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Abstract— This paper presents a motion control algorithm  simple polygon. To the best of our knowledge, this problem
for a planar mobile observer such as, e.g., a mobile robot js still open and is the subject of ongoing research; see
equipped with an omni-directional camera. We propose a [2], [3], [4], and the surveys on geometric optimization
nonsmooth gradient algorithm for the problem of maximizing ’ ' ' .
the area of the region visible to the observer in a simple and f"‘rt gaIIery_ problems [5_]’ (61. quever, randomized
nonconvex polygon. First, we show that the visible area is algorithms for finding the optimal location up to a constant
almost everywhere a locally Lipschitz function of the observer factor approximation exist; see [4]. These algorithms can b
location. Second, we provide a novel version of LaSalle Invari- regarded as open-loop algorithms that require knowledge of
ance Principle for discontinuous vector fields and Lyapunov the environment. Closed-loop heuristic algorithms for the

functions with a finite number of discontinuities. Finally, . . .
we establish the asymptotic convergence properties of the Next Best View problem are proposed and simulated in [7]

nonsmooth gradient algorithm and we illustrate numerically ~and in the early work [8].

its performance. A second set of relevant references are those on nons-
mooth stability analysis. Indeed, our approach to maximiz-
ing visible area is to design a nonsmooth gradient flow.

Consider a single-point mobile robot in a planar nonTo define our proposed algorithm we rely on the notions
convex environment modeled as a simple polygon: howf generalized gradient [9] and of Filippov solutions for
should the robot move in order to monotonically increasdifferential inclusions [10]. To study our proposed algjom
the area of its visible region (i.e., the region within itsdiof we extend recent results on the stability and convergence
sight)? This problem is the subject of this paper, togetheroperties of nonsmooth dynamical systems, as presented
with the following modeling assumptions. The dynamicain [11], [12].
model for the robot's motion is a first order system of the The contributions of this paper are threefold. First, we
form p = u, wherep refers to the position of the robot prove some basic properties of the area visible from a
in the environment and: is the driving input. The robot point observer in a nonconvex polygap, see Figure 1.
is equipped with an omni-directional camera and rangRamely, we show that the area of the visibility polygon, as
sensor; the range of the sensor is larger than the diameter
of the environment. The robot does not know the entire
environment and its position in it, and its instantaneous
motion depends only on what is within line of sight (this
assumption restricts our attention to memoryless feedback
laws).

In broad terms, this problem is related to numerous
optimal sensor location and motion planning problems in
the computational geometry, geometric optimization, and
robotics literature. In computational geometry [1], thasel
sical Art Gallery Problem amounts to finding the optimum
number of guards in a nonconvex environment so that each
point of the environment is visible by at least one guard.
A heuristic for this problem is to use a greedy approach
wherein the first robot (guard) is placed at the point where
it sees the maximum area. The next robot is placed where
it sees the maximum area not visible to the first and so on. Fig. 1. The visible area function over a nonconvex polygon.

In robotics, this approach is useful for 2D map building

wherein a robot moves in such a way so that its nex function of the observer position, is a locally Lipschitz
position is the best in terms of what it can see additionallfunction almost everywhere, and that the finite point set
In this robotic context, these problems are referred to adf discontinuities are the reflex vertices of the polyggn
Next Best View problems. The specific problem of interesfdditionally, we compute the generalized gradient of the
in this paper is that of optimally locating a guard in afunction and show that it is, in general not regular. Second,

