0, ui(p) ∈ Ve(Q),

dist(va, l)

(dist(p, l) − dist(va, l))2
√

a2 + b2

[
−b

a

][
y − ya

xa − x

]T

, ui(p) = flp(fpl(va, p), l),

where va = (xa, ya) is an anchor of p and where l = [(a, b, c)] is a line defined by an
edge of Q.

Proof. The first part of the proof is by contradiction. Let |Ve(S(p′))| > |Ve(S(p))|
for some point p′ ∈ P . This means that at least one additional vertex is visible from p′

that was occluded by an anchor of p. Two cases may arise. First, when the additional
vertex belongs to Ve(Q), then by our definition, p and p′ must lie on opposite sides of
a generalized inflection segment. This is a contradiction. Secondly, if the additional
vertex does not belong to Ve(Q), it must be the projection of a reflex vertex (acting
as an anchor). Here again two cases may arise: (1) the reflex vertex is visible from
p, and (2) it is not. The first case is possible only if the reflex vertex is visible but
does not act as an anchor. So, positive lengths of both sides adjoining the reflex
vertex must also be visible from p and at least one of the sides is completely not
visible from p′ since there is a projection. This means that p and p′ lie on opposite
sides of a generalized inflection segment generated by the reflex vertex and one of its
adjacent vertices. This is a contradiction. The second case is possible if the reflex
vertex in question is occluded by another reflex vertex. But this means that p and p′

lie on opposite sides of the generalized inflection segment from the reflex vertex to the
anchor occluding the reflex vertex; again this is a contradiction. If, on the other hand,
|Ve(S(p′))| < |Ve(S(p))|, then the above arguments hold by interchanging p and p′.
Hence, p and p′ lie on opposite sides of a generalized inflection segment which is a
contradiction. This completes the proof that |Ve(S(p′))| is constant for all p′ ∈ P .

Let p ∈ P . Since the visibility polygon S(p) is star-shaped and since any ray
emanating from p can intersect Q at most at two distinct points, then S(p) is non-
self-intersecting. (Indeed, if the ray emanating from p intersects the environment
at three or more points inside S(p), then p must belong to a generalized inflection
segment. See Figure 2.2)

Regarding the second statement, it is clear that if ui(p) is a vertex of Q then it
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p

Fig. 2.2. The visibility polygon of the point represented by p. Note that there exists a ray
emanating from p which intersects the environment at three points and hence the corresponding
visibility polygon is self-intersecting.

is independent of p. Instead, if ui(p) /∈ Ve(Q), then

ui(p) = flp(fpl((x, y), (xa, ya)), `)

where p = (x, y), va = (xa, ya) is an anchor of p, and ` is the line, determined by an
edge of Q, that identifies ui. Now, p ∈ P implies p 6= va. It follows that fpl(p, va)
is Cω for all p ∈ P . Also, from the definition of ui(p), it is clear that fpl(p, va) ∦ `.
Therefore, for all p ∈ P , flp(fpl(p, va), `) is Cω; this implies that p 7→ ui(p) is also
Cω. The formula for the derivative can be verified directly.

Next, the area of a visibility polygon as a function of the observer location is
studied, see Figure 1.1. Recall that the area of a non-self-intersecting polygon Q with
counterclockwise-ordered vertices Ve(Q) = ((x1, y1), . . . , (xn, yn)) is given by

A(Q) =
1

2

n∑

i=1

xi(yi−1 − yi+1),

where (x0, y0) = (xn, yn) and (xn+1, yn+1) = (x1, y1). As in the previous theorem, let
{Iα}α∈A be the set of generalized inflection segments of Q and let P be a connected
component of Q\⋃

α∈A Iα. Next, if p ∈ P , the visibility polygon from p has a constant
number of vertices, say k = |Ve(S(p))|, is non-self-intersecting, and satisfies A ◦S(p) =∑k

i=1 xi(yi−1 − yi+1) where Ve(S(p)) = (u1, . . . , uk) are ordered counterclockwise,
ui(p) = (xi, yi), u0 = uk, and uk+1 = u1. Therefore, P 3 p 7→ A ◦S(p) is also Cω and

d(A ◦S)(p) =
k∑

i=1

∂A(u1, . . . , uk)

∂ui
dui(p). (2.1)

Remark 2.3. For any ui(p) /∈ Ve(Q), we have

∂(A ◦S)

∂ui
dui(p) =

dist(va, l)

2

dist(ui+1, l) − dist(ui−1, l)

(dist(p, l) − dist(va, l))2

[
y − ya

xa − x

]T

. (2.2)

Note here that ∂(A ◦S)
∂ui

dui(p) is perpendicular to p − va.

To illustrate (2.1) and (2.2), it is convenient to introduce the versor operator
defined by vers(X) = X/‖X‖ if X ∈ R2 \ {0} and by vers(0) = 0. We depict the
normalized gradient vers(d(A ◦S)) of the visible area function in Figure 2.3.

We will now characterize the smoothness properties of the map A ◦S over a poly-
gon Q excluding the set of reflex vertices. Before that, we present the following
notion.

Definition 2.4. A function f : RN → R is said to be locally Lipschitz near
x ∈ RN if there exist positive constants Lx and ε such that |f(y)−f(y′)| ≤ Lx‖y−y′‖
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Fig. 2.3. Normalized gradient of the visible area function over the nonconvex polygon depicted
in Figure 1.1. The dashed lines represent some of the generalized inflection segments.

for all y, y′ ∈ B(x, ε), where B(x, ε) is a N dimensional open ball of radius ε and
centered at x.

Note that continuously differentiable functions at x are locally Lipschitz near x.

Theorem 2.5. The map A ◦S restricted to Q \ Ver(Q) is locally Lipschitz.

