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Abstract— This paper surveys recently-developed theoretical
tools for the analysis and design of coordination algorithms for
networks of mobile autonomous agents. First, various motion
coordination tasks are encoded into aggregate cost functions
from Geometric Optimization. Second, the limited communi-
cation capabilities of the mobile agents are modeled via the
notions of proximity graphs from Computational Geometry
and of spatially distributed maps. Finally, we illustrate how to
apply these tools to design and analyze scalable cooperative
strategies in a variety of motion coordination problems such
as deployment, rendezvous, and flocking.

I. I NTRODUCTION

Motion coordination is a remarkable phenomenon in
biological systems and an extremely useful tool in man-
made groups of vehicles, mobile sensors and embedded
robotic systems. Just like animals do, groups of mobile
autonomous agents need the ability to deploy over a given
region, assume a specified pattern, rendezvous at a given
point, or jointly move in a synchronized manner. These
coordinations tasks are typically to be achieved with little
available communication between the agents, and therefore,
with limited information about the state of the entire system.

An important scientific motivation for the study of mo-
tion coordination is the analysis of emerging and self-
organized behaviors in biological groups with distributed
agent-to-agent interactions. At the same time, an important
engineering reason to study motion coordination stems
from the recent interest in sensor networks. Indeed, it is
envisioned that groups of autonomous agents with com-
puting, communication and mobility capabilities will soon
become economically feasible and perform a variety of
spatially-distributed sensing tasks such as search and rescue,
surveillance, environmental monitoring, and exploration.

The objective of this paper is to illustrate ways in which
systems theory helps us analyze emerging behaviors in
animal groups and design autonomous and reliable robotic
networks. Indeed, the interest of the control community for
motion coordination has increased tremendously over the
last few years. A necessarily incomplete list of works on dis-
tributed, or leaderless, motion coordination includes [1], [2]
on pattern formation, [3] on flocking, [4] on self-assembly,
[5] on swarm aggregation, [6] on gradient climbing, [7]
on deployment, [8], [9], [10], [11] on rendezvous, [12] on
cyclic pursuit, and [13], [14], [15] on consensus. This paper
presents and surveys some recently-developed theoretical

tools for modeling, analysis and design of motion coordi-
nation. The next paragraphs summarize the various sections.

Section II reviews the computational geometric notion of
proximity graph. Proximity graphs of various kinds model
agent-to-agent interactions that depend only on the agents’
location in space. This is the case for example in wireless
communication or in communication based on line-of-sight.
Thus, the notion of proximity graph allows us to model the
information flow between mobile agents. Useful examples
include the disk and the visibility graphs. A coordination
algorithm is said to bespatially distributedover a proximity
graph if the control input of each agent can be computed
only with the information encoded in the given graph.

The focus of Section III is on how to encode motion coor-
dination tasks into aggregate cost functions from Geometric
Optimization. We discuss various aggregate cost functions
for tasks such as deployment (area-coverage deployment,
maximum detection likelihood deployment, and visibility-
based deployment), rendezvous (via the diameter of convex
hull function), cohesiveness, and consensus (via the so-
called Laplacian potential from algebraic graph theory). We
also discuss some results on their smoothness properties and
extreme points via nonsmooth analysis.

Section IV builds upon these tools to present various
approaches to the design and analysis of scalable motion
coordination algorithms. A first approach is based on the
design of gradient flows: here we are given a coordination
task to be performed by the network and a proximity graph
as communication constraint. A second approach is based
on the analysis of emerging behaviors: in this case a notion
of neighboring agents and an interaction law between them
is usually given. The remaining two approaches build upon
these two. We apply these ideas to numerous examples of
coordination algorithms proposed in the literature.

Let us finally mention that, for reasons of space, the
present exposition does not include a more in-depth dis-
cussion of various techniques that have been proved use-
ful in analyzing motion coordination problems. Among
them, we highlight ergodic [3] and circulant [12] matri-
ces from matrix analysis, graph Laplacians and algebraic
connectivity [3], [13] from algebraic graph theory, graph
grammars [4], symmetries of differential equations [2],
and LaSalle Invariance Principles and stability analysis for
differential inclusions [16] and nondeterministic discrete-
time dynamical systems [7], see also [17].



