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On the point-to-point and traveling salesperson
problems for Dubins’ vehicle

Ketan Savla, Emilio Frazzolf, Francesco Bullo

Abstract— In this paper we study the length of optimal paths  e.g., [10], [11]. In particular we envision applying our
for Dubins’ vehicle, i.e., a vehicle con_strained to m_ove forward a|gorithm to the Setting of a UAV monitoring a collection
along paths of bounded curvature. First, we obtain an upper o gnagially distributed targets. From a purely scientific
bound on the optimal length in the point-to-point problem. . o . .

viewpoint, it also appears to be of general interest to bring

Next, we consider the corresponding Traveling Salesperson o .
Problem (TSP). We provide an algorithm with worst-case together the work on Dubins’ vehicle and that on ETSP.

performance within a constant factor approximation of the The DTSP is a static optimization problem. It is our
optimum. We also establish an asymptotic bound on the worst-  contention that this problem is of interest from a control
case length of the Dubins’ TSP. viewpoint. Indeed, although we do not do so here, we

intend to use our algorithm for DTSP in a receding horizon
scheme, where the aerial vehicle is required to visit a
The Traveling Salesperson Problem (TSP) with its varidynamically changing set of targets. Performance guaran-
ations is one of the most widely known combinatoriatees for the DTSP translate directly into robust control
optimization problems. While extensively studied in theguarantees of the receding horizon scheme.
literature, these problems continue to attract great@ster The main contributions of this paper are three. First, we
from a wide range of fields, including Operations Researcipropose an algorithm for the DTSP through a pointset
Mathematics and Computer Science. The Euclidean TSflled the Alternating Algorithm, based on the solution to
(ETSP) [1], [2] is formulated as follows: given a point setthe ETSP overA together with an alternating heuristic to
A in R?, find the minimum-length tour of\. Exact algo- assign target orientations at each target point. Second, as
rithms, heuristics as well as constant factor approxinmatioan intermediate step in the analysis of our algorithm, we
algorithms with polynomial time requirements are avagabl provide an upper bound on the point-to-point minimum
for the Euclidean TSP, see [3], [4], [5]. Another interegtin length of Dubins’ optimal paths. Third and last, we obtain
geometric version of the TSP is studied in [6]. some worst-case bounds on the performance of the proposed
The focus of this paper is the TSP for Dubins’ vehicle; weAlternating Algorithm and on the solutions of the DTSP as
shall refer to it as DTSP. Dubins’ vehicle is a classic basicompared to each other and the corresponding ETSP.
model for mobile robots and aerial vehicles. We note here
that though the DTSP has a clear geometric interpretation,
it is impossible to formulate it as a finite dimensional
combinatorial optimization problem, unlike the ETSP. A A Dubins’ vehiclds a planar vehicle that is constrained to
fairly complete picture is available for the minimum-timemove along paths of bounded curvature, without reversing
point-to-point path planning problem for Dubins’ vehicle,direction. Accordingly, we definkeasible curve for Dubins’
see [7] and [8]. Bounded curvature paths in environmenteehicle or Dubins’ path as a curvey : [0,7] — R? that
with obstacles are also widely studied, see [9] and refeis twice differentiable almost everywhere, and such that th
ences therein. Based on the algorithms for the ETSP amagnitude of its curvature is bounded abovelly, where
on the algorithm for the point-to-point problem for Dubins’r > 0 is the minimum turn radius. Lé{~) = fOT Iv/ (t)||dt
vehicle, it is easy to devise heuristics for the DTSP. Here wige the length of the path. We represent the vehicle
want to establish some bounds on the DTSP in comparisa@onfiguration by the tripletz, y, 1) € SE(2), where(z, y)
with the ETSP and on the performance of a heuristic.  are the Cartesian coordinates of a reference point on the
The motivation to study the DTSP arises in roboticdongitudinal axis of the vehicle and the headitigis the
and uninhabited aerial vehicles (UAVs) applications, seangle formed by such axis with a fixed direction in the
plane. Let(d, §) be the polar coordinates ¢f, y). We shall
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i.e., the length of the shortest closed Dubins’ path through
all points inA.

