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Abstract— This paper surveys recently-developed theoretical tools for modeling, analysis and design of motion coordi-
tools for the analysis and design of coordination algorithms for  nation. The next paragraphs summarize the various sections
networks of mobile autonomous agents. First, various motion — gaction || reviews the computational geometric notion of
coordination tasks are encoded into aggregate cost functions L . - .
from Geometric Optimization. Second, the limited communi- proximity graph_PrOXIm_lty graphs of various kinds model
cation capabilities of the mobile agents are modeled via the agent-to-agent interactions that depend only on the agents
notions of proximity graphs from Computational Geometry  location in space. This is the case for example in wireless
and of spatially distributed maps. Finally, we illustrate how to  communication or in communication based on line-of-sight.
apply these tools to design and analyze scalable cooperative Tp,,5 the notion of proximity graph allows us to model the
strategies in a variety of motion coordination problems such . . .
as deployment, rendezvous, and flocking. !nformanon fIQW between ”."?b.'l.e agents. Useful ex.amples

include the disk and the visibility graphs. A coordination
l. INTRODUCTION algorithm is said to bgpatially distributedover a proximity
graph if the control input of each agent can be computed

Motion coordination is a remarkable phenomenon imnly with the information encoded in the given graph.
biological systems and an extremely useful tool in man- The focus of Section Iil is on how to encode motion coor-
made groups of vehicles, mobile sensors and embeddéihation tasks into aggregate cost functions from Geometri
robotic systems. Just like animals do, groups of mobil®ptimization. We discuss various aggregate cost functions
autonomous agents need the ability to deploy over a givedr tasks such as deployment (area-coverage deployment,
region, assume a specified pattern, rendezvous at a giv@raximum detection likelihood deployment, and visibility-
point, or jointly move in a synchronized manner. Thes®ased deployment), rendezvous (via the diameter of convex
coordinations tasks are typically to be achieved withdittl hull function), cohesiveness, and consensus (via the so-
available communication between the agents, and therefotilled Laplacian potential from algebraic graph theoryg W
with limited information about the state of the entire syste also discuss some results on their smoothness properties an

An important scientific motivation for the study of mo- extreme points via nonsmooth analysis.
tion coordination is the analysis of emerging and self- Section IV builds upon these tools to present various
organized behaviors in biological groups with distributechpproaches to the design and analysis of scalable motion
agent-to-agent interactions. At the same time, an impbrtacoordination algorithms. A first approach is based on the
engineering reason to study motion coordination stenuesign of gradient flows: here we are given a coordination
from the recent interest in sensor networks. Indeed, it igsk to be performed by the network and a proximity graph
envisioned that groups of autonomous agents with conas communication constraint. A second approach is based
puting, communication and mobility capabilities will soonon the analysis of emerging behaviors: in this case a notion
become economically feasible and perform a variety abf neighboring agents and an interaction law between them
spatially-distributed sensing tasks such as search andeges is usually given. The remaining two approaches build upon
surveillance, environmental monitoring, and exploration these two. We apply these ideas to numerous examples of

The objective of this paper is to illustrate ways in whichcoordination algorithms proposed in the literature.
systems theory helps us analyze emerging behaviors inLet us finally mention that, for reasons of space, the
animal groups and design autonomous and reliable roboficesent exposition does not include a more in-depth dis-
networks. Indeed, the interest of the control community focussion of various techniques that have been proved use-
motion coordination has increased tremendously over tHal in analyzing motion coordination problems. Among
last few years. A necessarily incomplete list of works on disthem, we highlight ergodic [3] and circulant [12] matri-
tributed, or leaderless, motion coordination includes [2] ces from matrix analysis, graph Laplacians and algebraic
on pattern formation, [3] on flocking, [4] on self-assemblyconnectivity [3], [13] from algebraic graph theory, graph
[5] on swarm aggregation, [6] on gradient climbing, [7]grammars [4], symmetries of differential equations [2],
on deployment, [8], [9], [10], [11] on rendezvous, [12] onand LaSalle Invariance Principles and stability analysis f
cyclic pursuit, and [13], [14], [15] on consensus. This papedifferential inclusions [16] and nondeterministic didere
presents and surveys some recently-developed theoretitiale dynamical systems [7], see also [17].