Proof. By Theorem 2.2, it suffices to consider points lying on generalized in-
flection segments. Let p belong to multiple, say m, generalized inflection segments
{Iα}α∈{1,...,m}. Let ε be small enough such that no generalized inflection segments
intersect B(p, ε) other than {Iα}α∈{1,...,m}. For α ∈ {1, . . . ,m}, let vkα

be the anchor
determining the generalized inflection segment Iα. Without loss of generality, it can be
assumed that no anchor is visible from p other than vk1

, . . . , vkm
. For α ∈ {1, . . . ,m},

lines lα ⊥ fpl(p, vkα
) can be constructed with the property that lα∩Q = ∅ and the vec-

tor vkα
−p points toward lα. Let, hα be the line parallel to lα, tangent to B(ε, p), and

intersecting the segment from p to vkα
. Let p′ and p′′ belong to B(p, ε)∩(Q\Ver(Q)).

Next, let q′α = flp(fpl(p
′, vkα

), lα) and q′′α = flp(fpl(p
′′, vkα

), lα); see Figure 2.4. Let

vkα

p

‖vkα
− p‖ − ε

d(vkα
, lα)

v′αv′′α

q′α q′′α lα

hα

p′′

p′

Fig. 2.4. Definition of the lines lα, hα, and the points q′α, q′′α, v′
α, v′′

α.

v′
α and v′′

α be the intersections between hα and the lines fpl(p
′, vkα

) and fpl(p
′′, vkα

),
respectively.
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Now, |A(vkα
, q′α, q′′α)| = 1

2‖q′α − q′′α‖dist(vkα
, lα). But from Figure 2.4, it is easy

to see that ‖q′α − q′′α‖ =
dist(vkα ,lα)
‖vkα−p‖−ε ‖v′

α − v′′
α‖ and that ‖v′

α − v′′
α‖ < ‖p′ − p′′‖. For

Kα(p) = 1
2

dist(vkα ,lα)2

‖vkα−p‖−ε , the following is true:

|A(S(p′)) − A(S(p′′))| ≤
m∑

α=1

|A(vkα
, q′α, q′′α)|

≤
m∑

α=1

Kα(p)‖p′ − p′′‖.

This fact is illustrated by Figure 2.5. This completes the proof that Q \ Ver(Q) 3

v1

v3

p

p′′

p′

q′′3

q′3

l3
l2

q′2

q′′2

l1q′′1q′1

v2

B(p, ε)

Fig. 2.5. Upper bounds on the change in area. Here m = 3.

p 7→ A ◦S(p) is locally Lipschitz.
It is clear that the map A ◦S is not differentiable everywhere. However other

notions of derivatives might still be defined for it. The usual right directional derivative
and the generalized directional derivative of any function f at x in the direction of
v ∈ RN are defined, respectively, as

f ′(x; v) = lim
t→0+

f(x + tv) − f(x)

t
, fo(x; v) = lim sup

y→x
t→0+

f(y + tv) − f(y)

t
.

For a locally Lipschitz function, the limit in the definition of f ′(x; v) does not always
exist, whereas the limit in fo(x; v) is always well-defined. Also, from Rademacher’s
Theorem [5], we know that locally Lipschitz functions are continuously differentiable
almost everywhere (in the sense of Lebesgue measure). If Ωf denotes the set of points
in RN at which f fails to be differentiable, and S denotes any other set of measure
zero, the generalized gradient of f is defined by

∂f(x) = co

{
lim

i→+∞
df(xi) | xi → x , xi 6∈ S ∪ Ωf

}
.
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Note that this definition coincides with df(x) if f is continuously differentiable at
x. The generalized gradient and the generalized directional derivative (cf. Proposi-
tion 2.1.2 in [5]) are related by fo(x; v) = max {ζ · v | ζ ∈ ∂f(x)}, for each v ∈ RN .

To obtain the expression for the generalized gradient of A ◦S, the polygon Q is
partitioned as follows.

Lemma 2.6. Let {Iα}α∈A be the set of generalized inflection segments of Q.
There exists a unique partition {P β}β∈B of Q where Pβ is a connected component of
Q \ ⋃

α∈A Iα and P β denotes its closure.
Figure 2.6 illustrates this partition for the given nonconvex polygon. For β ∈ B,

define Aβ : P β → R+ by

Aβ(p) = A ◦S(p), for p ∈ Pβ ,

and by continuity on the boundary of Pβ . It turns out that the maps Aβ , β ∈ B, are
continuously differentiable∗ on P β . Equation (2.1) gives the value of the gradient for
p ∈ Pβ . However, in general, for p ∈ P β1

⋂
. . .

⋂
P βm

\Ver(Q), based on Theorem 2.5
and Lemma 2.6, we can write

∂(A ◦S)(p) = co
{

dAβ1
(p), . . . ,dAβm

(p)
}

. (2.3)

p

P1

P2

P4

P3

Fig. 2.6. Partition of Q. The generalized gradient of the area function at p is the convex hull
of the gradient of four functions A1, . . . , A4 at p.

This completes our study of the generalized gradient of the locally Lipschitz func-
tion A ◦S. Apart from differentiability, another smoothness property of A ◦S that we
will characterize is the one of regularity. As will be clear later, this will be crucial in
constructing a set-valued estimate of the rate at which A ◦S changes as the observer
moves. We define regularity first and then show how A ◦S is not regular in many
interesting situations.

Definition 2.7. A function f : RN → R is said to be regular at x ∈ RN if for
all v ∈ RN , f ′(x; v) exists and fo(x; v) = f ′(x; v).

Again, a continuously differentiable function at x is regular at x. Also, a locally
Lipschitz function at x which is convex is also regular (cf. Proposition 2.3.6 in [5]).

Lemma 2.8. There exists a nonconvex polygon Q such that the maps A ◦S and
−A ◦S restricted to Q \ Ver(Q) are not regular.