Since the optimal path between two configurations of a
Dubins’ vehicle has been completely characterized in [7], a
solution for the DTSP consists of (i) determining the order
in which the Dubins’ vehicle visits the given set of points,
and (ii) assigning headings for the Dubins’ vehicle at the
points. In the following, we will describe an algorithm that
approximates the solution of the DTSP problem, with an
additive guarantee on the cost penalty. The algorithm build
on the knowledge of the optimal solution of the ETSP for
the same point set, and provides a sub-optimal DTSP tour.

Let A = (a1,...,a,) be an ordered set of points
that is a permutation ofA. Let ¥ = {¢1,...,¢,} be
a set of headings of the Dubins’ vehicle at thepoints
ai,...,a,. Therefore the configuration of Dubins’ vehicle
at a; is (x;,yi,%;) where (z;,y;) are the coordinates
of a;, for i 1,...,n. The algorithm we propose,
which we will call ALTERNAT_ING ALGORITHM, works representing the solution of ETSP over a giveifb) A graph representing
as follows. Compute an optimal ETSP tour &f and the solution given by the ATERNATING ALGORITHM on A where the
label the edges on the tour in order with consecutivélternate segments of ETSP are retained
integers. A DTSP tour can be constructed by retaining

all odd-numbered edges (except thé"), and replac- .,
ing all even-numbereg edées V\I/Dith min)imum—lengpth Dyt < 2:658 such that the length of the Dubins’ path from

bins’ paths preserving the point ordering. We illustraté' configuration of0,0,0) to a conflgura_mon q(d,e,w) IS
the output of the ATERNATING ALGORITHM in Fig- always less than or equal tb+ «7r. Using this result, we

ure 1. The algorithm can be formally stated as follows?ha!I Sh.OW that the opnmgl cost for the .TSP for Dubins
vehicle is bounded according to the relation:

(@)

(b)

Fig. 1. An application of the ATERNATING ALGORITHM: (a) A graph

Name: ALTERNATING ALGORITHM
Goal: To determine an ordering and a set of ETSP(A) < DTSP(A,r) < ETSP(A) + x[n/2]xr.
headings¥ for the DTSP through\ ) ) )
Requires: An algorithm ETSP-ALGO to compute Following this, among other results, we shall establishesom
optimal ETSP ordering of a pointset measure on the worst case performance of thee&RNAT-
ING ALGORITHM as compared to DTSP. Ldiaa (A, )
be the length of the closed path ovéras given by the
1: setA:= ETSP-ALGQA) ALTERNATING ALGORITHM. Formally, we shall show that:
2: setq, := orientation of segment from; to a, asn — +oo, then
3 fori=2ton—1do
4 if g i? eventhen Asélfn DTSP(A,r) < Aséljl\on Laa(A,r)
5; set); 1= ;_
6 else v vint < g[\suf DTSP(A,r).
7: sety); := orientation of segment from; to a; 1 &
s endif Ill. ON THE OPTIMAL POINT-TO-POINT LENGTH FOR
o end for DUBINS' VEHICLE
10: if n is eventhen In order to obtain an upper bound on the length of
11:  seti, = 1 Dubins’ vehicle while executing the IXERNATING ALGO-
12: else RITHM, we first obtain an upper bound on the length of
13:  sety, := orientation of segment from,, to a; the optimal path that a Dubins’ vehicle has to travel while
14: end if making transition from any arbitrary initial configuration

(Zinitial, Yinitial, Yinitia) 10 @ny arbitrary final configuration,

In due course of the paper, we will first obtain an uppe(zfinal, Ysinal, Ytinal)-

bound on the length of point-to-point Dubins’ path i.e.