Il. SPATIALLY DISTRIBUTED MAPS OVER PROXIMITY (iii) the r-limited DelaunaygraphGp(r) with (p;,p;) €
GRAPHS &g (P) if Ay;(P,5) # 0;

A partition of a setS is a collection of subsets of (V) the Gabriel graphGe, with (pi,p;) € £g¢(P) if, for

with disjoint interiors and whose union i§. Let F(S) all p, € P\ {pi,p;},

be the collection of finite subsets &f. Given S c R? ¢ B(pi +p; lpi —ij).

and P € F(S) a set ofn distinct points{p1,...,pn} Pk 2 7 2 ’

in S, the Voronoi partition ofS_generated byP with (v) given a simple polytope ifR?, the visibility graph
respect to the Euclidean norin || is the collection of sets Giso : F(Q) — G(Q) is defined by (p;,p;) €
{Vi(P)}ic(1,....n) defined byVi(P) ={q € S| [lg—pill < E6.s(P) if the closed segment from to p;, denoted

llg — pjll, for all p; € P}. We usually refer toV;(P) as [pi, p;], is contained inQ.
Vi. For a detailed treatment of Voronoi partitions we refe(,,. \.ii' aiso work with the proximity graph€s naisk(r)
IS

H _ 2
to |£18], [19]. ;Ne usually deal witht = R=. and Gp nqisk(r') defined by the intersection &g and Gp
orp € R® andr € Ry = (0,+00), let B(p,r) and | uh Gaisk(r), 7 € Ry, respectivel
B R centered at O ot v -
B(p,r) denote the open and closed ballirt cen To each proximity graphg, we associate theset of
p of radiusr, respectively. Fof® € F(S) with n elements, neighbors map\y : R? x F(R?) — F(R?) defined by
consider the collectiofV;(P) N B(ps,r) }ieq1,...,n}» Which

is a partition ofU; B(p;,r) N S. Fori,j € {1,...,n}, let Ng(p,P)={q€P|(p,q) € &P U{p}H}
- a (v, B, , =l Given p € RY, define N5, : F(RY) — F(RY) by
Bii(P,) £ (Vi(P) 0 Bpi, ) 0 (V(P) N By, 7). Ng»(P) = Ng(p,P). Given G; and G, we say thatg,
Fig. 1 shows an example of these geometric constructionds spatially distributed ove(, if, for all p € P,

NG, »(P) = Ng, »(No, p(P)).

It is clear that ifG, is spatially distributed oveg,, then
G1(P) C Go(P) for all P € F(R?). The converse is in
general not true (e.9Gp ndisk iS a subgraph ofgisk, but it
is not spatially distributed over it, see [7]).

Theorem 2.1:For r € R, we have

() GemsTCYeC o, gGmdi_sk(T) C Gip (1) C Gpndisk(r);
. S _ (i) Gaisk(r) is connected iffGemst C Gaisk(r);
Fig. 1. Voronoi partition of a convex polyga@) generated b0 points  (jii) Gg naisk(7), GLp (') are spatially distributed ovedisk.

selected randomly (left) and Voronoi partition Qf generated by the same s
configuration restricted tw; B(p;, ) N Q, with r = .2 (right). Fig. 2 shows some examples of proximity graphﬂ%ih

A. Proximity graphs and their properties T_d'ls.k . rm. D'el.au-nay Gap”.el 1

For standard notions in graph theory we refer to [20,
Chapter 1]. Here, we start by briefly reviewing the notion
of Laplacian matrix. LetG = (V, E) be an undirected graph
with n vertices. The graph Laplacian matrix associated with
G is defined ad. = D — A, whereD is the degree matrix
and A is the adjacency matrix. The graph Laplacian is
symmetric, positive semi-definite and has an eigenvalue &g- 2. From left to rightr-disk, r-limited Delaunay, and Gabriel
X = 0 with eigenvector(1, ..., 1)”. Furthermore, the graph graphstméR .ft(r’]f 257agents "‘?“; coo(;dutatzs uniformly randomly
G is connected if and only if rafi) = n — 1. generated withir| =7, 7] x [=7,7] andr = 4.