II. SPATIALLY DISTRIBUTED MAPS OVER PROXIMITY

GRAPHS

A partition of a setS is a collection of subsets ofS
with disjoint interiors and whose union isS. Let F(S)
be the collection of finite subsets ofS. Given S ⊂ R

2

and P ∈ F(S) a set of n distinct points {p1, . . . , pn}
in S, the Voronoi partition of S generated byP with
respect to the Euclidean norm‖ · ‖ is the collection of sets
{Vi(P)}i∈{1,...,n} defined byVi(P) = {q ∈ S | ‖q− pi‖ ≤
‖q − pj‖ , for all pj ∈ P}. We usually refer toVi(P) as
Vi. For a detailed treatment of Voronoi partitions we refer
to [18], [19]. We usually deal withS = R

2.
For p ∈ R

2 and r ∈ R+ = (0,+∞), let B(p, r) and
B(p, r) denote the open and closed ball inR

2 centered at
p of radiusr, respectively. ForP ∈ F(S) with n elements,
consider the collection{Vi(P)∩B(pi, r)}i∈{1,...,n}, which
is a partition of∪iB(pi, r) ∩ S. For i, j ∈ {1, . . . , n}, let

∆ij(P, r) ,
(

Vi(P) ∩ B(pi, r)
)

∩
(

Vj(P) ∩ B(pj , r)
)

.

Fig. 1 shows an example of these geometric constructions.

Fig. 1. Voronoi partition of a convex polygonQ generated by50 points
selected randomly (left) and Voronoi partition ofQ generated by the same
configuration restricted to∪iB(pi, r) ∩ Q, with r = .2 (right).

A. Proximity graphs and their properties

For standard notions in graph theory we refer to [20,
Chapter 1]. Here, we start by briefly reviewing the notion
of Laplacian matrix. LetG = (V,E) be an undirected graph
with n vertices. The graph Laplacian matrix associated with
G is defined asL = D −A, whereD is the degree matrix
and A is the adjacency matrix. The graph Laplacian is
symmetric, positive semi-definite and has an eigenvalue at
λ = 0 with eigenvector(1, . . . , 1)T . Furthermore, the graph
G is connected if and only if rank(L) = n − 1.

Let us introduce some concepts about proximity graphs
for point sets inR

d. For a setS, let G(S) be the set of
undirected graphs whose vertex set is an element ofF(S).
A proximity graphG : F(Rd) → G(Rd) associates toP ∈
F(Rd), an undirected graph with vertex setP and edge set
EG(P), whereEG : F(Rd) → F(Rd×R

d) satisfiesEG(P) ⊆
{(p, q) ∈ P × P | p 6= q}. In other words, the edge set
depends on the location of the vertices. Examples include
the complete graph and the Euclidean Minimum Spanning
TreeGEMST. Here, we define [18], [21], [7]:

(i) the r-disk graphGdisk(r), for r ∈ R+, with (pi, pj) ∈
EGdisk(r)(P) if ‖pi − pj‖ ≤ r;

(ii) the Delaunaygraph GD, with (pi, pj) ∈ EGD(P) if
Vi(P) ∩ Vj(P) 6= ∅;

(iii) the r-limited DelaunaygraphGLD(r) with (pi, pj) ∈
EGLD (P) if ∆ij(P, r

2 ) 6= ∅;
(iv) the Gabriel graphGG, with (pi, pj) ∈ EGG(P) if, for

all pk ∈ P \ {pi, pj},

pk 6∈ B
(pi + pj

2
,
‖pi − pj‖

2

)

;

(v) given a simple polytope inRd, the visibility graph
Gvis,Q : F(Q) → G(Q) is defined by(pi, pj) ∈
EGvis,Q(P) if the closed segment frompi to pj , denoted
[pi, pj ], is contained inQ.

We will also work with the proximity graphsGG ∩disk(r)
and GD ∩disk(r) defined by the intersection ofGG and GD

with Gdisk(r), r ∈ R+, respectively.
To each proximity graphG, we associate theset of

neighbors mapNG : R
d × F(Rd) → F(Rd) defined by

NG(p,P) = {q ∈ P | (p, q) ∈ EG(P ∪ {p})}.