, Let us now provide some useful preliminary def-

an upper bound on the length of the path that a Dubinghitions. Without loss of generality, we shall assume
vehicle will have to travel while making a transition from (zinitiar, Yinitial, Yinitiat) = (0, 0,0) and we let(xfinal, Ysinal) <

any arbitrary initial configuration to any arbitrary final (d,0) andvfina = v. Let C, : Ry x [0, 27[x [0, 271] — R

configuration. To this effect, we shall show that: for y) €

R?, (z,y) < (d,0) andy € [0, 2n[, there exists a constant,

associate tdd, 6,1), where(z,y) <, (d,0) the minimum
lengthC,.(d, 0,) from the initial configuration(0, 0,0) to



the final configuration(z,y, ) for a Dubins’ vehicle. Let (0,0,). We introduce additional notation to facilitate the
Fp :]0,7[x]0, 7[—=]0, [, F1 :]0,7[— R andF; :]0,7] — R  presentation. Fop # 0, let C,, (1)) be a circle with center

be defined by Oc,, = (0,r) and radius-, and letC,, (¢) be a circle with
. i terOc,. = (—rsiny,rcost) and radiusr. Note that

B _1 /sin(y/2) — 2sin(y/2 — 0) cen Chpy - adit )
Fo(¥,0) = 2tan (COS(W2) T Scos(t)2 = 6))’ (1) + # 0 implies thatC,, (v) N C,, (%) is either a single

point or two points. Then leC,, (¢) and C,,,()) be
Fi() = ¢ + sin (Fo(lb, 1/1/; - 04(1#») two circles with radius- that are tangent to bott,, ()
and C,,(v), see Figure 2 and Figure 3. By construction,

¢t (S P02 a0 /2)
X
&)
Falt) = 2 — i+ doost (2, ©) ‘ o

where a(y) = /2 — cos ™! (22¥/2)) We are now ready
to state the main result of this section.

Theorem 3.1 (Upper bound on optimal lengtlijor
¥ € 10,27, (z,y) € R?, (z,y) < (d,0) andr > 0,

Cr(d,0,9) < d+ wrr, “4)
wherex € [2.657,2.658] is defined by

K= lmaux{FQ(ﬂ'), sup min{F;(¢), Fa(¢y)}}.
™ $€l0,x[

A. Dubins’ classification of optimal curves

Following [7], the minimum length feasible curve for Fio 2 LRL wrming to the oridin for th 0

Dubins’ vehicle is either (i) an arc of a circle of radius 9 & curves returning to the origin for the case where [0, .
r, followed by a line segment, followed by an arc of a
circle of radiusr, or (ii) a sequence of three arcs of circles
of radiusr, or (iii) a subpath of a path of path type (i) or
(ii). To specify thetype of these minimum length feasible
curves for Dubins’ path we follow the notations used in
[8]. Three elementary motions are considered: turning to
the left, turning to the right (both along a circle of radit)s
and straight line motiory. Three operators are introduced:
L, (for left/counterclockwise turn of length > 0), R,
(for right/clockwise turn of lengthy > 0), .S,, (for straight
motion of lengthv > 0). The operatord.,, R,, and S,,
transform an arbitrary configuratiqn, y,v) € SE(2) into
its corresponding image point iIfiE(2) by

(& -+ 5in(9 + v) — sin g, — cos(® + v) + costh, Y + v),
(z —sin(¢p — v) + sin, y + cos(¥ — v) — cos P, Y — v),
(x +veosth,y +vsin, ),