Let us introduce some concepts about proximity graphB. Spatially distributed maps

for point sets inR?. For a setS, let G(S) be the set of  Here we provide an accurate notion of spatially dis-
undirected graphs whose vertex set is an elemei(6). triputed map. Letip : (RY)" — F(R?) be the natural
A proximity graphg : F(R?) — G(R?) associates t® €  immersion, i.e.,ir(P) is the point set that contains the
F(R?), an undirected graph with vertex s;éta}nd edge set (istinct points inP € (R%)". Given a set” and a proximity
£g(P), whereg : F(R?) — F(R? xR?) satisfiescg(P) € graphg, T : (R9)" — Y™ is spatially distributed oveg if
{(p.q) € P xP | p# q}. In other words, the edge setinere existsT : RY x F(RY) — Y, with the property that,
depends on the location of the vertices. Examples includg, g (P1,-..,pn) € (RD)™ and for allj € {1,...,n},

the complete graph and the Euclidean Minimum Spanning .

Tree Geust. Here, we define [18], [21], [7]: Tj(p1-- - pn) = T(pj, Nop, (i (p1; - - -, Pn)))

(i) the r-disk graphGgisk(r), for » € R, with (p;,p;) € where T; denotes thejth component of7. In other
EGawe(ry (P) 1 |[pi — pjl| < s words, thejth component of a spatially distributed map

(i) the Delaunaygraph Gp, with (p;,p;) € &g, (P) if  at(p1,...,p,) can be computed with only the knowledge
Vi(P)NV;(P) # 0; of the vertexp; and its neighbors i (ig(p1, . .., pn))-




I1l. ENCODING COORDINATION TASKS Roughly speaking/{ measures the amount of area @f

We now define various functions that encode coordinatiofnich is visible from any of the agents a,...,pn.
objectives and characterize their smoothness properties. Therefore, it will be of interest to find local maxima Bs.

A. Aggregate cost functions for deployment C. Aggregate cost functions for consensus

Loosely speaking, deployment consists of a network of |et us here briefly consider a setup based on a fixed graph
mobile agents deploying in an environment to achieve maxnstead of a proximity graph. Lef = ({1,...,n}, E) be
imum coverage of it. For € R, letnp(, ) (¢) be the unit an undirected graph with vertices. Following [13], define
outward normal toB(p,¢) at ¢ € 0B(p,e). Let @ C R?  the Laplacian potential® : R™ — R, associated withG
be a simple convex polytope. GivehC @, let 15 denote 1
the indicator function]ls(q) =11if ¢ € S, and1g(q) =0 bg(r) = 2T Lo = 3 Z (z; —x:)?.
if ¢ ¢ S. In what follows, {V;(P)}icq1,....n} refers to the (4,§)€E
Voronoi partition of @ generated byP € F(R?).

A density functionp : Q — R, is a bounded function.
Given S C Q, let areay(S) = [ ¢(q)dg. A performance
functionf : R, — R is a non-increasing and piecewise dif-
ferentiable function with finite jump discontinuities. @iv
¢ and f, consider the functiofi{ : @™ — R defined by

Fori € {1,...,n}, the variablex; is associated with the
agentp;. The variabler; might represent physical quantities
including attitude, position, temperature, or voltage.oTw
agentsp; andp; are said toagreeif and only if z; = ;.
It is clear that®s(x) = 0 if and only if all neighboring
nodes inG agree. If, in addition(z is connected, then all
nodes agree and a consensus is reached. Theréfg(e,)
H(P) = o Y F(lla = pilDo(g)dg. (D) quantifies the group disagreement in a network.

