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Robust rendezvous for mobile autonomous agents
via proximity graphs in arbitrary dimensions

Jorge Coits, Sonia Marhez, Francesco Bullo

Abstract—This paper presents coordination algorittms  for coworkers in [1]. The algorithm proposed in [1] has been
networks of mobile autonomous agents. The objective of the extended to various synchronous and asynchronous stop-
proposed algorithms is to achieve rendezvous, that is, agreementand_go strategies in [2], [3]. A related algorithm, in which

over the location of the agents in the network. We provide tivit traint ti d i d 4
analysis and design results for multi-agent networks in arbitrary connectivity constraints are not imposed, is proposed Jn [

dimensions under weak requirements on the switching and A prglimi-nary study on r?ndeZVOUS under.communi_cati_on
failing communication topology. The novel correctness proof quantization is presented in [5]. These motion coordimatio

relies on proximity graphs and their properties and on a general schemes are memoryless (static feedback), anonymous (all
LaSalle Invariance Principle for nondeterministic discrete-time agents are indistinguishable), and spatially distribufaly
dynamical systems. local information is required). An incomplete list of reten
works on motion coordination algorithms includes [6], [#] o
I. INTRODUCTION pattern formation, [8] on flocking, [9] on self-assemblyp]1

This work is a contribution to the emerging disciplinen foraging, [11] on gradient climbing, and [12], [13] on
of motion coordination for ad-hoc networks of mobile audeployment. Consensus and control theoretical problems on
tonomous agents. With this loose terminology we refer @ynamic graphs are discussed in [14], [15] and in [16],
groups of robotic agents with limited mobility and commutespectively.
nication capabilities. In the not too distant future thessugs !N this paper we provide novel analysis and design results
of coordinated devices will perform a variety of challergin©n @ class of rendezvous algorithms. First, we define and
tasks including, for example, search and recovery opmtioanalyze a class of “circumcenter algorithms” defined over
surveillance, exploration and environmental monitorifige ~ SWitching communication topologies. We classify communi-
potential advantages of employing arrays of agents have f&tion topologies for our algorithms via the notion of “prox
cently motivated vast interest in this topic. For exampienf imity graphs,” see [17] and [13]. Admissible communication
a control viewpoint, a group of agents inherently provide§pologies for our algorithms are proximity graphs with the
robustness to failures of single agents or of communicatié@llowing properties: they are “spatially distributed” evthe
links. disk graph (i.e., they can be computed with only the local

The motion coordination problem for groups of autonomougformation encoded in the disk graph) and their connected
agents is a control problem in the presence of communicatié@mponents have the same vertices as the disk graph. This is
constraints. Typically, each agent makes decisions baslyd c@ more general class of communication topologies than the
on partial information about the state of the entire netwtbei¢  ©ne adopted in most works on motion coordination including
is obtained via communication with its immediate neighboréor example [1], [2], [3], [4]. The ability to rely on general
One important difficulty is that the topology of the communicommunication topologies is advantageous in the design of
cation network depends on the agents’ locations and, threref wireless communication strategies and is referred to gmotto
changes with the evolution of the network. A fundament&dy control,” see for example [18] and references thereamn. F
system-theoretical problem in the motion coordination af athe proximity graphs of interest in this paper, we prove some
hoc networks is the synthesis of control laws whose comm@ovel technical facts regarding connectivity.

nication requirements scale nicely with the number of agent Second, we consider networks of agents whose state space
in the network. is R?, whered is an arbitrary number not restricted fo, 2}.

The “multi-agent rendezvous” problem and a first “cirYVe prove that our proposed class of circumcenter algoritsms

cumcenter algorithm” have been introduced by Ando arifdeed correct in arbitrary dimensions and include sinoitest
in two and three dimensions. As a natural outcome of this
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establish the robustness properties of the proposed tgmi A. Basic geometric notions and the circumcenter of a set

when each network agent is allowed to use a different prox-\we review some notation for standard geometric objects:
imity graph (that can also change over time) to COMPUlg; additional information we refer the reader to [20] and
its neighbors. Our results provide the first contribution tpsferences therein. We l&, and R, denote the positive

the theoretical explanation of the robustness properties hy the nonnegative real numbers, respectively. Welland
the circumcenter algorithm observed in computer smuhs’uoNO denote natural numbers and nonnegative integer numbers,

in [1]. respectively. For a bounded sét ¢ R? d € N, we let

Fourth, we develop an innovative method of proof baseC%(S) denote the convex hull of. For p,q € R?, we let
on a recently-developed LaSalle Invariance Principle fam-n Ip,ql= {\p+ (1 — Mg | A €]0,1[} and [p7 ql = C(;({p a})

deterministic discrete-time dynamical systems, see [IBIS genote theopenand closed segmentith extreme pointsp

version of the invariance principle helps us establish $06buyq, respectively. For a bounded sgt- R¢, we letCC(S)
convergence as follows. At each coqflguratlon of the network 4 CR(S) denote thecircumcenterand circumradiusof S,

we consider all the possible evolutions of the agents und@kpeciively, that is, the center and radius of the smallest
all the possible choices of strongly connected commurinati riysJ-sphere enclosing. Note that the computation of the
topologies. In this way, the evolution of the proposed claggcymcenter and circumradius of a bounded set is a strictly

of circumcenter algorithms is embedded into the (larget) s&nyex problem and in particular a quadratically constdin
of evolutions of a non-deterministic discrete-time dyneathi |inear program. Fop € RY, we let B(p, r) andB(p, ) denote
system. In turn, this system is analyzed via our novel versig, o open and closed ball centered a,go of radius: r e R,

of the invariance principle. respectively. Apolytopeis the convex hull of a finite point

This paper and our previous work in [13] use the samg.1 we let Ve(QQ) denote the set of vertices of a polytope
tools (generalized invariance principle and proximity [grs) Q, and we emphasize that any vertex@fis strictly convex,

to study two different and complementary motion coording , < Ve(Q) if and only if there exists: € R? such that
tion problems (deployment and rendezvous, respectiviélg). (s—v)-u>0forallseQ\ {v}.

