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Motion 
Coordination 
with Distributed 
Information

M
otion coordination is a remarkable phenome-
non in biological systems and an extremely
useful tool for groups of vehicles, mobile
sensors, and embedded robotic systems. For
many applications, teams of mobile

autonomous agents need the ability to deploy over a
region, assume a specified pattern, rendezvous at a com-
mon point, or move in a synchronized manner. These coor-
dination tasks must often be achieved with minimal
communication between agents and, therefore, with limit-
ed information about the global state of the system.

The scientific motivation for studying motion coordina-
tion is the analysis of emergent and self-organized swarm-
ing behaviors in biological groups with distributed
agent-to-agent interactions. Interesting dynamical systems
arise in biological networks at multiple levels of resolution,
all the way from interactions among molecules and cells
[1] to the behavioral ecology of animal groups [2]. Flocks
of birds and schools of fish can travel in formation and act
as one unit (see [3] and Figures 1 and 2), allowing these
animals to defend themselves against predators and pro-
tect their territories. Wildebeest and other animals exhibit
complex collective behaviors when migrating, such as
obstacle avoiding, leader election, and formation keeping
(see [4], [5], and Figure 3). Certain foraging behaviors

include individual animals partitioning their environment
into nonoverlapping zones (see [6] and Figure 4). Honey
bees [7], gorillas [8], and whitefaced capuchins [9] exhibit
synchronized group activities such as initiation of motion
and change of travel direction. These remarkable dynamic
capabilities are achieved apparently without following a
group leader; see [2], [3], and [5]–[9] for specific examples
of animal species and [10] and [11] for general studies. In
other words, these coordinated behaviors emerge despite
the fact that each individual lacks global knowledge of the
network state and can plan its motion by observing only
its closest neighbors.

At the same time, an engineering motivation for study-
ing motion coordination stems from increasing interest in
groups of embedded systems, such as multivehicle and
sensor networks. Indeed, groups of autonomous agents
with computing, communication, and mobility capabilities
are expected to become economically feasible and perform
a variety of spatially distributed sensing tasks, such as
search and rescue, surveillance, environmental monitor-
ing, and exploration.

As a consequence of this growing interest, research on
cooperative control has increased tremendously over the
last few years. Key aspects of distributed, or leaderless,
motion coordination include pattern formation [12]–[14],
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flocking [15]–[17], self-assembly [18], swarm aggregation
[19], gradient climbing [20], deployment and task alloca-
tion [21]–[24], rendezvous [25]–[28], cyclic pursuit [29],
[30], vehicle routing [31], and consensus [32]–[34]. Heuris-
tic approaches to the design of interaction rules and emer-
gent behaviors are investigated in the literature on
behavior-based robotics [35]–[38].

The objective of this article is to illustrate the use of sys-
tems theory to analyze emergent behaviors in animal
groups and to design autonomous and reliable robotic net-
works. We present and survey some recently developed
theoretical tools for modeling, analysis, and design of
motion coordination algorithms in both continuous and
discrete time. We pay special attention to the distributed
character of coordination algorithms, the characterization
of their performance, and the development of design
methodologies that provide mobile networks with prov-
ably correct cooperative strategies.

First, we are interested in characterizing the distributed
character of cooperative strategies. Our approach is based
on the notion of proximity graph, drawn from computa-
tional geometry [39]. Proximity graphs model agent-to-
agent interactions that depend on the agents’ relative
locations in space, as in wireless or line-of-sight communi-
cation. Proximity graphs thus facilitate the modeling of
information flow among mobile agents.

Second, we consider representations of motion-coordi-
nation tasks that facilitate the analysis of coordination
algorithms. We discuss aggregate objective functions
from geometric optimization for tasks such as deploy-
ment, rendezvous, cohesiveness, and consensus. We use
nonsmooth analysis to identify the extreme points of the
aggregate objective functions, which typically encode the
desired network configurations.

Third, we discuss techniques for assessing the perfor-
mance of coordination algorithms. In particular, we use a
combination of system-theoretic and linear-algebraic
tools to establish stability and convergence of motion-
coordination algorithms. This treatment includes meth-
ods from circulant and Toeplitz tridiagonal matrices as
well as a version of the invariance principle for set-val-
ued discrete-time dynamical systems.

Finally, we focus on the design of distributed coordina-
tion algorithms for specific tasks. Given a coordination
task to be performed by the network as well as a proximity
graph representing communication constraints, a first
approach is based on gradient flows. A second approach is
based on the analysis of emergent behaviors; in this case, a
notion of neighboring agents and an interaction law
between them is given. A third approach is based on opti-
mizing local objective functions to achieve the desired
global task. The last approach relies on the composition of
simple behaviors to design more complex strategies. We
apply these approaches to several examples of coordina-
tion algorithms developed in the literature.

FIGURE 1 School of fish. Groups of animals can act as one unit
apparently without following a group leader. Photograph taken by
the authors at the 50th IEEE Conference in Decision and Control at
Paradise Island, Bahamas, in December 2004. 

FIGURE 2 Flock of snow geese. Self-organized behaviors emerge in
biological groups, even though no individual has global knowledge
of the group state. Snow geese fly in formation during migration.
Photograph reproduced with permission of the Eastern Shore of
Virginia National Wildlife Refuge Staff, U.S. Fish and Wildlife Ser-
vice [51].

FIGURE 3 Herd of wildebeest in the Serengeti National Park, 
Tanzania. Wildebeest and other animals exhibit complex coordinat-
ed behaviors when migrating, such as obstacle avoiding, leader
election, and formation keeping. Aerial photograph reprinted from
[4] with permission from University of Chicago Press.
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PROXIMITY GRAPHS AND 
SPATIALLY DISTRIBUTED MAPS
An algorithm is distributed, as opposed to centralized,
if the algorithm relies on local information rather than
global knowledge. Precise notions of distributed algo-
rithms for networks with fixed topology are given in
the literature on automata theory and parallel comput-
ing [40], [41]. In the context of networks of mobile
agents, where the topology changes dynamically, we
borrow the notion of proximity graph from computa-
tional geometry to arrive at a satisfactory definition of
spatially distributed algorithms.