Note that achieving consensus is a network coordination
Op?roblem that does not necessarily refer to physical vaggbl
such as spatial coordinates or velocities. In what folloves w
consider two “spatial versions” of consensus, that we refer
to as rendezvous and cohesiveness.

Note thatH is an aggregate cost function since it depends
all the locationsp;, . .., p,. Roughly speakingH provides
the expected value of the sensing performamerevided
by the group of agents over any point @, where ¢
represents a probability that some event take place Qver
and f describes the performance of the sensors. BecauBe Aggregate cost function for rendezvous

of noise and loss of resolution, the sensing performance atroughly speaking, rendezvous means agreement over
point ¢ taken from the sensor at degrades withlg —pi|.  the location of the agents in a network. With a slight
Therefore, it will be of interest to find local maxima féf.  abuse of notation, we introduce the convex hull function

Distortion problem: If f(z) = —a? (differentiable with co : (R%)" — 2E) as co(P) = co(ig(P)), where we

no jump discontinuities)H takes the form represent a polytoPe iR? by its vertex set. Theliameter
n n function diam : 28°) — R, U {400} is defined by
He(P) = — / —pillPo(9)dg & =Y Jvip,, ,
c(P) ; VilP) lg — pil“¢(q)dq ; Vi,pi diam(S) = sup{|lp — q|| | p,q € S}.

where.Jy,, denotes the polar moment of inertia of theDefine Vgiam = diamoco : (R?)" — R, by
setW C @ about the poinp. In signal compression, Vi P) = di P
see [22],—Hc is referred to as the distortion function. aa( P) fam(co(P)) .

Area problem: If f(z) = 1 g)(z), thenH corresponds = max{|lp; —p;ll [ 4,5 € {1,...,n}}.

to the area, measured accordinggtocovered by the Let diag((R?)") = {(p,....p) € (RV)" | p € R%}. One
union of then balls B(p1, R), ..., B(ps, R); thatis,  can show thal/giam = diamoco : (R4)™ — R, is locally

_ n , Lipschitz and invariant under permutations of its arguregnt
Hared P) = U ,B(pi,R)). ; .
_ o wred ) = areay (U, B(pi, R)) _ and thatVgam(P) = 0 if and only if P € diag((R%)").
Mixed distortion-area problem: Forb < —R?,if f(z) = Therefore, the set of global minima bfjam corresponds to

—2* 1jo,p) (2) + b~ 1{g, 400y (2), thenH takes the form the configurations where agents rendezvous.

Ha(P) = E": J E. Aggregate cost functions for cohesiveness
BT o VinBles R) b Leth : R, — R be a continuously differentiable function
b U™ B(p;. R)). satlsfy|pg the foII(_)wmg conditions: (|)limRﬁQ h(R) =
b areas (Q\ Ui B(pi, ) ~+o0, (ii) there existsR, € Ry such thath is convex
B. Aggregate cost function for visibility-based deploymenon (0, Ry) achieving its minimum at all the points in the
Let Q be a simple non-convex polytope R?. Given interval[R., R.] C (0, Ro) andh is concave or{Ry, +o0),
pe @ letS(p)={qeQ|[qp] CQ} denote thevisible and (iii) there existd?, € Ry, R > Ry s_uqh thatu(R) = c
region in @ from the locationp (recall that[q,p] is the forall R > R;. LetG be a some proximity graph. Define
closed segment from to p). Define now the aggregate cost function

Hus(P) = [ max 1g)(g)dg. Heoneg(P) = Y Al = p;l)-
Qze{l,...,n} (pirp;)E€EG(P)



The minima of Heoneg COrrespond to “cohesive” network wherearc; 1 (R), . .., arc; ar,(r)(R) correspond to the arcs
configurations. Specifically, fon € {2, 3}, configurations in 9(V;(ix(P)) N B(p;, R)). Here My, and CMy; denote,

of minimum for Heoneg have all neighboring agents’ loca- respectively, the mass and the center of mass with respect
tions within a distance contained in the interVal,, R,]. to ¢ of W C Q. The critical pointsP € Q™ of Hc satisfy