I. INTRODUCTION




we provide a generalized version of the certain stability Now, let us turn our attention to the polygonal environ-
theorems for discontinuous vector fields available in thenent. Let@ be a simple polygon, possibly nonconvex. A
literature [11], [12]. Specifically, we provide a generaliz polygon is said to be simple if the only points in the plane
nonsmooth LaSalle Invariance Principle for discontinuoubelonging to two polygon edges are the polygon vertices.
vector fields, Filippov solutions, and Lyapunov functionsSuch a polygon has a well defined interior and exteNate
that are locally Lipschitz almost everywhere (except for ghat a simple polygon can contain holdset ) and 90Q
finite set of discontinuities). Third and last, we use thesdenote the interior and the boundary@f respectively. Let
novel results to design a nonsmooth gradient algorithm thd%(Q) = (v4,...,v,) be the list of vertices of) ordered
monotonically increases the area visible to a point observeounterclockwise. Thenterior angle of a vertex of @ is
To the best of our knowledge, this is the first provablythe angle formed insid@ by the two edges of the boundary
correct algorithm for this version of the Next Best Viewof @ incident atv. The pointv € Ve(Q) is areflex vertex
problem. We illustrate the performance of our algorithnif its interior angle is strictly greater than Let Ve,.(Q) be
via simulations for some interesting polygons. the list of reflex vertices of). If S is a finite set, then let
The paper is organized as follows. Section Il contains thg5| denote its cardinality.
analysis of the smoothness and of the generalized gradientA point ¢ € @ is visible fromp € Q if the segment
of the function of interest. Section Il contains the novebetweeng andp is contained inQ. The visibility polygon
results on nonsmooth stability analysis. Section IV presenS(p) C @ from a pointp € Q is the set of points inQ
the nonsmooth gradient algorithm and the properties ofisible from p. It is convenient to think ofp — S(p) as
the resulting closed-loop system. Finally, the simulagiona map from(@ to the set of polygons contained @. It
in Section V illustrate the convergence properties of thenust be noted that the visibility polygon is not necessarily
algorithm. In the interest of space, the proofs for the tssula simple polygon.
in the paper have not been included can be found in [13]. Definition 2.1: Let v be a reflex vertex of), and letw €
Ve(Q) be visible fromv. The (v, w)-generalized inflection
segment/ (v, w) is the set
In this section we study the area of the region visible to
a point observer equipped with an omnidirectional camera. Iv,w)={g € S)[g=Av+(1=Nw A>1}.
We show that the visible area, as a function of the locatiop|sp + is ananchor ofp € Q if it is visible from p and if
of the observer, is locally Lipschitz, except at a finite poin{, ¢ S(v) | ¢ = Av+ (1 — \)p, A > 1} is not empty.
set. We prove that, for general nonconvex polygons, the |n other words, a reflex vertex is an anchor jofif it
function is not regular. We also provide expressions for thgccludes a portion of the environment from Figure 2
generalized gradient of the visible area function whereveylystrates the various quantities defined above. Given a

it is |Oca”y LlpSChltZ We refer the reader to [9] for the point q and a line l let dlSt(q,l) denote the distance
notion of locally Lipschitz functions and related concepts petween them.

Let us start by introducing the set of lines on the
plane R?. For (a,b,c) € R*\ {(0,0,c) e R?|c e R},
we define the equivalence clasq(a,b,c)] =
{(a",V/,d) € R? | (a,b,c) = \(d',b', ), A € R}. The set
of lines onRR? is defined as

L= {l(a,b,c)] CR* | (a,b,c) € R®, a® +° #0}.

Il. THE AREA VISIBLE FROM AN OBSERVER

Next, two simple and useful functions are introduced.
Let fo : R* x R*\ {(p,p) e R* xR*[pe R’} — L

ot ; A2 i i Fig. 2. Reflex verticesv; and vg, a generalized inflection segment
map two distinct points irR™ to the line passing through I(v1,w), an anchor, of p and the visibility polygon (shaded region)

5 - :
them. For(xll,yl), (z2,y2) € R?, the function foi admits  fom’,. Note that the polygonal environment has a hole.
the expression

for (@1, 91), (@2, y2)) = [(y2 — Y1, 21 — T, Y132 — T132)).- Theorem 2.2:Let {I,}aca be the set of generalized in-
flection segments af, and letP be a connected component

If 11 || I2 denotes that the two lingls, I; € I are parallel, of @ \ UpeaIa For allp € P, the visibility polygon

let fip : L7\ {(l1,l2) € L? | Iy || 2} — R* map two lines 5(p) is simple and has a constant number of vertices, say

that are not parallel to their unique intersection poinke®i  Ve(S(p)) = {u1(p), ..., ur(p)}. Foralli € {1,...,k}, the

two linesi; = [(a1,b1,c1)] andls = [(az, b2, c2)] that are  map P 5 p — u,(p) is C¥ and either
not parallel, the functioryi, admits the expression dus(p) = 0
ui\p) =

fio(li,l2) = < if u;(p) € Ve(Q), or

Note that the functiong, and fi, are classC, i.e., they s (p) — dist(va, () 0] [y —va]"
are analytic over their domains. ’ (dist(p, 1) — dist(vq,1))2VaZ + 02 [ @ | [Ta—x| ~

baci —bicy aice — azer
azby — Cl1bQ7 azby — a1by .