Basic Geometric Notions
A partition of a set S ⊂ R2 is a subdivision of S into com-
ponents with disjoint interiors. Given S ⊂ R2 and a set
P = {p1, . . . , pn} ⊂ S of n distinct points, the Voronoi parti-
tion [42] of S generated by P is the collection of sets
{V1(P), . . . ,Vn(P)} defined by Vi(P) = {q ∈ S | ‖q − pi‖ ≤
‖q − pj‖ for all pj ∈ P} . We refer to Vi(P) as the Voronoi
cell of pi. A Voronoi partition is depicted in Figure 5(a); see
also “Georgy Fedoseevich Voronoy and His Diagrams.”

For p ∈ R2 and r > 0, let B(p, r) denote the closed
ball in R2 centered at p with radius r, and let ∂B(p, r)
denote  the  boundary  o f  B(p, r) .  For  a  se t
P = {p1, . . . , pn} ⊂ S of n distinct points, the r-limited
Voronoi partit ion inside S is  the collection of sets
{V1,r(P), . . . ,Vn,r(P)} , where Vi,r(P) =Vi(P) ∩ B(pi, r) .
This name is justified by the fact that the r-limited Voronoi
partition is the Voronoi partition of ∪iB(pi, r) ∩ S. Figure
5(b) illustrates this geometric construction. We refer to
Vi,r(P) as the r-limited Voronoi cell of pi.

Proximity Graphs and Their Properties
A proximity graph G is a function that associates to finite
collections of distinct points in Euclidean space a graph
whose vertices are the points and whose edges depend
on the relative positions of the points. More precisely,
given a set P = {p1, . . . , pn} ⊂ Rd of n distinct points, the
proximity graph G at P , denoted by G(P), is an undirect-
ed graph with vertex set P and with edge set EG(P),
where EG(P) ⊆ {{p, q} ∈ P × P | p �= q} , so that self-loops
are not allowed. A related notion is that of state-depen-
dent graphs, see [43]. Proximity graphs provide a natural
means for modeling the interconnection topology of a
network of robotic agents. In general, the interconnection

FIGURE 4 Territories of male Tilapia mossambica. Some species of
fish exhibit territorial behavior by globally partitioning the environ-
ment into nonoverlapping zones. In this top-view photograph, each
territory is a pit dug in the sand by its occupant. The rims of the pits
form a pattern of polygons known as a Voronoi partition. The breed-
ing males are the black fish, which range in size from about 15 cm
to 20 cm. The gray fish are the females, juveniles, and nonbreeding
males. Photograph reprinted from [6] with permission from Elsevier.

FIGURE 5 Two types of Voronoi partitions. Decompositions of the
environment induced by Voronoi partitions have applications in
diverse areas, such as wireless communications, signal compres-
sion, facility location, and mesh optimization. Here, we explore the
application of Voronoi partitions to deployment problems involving
multi-agent networks. The colored regions in (a) and (b) are Voronoi
cells and r -limited Voronoi cells, respectively. In both cases the gen-
erators are 50 randomly selected points.

(a) (b)

As reported by the Mathematics Genealogy Project and

by Wikipedia, Georgy Fedoseevich Voronoy (1868–

1908) studied at the University of St. Petersburg under the

supervision of Andrei Andreyevich Markov. After earlier

work by Gauss and Dirichlet, he studied the now widely

adopted Voronoi diagrams in his work on quadratic forms

[S1]. The detailed survey [S2] discusses history, properties,

and applications of Voronoi diagrams.
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topology depends on the agents’ relative locations as
well as the agents’ sensing or communication capabili-
ties. An alternative approach to dynamic networks con-
sists of regarding the interconnection topology of the
network as a known time-dependent function, indepen-
dent of the state evolution of the individual robotic
agents [15], [32]–[34].

The following proximity graphs are discussed in [22],
[39], [42]:

» The r-disk graph Gdisk(r), where r > 0, in which two
agents are neighbors if their locations are within a dis-
tance r, that is, {pi, pj} ∈ EGdisk(r)(P) if ‖pi − pj‖ ≤ r.

» The Delaunay graph GD , in which two agents are
neighbors if their corresponding Voronoi cells inter-
sect, that is, {pi, pj} ∈ EGD(P) if Vi(P) ∩Vj(P) �= ∅ .

Note that the intersection of two Voronoi cells can
include only portions of the boundary of each cell.

» The r-limited Delaunay graph GLD(r), where r > 0, in
which two agents are neighbors if their corresponding
r-limited Voronoi cells intersect, that is,
{pi, pj} ∈ EGLD(P) if Vi,r(P) ∩Vj,r(P) �= ∅.

» The visibility graph Gvis,Q, where Q is a set in Rd, in
which two agents are neighbors if their positions are
visible to each other, that is, {pi, pj} ∈ EGvis,Q(P) if the
closed segment from pi to pj is contained in Q.

Figures 6 and 7 illustrate these four proximity graphs.
Additionally, we introduce the complete graph Gcomplete,
in which all pairs of agents are neighbors. This notion
allows us to model fully interconnected networks. The
connectivity properties of these graphs play a key role in
coordination problems, see [22], but are outside of the
scope of this article. Next, we define the set of neighbors
of a vertex in a proximity graph. Given a set
P = {p1, . . . , pn} ⊂ Rd and a proximity graph G, the set of
neighbors of pi ∈ P according to G is

NG,pi(P) = {q ∈ P | {pi, q} ∈ EG(P)} .

Spatially Distributed Maps
We are now ready to introduce the notion of a spatially dis-
tributed map. To simplify the exposition, we do not distin-
guish notationally between the tuple (p1, . . . , pn) ∈ (Rd)n

and the associated point set {p1, . . . , pn} ⊂ Rd ; we denote
both quantities by P. An exposition that does not rely on
this assumption is given in [28].