This objective function, or variations of it, has been emp; = CMy, p) for all i € {1,...,n}. Such configurations
ployed over different proximity graphs in a number of worksare calledcentroidal Voronoi configurationssee [22].

in the literature ([5] and [6] over the complete graph, [23] From (2a) it is clear that the gradient ®fc is spatially

over ther-disk graph) to guarantee collision avoidance andistributed overGp, whereas from (2b) one deduces that

cohesiveness of the network. the gradient ofH 4 is spatially distributed ove§ p(2R).
IV. TOWARD A SYSTEMATIC METHODOLOGY FOR THE 1 he gradient flows OfHC“ and of Harea correspond to the
DESIGN OF MOTION COORDINATION ALGORITHMS coordination algorithms “move-toward-the-centroid ofrow

Voronoi cell” and “move in the direction of the (weighted)

In t.h's section, we elaborgte on thg role played by thﬁormal to the boundary of own cell,” resp. Fig 3 shows an
tQOIS m_troduced in the preévious sections. Throughout thfgxample of the execution of the second algorithm. O
discussion we do not enter into technical details, but rathe
refer to various works for further reference. Our intentisn
to provide a first step toward the establishment of a rigorous
systems theoretic approach to the design and analysis ¢
coordination algorithms for a variety of sensing tasks.

We start by informally describing the notion of coordina-
tion algorithm. Roughly speaking, a coordination algarith
consists of a control law for each agent of the network. IRig. 3. Area problemi6 mobile agents in a convex polygon following the
particular, we mainly focus on algorithms which specifygradient ofHarea (cf. equation (2b)). The density functigh (represented
the same conirol law for all agenis. Mathematically, &) Tears cf 1= fonou poj = 1 sum o fue Cabssir vt
coordination algorithm will be described in different f@m intersectionv; N B(p;, L) is plotted in light gray.
depending on whether it is implemented in continuous time
(a vector field, or more generally, a differential inclusion Example 4.2: (Consensus)fhe asymptotic agreement
over the configuration space of the network) or in discretgigorithm proposed in [13] to solve the consensus problem
time (a map, or more generally, a set-valued map). is another example of this approach. For a fixed undirected

A. Coordination algorithms from aggregate cost functionsdraphG = ({1,...,n}, E), the function® is smooth, and

The first step of this approach is to identify the aggregat'éS partial derivative takes the form

cost function which is relevant for the desired task. Once 00¢ L 3)
this objective function is determined, one analyzes itfedif ox

entiable properties and computes its (generalized) gnadieClearly, this gradient is spatially distributed with respe
With this information, it is possible to characterize itsto the graphG itself. The implementation of the gradient
critical points, i.e., the desired network configuratiofbe control law leads to the algorithni; = S ipen(®i —

next step is to identify the proximity graphs with respect;,), j € {1,...,n} which asymptotically achieves average-
to which the gradient of the objective function is spatiallyconsensus, i.e., the final value upon which all agents agree
distributed (cf. Section 1I-B). If any of these proximity can be proved to be equal %32;;1%(0)- O

graphs is computable with the capabilities of the mobile Example 4.3: (Cohesivenesshnother example of this
network, then a control law for each agent simply consistapproach are the coordination algorithms proposed in the
of following the gradient of the aggregate cost function. Byiterature to achieve cohesiveness [5], [6], [23]. Ba¥mpiete
LaSalle Invariance Principle, such a coordination algjonit - the functionMconegeompe IS SMOOth 0™\ {(p1, . .., pn) €

is automatically guaranteed to ensure convergence of thR2)» | p, = p; for somei,j € {1,...,n}, i # j}, with
closed-loop network trajectories to the set of criticalriei OH 5

Example 4.1: (Distortion and area problem3jhe coor- M(p) — Z — (h(llpi — p; 1)),
dination algorithms proposed in [7] for the distortion and opi opi