envision that these theoretical tools will play an impottae Proposition 2.1:Let S be a finite set irR?. The following
in the emerging discipline of scalable motion coordination ¢;otements hold:
We emphasize that rendezvous problems are also important ' )
because of their relevance in network consensus probledfs [1 n.(.') .?(XS)SE Ccoésg,\;?éco(sg' satisfvS ¢ B then
[14]. In a network consensus problem, the objective is to(") '] pCGC(S\)[ hags )noneyr;nent Jirnter;,efc):/tioncwi%?(gq )
achieve agreement over the value of some logical variables. fp’r " g y 202
Our rendezvous algorithms can be applied to tackle consensu P:)oo?' qTehe .first statement follows directly from the
problems over dynamically changing and failing topologies inition ;)f circumcenter and of vertex of a pol {o e. Let us
where the agents communicate and adjust the values of Hfovide 2 proof for the second statement SFi) 0; (F;C.(S)
agreement variables instead of their location. The prcqbos% 4s Ep ded tha€'R(S ' Lmt < it
rendezvous algorithms are therefore comparable with feeidb ﬁ‘; 5 qﬁ< gpvgw)ér:,\;ee %(uﬁ ;3‘ argd )ttfe:éforee}pq SC(S‘)[
consensus al_gorlthms_ for networks with fa|Iu_res. has nonemp’ty intersectionzwitﬁ(;+q ) Conside’r the case
The paper is organized as follows. In Section Il we prowdré i 202/
the necessary tools from geometry and from stability th;eo:&%en P - q|| = r. Sincep,q € B<CC(S)’CR(€)) and
these include the notion and properties of proximity graphs. (5) <é' ('jt foIIovzs thatCC(S)he B(p,r)N B(g, 7). From
and the LaSalle Invariance Principle for nondeterministf@,‘sﬁ we geduce t ?}P’ CS(S)[ as nonempty intersection
discrete-time dynamical systems. Section Il containsa(i) With B(*3": 5), as claimed. u
model of robotic network, (ii) the statement of the rendem/o
problem, (iii) the statement of the so-called Circumcentd®. Proximity graphs and their properties
Algorithm over a proximity graph, and (iv) the theorems \ye introduce some concepts regarding proximity graphs for
on asymptotic convergence and robustness to link failurggint sets inR?. We assume the reader is familiar with the
and the use of different proximity graphs by each agent 9;nqard notions of graph theory as defined in [21, Chapter 1]
compute its neighbors. Section IV contains all the proafis] aye begin with some notation. Given a vector spagelet
Section V contains some instructive simulations in two aqﬁ(v) be the collection of finite subsets &f. Accordingly
three dimensions. Finally, we provide a summary and futude) is the collection of finite point sets i®%; we shall
directions of research in Section VI. denote an element dF(R?) by P = {p1,...,pn} C RY
| PRELIMINARY DEVELOPMENTS wherep,, ..., p, are distinct points iR?. Let G(RY) be the
' set of undirected graphs whose vertex set is an element of
Here we collect some known and some novel concepigrd).
that will be required in the later sections. First, we review a proximity graph functiorg F(R?) — G(RY) associates
some geometric concepts related to proximity graphs. Ne, a point setP an undirected graph with vertex sgt and
we provide a formally accurate notion of spatially disttdul ggge setf5(P), where&g : F(RY) — F(R? x RY) has the
maps and obtain some fundamental properties associatked Vy‘:iirtoperty thatts (P) C P x P\ diag(P x P) for any P. Here,
it. Finally, we present a recently-developed version of the B
LaSalle Invariance Principle. INote that with this definition polytopes are automaticallynzex.



CORTES, MARTINEZ AND BULLO: ROBUST RENDEZVOUS FOR MOBILE AUTONOMOUS AGENS VIA PROXIMITY GRAPHS 3

diag(P x P) = {(p,p) € P x P | p € P}. In other words, LetP € F(R?). SinceGemst ndisk(r) iS @ subgraph ofgisk(r),
the edge set of a proximity graph depends on the locationibfis clear that vertices belonging to the same connected
its vertices. General properties of proximity graphs anel ttomponent oGeust naisk(P, ) must also belong to the same

following examples are defined in [20], [17], [13]: connected component dgisk(P, 7). To prove the converse
(i) the r-disk graphGgisk(r), for r € Ry, with (p;,p;) € assumep; andp; in P verify ||p; — p;|| < r. Let C be the
Egas(ry(P) 1 |Ipi — pi|| <75 connected component Gfjisk(P, ) to which they belong, with

(i) the Delaunay graplto, with (p;,p;) € Eg,(P) if the VerticesV(C). SinceC is connected, theGemst(V(C)) C C
Voronoi regions ofp; andp; have non-empty intersec- by (ii). Now, using the definition of the Euclidean Minimum
tion; Spanning Tree and the fact ti@ais a connected component of

(iii) the Relative Neighborhood grapfirn, with (p;,p;) € Yaisk(P,7), one can show thafewst(V(C)) = Gemst(P)[C],
Egen(P) i, for all p, € P\ {pi,p;}, i & B(pi, |pi — where the latter denotes the subgraphGefist(P) induced

;1) N B(pj, lIpi — 1) by C (see [21] for the notion of induced graph). From this, we
(iv) the Gabriel graptgs, with (pi, p;) € Eg.(P) if, for all ~ deduce thatemst(V(C)) C Gemst naisk(P,7), and therefore
Pk € P\{pi,p;}, pi & B(pi;pj7 Hpigpjl\); p; andp; belong to the same component@uvsr naisk(P, 7).
(v) the Euclidean Minimum Spanning Tr&&wst, Which This implies the result. u

for eachP, is a minimum-weight spanning tree of the We conclude this section with some examples of proximity

complete graph{P, P x P\ diag(P x P)) whose edge 9raphs inR* andR?; see Figures 1 and 2.