Given a set Y and a proximity graph G , we say that
T : (Rd)n → Yn is spatially distributed over G if the j th
component Tj of the map T evaluated at any
P = (p1, . . . , pn) ∈ (Rd)n is a function only of pj and of the
vertices in G(P) that are neighbors of pj. In other words,
through information about the location of its neighbors
according to G, each agent j has sufficient information to
compute the value Tj(P).

It is also useful to determine when a given proximity
graph contains sufficient information to compute a sec-
ond proximity graph. Given proximity graphs G1 and G2,
we say that G1 is spatially distributed over G2 if each
agent, when informed about the location of its neighbors
according to G2, has sufficient information to determine
its set of neighbors according to G1. As a first example, if
an agent knows the position of its neighbors in the com-
plete graph (that is, of every other agent in the network),
then it is clear that the agent has sufficient information to
determine its neighbors according to any proximity
graph. As a second example, since two points having
intersecting r-limited Voronoi cells must be less than 2r
apart, the r-limited Delaunay graph GLD(r) is spatially
distributed over the 2r-disk graph Gdisk(2r). This fact
plays a role in coordination algorithms where agents who

FIGURE 6 Proximity graphs in R2. Proximity graphs provide a natural
way to mathematically model the interconnection topology among
the agents resulting from their sensing or communication capabili-
ties. (a) The 2r -disk, (b) Delaunay, and (c) r -limited Delaunay
graphs for the point set in Figure 5.

(a) (b)

(c)

FIGURE 7 Visibility-based deployment. (a) A network of agents
equipped with omnidirectional cameras can see the blue-colored
region of the nonconvex environment Q. (b) The underlying visibility
graph Gvis,Q. The overall objective is to deploy the agents so as to
maximize the area visible to the network.

(a) (b)
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need to know the location of their neighbors according to
the graph GLD(r) can establish that information through
the knowledge of their neighbors in Gdisk(2r).

ENCODING COORDINATION TASKS
Our second goal is to develop methods for expressing
motion-coordination tasks. The aggregate behavior of the
entire mobile network is evaluated by means of appropri-
ate objective functions. Achieving a coordination task
corresponds to moving the agents and changing their
state to maximize or minimize the objective function.
Since maximizers or minimizers must be critical points,
we seek to characterize the critical points of the aggregate
objective function. In what follows, we illustrate how
locational optimization functions from geometric opti-
mization are helpful in formalizing various network
objectives. We discuss deployment problems in convex
and nonconvex environments as well as consensus, ren-
dezvous, and cohesiveness problems; appropriate objec-
tive functions are considered for each scenario. We also
pay special attention to the smoothness properties of
these functions and the spatially distributed character of
their gradients.

Aggregate Objective Functions for Deployment
Loosely speaking, the deployment problem consists of
placing a network of mobile agents inside a given environ-
ment to achieve maximum coverage. The notion of cover-
age can be defined in many possible ways, as illustrated in
the following discussion.

Let Q ⊂ Rd be a convex polytope. A density function
φ : Q → [0,∞) is an integrable function. The function φ
quantifies the relative importance of different points in the
environment; for example, up to a rescaling, φ might mea-
sure the probability that an event of interest takes place in
the environment. A performance function f : [0,∞) → R

is a nonincreasing and piecewise differentiable function
with finite jump discontinuities. This function describes
the utility of placing an agent at a certain distance from a
given location in the environment. To illustrate this notion,
consider a sensing scenario in which the agents are
equipped with acoustic sensors that measure sounds origi-
nating in the environment. Because of noise and loss of
resolution, the ability to detect a sound originating at a
point q from the i th sensor at the position pi degrades with
the distance ‖q − pi‖. This ability is measured by the per-
formance function f .

Given a density function φ and a performance function
f , we are interested in maximizing the expected value of
the coverage performance provided by the group of agents
for points in the convex polytope Q ⊂ Rd. We thus define
H : Qn → R by

H(P) =
∫

Q
max

i∈{1,...,n}
f (‖q − pi‖)φ(q)dq , (1)

where P = (p1, . . . , pn). Since H depends on all of the loca-
tions p1, . . . , pn, H is an aggregate objective function. This
objective function is commonly studied in locational opti-
mization [22], [24]. We seek to find local maximizers of H.

Different choices of performance function give rise
to different aggregate objective functions with particu-
lar features. We now examine the following relevant
cases:

Distortion problem. If f (x) = −x2 , then H takes the
form

HC(P) = −
n∑

i=1

∫
Vi(P)

‖q − pi‖2φ(q)dq

= −
n∑

i=1

J(Vi(P), pi) , (2)

where J(W, p) is the polar moment of inertia of the set
W ⊂ Q about the point p [45]. In signal compression, −HC
is the distortion function, while the same function appears
in various disciplines, such as facility location, numerical
integration, and clustering analysis [44].

Area problem. For a set S, let 1S denote the indicator
function, that is, 1S(q) = 1, if q ∈ S, and 1S(q) = 0, if q �∈ S.
If f = 1[0,R] , where R > 0, then H corresponds to the area,
weighted according to φ , of the union of the n balls
B(p1, R), . . . , B(pn, R); that is,

Harea,R(P) = areaφ

(∪n
i=1B(pi, R)

)
, (3)

where areaφ(S) = ∫
S φ(q)dq.

Aggregate Objective Functions
for Visibility-Based Deployment
Given a nonconvex polytope Q ⊂ Rd and p ∈ Q , let
S(p) = {q ∈ Q | [q, p] ⊂ Q} denote the visible region in Q
from the location p (here [q, p] is the closed segment from q
to p). Define

Hvis(P) =
∫

Q
max

i∈{1,...,n}
1S(pi)(q)dq .