][C?I’S?f?:ttl;lsleyo;r?hues,H:ITIIDr’:]JBQSIei;E f\évgsl?tt}éscg:sedfzr:]aalgu_Fig. 3. LRL curves returning to the origin for the case where|r, 27
bins’ vehicle between a given initial and final configuration
is given byD = {LSL,RSR,RSL,LSR,RLR,LRL}. C,, (¢) intersectsC,,, (¢)) andC,,,(¢) at one point each:
One may refer to [7] for a detailed discussion on thdet P;(v)) be the first of these two points that is reached
construction of these path types between a given initiahoving left from the originO along C,,, (¢). Without loss
and final configuration. One may note that there are sets of generality, assumé”; () € Cy,, (¢). Let Oc,, be the
initial and final configurations for which all the path typescenter ofC,,,. Let Po(¢)) = Cy,, (¥) N Cp, (¢). In order to
may not be feasible between those configurations. remove ambiguity, we shall pick that heading of the tangent
In the remaining part of the paper we will need to fredine to a circle at a given point which is consistent with the
qguently use the curves of tygeRL and RLR starting with  orientation of that circle to bthe orientation of the tangent
the initial configuration(0,0,0) and the final configuration to that circle at that point. Let the orientation of Dubins’



vehicle atP; be along the orientation of the tangentdp,  P; lies in the clockwise ar@’ P along the circleC,,, , the

at ;. Similarly, let the orientation of Dubins’ vehicle &  path consisting of (in order) P, along C,,, P, Ps along

be along the orientation of the tangentdg, at P». Letthe C,,,, P3P5 along M, P3P, along C,,,, P>O along C,,
configuration of Dubins’ vehicle aP; and P, be denoted is a feasible curve for Dubins’ vehicle frof to O, see

by Jp,,Jp, € SE(2), respectively. Letty,t2,t3 be such Figure 4. With a slight abuse of notation, we shall denote
that Ltl (07070) = JPUth(‘]Pl) = JP2 and Lts(Jpz) =

(0,0,%). Let LRLo(v) and RLRo (%)) be the minimum X
length curves of typed.RL and RLR respectively from
the configuration(0, 0,0) to the configuratior(0, 0, v).

For ¢ # 0, we defineforbidden coned/, Vs : [0, 27[—
R? to be the open, positive cones with symmetry axes “zj
(d,¢/2)aer, and (d,7 + v¥/2)4er,, respectively, and
half angle for both of them given bw(y) = #/2 — Y
cos—l(sm(%). Recall that, given a sef, we let Z¢
be its complement set. Hendé’(v)) = R? \ V4 () and
Ve () = R\ Va(9).

B. Proof of Theorem 3.1

We begin with some preliminary results.
Lemma 3.2: (Length dfRL and RLR curves returning
to the origin) Given ¢ €]0, 2x[ andr > 0, then

0) l(LRLOW’)) =r¢+4r COS?l(M); and Fig. 4. A suboptimal path fron{0,0,0) to (d,0,v), (z,y) < (d,0)
(i) (RLRo()) =7r(2m — ) +4r cos_l(w. for (z,y) € VF(¥).
Due to lack of space, instead of stating the whole proof,

we refer the reader to Figs. 2 and 3. this curve asLRLg(d,0,v). The condition thatPs lies
Lemma 3.2 has the following direct consequence. along the arcP; P» along the circleC,,, holds true when

Lemma 3.3: (Upper bound on the length of minimathe orientation of the segment/ = P;P; does not lie
length curves returning to the origirffor all # € [0,27[, between the orientations of the tangent<tg, at P, and

Y €1[0,2x[ andr > 0 Ps. In summary we have:
Cr(0,0,9) <Cr(0,0,7) = zm«, orientation of A/ = orientation of P3P = 6,
Now we start to analyze the genera31 case whege 0. orientation of tangent t@,,, at P,
Lemma 3.4: (Upper bound on optimal length Vi& L =1/2 — /2 + cos™ ' (sin(y/2)/2),

and RLRy) For ¢ €]0,2x], and(x,y) < (d,0), we have
(i) if (z,y) € Vi(¥), then
Cr(d,0,4) <d+I(LRLo(v)),

orientation of tangent t@’,,, at P
=1p/2 4 7/2 — cos™ *(sin(1p/2)/2).