∗A function is continuously differentiable on a closed set if (1) it is continuously differentiable on
the interior, and (2) the limit of the derivative at a point in the boundary does not depend on the
direction from which the point is approached.
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Proof. We present an example to justify the above statement. In Figure 2.7,
∂(A ◦S)(p′) = co{dA1,dA2} where ‖dA1‖ � ‖dA2‖. Take a vector η′ perpendicular
to the generalized inflection segment to which p′ belongs (see Figure 2.7). It is clear
that (A ◦S)′(p; η′) = dA2·η′. However, (A ◦S)0(p′; η′) = max{ζ ·η′|ζ ∈ ∂(A ◦S)(p′)} =
dA1 ·η′ > dA2 ·η′. Again, in Figure 2.7, ∂(−A ◦S)(p′′) = co{−dA3,−dA4}, where ‖−

dA2

η′′

p′

dA1

η′

dA4

dA3

p′′

Fig. 2.7. Example polygon for which A ◦S and −A ◦S restricted to Q \Ver(Q) are not regular.
Note here that dA1 and dA2 are not perfectly aligned with η′. Also, dA3 and dA4 are not perfectly
aligned with η′′.

dA4‖ � ‖−dA3‖. Take a vector η′′ perpendicular to the generalized inflection segment
to which p′′ belongs (see Figure 2.7). It is clear that −(A ◦S)′(p′′; η′′) = −dA4 · η′′.
However, (A ◦S)0(p′′; η′′) = max{ζ · η′′|ζ ∈ ∂(A ◦S)(p′′)} = −dA3 · η′′ > −dA4 · η′′.

3. An invariance principle in nonsmooth stability analysis. This section
presents results on stability analysis for discontinuous vector fields via nonsmooth
Lyapunov functions. The results extend the work in [2] and will be useful in the next
control design section, see also [6]. We refer the reader to [9] and to Appendix A for
some useful nonsmooth analysis concepts that we have not included in the main body
of the paper.

In what follows we shall study differential equations of the form

ẋ(t) = X(x(t)), (3.1)

where X : RN → RN is a measurable and essentially locally bounded, possibly dis-
continuous vector field. We understand the solution of this equation in the Filippov
sense following [9]. For each x ∈ RN , consider the set

K[X](x) =
⋂

δ>0

⋂

µ(S)=0

co{X(B(x, δ) \ S)} ,

where µ denotes the usual Lebesgue measure in RN . Alternatively, one can show [14]
that there exists a set SX of measure zero such that

K[X](x) = co

{
lim

i→+∞
X(xi) | xi → x , xi 6∈ S ∪ SX

}
,

where S is any set of measure zero. A Filippov solution (see A) of (3.1) on an interval
[t0, t1] ⊂ R is defined as a solution of the differential inclusion

ẋ ∈ K[X](x) . (3.2)

Since the set-valued map K[X] : RN → 2R
N

is upper semicontinuous with nonempty,
compact, convex values and locally bounded (cf. [9]), the existence of Filippov solu-
tions of (3.1) is guaranteed by Lemma A.3. A set M is weakly invariant (respectively
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strongly invariant) for (3.1) if for each x0 ∈ M , M contains a maximal solution
(respectively all maximal solutions) of (3.1).

We now introduce another useful tool. Given a locally Lipschitz function f :
RN → R, the set-valued Lie derivative of f with respect to X at x is defined as

L̃Xf(x) = {a ∈ R | ∃v ∈ K[X](x) such that ζ · v = a , ∀ζ ∈ ∂f(x)} .

For each x ∈ RN , L̃Xf(x) is a closed and bounded interval in R, possibly empty. If

f is continuously differentiable at x, then L̃Xf(x) = {df · v | v ∈ K[X](x)}. If, in

addition, X is continuous at x, then L̃Xf(x) corresponds to the singleton {LXf(x)},
the usual Lie derivative of f in the direction of X at x.

We are now ready to state the first result in this section.
Lemma 3.1. Let X : RN → RN be measurable and essentially locally bounded

and let f : RN → R be locally Lipschitz. Let γ : [t0, t1] → RN be a Filippov solution
of X such that f(γ(t)) is regular for almost all t ∈ [t0, t1]. Then

(i) d
dt (f(γ(t))) exists for almost all t ∈ [t0, t1], and

(ii) d
dt (f(γ(t))) ∈ L̃Xf(γ(t)) for almost all t ∈ [t0, t1].

Proof. The result is an immediate consequence of Lemma 1 in [2].
The following result is a generalization of the classic LaSalle Invariance Principle

for smooth vector fields and smooth Lyapunov functions to the setting of discontinuous
vector fields and nonsmooth Lyapunov functions.

Theorem 3.2 (LaSalle Invariance Principle). Let X : RN → RN be measurable
and essentially locally bounded and let S ⊂ RN be compact and strongly invariant
for X. Let C ⊂ S consist of a finite number of points and let f : S → R be locally
Lipschitz on S \ C and bounded from below on S. Assume the following properties
hold:

(A1) if x ∈ S \ C, then either max L̃Xf(x) ≤ 0 or L̃Xf(x) = ∅,
(A2) if x ∈ C and if γ is a Filippov solution of X with γ(0) = x, then limt→0− f(γ(t)) ≥

limt→0+ f(γ(t)), and
(A3) if γ : R+ → S is a Filippov solution of X, then f ◦γ is regular almost every-

where.
Define ZX,f =

{
x ∈ S \ C | 0 ∈ L̃Xf(x)

}
and let M be the largest weakly invariant

set contained in (ZX,f ∪C). Then the following statements hold:
(i) if γ : R+ → S is a Filippov solution of X, then f ◦γ is monotonically nonin-

creasing;
(ii) each Filippov solution of X with initial condition in S approaches M as t →

+∞;
(iii) if M consists of a finite number of points, then each Filippov solution of X

with initial condition in S converges to a point of M as t → +∞.
Proof. Fact (i) is a consequence of Assumptions (A1), (A2) and (A3), and of

Lemma 3.1.
In what follows we shall require the following notion. Given a curve γ : R+ → RN ,

the positive limit set of γ, denoted by Ω(γ), is the set of y ∈ RN for which there
exists a sequence {tk}k∈N ⊂ R such that tk < tk+1, for k ∈ N, limk→+∞ tk = +∞,
and limk→+∞ γ(tk) = y. For x ∈ S, let γ1 be a Filippov solution of X with γ1(0) = x
and let Ω(γ1) be the limit set of γ1. Under this setting, Ω(γ1) is nonempty, bounded,
connected and weakly invariant, see [9]. Furthermore, Ω(γ1) ⊂ S because S is strongly
invariant and closed.