In two dimensions, the function Hvis measures the area of
the subset of Q composed of points that are visible from at
least one of the agents located at p1, . . . , pn. Therefore, we
seek to find maximizers of Hvis. By including a density
function φ : Q → [0,∞) in the definition of Hvis , more
importance can be assigned to some regions of the envi-
ronment (for instance, doors) than others.

Aggregate Objective Functions for Consensus
In this section we consider a setup based on a fixed graph
instead of a proximity graph. Let G = ({1, . . . , n}, E) be an
undirected graph with n vertices. The Laplacian matrix L
associated with G [46] is the n × n matrix with entries
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Lij =



−1, if {i, j} ∈ E,

degree(i), if i = j,
0, otherwise,

where degree(i) is the number of neighbors of node i. The
Laplacian matrix is symmetric, positive semidefinite, and
singular, and has rank n − 1 if and only if G is connected.
Following [32], we define the disagreement function or
Laplacian potential �G : Rn → [0,∞) associated with G by

�G(x) = xTLx = 1
2

∑
{i, j}∈E

(xj − xi)
2 . (4)

For i ∈ {1, . . . , n}, the variable xi, which is associated with
agent pi, can represent physical quantities such as heading,
position, temperature, or voltage. Agents pi and pj agree if
and only if xi = xj. It is clear that �G(x) = 0 if and only if
every pair of neighboring nodes in the graph G agree.
Therefore, �G(x) quantifies the group disagreement in a
network.

Note that achieving consensus is a network coordina-
tion problem that does not necessarily refer to physical
variables such as spatial coordinates or velocities. In what
follows we consider a spatial version of consensus, which
we refer to as rendezvous.

Aggregate Objective Function for Rendezvous
Rendezvous means agreement over the location of the
agents in a network. An objective function that is useful for
the purpose of rendezvous is Vdiam : (Rd)n → [0,∞) ,
defined by

Vdiam(P) = max{‖pi − pj‖ | i, j ∈ {1, . . . , n}} .

It is clear that Vdiam(P) = 0 if and only if pi = pj for all
i, j ∈ {1, . . . , n}. Therefore, each global minimizer of Vdiam
corresponds to a network configuration in which the
agents rendezvous. The map Vdiam : (Rd)n → [0,∞) is
locally Lipschitz (with Lipschitz constant 1) and invariant
under permutations of its arguments.

Aggregate Objective Functions for Cohesiveness
Let us consider one final example of an aggregate objec-
tive function that encodes a motion-coordination task. A
repulsion/attraction function h : (0,∞) → R is a continu-
ously differentiable function satisfying the following condi-
tions: (i) limR→0+ h(R) = ∞, (ii) there exists R0 > 0 such that
h is convex on (0, R0) and concave on (R0,∞) , (iii) h
achieves its minimum at every point in the interval
[R∗, R ′∗] ⊂ (0, R0), and (iv) there exists R1 ≥ R0 such that
h(R) = c for all R ≥ R1. The assumption that h is constant
for all sufficiently large distances models limited interaction
among agents. Figure 8 illustrates a typical repulsion/
attraction function.

Let G be a proximity graph and define the aggregate
objective function

Hcohe,G(P) =
∑

{pi,pj}∈EG(P)

h(‖pi − pj‖) , (5)

where h is a repulsion/attraction function. The minimizers
of Hcohe,G correspond to cohesive network configurations.
Specifically, for groups of two or three agents, minimizers
of Hcohe,G are configurations in which the distances
between all neighboring agents are within the interval
[R∗, R ′∗]. This objective function and its variations, which
are used in [19] and [20] for the complete graph and in [16]
for the r-disk graph, can be employed to guarantee colli-
sion avoidance and cohesiveness of the mobile network.

CORRECTNESS AND PERFORMANCE
ANALYSIS OF COORDINATION ALGORITHMS
In this section we briefly mention techniques for analyzing
cooperative control problems. A coordination algorithm,
which consists of a control law for each agent of the net-
work, is either a vector field or a map depending on
whether the dynamical model is defined in continuous
time or discrete time. From another viewpoint, a coordina-
tion algorithm for a group of agents gives rise to a set of
coupled dynamical systems.

The first scientific concern regarding a coordination algo-
rithm is the investigation of its correctness. We loosely
understand that an algorithm behaves correctly when cer-
tain sets that encode the desired behaviors are invariant and
attractive for the evolution of the closed-loop network. Typi-
cally, the stability and convergence analysis is a complicated
matter for various reasons. For example, the couplings
between the dynamical systems change as agents move. The
resulting dynamic topology yields discontinuous vector

FIGURE 8 Sample repulsion/attraction function. Repulsion/attraction
functions are used to define aggregate objective functions that
encode desirable network configurations in which all pairs of agents
are located within a distance R satisfying R∗ ≤ R ≤ R′

∗ . These func-
tions play a key role in cohesiveness problems for mobile networks.

R* R'* R0 R1 R

h(R)

Distance
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fields that model the evolution of the network. In addition,
we might be faced with the task of analyzing nondetermin-
istic dynamical systems because of design choices (that is, at
each time instant throughout the evolution, each agent can
choose among multiple possible control actions [22]), com-
munication, control, and sensor errors during the execution
of the coordination algorithm [25], [28], or as a way of deal-
ing with asynchronism (for example, the asynchronous,
deterministic evolution of a mobile network may be sub-
sumed into a larger set of synchronous, nondeterministic
evolutions [26]).

A second concern regarding a coordination algorithm is
the investigation of its complexity. Loosely speaking, we
wish to characterize how quickly a coordination algorithm
completes the required task as well as how costly the algo-
rithm is in terms of computation, exchanged messages,
and energy consumption. In other words, the performance
of a coordination algorithm is quantified by the growth
rate of various cost functions for increasing numbers of
network agents.