Given p ∈ R
d, define NG,p : F(Rd) → F(Rd) by

NG,p(P) = NG(p,P). Given G1 and G2, we say thatG1

is spatially distributed overG2 if, for all p ∈ P,

NG1,p(P) = NG1,p

(

NG2,p(P)
)

.

It is clear that ifG1 is spatially distributed overG2, then
G1(P) ⊂ G2(P) for all P ∈ F(Rd). The converse is in
general not true (e.g.,GD ∩disk is a subgraph ofGdisk, but it
is not spatially distributed over it, see [7]).

Theorem 2.1:For r ∈ R+, we have
(i) GEMST⊂GG⊂GD, GG∩disk(r)⊂GLD(r)⊂GD∩disk(r);

(ii) Gdisk(r) is connected iffGEMST ⊂ Gdisk(r);
(iii) GG ∩disk(r), GLD(r) are spatially distributed overGdisk.

Fig. 2 shows some examples of proximity graphs inR
2.

r-disk r-lim. Delaunay Gabriel

Fig. 2. From left to rightr-disk, r-limited Delaunay, and Gabriel
graphs inR

2 for 25 agents with coordinates uniformly randomly
generated within[−7, 7] × [−7, 7] andr = 4.

B. Spatially distributed maps

Here we provide an accurate notion of spatially dis-
tributed map. LetiF : (Rd)n → F(Rd) be the natural
immersion, i.e.,iF(P ) is the point set that contains the
distinct points inP ∈ (Rd)n. Given a setY and a proximity
graphG, T : (Rd)n → Y n is spatially distributed overG if
there existsT̃ : R

d × F(Rd) → Y , with the property that,
for all (p1, . . . , pn) ∈ (Rd)n and for all j ∈ {1, . . . , n},

Tj(p1, . . . , pn) = T̃ (pj ,NG,pj
(iF(p1, . . . , pn))) ,

where Tj denotes thejth component ofT . In other
words, thejth component of a spatially distributed map
at (p1, . . . , pn) can be computed with only the knowledge
of the vertexpj and its neighbors inG(iF(p1, . . . , pn)).



III. E NCODING COORDINATION TASKS

We now define various functions that encode coordination
objectives and characterize their smoothness properties.
A. Aggregate cost functions for deployment

Loosely speaking, deployment consists of a network of
mobile agents deploying in an environment to achieve max-
imum coverage of it. Forε ∈ R+, let nB(p,ε)(q) be the unit
outward normal toB(p, ε) at q ∈ ∂B(p, ε). Let Q ⊂ R

d

be a simple convex polytope. GivenS ⊂ Q, let 1S denote
the indicator function,1S(q) = 1 if q ∈ S, and1S(q) = 0
if q 6∈ S. In what follows,{Vi(P)}i∈{1,...,n} refers to the
Voronoi partition ofQ generated byP ∈ F(Rd).

A density functionφ : Q → R+ is a bounded function.
Given S ⊂ Q, let areaφ(S) =

∫

S
φ(q)dq. A performance

functionf : R+ → R is a non-increasing and piecewise dif-
ferentiable function with finite jump discontinuities. Given
φ andf , consider the functionH : Qn → R defined by

H(P ) =

∫

Q

max
i∈{1,...,n}

f(‖q − pi‖)φ(q)dq. (1)

Note thatH is an aggregate cost function since it depends on
all the locationsp1, . . . , pn. Roughly speaking,H provides
the expected value of the sensing performanceprovided
by the group of agents over any point inQ, where φ
represents a probability that some event take place overQ,
and f describes the performance of the sensors. Because
of noise and loss of resolution, the sensing performance at
point q taken from the sensor atpi degrades with‖q− pi‖.
Therefore, it will be of interest to find local maxima forH.
Distortion problem: If f(x) = −x2 (differentiable with

no jump discontinuities),H takes the form

HC(P ) = −
n

∑

i=1

∫

Vi(P )

‖q − pi‖
2φ(q)dq , −

n
∑

i=1

JVi,pi
,

whereJW,p denotes the polar moment of inertia of the
setW ⊂ Q about the pointp. In signal compression,
see [22],−HC is referred to as the distortion function.