(piapj) has Welght||p2 - pJH
If needed, we shall writegisk(P, ) to denoteGyisk(r) at
P. In what follows, we will consider the proximity graphs )\ . )
GrN ndisk(r) and Gg naisk(rr) defined by the intersection of X d X o
Grn and Gg with Gyisk(r), 7 € R, respectively. A different . . .
proximity graph related to, but different from, the intesen | A I . | .
Gb ndisk(r) of Gp with Gyisk(r) is ther-limited Delaunay graph o ey ey e
Gio(r), as defined in [13]. Jl— o ;e

To each proximity graph functiog, one can associate the :

set of nelghbors maNg PR x F(Rd) - F(Rd)’ defined by Fig. 1. From left to right,r-disk, r-limited Delaunay, and Euclidean

o Minimum Spanning Tree graphs R? for a configuration o225 agents with
Ng (p, P) - {q S | (p, q) € Sg (P U {p})} coordinates uniformly randomly generated within the sqiia® 7] x [—7, 7].
The parameter is taken equal tal.

r-disk graph r-lim. Delaunay graph ~ EMST graph

Typically, p is a point inP, but the definition is well-posed
for any p € R?. Givenp € RY, it is convenient to define the
mapAG,, : F(RY) — F(RY) by Ng ,(P) = Ng(p, P).

Let G; and G, be two proximity graph functions. We say|
that G, is spatially distributed oveg, if, for all p € P,

Ngl,P(P) :Ngl-,P(NQmP(,P))' *

It is straightforward to deduce thatdf, is spatially distributed
over G, theng; is a subgraph of,, that is,G; (P) C G2(P)
for all P € F(RY). The converse is in general not true (for

instance, the grap8ip ~disk is a subgraph ogis, but it is not _Fig. 52 From Ieft to right;r-disk, Gabriel,' and Relative Neighborhood graphs
spatially distributed over it, see [13])_ in R° for a configuration o225 agents with coordinates uniformly randomly

L . generated within the squafe-7,7] x [—7,7] x [=7,7]. The parameter is
We say that two proximity graph functiorgg andGs have taken equal tot.

the same connected componeiiisfor all point setsP, the
graphsg; (P) andG,(P) have the same number of connected
components consisting of the same vertices.
Theorem 2.2:For r € R, the following statements hold: C. Proximity graphs over arrays of possibly coincident psin

() Gemst C Gra C Go and Gonaisk(r) C Guo (r); and spatially distributed maps
(i) Gaisk(r) is connected if and only iGemst C Gaisk(7); The notion of proximity graph is defined for sets of distinct
(iii)  Grn naisk(7)s Ga ndisk(), and G p(r) are spatially dis- points P = {p,...,p,}. However, we will often consider
tributed overGgisk(r); tuples of elements oR? of the form P = (py,...,p,), i.e.,
(V) GemsT ndisk(T), GrN ndisk(T), Ga ndisk() andGip () have ordered sets of possibly coincident points. kgt (RY)™ —
the same connected componentsigs(r). F(R?) be the natural immersion, i.eiz(P) is the point set
Proof: Fact (i) is mostly taken from [17] and [20].that contains only the distinct points iR = (p1,...,pPn)-
Facts (ii) and (iii) are taken from [13]. Here we prove fae)(i Note thatir is invariant under permutations of its arguments
Forr € Ry, it is enough to show thafemst naisk() has the and that the cardinality ofr(p1,...,p,) IS in general less
same connected componentsigk(r), since this implies that than or equal toe. In what follows, P = ig(P) will always
the same result holds f@frn ndisk(7), G ndisk(r) andGip(r).  denote the point set associatedftoc (R?)™.

Rel. Neigh. graph
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We can now extend the notion of proximity graphs to thi§ : R — R be a continuous function non-increasing along

setting. Given a proximity graph functiog with edge set
function &g, we define (with a slight abuse of notation)

G=Goir: (R)" — G(RY),

Eg = &g oip : (RY™ — F(R? x RY).
Additionally, we define the set of neighbors mayg; :
(RH)™ — (F(RY))"™ as the function whosgth component is

Ngd'(pl, e

Note that coincident points in the tuplg, . . .
the same set of neighbors.

Given a setY and a proximity graph functio, a map
T : (RY)™ — Y™ is spatially distributed oveg if there exists
a mapT : R? x F(RY) — Y, with the property that, for all
(p1,---,pn) € (RY)™ and for allj € {1,...,n},

Tj(pla' 7pn) = T(p77-/\/g,j(pla7pn))7

whereT; denotes thgth-component of". In other words, the
jth component of a spatially distributed map(at, ..., pn)

s Pn))-
, pn) Will have

7pn) - Ng(pj7i]F‘(plv s

can be computed with only the knowledge of the vertex

T on W. Assume the trajectoryp,, } men, Of T' takes values
in W and is bounded. Then there existg R such that

Pm — M N V’l(c) ,

where M is the largest weakly positively invariant set con-
tained in

{p e W |3p’ € T(p) such that/ (p') = V(p)}.

Remark 2.5:I1f W is closed, thenl’ is closed onW if
and only if the graph ofl" restricted toW, Graph(7T');w =
{(p.p) | p € W,p/ € T(p)} is a closed set. From [23,
Lemma 14], if T is bounded on a neighborhood ©f, then
Graph(T') being closed is equivalent t@" being upper
semi-continuous oy, |

In this section we state the model, the control objective,
the motion coordination algorithm, and the properties & th
resulting closed-loop system.

RENDEZVOUS VIA PROXIMITY GRAPHS

p; and the neighboring vertices in the undirected graph

G({p1,---,pn})
Remark 2.3:With this definition of spatially distributed

map, one can see that the proximity graph functignis
spatially distributed over the proximity graph functidgp
if and only if the set of neighbors map/g, is spatially
distributed overgs. O

D. LaSalle Invariance Principle for nondeterministic diste-
time dynamical systems

A. Modeling a network of robotic agents

We begin by introducing the notions aibotic agentand of
network of robotic agentd_etn be the number of agents in the
network. Each agent has the following sensing, computation
communication, and motion control capabilities. THeagent
has a processor with the ability of allocating continuoud an
discrete states and performing operations on them. /e
agent occupies a locatign, € R?, d € N, and it is capable
of moving at any timem € N, for any unit period of time,

We review some concepts regarding the stability of diseretgccording to the discrete-time control system

time dynamical systems and set-valued maps following [22],

[13]. For d € N, an algorithm onR? is a set-valued map
T : R — 2®) with the property thatl'(p) # 0§ for all
p € R?. Note that a map fronR¢ to R? can be interpreted as
a singleton-valued map. fajectory of an algorithmT is a

sequencep,, }men, C R? with the property that
Pm+1 € T(pm) P m e NO .