Among the analysis methods used for stability and
complexity analysis, we roughly distinguish between lin-
ear techniques (ergodic, stochastic [15], and circulant
matrices [30] from matrix analysis, graph Laplacians and
algebraic connectivity [15], [32] from algebraic graph theo-
ry), and nonlinear techniques (symmetries of differential
equations [14], invariance principles for both differential
inclusions and nondeterministic dynamical systems [23],
and graph grammars [18] from automata theory). As a rep-
resentative sample of these methods, two relevant tech-
niques are discussed in “An Invariance Principle for
Nondeterministic Dynamical Systems” and “Tridiagonal
Toeplitz and Circulant Matrices.”

DESIGNING EMERGENT BEHAVIORS
We now discuss four approaches to designing motion-
coordination algorithms. Although successful examples
exist for all four design approaches, there does not yet
exist a rigorous system-theoretic approach to general
motion-coordination problems. Our intention is therefore
to provide a first step toward establishing effective design
methods by exploiting the modeling and analysis tools dis-
cussed in the previous sections.

Given a network of identical agents equipped with
motion control and communication capabilities, the fol-
lowing subsections discuss techniques for analyzing dis-
tributed and coordinated motions. The first approach is
based on the design of gradient flows, where a coordina-
tion task is specified together with a proximity graph
imposing a communication constraint. The second
approach is based on the analysis of emergent behaviors,
where a notion of neighboring agents and an interaction
law between them is given. The third approach is based
on the identification of meaningful local objective func-
tions whose optimization helps the network achieve the

desired global task. Finally, the last approach relies on
the composition of basic behaviors. Although the four
approaches have similarities, they are applicable under
distinct circumstances and, together, provide a set of
useful heuristics. When applicable, the gradient-flow

Here we briefly survey a recently developed invariance

principle for nondeterministic discrete-time dynamical

systems. This principle can serve to establish correctness for

distributed systems with switching topologies. Let T be a set-

valued map on Rn, that is, a map that associates to every

point in Rn a nonempty set in Rn. Let Z≥0 be the set of non-

negative integers. A trajectory of T is a map p : Z≥0 → Rn

with the property

p(� + 1) ∈ T (p(�)).

In other words, given any initial p0 ∈ Rn, a trajectory of T is

computed by recursively choosing p(� + 1) to be an arbitrary

element of T (p(�)). Therefore, T induces a nondeterministic

discrete-time dynamical system [S3]. To study the stability of

these discrete-time dynamical systems, we introduce the fol-

lowing notions. According to [S3], T is closed at p ∈ Rn if, for

all pairs of convergent sequences pk → p and p ′
k → p ′ such

that p ′
k ∈ T (pk ), we have p ′ ∈ T (p). In particular, every map

T : Rn → Rn that is continuous at p ∈ Rn is closed at p. A set

C is weakly positively invariant with respect to T if, for every

initial condition p0 ∈ C, there exists at least one trajectory of

T starting at p0 that remains in C, or equivalently, if there

exists p ∈ T (p0) such that p ∈ C . Finally, a function V :

R n → R is nonincreasing along T on W ⊂ R n if

V (p ′) ≤ V (p) for all p ∈ W and p ′ ∈ T (p). We are ready to

state the following result [22].

THEOREM 1

Let T be a set-valued map on Rn and let W ⊂ Rn. Assume

that, for all p ∈ W ⊂ Rn, T is closed at p, and let V : Rn →
R be a continuous function that is nonincreasing along T

on W . Assume that the trajectory p : Z≥0 →Rn of the set-

valued map T remains in W and is bounded. Then there

exists c ∈ R such that

p(�) −→ M ∩ V −1(c) as � → ∞,

where M is the largest weakly positively invariant set in

{p ∈ W̄ | there exists p ′ ∈ T (p) with V (p ′) = V (p)}, where W̄

denotes the closure of W .
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approach is preferable because the convergence analysis
is often easier. Next, we discuss each of these approaches
in detail, and illustrate their applicability in specific
coordination tasks.

Designing the Coordination Algorithm 
from the Aggregate Objective Function
The first step of the gradient-flow approach consists of
identifying a global aggregate objective function that is
relevant to the desired coordination task. Let us assume
we seek to maximize the objective function (the same dis-
cussion holds, with slight modifications, when we seek to
minimize it). Once the objective function is determined,
the next step is to analyze its smoothness properties and
compute its gradient or generalized gradient. With this

information, it is possible to characterize the objective
function’s critical points. The critical points include the set
of maximizers, and therefore encode the desired network
configurations as explained in the section “Encoding
Coordination Tasks.” The next step is to identify proximi-
ty graphs to facilitate computation of the gradient of the
objective function in a spatially distributed manner. If at
least one of these proximity graphs is spatially distributed
(in the sense defined in the section “Spatially Distributed
Maps”) over the communication graph of the mobile net-
work, then a control law for each agent consists of follow-
ing the gradient of the aggregate objective function. By the
invariance principle, this coordination algorithm guaran-
tees convergence of the closed-loop network trajectories to
the set of critical points.

Here, we discuss convergence rates for linear dynamical sys-

tems defined by Toeplitz and circulant matrices [S4], [S5].

For n ≥ 2 and a, b, c ∈ R, we define the n × n matrices 

Tridn(a, b, c) =




b c 0 . . . 0
a b c . . . 0
...

. . .
. . .

. . .
...

0 . . . a b c
0 . . . 0 a b




,

Circn(a, b, c) = Tridn(a, b, c)

+




0 . . . . . . 0 a
0 . . . . . . 0 0
...

. . .
. . .

. . .
...

0 0 . . . 0 0
c 0 . . . 0 0




.

We refer to Tridn and Circn as tridiagonal Toeplitz and circulant,

respectively. These matrices appear when the communication net-

work has the chain or ring topology as, for instance, in rendezvous

[S6] and in cyclic pursuit [29], [30]. In Figure S1, we illustrate two

algorithms in which the control action of each agent depends on the

location of the agent’s clockwise and counterclockwise neighbors.