To prove fact (ii), it suffices to show that Ω(γ1) ⊂ ZX,f ∪C. Trivially, Ω(γ1)∩C ⊂
C. Let y ∈ Ω(γ1)\C so that f is locally Lipschitz at y. There exists a sequence {tk}k∈N
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such that limk→+∞ γ1(tk) = y. Because f ◦ γ1 is monotonically nonincreasing and f
is bounded from below, limt→+∞ f(γ1(t)) exists and is equal to, say, a ∈ R. Now,
by continuity of f , a = limk→+∞ f ◦γ1(tk) = f(y). This proves that f(y) = a for
all y ∈ Ω(γ1) \ C. At this point we distinguish two cases. First, assume that y is
an isolated point in Ω(γ1). Then clearly, there exists a Filippov solution of X, say
γ2, such that γ2(t) = y for all t ≥ 0. Hence d

dtf(γ2(t)) = 0, and, by Lemma 3.1,

0 ∈ L̃Xf(γ2(t)) or in other words y ∈ ZX,f . Second, assume that y is not isolated in
Ω(γ1), and let γ2 be a Filippov solution of X with γ2(0) = y. Since f is continuous at
y and Ω(γ1) contains a finite number of points of discontinuity of f , there exists δ > 0
such that f(y′) = a for all y′ ∈ B(y, δ) ∩ Ω(γ1). Therefore, there exists t′ > 0 such
that f(γ2(t)) = a for all t ∈ [0, t′]. Hence, we have d

dtf(γ2(t)) = 0 for all t ∈ [0, t′].

It follows from Lemma 3.1 that for all t ∈ [0, t′], we have 0 ∈ L̃Xf(γ2(t)) or in other
words γ2(t) ∈ ZX,f . By continuity of γ2 at t = 0, we have that γ2(0) = y ∈ ZX,f .
Since Ω(γ1) is weakly invariant, we have Ω(γ1) ⊂ M and hence γ2 approaches M .

We now prove fact (iii). If M consists of a finite number of points, and since
Ω(γ1) ⊂ M is connected, Ω(γ1) is a point. Hence, by the argument in the preceding
paragraph, each Filippov solution of X approaches a point of M . In other words, it
converges to a point of M .

Corollary 3.3. The LaSalle Invariance Principle is valid under the following
relaxed assumption:

(A3) if γ : R+ → S is a Filippov solution of X, then almost everywhere either f ◦γ
or −f ◦γ is regular.

Proof. The proof is a consequence of the fact that d
dt (f(γ(t))) exists and belongs

to L̃Xf(γ(t)) if and only if d
dt (−f(γ(t))) exists and belongs to L̃X(−f)(γ(t)). Thus

result (ii) of Lemma 3.1 still holds and the proof of the LaSalle Invariance Principle
remains unchanged.

4. Maximizing the area visible from a mobile observer. In this section we
build on the analysis results obtained thus far to design an algorithm that maximizes
the area visible to a mobile observer. We aim to reach local maxima of the visible
area A ◦S by designing some appropriate form of a gradient flow for the discontin-
uous function A ◦S. We now present an introductory and incomplete version of the
algorithm: the objective is to steer the mobile observer along a path for which the
visible area is guaranteed to be nondecreasing.
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Name: Increase visible area for Q
Goal: Maximize the area visible to a mobile observer
Assumption: Generalized inflection segments of Q do not intersect.

Initial position does not belong to a generalized inflec-
tion segment.

Let p(t) denote the observer position at time t inside the nonconvex polygon Q. The
observer performs the following tasks at each time instant:

compute visibility polygon S(p(t)) ⊂ Q,

if p(t) does not belong to any generalized inflection segment or to the boundary
of Q then

move along the versor of the gradient d(A ◦S)

else if p(t) belongs to a generalized inflection segment but not to the boundary
of Q then

depending on the generalized gradient ∂(A ◦S), either slide along the segment
or leave the segment in an appropriate direction

else if p(t) belongs to the boundary of Q but not to a reflex vertex, then

depending on the projection of ∂(A ◦S) along the boundary, either slide along
the boundary or move in an appropriate direction toward the interior of Q

else

either follow a direction of ascent of A ◦S or stop
end if

The remainder of this section is dedicated to formalizing this loose description.

4.1. A modified gradient vector field. Before describing the algorithm to
maximize the area visible to the mobile observer, we introduce the following useful
notions. Given a non-self-intersecting polygon Q with Ve(Q) = (v1, . . . , vn) and ε > 0,
define the following quantities:

(i) let the ε-expansion of Q be Qε = {p | ||p − q|| ≤ ε for some q ∈ Q},
(ii) for i ∈ {1, . . . , n}, let P ε

i be the open set delimited by the edge vivi+1, the
bisectors of the external angles at vi and vi+1 and the boundary of Qε,

(iii) for ε small enough and for any point p in Qε, let prjQ(p) be uniquely equal
to arg min{||p′ − p|| | p′ ∈ ∂Q}, and

(iv) for p ∈ ∪i∈{1,...,n} P ε
i , let the outward normal n(prjQ(p)) be the unit vector

directed from prjQ(p) to p.
We illustrate these notions in Figure 4.1. Note that prjQ(p) can never be a reflex

vertex. We can now define a vector field on Qε as follows:

XQ(p) =





vers(d(A ◦S)(p)), if p ∈ Q̊ \ {Iα}α∈A,

−n(prjQ(p)), if p ∈ P ε
i ,

0, otherwise.