. pJ'ENQdisk(Rl)vpi
the area problems are examples of this approach.(For

a simple convex polygon iR?, one can prove that the Where we used the fact that = oh/0R for R > R.
functions H¢: and Harea are locally Lipschitz onQ™ and According to Section Il, this gradient is spatially distrtbd

differentiable onQ" \ {(p1,....,pn) € (R2)" | p; = Over Gaisk(R1). The gradient descent contrql law for ez_ich
p; for somei, j € {1,...,n}, i # j}, with agent guarantees that the network agents will asymptiytical
oM approach the set of critical points ®fconeg ompiec O
C(p) = 2My;, (p)(CMy, (p) —pi) , (2a) Not always does the aggregate cost function enjoy the
Opi ' ' desirable property that its gradient is spatially distrdol
Harea Mi(R) . with respect to the required proximity graph. In other words

(P) = Z /m‘ . npp,r) ¢,  (2b) given an available information flow, not always the appro-

Opi k=1 priate gradient flow can be computed. If this is the case,



then one possible approach is the following: (i) consider
constant-factor approximations of the cost function, (ii)
identify those approximations whose gradient is spatially
distributed with respect to an appropriate proximity graph
and (iii) implement as coordination algorithm that each
agent follows the gradient of the approximation. Fig. 4. Non-interference problem: “move-away-from-closesighbor”

E_xample 4.4 _(Mixed distortior_l-area prOblem-Fh_e CO-  algorithm for16 mobile agents in a convex polygon. The left (respectively,
ordination algorithm proposed in [7] for the distortionright) figure illustrates the initial (respectively, finaications and Voronoi

problem falls into the situation described above. Since tH?rtition. The central figure illustrates the evolutionr Bgents, the ball
gradient ofHc is spatially distributed ovego (Cf. (2a)) of maximum radius contained ii;, centered ap;, is plotted in light gray.
and this graph is not spatially distributed ov@§sk, the

coordination algorithm “move-toward-the-centroid of own Example 4.6: (Flocking)Consider the coordination al-

Voronoi cell” is not implementable over a network with grithm analyzed in [3] for the flocking problem. Roughly
limited-range interactions. Instead, forc R, one has gheaking, flocking consists of agreeing over the direction o

that (i) for 8 = r2/(2 diam Q)?, motion by the agents in the network. L&tbe a proximity
H:(P) < He(P) < fH=(P) <0, 4y 9graph. Consider the algorithm where each agent: (i) detects
3(P) < He(P) < BH5(P) @) its neighbors’ (according t¢) heading; (ii) computes the
and (i) the partial derivative of{: is average of its neighbors’ heading and its own heading,
and (iii) updates its heading to the computed average. This
Oy algorithm is spatially distributed oveéf. Moreover, assum-

P) =2My, -y (CMy, ry —P; : . .
opi ) viPns(wns) (Miense.s) —pi) ing that G remains connected throughout the evolution,

M;(%) one can show that the agents asymptotically acquire the

— ((1)2 +b) Z/ NB(p.5) P> same heading. The proof method builds on the properties

2 k=1 Y arci k(%) of ergodic and non-negative matrices from linear algebra

o oy and the properties of graph Laplacians from algebraic graph
wherearc; 1 (3), .- arci,(5)(3) correspond to the arcs theory. It is also worth mentioning that, fGkysc, one can

in 9(V;(is(P)) N B(p;, 5)). Clearly, the gradient oty is  ogiapiish [3] that there does not exist in general a quadrati

s_patially distributed Oveg.LD(T)’ and thefe_fofey the algo- Lyapunov function that helps characterize the asymptotic
rithm based on the gradient control law is mplementablgtabi“ty properties of the algorithm. 0

over a network with limited range interactions.