A salient feature of these matrices is that their eigenvalues

and their dependence on n can be explicitly computed [S6]. First,

consider the discrete-time trajectory x : Z≥0 → R
n satisfying

x(� + 1) = Tridn(a, b, c) x(�), x(0) = x0.

For the case a = c �= 0 and |b| + 2|a| = 1, x converges exponen-

tially fast to 0, while the maximum time required for

‖x(�)‖2 ≤ ε‖x0‖2 is of order n2 log ε−1 for small ε. Second, con-

sider the discrete-time trajectory y : Z≥0 → R
n satisfying

y(� + 1) = Circn(a, b, c) y(�), y(0) = y0.

For the case a ≥ 0, c ≥ 0, b > 0, and a + b + c = 1, y converges

exponentially fast to yave1, where yave = 1
n 1T y0, while the maxi-

mum time required for ‖y(�) − yave1‖2 ≤ ε‖y0 − yave1‖2 is again

of order n2 log ε−1. Here 1 = (1, . . . , 1)T .
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FIGURE S1 Clockwise and counterclockwise neighbors of an
agent in a network of robots moving along a circular domain.
Control laws such as “go toward the midpoint umid of the loca-
tions of the clockwise and counterclockwise neighbors”, or “go
toward the midpoint umid,V of the Voronoi segment of the agent”
give rise to linear dynamical systems described by circulant
matrices. In the closed-loop system determined by umid,V , the
agents achieve a uniform distribution along the circular domain.
In contrast, oscillations persist when the law umid is adopted.

umid, Vumid dclockwise

pi+1

pi

pi−1
d co

un
ter

clo
ck

wise

Tridiagonal Toeplitz and Circulant Matrices



Distortion and Area Problems
Coordination algorithms for the distortion and area prob-
lems can be based on the gradient-flow approach [22].
Given a convex polygon Q and R > 0, the functions HC
and Harea ,R defined by (2) and (3), respectively, are differ-
entiable almost everywhere and satisfy

∂HC

∂pi
(P) = 2M(Vi(P)) (CM(Vi(P)) − pi), (6)

∂Harea, R
∂pi

(P) =
∫

arc(∂Vi,R(P))

nB(pi,R)φ , (7)

where nB(p,r)(q) is the outward unit normal to B(p, R) at a
boundary point q ∈ ∂B(p, R) and, for each i ∈ {1, . . . , n},
arc(∂Vi,R(P)) is the union of all arcs in ∂Vi,R(P). In (7), one
can also replace arc(∂Vi,R(P)) with Vi,R(P) ∩ ∂B(pi, R). The
symbols M(W) and CM(W) denote, respectively, the
mass and the center of mass with respect to φ of W ⊂ Q.
The critical points P ∈ Qn of HC satisfy pi = CM(Vi(P))

for all i ∈ {1, . . . , n}. These configurations are usually
referred to as centroidal Voronoi configurations [44]. The
critical points P ∈ Qn of Harea,R have the property that
each pi is a local maximum for the area of
Vi,R(P) =Vi(P) ∩ B(pi, R) at fixed Vi(P). These configura-
tions are area-centered Voronoi configurations.

From (6) it is clear that the gradient of HC is spatially
distributed over GD, whereas from (7) we deduce that the
gradient of Harea,R is spatially distributed over GLD(R). The
gradient flows of HC and of Harea,R correspond to the coor-

dination algorithms “move-toward-the-centroid of own
Voronoi cell” and “move in the direction of the (weighted)
normal to the boundary of own cell,” respectively. Figures
9 and 10 illustrate the execution of these algorithms. Fig-
ures 11 and 12 illustrate the adaptive properties of these
algorithms with respect to agent arrivals and departures.

Consensus
Another example of the gradient-flow approach is the
asymptotic agreement algorithm in [32]. For a fixed undi-
rected graph G = ({1, . . . , n}, E), the function �G in (4) is
smooth, and its partial derivative takes the form

∂�G

∂x
= 2Lx . (8)

Clearly, this gradient is distributed with respect to the
graph G. The implementation of the gradient control law
leads to the algorithm ẋi = ∑

{i, j}∈E(xj − xi) , for
i ∈ {1, . . . , n}. This algorithm asymptotically achieves aver-
age consensus, that is, all agents converge to a common
value. Additionally, this final common value is equal to
1
n

∑n
i=1 xi(0).

Cohesiveness
The gradient-flow approach is also used for coordination
algorithms that achieve cohesiveness [16], [19], [20]. For
the complete graph Gcomplete , the function Hcohe,Gcomplete ,
given in (5), is smooth almost everywhere and satisfies

FIGURE 10 Area problem. Each of the 20 mobile agents follows the
gradient (7) of the area function Harea,r . The density function φ,
which specifies areas of greater importance, and the environment
are the same as in Figure 9. (a) The initial and (c) final locations with
the corresponding Voronoi partitions. (b) The gradient descent flow.
Each agent operates with a finite communication radius 2r . For each
agent i , the r -limited Voronoi cell Vi ,r (P) is plotted in light gray.

(a) (b)

(c)
FIGURE 9 Distortion problem. Each of the 20 mobile agents moves
toward the centroid of its Voronoi cell. This strategy corresponds to
the network following the gradient (6) of the distortion function HC.
Areas of the convex polygon with greater importance are colored in
darker blue. This coloring corresponds to the contour plot of the
density function φ in the definition (1) of HC. (a) The initial and (c)
final locations with the corresponding Voronoi partitions. (b) The
gradient descent flow.

(b)(a)

(c)
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∂Hcohe,Gcomplete

∂pi
(P) =

n∑
j �=i

∂

∂pi
h(‖pi − pj‖)

=
∑

pj∈NGdisk(R1),pi

∂

∂pi
h(‖pi − pj‖) .

The second equality uses the fact that (dh/dR)(R) vanishes
for R ≥ R1 . This gradient is spatially distributed over
Gdisk(R1). Using the negative gradient of this cost function
for the control law guarantees that the network of agents
asymptotically approaches the set of critical points of
Hcohe,Gcomplete .