Area problem: If f(x) = 1[0,R](x), thenH corresponds
to the area, measured according toφ, covered by the
union of then balls B(p1, R), . . . , B(pn, R); that is,

Harea(P ) = areaφ(∪n
i=1B(pi, R)) .

Mixed distortion-area problem: For b ≤ −R2, if f(x) =
−x2 1[0,R)(x) + b · 1[R,+∞)(x), thenH takes the form

HR(P ) = −
n

∑

i=1

JVi∩B(pi,R),pi

+ b areaφ(Q \ ∪n
i=1B(pi, R)) .

B. Aggregate cost function for visibility-based deployment

Let Q be a simple non-convex polytope inRd. Given
p ∈ Q, let S(p) = {q ∈ Q | [q, p] ⊂ Q} denote thevisible
region in Q from the locationp (recall that [q, p] is the
closed segment fromq to p). Define

Hvis(P ) =

∫

Q

max
i∈{1,...,n}

1S(pi)(q)dq.

Roughly speaking,H measures the amount of area ofQ
which is visible from any of the agents atp1, . . . , pn.
Therefore, it will be of interest to find local maxima ofHvis.

C. Aggregate cost functions for consensus

Let us here briefly consider a setup based on a fixed graph
instead of a proximity graph. LetG = ({1, . . . , n}, E) be
an undirected graph withn vertices. Following [13], define
the Laplacian potentialΦG : R

n → R+ associated withG

ΦG(x) = xT Lx =
1

2

∑

(i,j)∈E

(xj − xi)
2 .

For i ∈ {1, . . . , n}, the variablexi is associated with the
agentpi. The variablexi might represent physical quantities
including attitude, position, temperature, or voltage. Two
agentspi and pj are said toagree if and only if xi = xj .
It is clear thatΦG(x) = 0 if and only if all neighboring
nodes inG agree. If, in addition,G is connected, then all
nodes agree and a consensus is reached. Therefore,ΦG(x)
quantifies the group disagreement in a network.

Note that achieving consensus is a network coordination
problem that does not necessarily refer to physical variables
such as spatial coordinates or velocities. In what follows we
consider two “spatial versions” of consensus, that we refer
to as rendezvous and cohesiveness.

D. Aggregate cost function for rendezvous

Roughly speaking, rendezvous means agreement over
the location of the agents in a network. With a slight
abuse of notation, we introduce the convex hull function
co : (Rd)n → 2(Rd) as co(P ) = co(iF(P )), where we
represent a polytope inRd by its vertex set. Thediameter
function diam : 2(Rd) → R+ ∪ {+∞} is defined by

diam(S) = sup{‖p − q‖ | p, q ∈ S}.

DefineVdiam = diam ◦ co : (Rd)n → R+ by

Vdiam(P ) = diam(co(P ))

= max{‖pi − pj‖ | i, j ∈ {1, . . . , n}}.

Let diag((Rd)n) = {(p, . . . , p) ∈ (Rd)n | p ∈ R
d}. One

can show thatVdiam = diam ◦ co : (Rd)n → R+ is locally
Lipschitz and invariant under permutations of its arguments,
and thatVdiam(P ) = 0 if and only if P ∈ diag((Rd)n).
Therefore, the set of global minima ofVdiam corresponds to
the configurations where agents rendezvous.

E. Aggregate cost functions for cohesiveness

Let h : R+ → R be a continuously differentiable function
satisfying the following conditions: (i)limR→0 h(R) =
+∞, (ii) there existsR0 ∈ R+ such thath is convex
on (0, R0) achieving its minimum at all the points in the
interval [R∗, R

′
∗] ⊂ (0, R0) andh is concave on(R0,+∞),

and (iii) there existsR1 ∈ R+, R1 ≥ R0 such thath(R) = c
for all R ≥ R1. Let G be a some proximity graph. Define
now the aggregate cost function

Hcohe,G(P ) =
∑

(pi,pj)∈EG(P )

h(‖pi − pj‖) .



The minima ofHcohe,G correspond to “cohesive” network
configurations. Specifically, forn ∈ {2, 3}, configurations
of minimum forHcohe,G have all neighboring agents’ loca-
tions within a distance contained in the interval[R∗, R

′
∗].