In other words, given any initighy € R?, a trajectory ofT" is
computed by recursively setting,, ., equal to an arbitrary el-

ement inT'(p,,). An algorithm is therefore a nondeterministic Remarks 3.1:

discrete-time dynamical system.

An algorithm 7" is closed atp € R? if for all pairs of
convergent sequenceg — p andp, — p’ such thatp) €
T(px), one has thap’ € T'(p). An algorithm isclosed on
W c R if it is closed atp, for all p € W. In particular,
every continuous mafl’ : RY — R? is closed onR?. A
set C is weakly positively invariant with respect B if, for
any po € C, there existsp € T(po) such thatp € C. A
point po is said to be dixed point ofT" if py € T(py). The
function V : R — R is non-increasing along’ on W c R?
if V(p') <V(p) forallpe W andp’ € T(p). We are ready
to state the following result, whose proof is provided in][13

Theorem 2.4: (LaSalle Invariance Principle for closed al-

gorithms) Let 7' be a closed algorithm ofiy ¢ R¢ and let

pi(m + 1) = pi(m) + u;(m). 1)

Here, the controk;(m) takes values in a bounded subset of
R?. We assume that there is a maximum step sjzg € R
common to all agents, that igu;(m)|| < smax for all i €
{1,...,n} and allm € N. The sensing and communication
model is the following. The processor of each agent has acces
to its location, and transmits this information to any other
agent within a closed disk of radiusc R. Note that we are
assuming the communication radius is the same for all agents
« Equivalently, we shall consider groups
of robotic agents without communication capabilities, but
instead capable of measuring the relative position of each
other agent within a closed disk of radins R .

At first we assume that all communication between agents
and all sensing of agents locations are accurate. We
shall later analyze the robustness of our algorithms with
respect to communication link failures. We will instead
not address in this paper the correctness of our algorithms
in the presence of measurement errors or communication
guantization.

Our network model is synchronous. Regarding asyn-
chronous network models in rendezvous problems, we
refer to [1] for early numerical results and to [3] for a
thorough theoretical analysis. a
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B. The rendezvous motion coordination problem Name: Circumcenter Algorithm oveg

We now state the control design problem for the network G0@l: Solve the rendezvous problem
of robotic agents. Theendezvous objectivés to achieve | ASSUmes: (i) smax € Ry is maximum step size
agreement over the location of the agents in the network, tha (i) r <Ry is communication radius
is, to steer each agent to a common location. This objectiye (iii) G is spatially distributed proximity
is to be achieved with the limited information flow described graph overGisk(r)
in the model above. Fori € {1,...,n}, agent executes at each time instanfin
Typically, it will be impossible to solve the rendezvous .
problem if the agents are placed in such a way that they do* acquire{qu, .-, qr} = Ngau(r) s (P)
not form a connected communication graph. Arguably, a gogd2: computeM; := Ng,. ({1 ..., qx}) U {p:}
property of any algorithm for rendezvous is that of maintagn 3: computeQ; := C)p, » (Mi \ {pi}) N B(pi, Smax)
some form of connectivity among agents. 4: compute)’ := \(p;, CC(M;), Q;) according to eq. (2
5. setu,; := )\’Lk . (CC(MZ) —pi), ie.,
C. The Circumcenter Algorithm move fromp; to (1 — A)p; + A\ CC(M,)
Here is an informal description of what we shall refer to qﬁg. 3. Circumcenter Algorithm oveF (see the discussion in Section IlI-C
the Circumcenter Algorithm over a proximity gragh for the notation used in the statement).
Each agent performs the following tasks: (i) it de-
tects its neighbors according t@ (ii) it computes
the circumcenter of the point set comprised of its

~

D. Asymptotic correctness of the Circumcenter Algorithm

neighbors and of itself, and (iii) it moves toward this We are now ready to state the main convergence result,
circumcenter while maintaining connectivity with its whose proof is postponed to the following section.
neighbors. Theorem 3.2:Let py, ..., p, be a network of robotic agents

This algorithm is an extension of the one introduced in [1i0 R?, for d € N, with maximum step sizémax € R+ and

Let us clarify which proximity graphs are allowable and ho$ommunication radius € R... Let the proximity graphy be
connectivity is maintained. Firstly, we are allowed to desi SPatially distributed oveGisi(r) and have the same connected
motion coordination algorithms that are spatially disttésl COMPONents asisk(r). Any trajectory{ P, }men, of Tg has
over ther-disk graphGgisk(r), or more generally, over any the following properties:

proximity graphg that is spatially distributed oveFgisk(r). (i) if the locations of two agents belong to the same
This is a direct consequence of our modeling assumption that connected component Gfyisk( Py, ) for somek € Ny,
each agent can acquire the location of each other agentnwithi ~ then they remain in the same connected component of

distance less than or equalitoc R, . Secondly, we maintain Gaisk(Prm,7) for all m > k;

connectivity by restricting the allowable motion of eacteag (i) there exists P* = (p},...,p:) € (RY)"™ with the

In particular, we will show that it suffices to restrict the tiom following properties: P, — P* asm — +oo, and

of each agent as follows. If agents and p; are neighbors p; =pj or [|[p; —pjll > r for eachi,j € {1,...,n};

in the proximity graphg, then their subsequent positions(iii) if G = Gaisk(r), then there existé € N such thatP,, =

are required to belong td?(@, g). If an agentp; has P* for all m > k, that is, convergence is achieved in

its neighbors at location$qy, ..., ¢}, then itsconstraint set finite time.