The aggregate objective function does not always enjoy
the desirable property that its gradient is spatially distrib-
uted with respect to the required proximity graph. In other
words, given an available information flow, the corre-
sponding gradient algorithm cannot always be computed.
Characterizing all functions whose gradient is spatially
distributed with respect to a given proximity graph is an
open mathematical challenge. If the gradient cannot be
computed with the given information flow, a possible
approach is the following: 1) consider constant-factor
approximations of the objective function, 2) identify those
approximations whose gradient is spatially distributed
with respect to an appropriate proximity graph, and 3)
implement the coordination algorithm that makes each
agent follow the gradient of the approximation. This
approach is followed in [22].

Analyzing the Coordinated Behavior
Emerging from Basic Interaction Laws
The emergent-behavior approach, typically inspired by
heuristics, consists of devising for each network agent a
simple control law that can perform the desired task. The
resulting coordination algorithm must be spatially distrib-
uted with regard to an appropriate proximity graph, and
its correctness must be established. Convergence can be
characterized by finding an aggregate objective function
that encodes the desired coordination task and showing
that this function is optimized along the execution of the
coordination algorithm.

Move-Away-from-Closest-Neighbor
Consider the coordination algorithm where each agent
moves away from its closest neighbor [23] (see Figure 13).
This simple interaction law is spatially distributed over GD.
It can be proved that, along the evolution of the network,
the aggregate cost function

HSP(P) = min
i �= j∈{1,...,n}

{
1
2
‖pi − pj‖, dist(pi, ∂Q)

}
, (9)

is nondecreasing. The function HSP corresponds to the
noninterference problem, where the network tries to maxi-
mize coverage of the domain in such a way that the com-
munication radii of the agents do not overlap or leave the
environment (because of potential interference). Under
appropriate technical conditions, it can be shown that the

FIGURE 12 Adaptive network behavior under agent arrivals in the
area problem. After the final configuration in Figure 10 is reached,
five new agents (yellow) enter the environment. The rest of the net-
work adapts to the new situation. (a) The location of the agents
when the arrival of the new agents occurs. (b) The gradient descent
flow after this event. (c) The final location of the network.

(a) (b)

(c)
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FIGURE 11 Adaptive network behavior under agent failures in the dis-
tortion problem. After the final configuration in Figure 9 is reached,
four network agents (yellow) fail and cease to provide coverage in
their respective Voronoi cells (orange). The rest of the network
adapts to the new situation. (a) The location of the agents when the
failures occur. (b) The gradient descent flow since the failure
occurred. (c) The final location of the remaining agents.

(a) (b)

(c)



critical points of HSP are configurations for which each
agent is at the incenter of its own Voronoi region, where
the incenter set of a polygon is the set of centers of the
maximum-radius spheres contained in the polygon.

Flocking
Flocking consists of reaching consensus on the direction of
motion by the agents in the network. For a proximity
graph G , the coordination algorithm of [47] makes each
agent perform the following steps: 1) detect its neighbors’
headings; 2) compute the average of its neighbors’ head-
ings and its own heading; and 3) update its heading to the
computed average. Clearly, this algorithm is spatially dis-
tributed over G. Moreover, assuming that G remains con-
nected throughout the evolution, it can be shown [15] that
the agents asymptotically acquire the same heading.

Designing the Coordination
Algorithm from Local Objective Functions
The local-objective approach has common elements with
the two approaches discussed above. Now, to derive a
control law for each specific agent, we assume that the
neighboring agents of that agent, or some spatial structure
attributed to it, remain fixed. We then define a local objec-
tive function, which is somehow related to the global
aggregate objective function encoding the desired coordi-
nation task. Next, we devise a control law to optimize the
local function. The specific control strategy might be
heuristically derived or might arise naturally from the gra-
dient information of the local objective function. Once the
coordination algorithm is set up, we can determine
whether the algorithm is spatially distributed and charac-
terize its asymptotic convergence properties.

Noninterference Problem
Consider the aggregate objective function HSP defined in
(9). Consider the alternative expression

HSP(P) = min
i∈{1,...,n}

smVi(P)(pi) ,

where smW(p) is the distance from p to the boundary of
the convex polygon W, that is, smW(p) = dist(p, ∂W). Note
that both HSP and smW are Lipschitz, but not differen-
tiable. Now, for i ∈ {1, . . . , n}, consider smVi(P) as a local
objective function. The control law for agent pi is deter-
mined as follows: we fix the Voronoi cell Vi(P), compute
the generalized gradient of the function smVi(P) (which
now depends only on pi because Vi(P) is held fixed), and
implement the resulting gradient ascent as the direction of
motion. The resulting dynamical system is generally dis-
continuous, and can be studied by means of nonsmooth
stability analysis [48]–[50]. It can be shown [23] that this
interaction law corresponds precisely to the strategy
“move-away-from-closest-neighbor” discussed earlier (see

the section “Move-Away-from-Closest-Neighbor”). A
related strategy consists of each agent moving toward the
incenter of its own Voronoi cell. The latter strategy can
also be shown to make HSP nondecreasing and to possess
analogous asymptotic convergence properties.