This objective function, or variations of it, has been em-
ployed over different proximity graphs in a number of works
in the literature ([5] and [6] over the complete graph, [23]
over ther-disk graph) to guarantee collision avoidance and
cohesiveness of the network.

IV. TOWARD A SYSTEMATIC METHODOLOGY FOR THE

DESIGN OF MOTION COORDINATION ALGORITHMS

In this section, we elaborate on the role played by the
tools introduced in the previous sections. Throughout the
discussion we do not enter into technical details, but rather
refer to various works for further reference. Our intentionis
to provide a first step toward the establishment of a rigorous
systems theoretic approach to the design and analysis of
coordination algorithms for a variety of sensing tasks.

We start by informally describing the notion of coordina-
tion algorithm. Roughly speaking, a coordination algorithm
consists of a control law for each agent of the network. In
particular, we mainly focus on algorithms which specify
the same control law for all agents. Mathematically, a
coordination algorithm will be described in different forms,
depending on whether it is implemented in continuous time
(a vector field, or more generally, a differential inclusion
over the configuration space of the network) or in discrete
time (a map, or more generally, a set-valued map).

A. Coordination algorithms from aggregate cost functions

The first step of this approach is to identify the aggregate
cost function which is relevant for the desired task. Once
this objective function is determined, one analyzes its differ-
entiable properties and computes its (generalized) gradient.
With this information, it is possible to characterize its
critical points, i.e., the desired network configurations.The
next step is to identify the proximity graphs with respect
to which the gradient of the objective function is spatially
distributed (cf. Section II-B). If any of these proximity
graphs is computable with the capabilities of the mobile
network, then a control law for each agent simply consists
of following the gradient of the aggregate cost function. By
LaSalle Invariance Principle, such a coordination algorithm
is automatically guaranteed to ensure convergence of the
closed-loop network trajectories to the set of critical points.

Example 4.1: (Distortion and area problems):The coor-
dination algorithms proposed in [7] for the distortion and
the area problems are examples of this approach. ForQ
a simple convex polygon inR2, one can prove that the
functionsHC and Harea are locally Lipschitz onQn and
differentiable onQn \ {(p1, . . . , pn) ∈ (R2)n | pi =
pj for somei, j ∈ {1, . . . , n}, i 6= j}, with

∂HC

∂pi

(P ) = 2MVi(P )(CMVi(P ) −pi) , (2a)

∂Harea

∂pi

(P ) =

Mi(R)
∑

k=1

∫

arci,k(R)

nB(pi,R) φ , (2b)

wherearci,1(R), . . . , arci,Mi(R)(R) correspond to the arcs
in ∂(Vi(iF(P ))∩B(pi, R)). HereMW andCMW denote,
respectively, the mass and the center of mass with respect
to φ of W ⊂ Q. The critical pointsP ∈ Qn of HC satisfy
pi = CMVi(P ) for all i ∈ {1, . . . , n}. Such configurations
are calledcentroidal Voronoi configurations, see [22].

From (2a) it is clear that the gradient ofHC is spatially
distributed overGD, whereas from (2b) one deduces that
the gradient ofHarea is spatially distributed overGLD(2R).
The gradient flows ofHC and ofHarea correspond to the
coordination algorithms “move-toward-the-centroid of own
Voronoi cell” and “move in the direction of the (weighted)
normal to the boundary of own cell,” resp. Fig 3 shows an
example of the execution of the second algorithm. �

Fig. 3. Area problem:16 mobile agents in a convex polygon following the
gradient ofHarea (cf. equation (2b)). The density functionφ (represented
by means of its contour plot) is the sum of five Gaussian functions.
Each agent operates with a finite radiusr = .45. For each agenti, the
intersectionVi ∩ B(pi,

r

2
) is plotted in light gray.