o . Therefore the above condition is satisfied witeg]v/2 —
(i) if (2,y) € VE(y), then 7/2+cos L (sin(1/2)/2), 1/2+7 /2—cos~L(sin(15/2) /2)].
Cr(d,0,%) < d+ I(RLRo(¥)). It follows from the definition ofV;(v) that this is trueif
Proof: Let us prove part (i); part (ii) is proved by and only if (z,y) € Vi (4). .
similar considerations. We recall the construction used fo BecauseLRL5(d,0,v) is a suboptimal path, for) e
LRLo (1) curves. We define two additional circles,,, 10,27l (z,y) € Vi(¢) and (z,y) < (d,0), we have
andC), of radii » and whose respective centebs:  and -
Oﬁp2 are given by ! CT(d7 97w) S l(LRLO(d7 971/))) (5)

Oﬁml = Oc,, + (dcos6, dsinf), From Figure 2 and Figure 4,

ngz = Oc,, + (dcosf,dsin0). I(LRLy(d,0,)) = d+ (LRLo(v)). (6)

Let C,,, be oriented clockwise and lef,, be oriented Combining (5) and (6) we get the final result. ]
counter-clockwise. Then, there always exists an oriented One can prove that fat = 0, the minimal length feasible
segment, say/, tangent taC,,,, andC,,,, with the property curve for Dubins’ vehicle is of typd RL or RLR. This,
that a Dubins’ vehicle can make transition froff),, to along with Lemma 3.2, leads us to our next lemma which
C,n, throughM. Let P = M NC,,,, s = MnC,,, Wwe state without any proof.

Py, = Py+(dcosf,dsinf) andO = O+(dcos@,dsin ). It Lemma 3.5 (Optimal path length returning to the origin):
is easy to see from the construction that, provided the poibhet d = 0 andé € [0, 27[.



() if ¢ €]0,x], thenLRLo(¢) is the optimal path and consideration for the case af = = easily leads one to
sin(4)/2) the second statement. [ ]
C,(0,0,v) = rip + 4rcos™* (T)’ Similarly, one can prove that fot €|r, 2n[, (z,y) €
o ) ] Vo(¥), (x,y) < (d,0) andr > 0, C,.(d,0,v) < d+ kr.
(ii) if ¢ €]m, 2x[, thenRLRo(¢) is the optimal path and combining this with Lemma 3.6 and the last statement of
., sin(e/2 Lemma 3.9, we can state that fgr€]0, 2x], (z,y) € R?,
Cr(0,8,4)) = r(2m — ) + 4rcos™! (%) (z,y) < (d,0) andr > 0
Let
Cr(d,0,v) < d+ kr. @)
= U ww), L= J W)

¥€]0,7] e, 2] It now remains to prove a similar bound éh(d, 6,0) for

. which we state the following lemma.
Lemma 3.6 (Relation betweéh(d,0,v) andC,.(0, 6, )): . i 9
For (z,y) < (d,0) and (z,9) € Uy U, ; Lemma 3.10:For (z,y) € R?, (z,y) < (d,0) andr >
CT(dvng) S d+Cr(07971/)), Cr(d7970) S d+ 2mr.
The proof of this result requires the same setup as for the
. proof of Lemma 3.7 and we do not state it here for lack of

Cr(d,0,9) < d+ <. space. . . _
Proof. The proof follows 13rom Lemma 3.4 and Lemma 3.10 combined with eqgn. (7) gives the proof for

Lemma 3.5. The second statement is a consequence T&eorem 3.1. Itis easy to check that fore|0, x|, I (1))

Lemma 3.3. is a monotonically increasing function af and F»(v))

. . [ tonically decreasing function @f. Therefore,
It now remains to obtain a bound aft.(d,6,1) when 'S & mono . . . B
(2,y) € Vi(1h) or (2,y) € Va(w)) where (;’ Y) <_>) (d,6). there exists a uniqué* such thatF; (v*) = Fy(y*). By

To this effect let the vehicle start moving at time= 0 at numerical calculations one can find that- 2.6575.
unit speed along’,,, in the counterclockwise direction and
keep updating the parametedsd,q as if the coordinate
system was moving along with the vehicle. Consequently The length of the optimal Dubins’ pattC,(d,0,v),