Coor({ar- - ai}) s Remarks 3.3: « A consequence of Theorem 3.2(i)
Cpr({ 1) = m E(pi +4q f) and (i) is that, if the locations of two ager)ts belong to the

pir (WL -+ 2 92) same connected component®fat some time, then they

ec{a -} converge to the same point iR?. In particular, ifG is

Before stating the algorithm in a more formal fashion, let  connected at some time, then the circumcenter algorithm

us introduce one final concept. Fayr andq; in R?, and for guarantees that all agents converge to the same point, i.e.,
a convex closed sef ¢ R? with ¢y € Q, let \(qo, q1,Q) the rendezvous objective is achieved.
denote the solution of the strictly convex problem: o The statements Theorem 3.2(i) and (ii) were originally
maximize \ proved in [1] for the Circumcenter Algorithm oveéiyisk
2 and ford = 2. This result was extended to other control

subject toA <1, (1 = A)go + Aq1 € Q. policies by [2], [3] (still on the plane and WitiGais

Note that this convex optimization problem has the follayin ~ communication topology).
interpretation: move a|0ng the segment fram to ¢ the « Itisinstructive to consider two alternative Strategiesi;tHN

maximum possible distance while remaining@h Under the the same notation as in the Circumcenter Algorithm, they

stated assumptions the solution exists and is unique. Wétbet can be described as follows:

notions, the algorithm can be formally described as in T&ble (i) each agent moves to the orthogonal projection of
In what follows we shall refer to the Circumcenter Algo- the circumcenterCC(M;) onto the convex set

rithm over the proximity graplg as the magly : (R%)" — Qi Nco(M;);

(R)™, (i) each agent moves to the point i@Q; Nco(M;)
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that minimizes the maximum distance to each point (i) F,, is a set of link failures irGgsk(r) at P,,,, and

in MZ (") Pm+1 = TQ«/—Fm (Pm)-
These algorithms are also the solutions to convex opfi-there exists/ € N such that at least one graph of any
mization problems. However, at this time, it is not clear consecutive elements diG(P,,) < F,,}men, iS strongly
what, if any, advantages they possess in comparison wigbnnected, then there exigts € R¢ such thatP,, — P* =
the Circumcenter Algorithm. We conjecture that theifp*, ..., p*) asm — +oo.
correctness can be established along similar lines as the

ones provided in the next section for Theorem 3.2 Remarks 3.8: « One could also state a version of this

result for each connected component of the network, in a

E. Robustness of the Circumcenter Algorithm when link fail- similar way to Thgorem 32 we Ieave_ this to the r_eader.
o Theorem 3.7 provides the first theoretical explanation for

ures are present ! X
) ) the robustness behavior against sensor and control errors
Here we characterize the robustness of the Circumcenter of the Circumcenter Algorithm ove@s(r) observed

Algorithm with respect to link failures. We provide no phyasi in [1]. 0
model to motivate the occurrence for link failures; rathexr w Corollary 3.9: With the same notation as in Theorem 3.7
analyze the resulting closed-loop network. _ifat each stepn € N, the proximity graptg(P,,) is k,,-edge

Definition 3.4: A link failure in Gyisk(r) at P € (RY)™ IS  onnected and if F,,, contains at mosk,,, — 1 link failures,
said to occur at agent; if (p;,p;) is an edge iNGaisk(P,7)  then there exists* € R? such thatP,, — P* = (p*,...,p")
and the agenp; does not detect agep§. For P = ir(P), We 55, —, 1 0.
denote this link failure by the directed edge,p;) € P x P.

O

Ref“a”‘ 3.5.ConSId.er.an application of Fhe Cllrcumcente[:. Robustness of the Circumcenter Algorithm when each agent

Algorithm over a proximity graply as described in the steps

1-5 above. If the link failure(p;, p;) takes place at step, operates with a different proximity graph

then the following two events will ensue: Next, we analyze the performance of the Circumcenter
(i) if p, is a neighbor ofy; according tog, thenp; looses Algorithm when each agent of the mobile network at each time
the neighborp; at step2, step is allowed to use a different proximity graph to compute

(i) if py is not a neighbor ofy; according toG because ts neighbors. The following definition formalizes this e
of the presence of;, thenp; gains the neighbop;. at Definition 3.10: Let S be a set of proximity graph functions
step2. that are spatially distributed ovélisk(r). The Circumcenter

Algorithm overS is the Circumcenter Algorithm where step

Note that, after stepa and 2, the collection of neighbors '
ﬁ)replaced by

has been computed inaccurately. Nevertheless the exacut

of steps3 through5 can continue. | 2(a): choose ang € S
Definition 3.6: For P € (R%)", let P = ip(P). Let G be '

a proximity graph function that is spatially distributedeov 2(b): computeM; := Ngp, ({g1, -, a}) U {pi}-

gdiék(T) and letF” C P x P be a set of link fallu.res. Let The selection algorithm for each agent at each execution of
() Gaisk(P,r) « F be the directed graph with vertex sektep2(a) is left unspecified. O

P and with edge sefgisk(P,7) \ F;
(i) G(P) « F be the directed graph with vertex sgt The following result guarantees that, under suitable condi
and with edges determined as follows; the neighbors Bpns on the setS, rendezvous is still attained by the mobile

p € P are network executing the Circumcenter Algorithm owver
Corollary 3.11: Let the networkp,,...,p, be as in The-
Nap({a| (p.a) € Eas(P,7) \ F}), orem 3.2. LetS be a set of proximity graph functions that

that is, the edges of(P) « F arise from the compu- @ré spgtiglly distributeq oveggisk(r). Assume there exists

tation of G(P) with the link failuresF", as described in @ Proximity graph with the same connected components

Remark 3.5 as Gaisk(r) such that7 c g, for all G € S. Then any
(i) Tg..r(P) is the configuration obtained from applyingtrajectory{ P, }men, of the Circumcenter Algorithm oves

the Circumcenter Algorithm oveg (stepsi-5) at con- has properties (i) and (ii) in Theorem 3.2.

figuration P with the link failuresF' at stepl. O

We postpone the proof of this result to the following section
Note that only a finite number of possible link failures ca@ posip P d

fi i v th i “Note that, forr € R,, the proximity graphs introduced in
occur at any configuration. Consequently, the set of pasSigeciion 11-B, Gy aisk(7), Ga naisk(r) andGuo () are spatially
directed graphs arising from link failures is finite. We amwn  <1ibuted OVE(r) and ContairGmsr as(r), which has
ready to state the main robust convergence result, whosd P'Re same connected componentgas(r) (¢f. Theorem 2.2).