Example 4.2: (Consensus):The asymptotic agreement
algorithm proposed in [13] to solve the consensus problem
is another example of this approach. For a fixed undirected
graphG = ({1, . . . , n}, E), the functionΦG is smooth, and
its partial derivative takes the form

∂ΦG

∂x
= Lx . (3)

Clearly, this gradient is spatially distributed with respect
to the graphG itself. The implementation of the gradient
control law leads to the algorithṁxi =

∑

(i,j)∈E(xj −
xi), i ∈ {1, . . . , n} which asymptotically achieves average-
consensus, i.e., the final value upon which all agents agree
can be proved to be equal to1

n

∑n

i=1 xi(0). �

Example 4.3: (Cohesiveness):Another example of this
approach are the coordination algorithms proposed in the
literature to achieve cohesiveness [5], [6], [23]. ForGcomplete,
the functionHcohe,Gcomplete is smooth onQn\{(p1, . . . , pn) ∈
(R2)n | pi = pj for somei, j ∈ {1, . . . , n}, i 6= j}, with

∂Hcohe,Gcomplete

∂pi

(P ) =
∑

pj∈NGdisk(R1),pi

∂

∂pi

(

h(‖pi − pj‖)
)

,

where we used the fact that0 = ∂h/∂R for R ≥ R1.
According to Section II, this gradient is spatially distributed
over Gdisk(R1). The gradient descent control law for each
agent guarantees that the network agents will asymptotically
approach the set of critical points ofHcohe,Gcomplete. �

Not always does the aggregate cost function enjoy the
desirable property that its gradient is spatially distributed
with respect to the required proximity graph. In other words,
given an available information flow, not always the appro-
priate gradient flow can be computed. If this is the case,



then one possible approach is the following: (i) consider
constant-factor approximations of the cost function, (ii)
identify those approximations whose gradient is spatially
distributed with respect to an appropriate proximity graph,
and (iii) implement as coordination algorithm that each
agent follows the gradient of the approximation.

Example 4.4: (Mixed distortion-area problem):The co-
ordination algorithm proposed in [7] for the distortion
problem falls into the situation described above. Since the
gradient ofHC is spatially distributed overGD (cf. (2a)),
and this graph is not spatially distributed overGdisk, the
coordination algorithm “move-toward-the-centroid of own
Voronoi cell” is not implementable over a network with
limited-range interactions. Instead, forr ∈ R+, one has
that (i) for β = r2/(2 diam Q)2,

H r
2
(P ) ≤ HC(P ) ≤ β H r

2
(P ) < 0 , (4)

and (ii) the partial derivative ofH r
2

is

∂H r
2

∂pi

(P ) = 2MVi(P )∩B(pi,
r
2 )(CMVi(P )∩B(pi,

r
2 ) −pi)

−
(( r

2

)2
+ b

)

Mi(
r
2 )

∑

k=1

∫

arci,k( r
2 )

nB(pi,
r
2 ) φ ,

wherearci,1(
r
2 ), . . . , arci,Mi(

r
2 )(

r
2 ) correspond to the arcs

in ∂(Vi(iF(P )) ∩ B(pi,
r
2 )). Clearly, the gradient ofH r

2
is

spatially distributed overGLD(r), and therefore, the algo-
rithm based on the gradient control law is implementable
over a network with limited range interactions. �

B. Coordinated behaviors from basic interaction laws

This approach consists of devising a simple control law,
typically inspired by some sort of heuristic or behavior,
that implemented over each agent of the network would
reasonably perform the desired sensing task. Once this
is done, one should (i) check that the resulting coordi-
nation algorithm is spatially distributed with regards to
some appropriate proximity graph and (ii) characterize its
asymptotic convergence properties. One way of doing the
latter is by finding an aggregate cost function that encodes
the desired sensing task and by showing that it is optimized
along the execution of the coordination algorithm.

Example 4.5: (Move-away-from-closest-neighbor):Con-
sider the coordination algorithm in [16] where each agent
moves away from its closest neighbor (see Fig. 4). This in-
teraction law is spatially distributed overGD. One can prove
that along the network evolution, the aggregate function

HSP(P ) = min
i6=j∈{1,...,n}

{

1
2‖pi − pj‖,dist(pi, ∂Q)

}

, (5)

is monotonically non-decreasing. This function corresponds
to thenon-interference problem, where the network tries to
maximize the coverage of the domain so that the various
sensing radius of the agents do not overlap or leave the
environment (because of interference). Under appropriate
technical conditions, one can show that the critical points
of HSP are incenter Voronoi configurations. �

Fig. 4. Non-interference problem: “move-away-from-closest-neighbor”
algorithm for16 mobile agents in a convex polygon. The left (respectively,
right) figure illustrates the initial (respectively, final)locations and Voronoi
partition. The central figure illustrates the evolution. For agenti, the ball
of maximum radius contained inVi, centered atpi, is plotted in light gray.