if u;(p) = fip(foi(va,p),1), wherev, = (z4,v.) is an the mapsAg, 3 € B, are continuously differentiableon

anchor ofp and! = [(a, b, ¢)] is a line defined by an edge Ps. Equation (1) gives the value of the gradient foe Ps.

of Q. However, in general, fop € Ps, (... Pg,. \ Ve (Q),
Next, the area of a visibility polygon as a function of thebased on Theorem 2.3 and Lemma 2.4, we can write that

observer location is studied, see Figure 1. Recall that the

area of a simple polygofy with counterclockwise-ordered d(A°S)(p) = co {dAﬁl (p),...,dAg, (P)}~ 2

verticesVe(Q) = ((z1,y1),- - -, (Tn,yn)) IS given by

n

AQ) = %Zwi(yiq — Yi+1),

i=1

where (zo,y0) = (Tn,yn) aNd (Tp41,Ynt1) = (T1,91).
As in the previous theorem, letl,}.c4 be the set of
generalized inflection segments ©f and let P be a con-
nected component of) \ J,c 4 lo- Next, if p € P, the
visibility polygon from p has a constant number of vertices,
sa}c/k = | Ve(S(p))|, is simple, and satisfiegl o S(p) =

Fig. 4. Partition of@. The generalized gradient of the area function at

D ic1 Zi(Yim1 — yiy1) WhereVe(S(p)) = (u1,...,u) are  pis the convex hull of the gradient of four functions , ..., A4 at p.
ordered counterclockwisey;(p) = (z;,y:), uo = ug, and . _ _
up+1 = ui. Therefore,P > p — Ao S(p) is alsoC* and This completes our study of the generalized gradient of
the locally Lipschitz functiond - S. The following lemma
k OA(uy, ... ug) concerns the regularity of this function.
d(deS)(p) = ——5 — duilp)- (1) Lemma 2.5:There exists a nonconvex polygap such
i=1 ’ that the mapsd oS and —A - S restricted toQ \ Ve, (Q)

To illustrate this equality, it is convenient to introdudest are not regular.

versoroperator defined byers(X) = X/| X| if X € R?\ [1l. AN INVARIANCE PRINCIPLE IN NONSMOOTH
{0} and byvers(0) = 0. We depict the normalized gradient STABILITY ANALYSIS

vers(d(405)) of the visible area function in Figure 3. This section presents results on stability analysis for dis

continuous vector fields via nonsmooth Lyapunov functions.
The results extend the work in [12] and will be useful in
the next control design section. We refer the reader to [10]
for some useful nonsmooth analysis concepts.
In what follows we shall study differential equations of
the form
i(t) = X (x(t),

where X is a discontinuous vector field dR” .

Lemma 3.1:Let X : RY — RYM be measurable and
essentially locally bounded and I¢gt: R — R be locally
Lipschitz. Lety : [to, t;1] — R be a Filippov solution of{

Fig. 3. Normalized gradient of the visible area function ovhe i
nonconvex polygon depicted in Figure 1. The dashed lineesept some such thatf(v(t)) IS reQUIar for almost alt € [t07 tl]' Then

of the generalized inflection segments. () d%(f(’y(ﬁ))) exists for almost alt € [to, t1], and
(i) S(f(v(1)) € Lxf(y(t)) for aimost allt € [to, t].
Theorem 2.3:The mapA o S restricted toQ \ Ve, (Q) is The following result is a generalization of the classic
locally Lipschitz. LaSalle Invariance Principle for smooth vector fields and
To obtain the expression for the generalized gradient éimooth Lyapunov functions to the setting of discontinuous
A0S, the polygonQ is partitioned as follows. vector fields and nonsmooth Lyapunov functions.

Lemma 2.4:Let {I,}ac4 be the set of generalized in-  Theorem 3.2 (LaSalle Invariance Principle)et X
flection segments of). There exists a unique partition RY — RN beNmeasurabIe and essentially locally bounded
{Pﬁ}ﬁGB of Q where Pg is a connected component of and letS c RV be Compact and Strongly invariant fof.

Q\ U,ca Io and P denotes its closure. Let C' C S consist of a finite number of points and let
Figure 4 illustrates this partition for the given nonconvex’ : 5 — R be locally Lipschitz onS'\ C" and bounded from
polygon. Forg € B, defineAs : Ps — R, by below onS. Assume the following properties hold:
_ 1A function is continuously differentiable on a closed se(dj it is
Aﬁ (p) - AoS(p), for pe Pf37 continuously differentiable on the interior, and (2) thaitiof the derivative

o at a point in the boundary does not depend on the directiam faich
and by continuity on the boundary @fs. It turns out that the point is approached.