(Recall that the versor operator is defined by vers(Y ) = Y/‖Y ‖ if Y ∈ R2 \{0} and by

vers(0) = 0.) Note that XQ is well-defined because at p ∈ Q̊ \ {Iα}α∈A the function
A ◦S is analytic. Clearly, XQ is not continuous on Qε. However, the set of points
where it is discontinuous is of measure zero. Almost everywhere in the interior of
Q, the vector field XQ is equal to the normalized gradient of A ◦S as depicted in
Figure 2.3.

Remark 4.1. An important observation in this setting is that at all points p
where A ◦S is locally Lipschitz, we have K[d(A ◦S)](p) = ∂(A ◦S)(p). In such a case
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vi+1

vi

n(prjQ(p))

P ε
iprjQ(p)

p

Fig. 4.1. The ε-expansion Qε of the non-self-intersecting polygon Q, an open set P ε
i and the

corresponding outward normal n(prjQ(p)).

it is also true that for all η ∈ ∂(A ◦S)(p), there exists at least one δ > 0 such that
δη ∈ K[XQ](p) and vice versa.

We now present the differential equation describing the motion of the observer:

ṗ(t) = XQ(p(t)). (4.1)

A Filippov solution of (4.1) on an interval [t0, t1] ⊂ R is defined as a solution of the
differential inclusion

ṗ(t) ∈ K[XQ](p(t)), (4.2)

where K[XQ] is the usual Filippov differential inclusion associated with XQ, see Ap-
pendix A. Since XQ is measurable and bounded, the existence of a Filippov solution
is guaranteed. We study uniqueness and completeness of Filippov solutions in the
following lemma.

Lemma 4.2. The following statements hold true:
(i) there exists a non-self-intersecting polygon Q for which the corresponding vec-

tor field XQ admits multiple Filippov solutions starting from the same initial
condition;

(ii) any non-self-intersecting polygon Q is a strongly invariant set for the corre-
sponding vector field XQ and, therefore, any Filippov solution is defined over
R+.

Proof. We present an example to justify the statement (i). In Figure 4.2, at the
point p0 on the generalized inflection segment, both directions η1 and η2 belong to
∂(A ◦S)(p0). Three distinct Filippov solutions of equation (4.1) exist. Two of the
solutions start from p0 along the two directions η1 and η2 while the third solution is
p(t) = p0 for all t ≥ 0. Statement (ii) is a consequence of the definition of XQ on P ε

i

η1
p0
η2

Fig. 4.2. Three Filippov solutions exist starting from the point p0.

for i ∈ {1, . . . , n}.
We now claim that any solution of the differential inclusion (4.2) has the property

that the visible area increases monotonically. To prove these desirable properties, we
first present the following results in nonsmooth analysis.
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4.2. Properties of solutions and convergence analysis. To prove the con-
vergence properties of the solution of (4.2) using the results presented in Section 3,
we must first define a suitable Lyapunov function. Intuitively since our objective is
to maximize the visible area, our Lyapunov function should be closely related to it.
For ε > 0, we now define the extended area function Aε

Q at all points p ∈ Q
⋃{∪i P ε

i }.
The extended function coincides with the original function on the interior and on the
boundary of Q and is defined appropriately outside:

Aε
Q(p) =

{
A ◦S(p), if p ∈ Q,

A ◦S(prjQ(p)) − ||p − prjQ(p)||, if p ∈ ∪i P ε
i .

For all p ∈ ∂Q \ Ve Q, Aε
Q satisfies (see Figure 4.3):

Aε
Q
′(p;n(prjQ(p))) = −1.

vi−1

n(prjQ(p2))

p1

p2

p3

n(prjQ(p3))

prjQ(p1)

prjQ(p3)

n(prjQ(p1))

ε
vi+1

vi = prjQ(p2)

Fig. 4.3. Extending the function A ◦S to Aε
Q

. Note the direction of n(prjQ(pi)) at all points pi.

Remark 4.3. The extended area function Aε
Q is locally Lipschitz on (Q \

Ver(Q))
⋃{∪i P ε

i } and analytic almost everywhere on Q
⋃{∪i P ε

i }.
The following theorem characterizes the regularity of the map p 7→ −Aε

Q(p) along
a Filippov solution of XQ. This is important to prove that the area of the visibility
polygon is nondecreasing along any Filippov solution of XQ

Theorem 4.4. Let G(Q) be the subset of Q where both maps p 7→ −Aε
Q(p) and

p 7→ Aε
Q(p) are not regular. Then any Filippov solution γ : R+ → Q of XQ has the

property that γ(t) /∈ G(Q) for almost all t ∈ R+ unless γ reaches a critical point of
K[XQ].

Proof. Note that G(Q) is a subset of ∪α∈A Iα. This is a consequence of Theo-
rem 2.2 and the fact that functions are regular at points of differentiability. Given a
generalized inflection segment Iα, let lα be the line extending Iα and let tα be one
of the two unit tangent vectors to Iα. A Filippov solution γ of XQ slides along Iα

starting from p0 ∈ Iα only if ∂Aε
Q(p0) contains either tα or −tα. It then suffices to

show that if ∂Aε
Q(p0) contains tα or −tα, then either Aε

Q or −Aε
Q is regular at p0. Let

us also assume that p0 does not belong to any other generalized inflection segment. If
this were not the case, then either p0 is a critical point or the Filippov solution does
not belong to the point of intersection for almost all t ∈ R+.