Example 4.6: (Flocking):Consider the coordination al-
gorithm analyzed in [3] for the flocking problem. Roughly
speaking, flocking consists of agreeing over the direction of
motion by the agents in the network. LetG be a proximity
graph. Consider the algorithm where each agent: (i) detects
its neighbors’ (according toG) heading; (ii) computes the
average of its neighbors’ heading and its own heading,
and (iii) updates its heading to the computed average. This
algorithm is spatially distributed overG. Moreover, assum-
ing that G remains connected throughout the evolution,
one can show that the agents asymptotically acquire the
same heading. The proof method builds on the properties
of ergodic and non-negative matrices from linear algebra
and the properties of graph Laplacians from algebraic graph
theory. It is also worth mentioning that, forGdisk, one can
establish [3] that there does not exist in general a quadratic
Lyapunov function that helps characterize the asymptotic
stability properties of the algorithm. �

C. Coordination algorithms from local objective functions

This approach has common elements with the two ap-
proaches presented previously. Now, to derive a control law
for each specific agent, one assumes that its neighboring
agents, or some spatial structure attributed to it, remain
fixed. One then defines a local objective function, which
is somehow related with the global aggregate cost function
encoding the desired task, and devises a control law to opti-
mize it. The specific control strategy might be heuristically
derived or arise naturally from the gradient information of
the local objective function. Once the algorithm is setup, one
should check that it is spatially distributed, and characterize
its asymptotic convergence properties.

Example 4.7: (Non-interference problem):Consider the
alternative expression forHSP (cf. equation (5))

HSP(P ) = min
i∈{1,...,n}

smVi(P )(pi) ,

where smW (p) , dist(p, ∂W ). Now, for i ∈ {1, . . . , n},
considersmVi(P ) as a local objective function. Assuming
that the Voronoi cellVi(P ) remains fixed, one can imple-
ment the (generalized) gradient ascent ofsmVi(P ) as the
control law for the agentpi. One can show [16] that this
interaction law precisely corresponds to the strategy “move-
away-from-closest-neighbor” discussed in Example 4.5.�

Example 4.8: (Rendezvous):Let G be a proximity graph.
Consider the Circumcenter Algorithm overG, where each
agent: (i) detects its neighbors according toG; (ii) computes



the circumcenter of the point set comprised of its neighbors
and of itself, and (iii) moves toward this circumcenter while
maintaining connectivity with its neighbors. To maintain
connectivity, the allowable motion of each agent is conve-
niently restricted (see [8], [9], [11] for further details).

Note that in step (ii), assuming that all other agents
remain fixed, each agent minimizes the local objective
function given by the maximum distance from the agent
to all its neighbors (according toG). By construction, this
algorithm is spatially distributed overG. Moreover, one
can prove that the evolution ofVdiam is monotonically non-
increasing. Using the LaSalle Invariance Principle for closed
algorithms (see [7]), one can characterize the correctness
properties of the Circumcenter Algorithm overG. These
results can be further generalized to the case where each
agent uses a different notion of proximity graph at each
time step. See Fig. 5 for an illustration. A similar algorithm,
where the agents, instead of rendezvousing at a common
position, rendezvous at the direction of their velocity vectors
would lead to a solution of the flocking problem. �
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Fig. 5. Circumcenter Algorithm over{Gdisk(r),GG(r)∩Gdisk(r)} in R
3.

V. CONCLUSIONS

We have surveyed a set of recent tools (proximity graphs,
spatially distributed maps, aggregate cost functions) that
we believe are important in the design and analysis of
motion coordination algorithms. We have also identified
various approaches to the design of coordination algorithms
and shown the wide applicability of the proposed tools in
these approaches. We hope that in the coming years the
set of control tools for motion coordination will continue
to expand and will lead to the design of other spatially
distributed primitives and the analysis of the algorithms’
performance and complexity.
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