C. Coordination algorithms from local objective functions
This approach has common elements with the two ap-
This approach consists of devising a simple control lawsroaches presented previously. Now, to derive a control law

typically inspired by some sort of heuristic or behaviorfor each specific agent, one assumes that its neighboring

that implemented over each agent of the network wouldgents, or some spatial structure attributed to it, remain
reasonably perform the desired sensing task. Once tifiged. One then defines a local objective function, which
is done, one should (i) check that the resulting coordiis somehow related with the global aggregate cost function
nation algorithm is spatially distributed with regards toencoding the desired task, and devises a control law to opti-
some appropriate proximity graph and (ii) characterize itmize it. The specific control strategy might be heuristicall
asymptotic convergence properties. One way of doing thgerived or arise naturally from the gradient information of

latter is by finding an aggregate cost function that encodele local objective function. Once the algorithm is setuge o

the desired sensing task and by showing that it is optimizeshould check that it is spatially distributed, and chandmte

along the execution of the coordination algorithm. its asymptotic convergence properties.
Example 4.5: (Move-away-from-closest-neighbdZpn- Example 4.7: (Non-interference problenGonsider the

sider the coordination algorithm in [16] where each agerdlternative expression fdt{sp (cf. equation (5))

moves away from its closest neighbor (see Fig. 4). This in- )

teraction law is spatially distributed ovép. One can prove Hsp(P) = el smv; () (Pi) ,

that along the network evolution, the aggregate function N
where smyy (p) = dist(p, 0W). Now, fori € {1,...,n},

Hsp(P) = min  {3[lpi — p;,dist(p:,0Q)}, (5) considersmy, p as a local objective function. Assuming
i#ie{lm} that the Voronoi cellV;(P) remains fixed, one can imple-
is monotonically non-decreasing. This function corresison ment the (generalized) gradient ascentsofy, ) as the
to thenon-interference problepwhere the network tries to control law for the agenp;. One can show [16] that this
maximize the coverage of the domain so that the variouateraction law precisely corresponds to the strategy ‘®eaov
sensing radius of the agents do not overlap or leave tlmvay-from-closest-neighbor” discussed in Example 4.5.
environment (because of interference). Under appropriate Example 4.8: (Rendezvous)et G be a proximity graph.
technical conditions, one can show that the critical point€onsider the Circumcenter Algorithm ovér where each
of Hgp are incenter Voronoi configurations. O agent: (i) detects its neighbors accordingitdii) computes

B. Coordinated behaviors from basic interaction laws



the circumcenter of the point set comprised of its neighbors

and of itself, and (iii) moves toward this circumcenter whil [
maintaining connectivity with its neighbors. To maintain

connectivity, the allowable motion of each agent is conve-
niently restricted (see [8], [9], [11] for further details)

Note that in step (ii), assuming that all other agents
remain fixed, each agent minimizes the local objectivel]
function given by the maximum distance from the agent
to all its neighbors (according tG). By construction, this

(2]

algorithm is spatially distributed oveg. Moreover, one [4]
can prove that the evolution &4z, is monotonically non-
increasing. Using the LaSalle Invariance Principle foseld  [5]

algorithms (see [7]), one can characterize the correctnestgl
properties of the Circumcenter Algorithm ovér These
results can be further generalized to the case where each
agent uses a different notion of proximity graph at eachm
time step. See Fig. 5 for an illustration. A similar algonith
where the agents, instead of rendezvousing at a common
position, rendezvous at the direction of their velocitytees

would lead to a solution of the flocking problem. O 8]

(9]

[10]

(11]

[12]

(23]

T

Fig. 5. Circumcenter Algorithm ovefGaisk(r), Go (1) N Gaisk(r) } in R3. [14]

V. CONCLUSIONS [15]

We have surveyed a set of recent tools (proximity graphgl,G]
spatially distributed maps, aggregate cost functionsj th
we believe are important in the design and analysis of
motion coordination algorithms. We have also identified!?]
various approaches to the design of coordination algosthny, g
and shown the wide applicability of the proposed tools in
these approaches. We hope that in the coming years tlg]
set of control tools for motion coordination will continue
to expand and will lead to the design of other spatially
distributed primitives and the analysis of the algorithms’
performance and complexity. [20]
21
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