Worst-Case Problem
Consider the aggregate objective function

HDC(P) = max
q∈Q

{
min

i∈{1,...,n}
‖q − pi‖

}
= max

i∈{1,...,n}
lgVi(P)(pi) ,

where lgW(p) is the maximum distance from p to the
boundary of the convex polygon W ,  that is,
lgW(p) = maxq∈W ‖q − pi‖ . Note that both HDC and lgW
are Lipschitz, but not differentiable. Now, for
i ∈ {1, . . . , n}, consider lgVi(P) as a local objective function.
The control law for agent pi is determined as follows: we
fix the Voronoi cell Vi(P), compute the generalized gradi-
ent of the function lgVi(P), which now depends only on pi
because Vi(P) is held fixed, and implement the resulting
gradient descent as the direction of motion. It can be
shown [23] that this interaction law precisely corresponds
to the strategy “move-toward-the-furthest-away-vertex-
in-own-cell.” A related strategy consists of each agent
moving toward the circumcenter of its own Voronoi cell,
where the circumcenter of a polygon is the center of the
minimum-radius sphere that contains it. Both strategies
can be shown to make HDC nonincreasing and possess

FIGURE 13 Noninterference problem. Each of the 16 mobile agents
moves away from its closest neighbor. The resulting network behav-
ior maximizes the coverage of the environment in such a way that
the communication radii of the agents do not overlap or leave the
domain. (a) The initial and (c) final locations with corresponding
Voronoi partitions. (b) The network evolution. For each agent i , the
ball of maximum radius contained in the Voronoi cell Vi (P) and cen-
tered at pi is plotted in light gray in (a) and (c).

(a) (b)

(c)
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similar asymptotic convergence properties. These ideas
can be combined in other settings with different capabili-
ties of the mobile agents, for instance, in higher dimen-
sional spaces (see Figure 14).

Rendezvous
Let G be a proximity graph spatially distributed over, and
with the same connected components as, the r-disk graph.
Consider the circumcenter algorithm over G , where each
agent i ∈ {1, . . . , n} performs the following steps: 1) detects its
neighbors NG,pi(P) according to G; 2) computes the circum-
center CC(Mi) of the point set Mi = {pi} ∪ NG,pi(P) com-
prised of its neighbors and of itself; and 3) moves toward this
circumcenter while maintaining connectivity with its neigh-
bors. To maintain connectivity, the allowable motion of each
agent is restricted as described in the following paragraph.

At each time instant, if two neighboring agents pi, pj are
restricted to move in the closed ball B((pi + pj/2), (r/2)),
then they remain neighbors in the r-disk graph. We are
therefore interested in computing the point in the segment
[pi, CC(Mi)] that is closest to CC(Mi) and, at the same
time, belongs to the constraint set Cp,r(NGdisk(r),i(P))

defined as the intersection of all B((pi + pk/2), (r/2)) for
pk ∈ NGdisk(r),i(P). To do this, given q0 and q1 in Rd, and a
convex closed set Q ⊂ Rd with q0 ∈ Q, consider the “from
to inside” function defined by

fti(q0, q1, Q) =
{

q1, if q1 ∈ Q,

[q0, q1] ∩ ∂Q, if q1 �∈ Q.

The circumcenter algorithm is then the following: during the
time interval [t, t + 1], agent i moves from pi(t) to CC(Mi(t))
while remaining in Cpi(t),r(NGdisk(r),pi(t)(P(t))) to maintain
connectivity with its neighbors, that is, to [25], [26], [28]

fti(pi(t), CC(Mi(t)), Cpi(t),r(NGdisk(r),pi(t)(P(t)))) .

Note that, by moving toward the circumcenter, assum-
ing that all other agents remain fixed, each agent minimizes
the local objective function given by the maximum distance
from the agent to all of its neighbors in the proximity graph
G. By construction, this coordination algorithm is spatially
distributed over the proximity graph G. Moreover, we can
prove that the evolution of the aggregate objective function
Vdiam is nonincreasing along the execution of the circum-
center algorithm. Using the invariance principle for closed
algorithms, as described in “An Invariance Principle for
Nondeterministic Dynamical Systems,” we can characterize
the asymptotic correctness properties of the circumcenter
algorithm over G, as illustrated in Figure 15.

Designing the Coordination Algorithm 
by Composing Different Behaviors
Finally, we combine different behaviors and examine the
resulting coordination algorithm. In particular, behaviors can
be combined by implementing one coordination algorithm on
most of the network agents and a second coordination algo-
rithm on the remaining agents. Coupling two algorithms in
this parallel fashion results in interesting overall network
behaviors. For example, we may prescribe an open-loop

FIGURE 14 Worst-case scenario. The network tries to maximize the
coverage (illumination) of a convex polygon. Each of the 12 mobile
agents illuminates a vertical cone with a fixed and common aspect
ratio. Each agent determines its Voronoi region within the planar
polygon (the same as in Figure 13). Then, each agent moves its
horizontal position toward the circumcenter of its Voronoi cell and its
vertical position to the minimal height spanning its own Voronoi cell.
(a) The initial and (b) final locations.

(a) (b)

FIGURE 15 Circumcenter algorithm in Euclidean space. Each of the
25 mobile agents moves toward the circumcenter of the point set
comprised of its neighbors and of itself. The resulting network
behavior asymptotically achieves rendezvous at a point. Indeed, the
invariance principle allows us to establish the algorithm’s correct-
ness under fairly general conditions. In the execution plotted in this
figure, at each time step, each agent randomly selects Gdisk(2r ) or
GLD(r ) to compute its set of neighbors.

x
y

z
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motion on some of the network agents (for instance, specify-
ing that particular agents stay fixed or follow a desired path)
and implement a feedback law for the others. Examples of
this approach include the formation control strategy in [26] to
make the network form a straight line, as well as the leader-
following algorithm given in [15] to make the network flock
in a pre-specified direction. Along these lines, it is interesting
to explore more general parallel, serial, and hierarchical
approaches to the composition of behaviors.

CONCLUSIONS
This article surveys methods to model spatially distributed
problems, encode various coordination tasks through appro-
priate cost functions, analyze stability and convergence
properties, and design motion-coordination schemes. Specif-
ic technical tools include proximity graphs, spatially distrib-
uted maps, aggregate objective functions, circulant matrices,
and invariance principles. These tools play a key role in the
various coordination algorithms reported here, as summa-
rized in Table 1. We believe that numerous research issues
remain open in the ongoing effort to design algorithms that
are efficient, robust, and scalable to large size networks. We
expect the coming years to witness an intense development
of the field of distributed coordination and of its practical use
in applications for multiple vehicles and sensor networks.
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