Let lα divide R2 into two open half planes H1 and H2. There exists δ > 0 such that
Aε

Q is analytic on Hi ∩B(p0, δ), i ∈ {1, 2}, see Figure 4.4. On lα, we have (Aε
Q)1 =
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p0

p′

dAε
Q2

H2 H1
lα

Aε
Q2

Aε
Q1

tα

n

B(p0, δ)dAε
Q1

Fig. 4.4. The point p0 lies on the generalized inflection segment l. H1 and H2 are half planes
on either side of l. n and t are normal and parallel to l respectively. The other arrows indicate the
directions of dAε

Q(p) on either side of l.

(Aε
Q)2 where (Aε

Q)i is the function Aε
Q restricted to Hi. Let p′ ∈ B(p0, δ) and, without

loss of generality, let p′ ∈ H2. Let n be the normal to Iα at p0 pointing away from p′.
Note that in terms of the notation introduced in Section 4.1, n = −n(prjlα(p′)) where
prjlα(p′) = arg min{||p′ − p|| | p ∈ lα}. Now, (Aε

Q)1 can be extended to H2 ∩B(p0, δ)
by analyticity. Likewise, (Aε

Q)2 can be extended to H1 ∩B(p0, δ). Since the functions
(Aε

Q)i, i ∈ {1, 2}, are analytic, they can be written as the expansions of their Taylor
series:

(Aε
Q)i(p

′) = (Aε
Q)i(p0) + d((Aε

Q)i)(p0) · (p′ − p0) + O(‖p′ − p0‖2).

It follows from the above set of equations that:

(Aε
Q)2(p

′) − (Aε
Q)1(p

′) =
(
d((Aε

Q)2) − d((Aε
Q)1)

)
· (p′ − p0) + O(‖p′ − p0‖2).

Note that n is the same for all p′ ∈ H2. Now, p′ − p0 = −c1n + c2tα such that
c1 ≥ 0. Also, d(Aε

Q)1(p0) · tα = d(Aε
Q)2(p0) · tα since (Aε

Q)1(p) = (Aε
Q)2(p) for p ∈ Iα.

Therefore,

(Aε
Q)2(p

′) − (Aε
Q)1(p

′) = c1

(
d(Aε

Q)1(p0) · n − d(Aε
Q)2(p0) · n

)
+ O(‖p′ − p0‖2).

Now, either tα or −tα belongs to ∂Aε
Q(p0) = co{d(Aε

Q)1,d(Aε
Q)2} if and only if

the product of d(Aε
Q)1(p0) · n and d(Aε

Q)2(p0) · n is less than or equal to zero (see
Figure 4.4). If d(Aε

Q)1(p0) · n = 0 and d(Aε
Q)2(p0) · n = 0, then clearly Aε

Q is

C1 at p0 and hence regular. Otherwise, let us assume, without loss of generality,
that d(Aε

Q)1(p0) · n − d(Aε
Q)2(p0) · n < 0. Therefore, there exists η2 > 0 such

that (Aε
Q)2(p

′) − (Aε
Q)1(p

′) ≤ 0 for p′ ∈ H2 ∩B(p0, η2). Similarly, there exists
η1 > 0 such that for p′ ∈ H1 ∩B(p0, η1), we have (Aε

Q)1(p
′) − (Aε

Q)2(p
′) ≤ 0. Thus,

there exists a neighborhood around p0 where Aε
Q(p) = min{(Aε

Q)1(p), (Aε
Q)2(p)} or

−Aε
Q(p) = max{−(Aε

Q)1(p),−(Aε
Q)2(p)}. Since (Aε

Q)i, i ∈ {1, 2}, are smooth func-
tions, it follows from Proposition 2.3.12 in [5] that −Aε

Q is regular at p0. On the other
hand, if we assume that d(Aε

Q)1(p0) · n − d(Aε
Q)2(p0) · n > 0, then we get that Aε

Q is
regular at p0.

In the following theorem, the functions Aε
Q and −Aε

Q are used as candidate Lya-
punov functions to show the convergence properties of Filippov solutions of XQ.

Theorem 4.5. Any Filippov solution γ : R+ → Q of XQ has the following
properties:

(i) t 7→ A ◦S(γ(t)) is continuous and monotonically nondecreasing,
(ii) γ approaches the set of critical points of K[XQ].
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Proof. Let us start by showing that, if γ is a Filippov solution of XQ, then
A ◦S ◦γ is continuous. The reader is referred to Figure 4.5 for an introduction of
notations used. Let Xr

Q and Xθ
Q be the components of XQ parallel and perpen-

dicular to p − v respectively. Similarly, let d(A ◦S(p))r and d(A ◦S(p))θ be the
components of d(A ◦S(p)) parallel and perpendicular to p − v respectively. Note

that if ‖d(A ◦S(p))‖ 6= 0, then ‖Xr
Q‖ = ‖d(A ◦S(p))r‖

(‖d(A ◦S(p))r‖2+‖d(A ◦S(p))θ‖2)1/2 and ‖Xθ
Q‖ =

‖d(A ◦S(p))θ‖
(‖d(A ◦S(p))r‖2+‖d(A ◦S(p))θ‖2)1/2 . Let ε > 0 be such that ‖d(A ◦S(p))‖ 6= 0 for all p ∈
B(v, ε)∩D. For now, let us also assume that {∪α∈A Iα}∩B(v, ε)∩D = ∅. We now
claim that in B(v, ε)∩D, d(A ◦S(p))θ = Ω(1/‖p − v‖) and d(A ◦S(p))r = O(1). In
other words there exist constants kθ > 0 and kr > 0 such that ‖d(A ◦S(p))θ‖ ≥ kθ

‖p−v‖

and ‖d(A ◦S(p))r‖ ≤ kr. Notice that d(A ◦S(p)) = d(A ◦S(p))r + d(A ◦S(p))θ =∑
i

∂(A ◦S)
∂ui

dui(p). Let u1 = u. From (2.2), it is clear that ∂(A ◦S)
∂u du(p) is perpendic-

ular to p − v and hence contributes only to d(A ◦S(p))θ. Also ‖∑
i≥2

∂(A ◦S)
∂ui

dui(p)‖
is bounded for all p ∈ B(v, ε)∩D. Therefore, d(A ◦S(p))θ = ∂(A ◦S)

∂u du(p) + Ω(1) =

Ω(‖∂(A ◦S)
∂u du(p)‖) and d(A ◦S(p))r = O(1). Again from (2.2), we have

‖∂(A ◦S)

∂u
du(p)‖ =

dist(v, l)

2

‖p − v‖|dist(u2, l) − dist(un, l)|
(dist(p, l) − dist(v, l))2

.