is postponed to the following section. Therefore, any setS c {G (7). G maisk(T), Gup (1
Theorem 3.7:Let the networkp, , ..., p,, and the proximity o qoc ha hi//pothesis oi gch)lrg(ljllgkr(y )3;.1(:3L.md|3k( ):Gio(r)}
graphG have the same properties as in Theorem 3.2. Given

i .
Py € (RY)", ponS|der th_e two sequences’n fmen, aNd  2an undirected graph is-edge connected if it remains connected after any
{Fn}men, defined recursively by k — 1 edges have been removed, see [21].
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IV. CONVERGENCE ANALYSIS Givenr € R, define the set-valued mdp : (R%)" —

This section presents the proof of the main results of tlﬂrl’é(]R ") by
paper. Before going into the details, let us introduce some
useful notation. Let be a directed graph with vertex set 1,(P) = {Tc-(P) € R)" |G = ({1,...,n},E)is
{1,...,n} and edge sety C {1,...,n} x {1,...,n}. Let strongly connected.
Ne(i) = {j € {1,...,n} | (i,j) € E}. Given P € (R%)",
let P(NG(i)) = {p; € R? | (i,j) € E}. To a proximity We shall refer to7, as to theCircumcenter Algorithm at
graph functiong that is spatially distributed ovefgisk(r), a All Strongly Connected TopologieBecause there are a finite
configurationP € (R4)", and a set of link failures” ¢ P x  number of strongly connected directed graphs witvertices,
P (where P = ip(P)), one may associate a directed grapthe set7,.(P) is finite.
Ggpywr = ({1,...,n}, E) by defining(i, j) € E if (ps, p;) Proposition 4.3:For » € R, the map7, : (R})" —
is an edge of}(P) « F. Note that ifF is empty, ther(i, j) €  2((E)™) has the following properties:
E if and only if (p;,p;) € E(P). Clearly, for eachP e ; / / dyn-
(R, P(NGgp.. (1)) is equal to the set of neighbors pf (E:)) ;f:(i Zﬂgsce(;(izl(gg)il_l PreT,(P)yandP e (RO™

with respect to the directed gragh{ P) + F. Proof: Fact (i) is a consequence of Lemma 4.2(ii).

Given a directed graply = ({1,...,n}, E) andr € Re, eyt e prove fact (ii). TakeP, € (R)" and let us prove
de‘;‘”e theC:ircumcente.r Algorithm at Fixed Topolodlc.» ©  hat 7. is closed atP. Consider two convergent sequences
(RY)™ — (R?)" whoseith component is P, — P. and P!, — P’ with P, € T,(P,,) for all

(T, )i(p1s - ) = (L—p)pi+puf CC ({pi}UP(NG(i))), ™M € N. We have to prove thaP) € T,.(P.). In order to
do so, we reason by contradiction. AssuRé ¢ T,.(P.),

where the coefficient of the convex combination is i.e, P, # T¢..(P,) for any strongly connected directed graph
= X(pi, CC ({pi} U P& (i), Os), G=({1,....,n},E). Lete = min{||P, — Te.(P,)| | G =
Hi (v ({p:} Wa(@)), Q1) ({1,...,n}, E) is strongly connectgd > 0. On the other
and the constraint set is defined by hand, since for each directed gragh the map7g, is
continuous atP., there existséz > 0 such that if||P —
7;(P) = max{r, max{||p; — p;|| | (i,j) € E}}, P.| < éc, then ||Tg,(P) — Tg . (P.)|| < /2. Take§ =

~ . = min{ds | G = ({1,...,n}, E) is strongly connected > 0.
Qi = Cp, (P (PWNG(1)) NB(ps, Smax)- Usir;{g th|e fact t(h{at the sgqugn{:é’m}meN convergeqsdtoP*,
Note that if||p; — p;|| < r for all j € N (i), thenr;(P) = . we deduce that there exists, such that|P,, — P.| < §
There are two differences betwe@h . and the algorithm for all m > mg. Therefore, for allm > mg, one has
T defined in Section IlI-C: (1) the topology of the network i§|T¢ - (P.,) — T (Py)|| < &/2 for any strongly connected
fixed in T, and changing irfy, and (2) the constraint setsdirected graphG. From P/, € T,.(P,,) for eachm € N, we
are, in general, bigger iffi; - than in7g. The reason for the deduce that there exists a strongly connected directechgrap
latter difference is purely technical and will become clear G, such thatP), = T, .(P,). In particular, note that for
the proof of Theorem 4.6 below. all m > mg, we have that|Tg,, »(Pn) — Ta,,.»(Po)|| <
Lemma 4.1:Let P € (RY)™ andr € R,. Let G be ¢/2. Using these facts, we deduce the following chain of
a proximity graph function that is spatially distributedeov inequalities,
Gaisk(r) and letF' ¢ P x P be a set of link failures. Then

Tegpy P15 sPn) = Tgewr(prs-...pn). In particular, [P — Py || = P, - Ta,, »(Pn)l >
TGg(p)ﬁgm,T(plv'-wpn):Tg(p17"'7pn)' / €
Proof: The result follows from the definition of the |17 = TGur(P)l =T, »(P2) = To, +(Pm)ll| = 2’
directed graptGg p).r- u : N ,
With a slight abuse of notation, we introduce the conve" &l 7 = mo, which contradicts”;, — P.. "

(R — o(RY) by co(P) = co(iz(P)) Next, let us study some properties of the diameter of a set.