(Al) if z € S\ C, then eithermaxEXf(x) < 0 or The remainder of this section is dedicated to formalizing
Lxf(x)=10, this loose description.
(A2) if x € C and if v is a Filippov solution ofX with

. . A. A modified gradient vector field
7(0) = , thenlim, o~ f(3(t)) > lim, o+ f(3(£), g

and Before describing the algorithm to maximize the area
(A3) if v: R, — S is a Filippov solution ofX, then f o~ visible to the mobile observer, we introduce the following
is regular almost everywhere. useful notions. Given a simple polygap with Ve(Q) =

' ~ de > 0, define the following quantities:
Define Zy,; = yx € S\C |0€ L and letM be  (ULeeoivn) AN
- {x M Xf(m)} (i) let the e-expansion ofQ be Q° = {p | [[p — q|| <

the largest weakly invariant set contained (ifx s UC). ¢ for someq € Q}
Then the following statements hold: (i) fori e {1,...,n}, let Pf be the open set delimited by
(i) if v: Ry — Sis a Filippov solution ofX, then f o~y the edgev;7;171, the bisectors of the external angles
is monotonically nonincreasing; atv; andv;; and the boundary of)¢,
(i) each Filippov solution ofX with initial condition in (iii) for e small enough and for any point in Q¢, let
S approaches\/ ast — +oo; prjg(p) be uniquely equal targ min{|[p’ —pl|| | p’ €

(iii) if M consists of a finite number of points, then each dQ}, and
Filippov solution of X with initial condition in S (iv) let the outward normaln(prj, (p)) be the unit vector

converges to a point of/ ast — +oc. directed fromprj, (p) to p.
IV. MAXIMIZING THE AREA VISIBLE FROM A MOBILE We illustrate these notions in Figure 5. Note thag, (p)
OBSERVER can never be a reflex vertex. We can now define a vector

In this section we build on the analysis results obtained
thus far to design an algorithm that maximizes the area

visible to a mobile observer. We aim to reach local maxima
of the discontinuous visible ared-S by designing some
appropriate form of a gradient flow for it. We now present

anintroductory and incompleteersion of the algorithm: the
objective is to steer the mobile observer along a path for
which the visible area is guaranteed to be nondecreasing.

n(prig(p))

Name: Increase visible area fap
Goal: Maximize the area visible
to a mobile observer
Assumption: Generalized inflection segments @f Fig. 5. Thee-expansionQ¢ of the simple polygonQ, an open sefs
do not intersect. and the corresponding outward norme(prjg (p))-
Initial position does not belong to a _
generalized inflection segment. field on Q¢ as follows:
Let p(t) denote the observer position at timeinside vers(d(A<.S)(p)), it peQ\{la}aca,
the nonconvex polygorQ. T_he observer performs the Xo(p) = { —n(prig(p)). if pe P
following tasks at each time instant: 0 otherwise

compute visibility polygonS(p(t)) C @,
if p(t) does not belong to any generalized inflection
segment or to the boundary ¢f then

move along the versor of the gradient4 S)
else ifp(t) belongs to a generalized inflection segrm
but not to the boundary af) then

depending on the generalized gradiéxtd - .5), ei-

ther slide along the segment or leave the segment

an appropriate direction
else if p(t) belongs to the boundary @ but not to g .
reflex vertexthen p(t) = Xq(p(t)). )

depending on the projection @f(A-S) along the A Filippov solution of (3) on an intervalty,t,] C R is

boundary, either slide along the boundary or movegefined as a solution of the differential inclusion

in an appropriate direction toward the interior @f )
else p(t) € K[Xql(p(t)), 4

either follow a direction of ascent ol S or stop | where K[Xg] is the usual Filippov differential inclusion
end if associated withX, see [10]. SinceX(, is measurable and