Now, |dist(p, l) − dist(v, l)| ≤ ‖p − v‖. Therefore,

‖∂(A ◦S)

∂u
du(p)‖ = Ω

( |dist(u2, l) − dist(un, l)|
‖p − v‖

)
.

Since p does not lie on a generalized inflection segment, either un = v or u2 = v.
Without loss of generality, let un = v. Since u belongs to l, clearly u2 must belong to
l. Hence |dist(u2, l)− dist(un, l)| = dist(v, l) and is a constant for all p ∈ B(v, ε)∩D.
Thus

‖∂(A ◦S)

∂u
du(p)‖ = Ω

(
1

‖p − v‖

)
.

Hence, d(A ◦S(p))θ = Ω( 1
‖p−v‖ ). Therefore ‖d(A ◦S(p))θ‖

‖d(A ◦S(p))r‖ ≥ kθ

kr‖p−v‖ . It follows that

‖Xr
Q‖ =

1

(1 + ‖d(A ◦S(p))θ‖2

‖d(A ◦S(p))r‖2 )1/2
≤ 1

(1 +
k2

θ

k2
r‖p−v‖2 )1/2

=
kr‖p − v‖

(k2
θ + k2

r‖p − v‖2)1/2

≤ kr‖p − v‖
kθ

.

Note that a convex combination of finitely many Xr
Q will also admit a similar in-

equality and so the assumption that {∪α∈A Iα}∩B(v, ε)∩D = ∅ is not limiting.
Now let γ(t) be a solution of XQ such that γ(0) = v. Let T be any time such that
‖γ(T ) − v‖ = R and for all t ∈ [0, T ], γ(t) ∈ B(v, ε)∩D and Xr

Q(γ(t)) is directed

away from v. Then clearly, R =
∫ T

0
Xr

Qdt ≤ R kr

kθ
T . In other words the time T taken

for a trajectory to travel any distance R is greater than kθ

kr
. This is a contradiction.

Therefore, our assumption that for all t ∈ [0, T ], γ(t) ∈ B(v, ε)∩D is false. So, the
trajectory must belong to C for some finite time interval contained in [0, T ]. We can
choose R as small as possible and this implies that there exists a finite time interval
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[0, TC ] for which γ(t) ∈ C. It follows trivially that t 7→ A ◦S(γ(t)) is right continuous
at t where γ(t) = v. We can prove similarly that t 7→ A ◦S(γ(t)) is left continuous at
t where γ(t) = v by considering the vector field −XQ in place of XQ. This completes
the proof that t 7→ A ◦S(γ(t)) is continuous.

v

l = [a, b, c]

u

D

p

Xθ
Q

Xr
Q

C

Fig. 4.5. Illustration of various notions used in Theorem 4.5. The dashed lines represent
generalized inflection segments generated by the reflex vertex v and vertices adjacent to it. These
divide the region around v that is inside Q into three subregions C , D and E. u ∈ Ve(S(p)) lies
on the line l. The generalized inflection segments including the vertex v are assumed to belong to
region C. Note that D∩C = ∅.

Next we show that Assumptions (A1), (A2) and (A3) in Theorem 3.2 hold. Let

p ∈ Q \Ver(Q) and take a ∈ L̃XQ
(−Aε

Q)(p). By definition, there exists k ∈ K[XQ](p)
such that a = k · ζ for all ζ ∈ −∂Aε

Q(p). In particular, it is true for ζ = −δk, for

some δ > 0, see Remark 4.1. Therefore, a = −δ‖k‖2 ≤ 0. This proves that either

max L̃XQ
(−Aε

Q)(p) ≤ 0 or L̃XQ
(−Aε

Q)(p) = ∅, i.e., Assumption (A1) is satisfied.
Assumption (A2) is a consequence of the continuity of A ◦S ◦γ. Finally, Assumption
(A3) is a consequence of Theorem 4.4. Applying now Theorem 3.2 and its corollary,
we conclude that fact (i) holds. Moreover, we also deduce that any Filippov solution
of XQ converges to the largest weakly invariant set M contained in ZXQ,−Aε

Q
∪Ver(Q).

To prove fact (ii), let us show that M = {p ∈ Q | 0 ∈ K[XQ](p)}∩(ZXQ,−Aε
Q
∪

Ver(Q)). Based on Theorem 4.4, Theorem 3.2 and Corollary 3.3, it suffices to
show that M is contained in {p ∈ Q | 0 ∈ K[XQ](p)}. Let us note that the set
{p ∈ Q | 0 ∈ K[XQ](p)} is weakly invariant and can be established to be closed fol-
lowing the same reasoning as in Proposition 2.1.1 in [6]. Let x ∈ ZXQ,−Aε

Q
. Then,

0 ∈ L̃XQ
(−Aε

Q)(x), i.e., there exists k ∈ K[XQ](x) such that ζ · k = 0 for all
ζ ∈ −∂Aε

Q(x). But, k ∈ K[XQ](x) implies that there exists δ > 0 such that

δk ∈ −∂Aε
Q(x), see Remark 4.1. Thus, for ζ = δk, we get δ‖k‖2 = 0, that is,

0 ∈ K[XQ](x). This shows that ZXQ,−Aε
Q

⊂ {p ∈ Q | 0 ∈ K[XQ](x)}. Next, let

x ∈ Ver(Q)∩M . If the set {x} is weakly invariant, then by definition 0 ∈ K[XQ](x).
If on the other hand x is not isolated in M , then there exists a sequence of points
{xm}m∈N converging to x such that xm ∈ ZXQ,−Aε

Q
or, alternatively, 0 ∈ K[XQ](xm).