Vi (1) keeps shrinking and there is a time instant t* Was calculated for numerous sets of final configurations
when the final Configuration is such thet7 y) ¢ ‘/1(1/)) (d, 9, ¢) Starting with an initial Conﬁguration C(D, 0, 0) and
The following lemma and its proof contain the details of corresponding parameterwas evaluated for each of the

and, therefore,

C. Numerical Results

this constructions and its implications. instances according to the relatia®y.(d, 0, v¢) = d + krr.
Lemma 3.7:For ¢ €]0,7[, (z,y) € Vi(¥), (z,y) « The results suggest that the value /ofis bounded by a
(d,0) andr > 0, quantity, sayxnum Whose value is equal t§. Moreover, it
appears that achieves the value of,,,m only when the
Cr(d,0,¢) <d+rFi(y). Dubins’ vehicle makes a transition from a state of the form
The proof of this result needs an additional geometrigy 0,0) to a state of the forn{0,0,r) according to our
construction and we omit it here for lack of space. setup. Hence, though we do not have an analytical proof to

From the definition it follows that fofz,y) # (0,0), establish these empirical results exactly, our analysissyi

(z,y) € Vi(¢) = (2, y) € V5 (¢). This observation along g fairly good estimate ofnum.
with part (ii) of Lemma 3.4 and part (ii) of Lemma 3.2 leads

us to our next lemma which we state without any proof. IV. ON THE TSPFORDUBINS' VEHICLE
Lemma 3.8:For ¢ €]0,7], (z,y) € Vi(¢), (z,y) <

(d,0) andr > 0 Once an upper bound is obtained on the length of

the optimal point-to-point Dubins’ path, this section now

Cr(d,0,v) < d+rFy(y). gives measure of performance of the TARNATING AL-
Lemma 3.9:For ¢ €]0,7], (z,y) € Vi(¢), (z,y) «» GORITHM and the optimal algorithm for DTSP. The aim
(d,0) andr > 0, of this section can be summarized through the following
. statement.
Cr(d,0,v) < d+rmin{F1(¢), F2(4)}. Problem 4.1: Given an upper bound on the length of
Therefore, fory €]0,7), (z,y) € Vi(¥), (z,y) < (d,0) the optimal point-to-point Dubins’ path, find a measure
andr > 0, of the general performance of DTSP and the worst case

performance of the ATERNATING ALGORITHM.
Cr(d,0,9) < d+rmax{Fz(r), sup min{F1(¢), F2(¥)}}  We now state the two important results of this section.
el Theorem 4.2: (Bounds on the TSP for Dubins’ vehicle)

=d+ KT For any point set\ € A,, with n > 2 andr > 0,
Proof: The first statement of the lemma follows

from Lemma 3.7 and Lemma 3.8. This along with the ETSP(A) < DTSP(A,r) < ETSP(A) + &[n/2]nr.



Furthermore, givenr > 0, there exists a point set € A, V. CONCLUSIONS
such that There exist results in literature which state that for agive
n n compact set and a points&tof » points,ETSP(A) belongs
ETSP(A)+2| = < DTSP(A,r) < ETSP(A — |7 . .
(A)+ L2JW - (A7) < ( )+M2]W to O(y/n). In this paper, we characterized the worst-case so-
Theorem 4.3. (Performance of th&LTERNATING AL- |utions to the point-to-point and to the traveling salesper
GORITHM in the worst case for Dubins’ TSFjor n > 2 problem for Dubins’ vehicle where we showed that in worst

andr > 0, case, for anyp > 0, DTSP(A, p) belongs toO(n). We
provide some results on the stochastic analysis of TSP for
sup DTSP(A,r) Dubins’ vehicle in [13]. Open directions of research inaud
A€An (i) tightening the bounds we provided, and (i) applying
< AS:/I\) Laa(A,r) these results to task assignments and surveillance preplem
ETSP(A) + k[n/2]mr see [14].

DTSP(A,r).
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