(Recall that the versor operator is defined days(Y) =
Y/|Y|if Y € R?\ {0} and byvers(0) = 0.) Note that
X¢ is well-defined because ate Q\{Ia}ac4 the function
A0S is analytic. Clearly, Xy is not continuous oryc.
€Ntyowever, the set of points where it is discontinuous is of
measure zero. Almost everywhere in the interiorchfthe
.vector field X is equal to the normalized gradient afo S

s depicted in Figure 3. We now present the differential
equation describing the motion of the observer:




bounded, the existence of a Filippov solution is guaranteethaty(t) ¢ G(Q) for almost allt € R unlessy reaches a
We study uniqueness and completeness of Filippov soletitical point of K[X].
tions in the following lemma. In the following theorem, the functiondg, and —Ag,
Lemma 4.1:The following statements hold true: are used as candidate Lyapunov functions to show the
(i) there exists a simple polygo@ for which the cor- convergence properties of Filippov solutions Xf.
responding vector fieldo admits multiple Filippov Theorem 4.4:Any Filippov solutiony : R; — Q of Xg

solutions; has the following properties:

(i) any simple polygon@ is a strongly invariant set for (i) t — AoS(y(t)) is continuous and monotonically
the corresponding vector field, and, therefore, any nondecreasing,
Filippov solution is defined oveR, . (i) ~ approaches the set of critical points KfX)].

We now claim that any solution of the differential in-  Theorem 4.4 implies that the single observer converges to
clusion (4) has the property that the visible area increasgseritical point of A S or to a reflex vertex of). However,
monotonically. To prove these desirable properties, we firgs shown in Figure 7, the presence of noise or computational
present the following results in nonsmooth analysis. inaccuracies actually works to drive the observer away from
B. Properties of solutions and convergence analysis a reflex vertex that is not a local maximum. This will also

. . e true for other critical points that are not local maxima.
To prove the convergence properties of the solution of (43

using the results presented in Section Ill, we must first
define a suitable Lyapunov function. Intuitively since our
objective is to maximize the visible area, our Lyapunov Figures 7 and 9 illustrate the performance of the gradient
function should be closely related to it. Fer> 0, we algorithm in equation (4). The algorithm is implemented
now define theextended area functiomlf, at all points in Mat| ab®. The vertices of the visibility polygon are
p € QU{U; Pf}. The extended function coincides with obtained by means of af(n?) algorithm, wheren is the
the original function on the interior and on the boundary ohumber of vertices of the polygonal environment. These are

V. SIMULATION RESULTS

Q@ and is defined appropriately outside: then sorted in counterclockwise order to compute the visi-
bility polygon. The calculation of the generalized gradien

A‘Q(p) — A"S(p)’_ . peq, of the visible area function is then a natural outcome of (1)

AeS(prig(p)) —llp —prig®)Il, P € Ui Pf.  and (2). Computational inaccuracies in the implementation

of the algorithm to calculate the visibility polygon have
been noticed in some configurations; see the plot of the
AZQI(p§”(Per(p)>) - 1. variation of visible area with 'time in Figure 7 See Fig-
ure 8(b) for the phase portrait of the vector field, for

the polygon in Figure 8(a). Our experiments suggest that
the observer reaches a local maximum of the visible area
in finite time, however this can be shown not to be true in
general.

For allp € 0Q \ Ve Q, Ag, satisfies (see Figure 6):

VI. CONCLUSIONS

This paper introduces a gradient-based algorithm to op-
timally locate a mobile observer in a nonconvex envi-
ronment. We presented nonsmooth analysis and control
design results. The simulation results illustrate thatthie
presence of noise, the observer reaches a local maximum
of the visible area. In an “highly nonconvex” environment,

a single observer may not be able to see a large fraction
of the environment. In such a case, a team of observers
can be deployed to achieve the same task. We therefore
plan to investigate this same visibility objective for team

of observers. Other directions of future research include
practical robotic implementation issues as well as other
acombined mobility and visibility problems.

Fig. 6. Extending the functiomo S to AEZ' Note the direction of
n(prig(p:)) at all pointsp; .

Remark 4.2:The extended area functiodg, is locally
Lipschitz on(Q \ Ve, (Q)) U{U; P} and analytic almost
everywhere orQ) [ J{U; Pf}.

The following theorem is important to prove that such
function leads to a monotonically nondecreasing value of
the area of the visibility polygon.

Theorem 4.3:Let G(Q) be the subset of) where both  This material is based upon work supported in part by
mapsp — —Ag(p) andp — Ag(p) are not regular. Then AFOSR through Award F49620-02-1-0325 and by ONR
any Filippov solutiony : R, — Q of X has the property through YIP Award N0O0014-03-1-0512.
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