Because {p ∈ Q | 0 ∈ K[XQ](p)} is closed, it follows that 0 ∈ K[XQ](x). Thus we
proved that any weakly invariant set contained in ZXQ,−Aε

Q
∪ Ver(Q) is a subset of

{p ∈ Q | 0 ∈ K[XQ](p)}. Again, as in Proposition 2.1.1 in [6], it can be shown that
ZXQ,−Aε

Q
is a closed set and hence the claim that M ⊂ {p ∈ Q | 0 ∈ K[XQ](p)} fol-

lows.

Theorem 4.5 implies that the single observer converges to a critical point of A ◦S
or to a reflex vertex of Q. However, as shown in Figure 5.2, the presence of noise or
computational inaccuracies actually works to drive the observer away from a reflex
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vertex that is not a local maximum. This will also be true for other critical points
that are not local maxima.

5. Simulation results. To conduct experiments, a simulation environment has
been developed in Matlab

R©. There are two levels of the code. The lower level consists
of a library containing routines to answer queries such as whether two points in a two-
dimensional polygonal environment are visible to each other. The higher level utilizes
these routines and consists of two major portions. In the first, the vertices of the
visibility polygon are obtained by means of an O(n2) algorithm, where n is the number
of vertices of the polygonal environment. These are then sorted in counterclockwise
order to compute the visibility polygon. The second consists of the controller which
decides the direction and the step size of the observer motion at each time instant.
The main task of the controller is the calculation of the generalized gradient of the
visible area function which is a natural outcome of (2.1) and (2.3). Such a framework
gives the flexibility to easily implement other visibility-based algorithms for single or
multiple observers in a polygonal environment. This can be done by extracting the
appropriate information using the low level functions and implementing the desired
controller.

Figures 5.2 and 5.4 illustrate the performance of the gradient algorithm in equa-
tion (4.2). Computational inaccuracies in the implementation of the algorithm to
calculate the visibility polygon have been noticed in some configurations; see the plot
of the evolution of visible area with time in Figure 5.2. See Figure 5.3 for the phase
portrait of the vector field XQ for the polygon in Figure 5.1. Simulation results for an
observer in a similar polygonal environment containing a hole is shown in Figure 5.5.
Our experiments suggest that the observer reaches a local maximum of the visible
area in finite time, however this can be shown not to be true in general.
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Fig. 5.1. Example of visible area function over a typical nonconvex polygon.

6. Conclusions. This paper introduces a gradient-based algorithm to optimally
locate a mobile observer in a nonconvex environment. We have presented nonsmooth
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Fig. 5.2. Simulation results of the gradient algorithm for the nonconvex polygon depicted in Fig-
ure 5.1. The observer arrives, in finite time, at a local maximum. Note here that the observer visits
a reflex vertex at some point in its trajectory but comes out of it due to computational inaccuracies
because it is not a local maximum.

analysis and control design results. The simulation results illustrate that, in the
presence of noise, the observer reaches a local maximum of the visible area. In a
“highly nonconvex” environment, a single observer may not be able to see a large
fraction of the environment. In such a case, a team of observers can be deployed to
achieve the same task. We therefore plan to investigate this same visibility objective
for teams of observers. Other directions of future research include practical robotic
implementation issues as well as other combined mobility and visibility problems.
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Fig. 5.4. Simulation results of the gradient algorithm for the nonconvex polygon in Figure 1.1.
The observer arrives, in finite time, at a local maximum.

Appendix A. Nonsmooth analysis and discontinuous vector fields.

In this appendix we review some basic facts and standard notations from nons-
mooth analysis [5].

Given a locally Lipschitz function f : RN → R, a point x ∈ RN which verifies
that 0 ∈ ∂f(x) is called a critical point of f . The extrema of Lipschitz functions are
characterized by the following result.

Proposition A.1. Let f be a locally Lipschitz function at x ∈ RN . If f attains
a local minimum or maximum at x, then 0 ∈ ∂f(x), i.e., x is a critical point.

Let Ln : 2R
N → 2R

N

be the set-valued map that associates to each closed subset
S of RN the set of its least-norm elements Ln(S). For a locally Lipschitz function
f , we consider the generalized gradient vector field Ln(∂f) : RN → RN given by
x 7→ Ln(∂f)(x) = Ln(∂f(x)).

Theorem A.2. Let f be a locally Lipschitz function at x. Assume that 0 6∈ ∂f(x).
Then, there exists T > 0 such that f(x − t Ln(∂f)(x)) ≤ f(x) − t

2‖Ln(∂f)(x)‖2,
0 < t < T . The vector −Ln(∂f)(x) is called a direction of descent.

For differential equations with discontinuous right-hand sides we understand the

solutions in terms of differential inclusions following [9]. Let F : RN → 2R
N

be a
set-valued map. Consider the differential inclusion

ẋ ∈ F (x) . (A.1)

A solution to this equation on an interval [t0, t1] ⊂ R is defined as an absolutely
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Fig. 5.5. Simulation results of the gradient algorithm for an observer in a nonconvex environ-
ment with a hole. The observer arrives, in finite time, at a reflex vertex.

continuous function x : [t0, t1] → RN such that ẋ(t) ∈ F (x(t)) for almost all t ∈
[t0, t1]. Given x0 ∈ RN , the existence of at least a solution with initial condition x0

is guaranteed by the following lemma.
Lemma A.3. Let the map F be upper semicontinuous with nonempty, compact

and convex values. Then, given x0 ∈ RN , there exists at least a solution of (A.1) with
initial condition x0.
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