hull function co : : . d — . )
¢ Thediameterfunctiondiam : 2®) — R U{+o0} is defined

where we implicitly represent a polytope R by its set o
vertexes.
Lemma 4.2:ForG = ({1,...,n}, E) andr € R,, the map diam(S) = sup{|lp — ¢|| | p,q € S}.
T : (RY)™ — (RY)™ has the following properties:
(i) T¢,- is continuous; )
(i) co(Tg.r(P)) C co(P), for P e (RY)™; ties:
Proof: Statement (i) is a consequence of the fol- (i) diam(S) =0 if and only if S is a singleton;
lowing two facts: the circumcenter of a point set dependdii) if S C R C RY, thendiam(S) < diam(R);
continuously on their location, and the solutiops, i € (i) diam(S) = diam(co(S)) for all S C R
{1,...,n}, of the convex optimization problem (2) depend(iv) if S C R? and @ a polytope inR? satisfy S C @ \
continuously on the data. From Proposition 2.1(i), we deduc Ve(@), thendiam(S) < diam(Q).
(Ter)i(p1s---,pn) € co(P) for all i € {1,...,n}, which Proof: The proof of these statements is straightforward
implies statement (ii). ®m and we do not include it here in the interest of space. m

Lemma 4.4:The functiondiam has the following proper-
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It is now possible to define the functidfyiam = diamoco:  contained inco(P) \ Ve(co(P)), for any strongly connected
(RH)™ — R, by directed graph§:y, ..., Gy. Therefore, by Proposition 2.1(ii),
. diam(Tq, (TG, (... Tay »(P)))) < diam(P), which con-
Vaiam(P) = diam(co(P)) tradicts the fact thad/ is weakly invariant.
= max{|lp; — p;ll [ 4,5 € {1,...,n}}. Therefore, we have proved that for any initial condition
. dyny _ d\n d Py € (RH™, any sequencéP,, },.en,, defined byP,,,; €
Lelt_grﬁrgr;](e(lﬂi é'%'r;e{f(fﬁéiib’rf e/de (R:) di|azrjn GO ](li } RY)" T.(P,,), converges to the sdiag((R%)™). To finish the proof,
R, has the .fo.llowing propertigg ' let us show that indeedlP,,, },,cn, Must converge to a point
* i . o ) that belongs taliag((R%)™). Since the sequence is contained
(1) Viiam is continuous and invariant under permutations f o compact seto(P,), there must exist a convergent
its arguments; subsequencg P,,, } P, hen k
i ’ —0i ; : dyn- my Sk€Ngr L'my = (p*a""p*) when -
(if) Vaiam(P) = 0 if and only if P € diag((R)"); . +00. Therefore, for any > 0, there existsk, such that for
(iii)  Vgiam is non-increasing _alongﬁr, r € Ry, on (R*)™. k > ko one has|(pi)m, — p.]| < £/, or equivalently,
_ I_:’_roof: Fact (i) is a s_tralghtforward consequence of tth(Pm) C B(p.,/\/n). From Proposition 4.3(i) we deduce
definition of Viiam. Fact (ii) is a consequence of Lemma 4.4(i)y, ¢ co(P) C B(ps,2//n) for all m > my,, which in turn

Proposition 4.3(i) implies fact (iii). _ " implies that||P,, — (p.,...,p.)| < ¢ for all m > my,, as
We are now ready to analyze the asymptotic convergengsired. -

properties of the algorithr’,, for r € Ry. Finally, we are ready to present the proof of Theorem 3.2.
Theorem 4.6: (Rendezvous via switching strongly con-  proof of Theorem 3.2We start by proving fact (i). Let

negted graphs and suitable constr:?\intﬁ)]rr eRyandh e ¢ N, and takeC a connected component Gis(Ps, 7).
(R)", any sequenceP,, }men,, defined bmeJré f T.(Pn), By assumption,G and Gaisk(r) have the same connected
converges to a point of the forip, ..., p) € (RY)". . components, and therefotzis also a connected component
_ Proof: From Lemma 4.5, we kn(?w thatiam : (RY)" —  of g(p,). By definition of Ty, if agentsi and j are neigh-
R, is non-increasing along’. on (R*)™. Proposition 4.3() pors according to the grap@(Py), then (pi)rs1, (pj)es1 €
|mpllgs thqt the evolution of the squenc{é’m}meNo is 3 (pi)k;(pj)k’%)’which in particular implies thaf(p;).+1 —
contained in the compact seb(P,). Since T, is closed (p;)rs1]] < 7. Therefore, the agents i remain connected in

(cf. Proposition 4.3), we can resort to the LaSalle Invarmnther-disk graph at step+1, i.e., the agents id are contained
Principle for closed algorithms (cf. Theorem 2.4) to deduGf o same connected C(;mp(;nent%gk(Pk+1 r)

_that Py — M, whereM is the largest weakly positively Now, let us prove fact (ii). From (i), we deduce that the

invariant set contained in number of vertices in each of the connected components of

{P € (RY)" | 3P' € T,(P) such thatdiam(P’) = diam(P)} . G(P,,) is non-decreasing. Since there is a finite number of
agents, there must exish, such that the identity of the

Let us show that\/ = diag((R%)"). Clearly, diag((R)") C agents in each connected component is fixed foralk m

M. To prove the other inclusion, we reason by contradiction._e_' no more agents are added to the connected component

AssumeP € M \ diag((R?)"), and thereforediam(P) > afterwards). LeC = {p;,, ..., p;, } be any of these connected

0. Let G be a strongly connected directed graph and coBomponents. As a consequence of Theorem 4.6, we deduce

sider T¢ . (P). Clearly, by Proposition 2.1(i), for alb; ¢ that all the agents i€ asymptotically converge to the same

Ve(co(P)), we have thal(Tt,,);(P) € co(P) \ Ve(co(P)). |ocation in R% (since their evolution undefly is one of

Let p; be a (strictly convex) vertex of the polytope(P). the many possible evolutions under the algoritti see

In general, there might exist more than one agent located|&imma 4.1).

the same positiop;. Let us see that the application 8, , Finally, we prove fact (iii). It suffices to prove that the age

will strictly decrease the number of agem§, (P) located in ¢ will rendezvous in finite time. Let = min{smax 5} €

at p;. Since the directed grapli’ is strongly connected, R, . By the previous discussion, there exists N such that

there must existi, with p;, = p; such that there existsthe location of the agents i6 belongs to a closed ball of

j € Ne (i) with p; # p;, . By Proposition 2.1()CC ({pi, }U  radius\/2a/2. In such a case, we deduce that Gi(r) atC

P(Ne(i.))) € co(P)\Ve(co(P)), which in particular implies s the complete graph, and therefore all agent€ imompute

that CC ({pi. } U P(Ng(i.))) # pi.. Using this fact, together the same circumcenter poitC, and (2) the corresponding

with {p;. } U P(Ng(i.)) C B(pi,,ri.(P)), we deduce (cf. circumradius can be seen to be less than or equalusing

Proposition 2.1(ii)) thaflp;,, CC ({pi.} U P(Ne(ix)))[ has a simple geometric argument. From the latter, we deduce

nonempty intersection withB (2 “=lP)) for all ¢ € thatCC € B(p;, sma) and CC € Cp, (P \ {p:}), i.e., the
P(Ng(is)). Therefore, the solutiom; of the convex opti- circumcenter belongs t@);, for all i € {1,...,n}. As a
mization problem (2) is strictly positive. As a consequenceonsequence, all mobile agentsdnrendezvous at the same
we have that(Ts ,);. (P) € co(P) \ Ve(co(P)). Therefore, locationCC at stepk + 1. [ |
Ny, (TG r(P)) < Np, (P). Proof of Theorem 3.7The proof of this result goes along
Next, let us show that, after a finite number of stepshe same lines as the one of Theorem 4.6. GivenR ,, de-
no agents will remain at the locatiop;. Define N = fine the set-valued map € (R%)" — T,.(P) = {Tg..(P) €

max{N,,(P) | pi € Ve(co(P))} < n — 1. Then all (R")" | G = ({1,...,n}, E) directed graph. Reasoning as
agents in the configuratiofi;, »(T,.»(...Tay ~(P))) are inthe proof of Proposition 4.3, one can show tiiatis closed.
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Given two set-valued mags;, T : (R%)" — 2(&)™)  define
its composition as the set-valued mdp o 7, : (RY)" —
2(®D™) given by (T} o T5)(P) = {P" € (RY)™ | P’ €
(RY)™ such that P” € Ti(P') and P’ € T»(P)}. For
k € N, we denote byT'* the composition ofk instances of
T,. Now, let us define the set-valued madp € (RY)" — \
T,0(P) = {P' € (RY)" | Ik € {0,...,¢ — 1} such thatP’ €
@“(TT(P))}. Using Lemma 4.2(ii), together with the fact that
T, and T, are closed, we deduce thdf , is also closed.
Reasoning as in the proof of Theorem 4.6, one can show that o
any sequence defined iy, converges to a point that belongs
to diag((R%)™). This concludes the result, since the hypotheses
of the statement of the theorem imply that the evolution ef th
network, { P, } men,, iS one of the many possible evolutions
under7, ., see Lemma 4.1. [ |
Proof of Corollary 3.11:The proof of fact (i) is parallel to
that of Theorem 3.2(i) invoking now that C G, forallG € S,
and thatF andGgisk(r) have the same connected components.
Fact (ii) is a consequence of Theorem 3.7 since any execution
of the Circumcenter Algorithm ove(S, . .. ’S") can be seen Fig. 4. Evolution (in light gray) of the Circumcenter Algdrit over the

as an instance of the Circumcenter Algorithm o¥Bfsk(r)  r-limited Delaunay grapiip () with link failures. The initial configuration
with appropriately selected link failures at each step. B  of the network is as in Figure 1.

V. SIMULATIONS

In order to illustrate the performance of our rendezvous VI. CONCLUSIONS
algorithms, we developed a library of basic geometric reasi
The resulting Mathemati€a packagesPlanGeom.m (con-
taining the 2-dimensional routines) ar®patialGeom.m

We have designed and analyzed a class of circumcenter
algorithms over proximity graphs for multi-agent rendezs.o
(containing the 3-dimensional routines) are freely alddaat Adqmonally, we have prowded a.set of novel tqols that we

believe are important in the design and analysis of general

http:/www.soe.ucsc.edu/"jcortes . : S : .
We implemented the Circumcenter Algorithm in the planernotlon coordination algorithms. We believe that the result

d = 2, over ther-limited Delaunay proximity graph with link df this work COUI.d pe exte_nded to agents _operatlng under
. . X . T different communication radii and under certain classesnef
failures. The simulation run is illustrated in Figure 4. Th

. . . %eractuated dynamics. Future directions of research imomot
25 vehicles have a maximum step sizgax = .15, and a

o . S ' . coordination include the study of increasingly complex eom
communication radiug = 4. The initial configuration of the munication settings (quantization, asynchronism, mediass
network is as in Figure 1 over the squdre7,7] x [—7,7]. gs (g » 8sy '

At each time step, a set consisting Iif numbers betweeih and power control issugs), the analysis of the perfprmande a

and 25 is randomly selected, corresponding to the identitiecsf)mplex'ty Of. the algorlthms,_and t_he_ formal design of other
. ! Spatially distributed coordination primitives.

of the agents where link failures occur. For each of them;

a randomly selected link failure iGgisk(r) is chosen. Note

that, the identity of an agent might appear more than once ACKNOWLEDGMENTS

in the random set, and therefore, more than one link failure . .

may occur at the same agent. Nevertheless, rendezvous i'é IS our _pleasurg to thank Stephen Morse and Brian An-

asymptotically achieved according to Theorem 3.7 (indeeqle,.rSOn fOT introducing us to the rgndezvo_us probI.em. and for

in the various simulations that we ran, usually after 80$tepbe'ng available for helpful discussions. This material asdd

We also implemented the Circumcenter Algorithm in spacHgon work supported in part by ONR YIP Award NO0014-
d = 3, over the set of proximity graph&Gaisc(r), Ga(r) N 03-1-0512 and NSF SENSORS Award 11S-0330008. Sonia

Gaisk(r), Gru(7) N Gaisi(r) }. The simulation run is illustrated Martinez’s work was supported in _part py_ a Fulbright Pt_Jst-
in Figure 5. The25 vehicles have, as before, a maximunipoctoral Fellowship from the Spanish Ministry of Education

step sizesmax — .15, and a communication radius — 4. and Science.
The initial configuration of the network is as in Figure 2
over the squarg—7,7] x [-7,7] x [-7,7]. At each time REFERENCES
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