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Robust rendezvous for mobile autonomous agents
via proximity graphs in arbitrary dimensions

Jorge Cort́es, Sonia Martı́nez, Francesco Bullo

Abstract— This paper presents coordination algorithms for
networks of mobile autonomous agents. The objective of the
proposed algorithms is to achieve rendezvous, that is, agreement
over the location of the agents in the network. We provide
analysis and design results for multi-agent networks in arbitrary
dimensions under weak requirements on the switching and
failing communication topology. The novel correctness proof
relies on proximity graphs and their properties and on a general
LaSalle Invariance Principle for nondeterministic discrete-time
dynamical systems.

I. I NTRODUCTION

This work is a contribution to the emerging discipline
of motion coordination for ad-hoc networks of mobile au-
tonomous agents. With this loose terminology we refer to
groups of robotic agents with limited mobility and commu-
nication capabilities. In the not too distant future these groups
of coordinated devices will perform a variety of challenging
tasks including, for example, search and recovery operations,
surveillance, exploration and environmental monitoring.The
potential advantages of employing arrays of agents have re-
cently motivated vast interest in this topic. For example, from
a control viewpoint, a group of agents inherently provides
robustness to failures of single agents or of communication
links.

The motion coordination problem for groups of autonomous
agents is a control problem in the presence of communication
constraints. Typically, each agent makes decisions based only
on partial information about the state of the entire networkthat
is obtained via communication with its immediate neighbors.
One important difficulty is that the topology of the communi-
cation network depends on the agents’ locations and, therefore,
changes with the evolution of the network. A fundamental
system-theoretical problem in the motion coordination of ad-
hoc networks is the synthesis of control laws whose commu-
nication requirements scale nicely with the number of agents
in the network.

The “multi-agent rendezvous” problem and a first “cir-
cumcenter algorithm” have been introduced by Ando and
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coworkers in [1]. The algorithm proposed in [1] has been
extended to various synchronous and asynchronous stop-
and-go strategies in [2], [3]. A related algorithm, in which
connectivity constraints are not imposed, is proposed in [4].
A preliminary study on rendezvous under communication
quantization is presented in [5]. These motion coordination
schemes are memoryless (static feedback), anonymous (all
agents are indistinguishable), and spatially distributed(only
local information is required). An incomplete list of recent
works on motion coordination algorithms includes [6], [7] on
pattern formation, [8] on flocking, [9] on self-assembly, [10]
on foraging, [11] on gradient climbing, and [12], [13] on
deployment. Consensus and control theoretical problems on
dynamic graphs are discussed in [14], [15] and in [16],
respectively.

In this paper we provide novel analysis and design results
on a class of rendezvous algorithms. First, we define and
analyze a class of “circumcenter algorithms” defined over
switching communication topologies. We classify communi-
cation topologies for our algorithms via the notion of “prox-
imity graphs,” see [17] and [13]. Admissible communication
topologies for our algorithms are proximity graphs with the
following properties: they are “spatially distributed” over the
disk graph (i.e., they can be computed with only the local
information encoded in the disk graph) and their connected
components have the same vertices as the disk graph. This is
a more general class of communication topologies than the
one adopted in most works on motion coordination including
for example [1], [2], [3], [4]. The ability to rely on general
communication topologies is advantageous in the design of
wireless communication strategies and is referred to as “topol-
ogy control,” see for example [18] and references therein. For
the proximity graphs of interest in this paper, we prove some
novel technical facts regarding connectivity.

Second, we consider networks of agents whose state space
is R

d, whered is an arbitrary number not restricted to{1, 2}.
We prove that our proposed class of circumcenter algorithmsis
indeed correct in arbitrary dimensions and include simulations
in two and three dimensions. As a natural outcome of this
analysis, we prove that the original circumcenter algorithm
in [1] can be adapted to work in higher dimensions, and that
it is guaranteed to converge in finite time.

Third, we establish a general theorem on the robustness of
the proposed class of circumcenter algorithms with respectto
communication link failures. Rendezvous is guaranteed even
if each agent experiences different link failures, provided the
resulting directed communication graph is strongly connected
at least once every finite number of time instants. We also
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establish the robustness properties of the proposed algorithms
when each network agent is allowed to use a different prox-
imity graph (that can also change over time) to compute
its neighbors. Our results provide the first contribution to
the theoretical explanation of the robustness properties of
the circumcenter algorithm observed in computer simulations
in [1].

Fourth, we develop an innovative method of proof based
on a recently-developed LaSalle Invariance Principle for non-
deterministic discrete-time dynamical systems, see [13].This
version of the invariance principle helps us establish robust
convergence as follows. At each configuration of the network,
we consider all the possible evolutions of the agents under
all the possible choices of strongly connected communication
topologies. In this way, the evolution of the proposed class
of circumcenter algorithms is embedded into the (larger) set
of evolutions of a non-deterministic discrete-time dynamical
system. In turn, this system is analyzed via our novel version
of the invariance principle.

This paper and our previous work in [13] use the same
tools (generalized invariance principle and proximity graphs)
to study two different and complementary motion coordina-
tion problems (deployment and rendezvous, respectively).We
envision that these theoretical tools will play an important role
in the emerging discipline of scalable motion coordination.

We emphasize that rendezvous problems are also important
because of their relevance in network consensus problems [19],
[14]. In a network consensus problem, the objective is to
achieve agreement over the value of some logical variables.
Our rendezvous algorithms can be applied to tackle consensus
problems over dynamically changing and failing topologies,
where the agents communicate and adjust the values of the
agreement variables instead of their location. The proposed
rendezvous algorithms are therefore comparable with feedback
consensus algorithms for networks with failures.

The paper is organized as follows. In Section II we provide
the necessary tools from geometry and from stability theory;
these include the notion and properties of proximity graphs
and the LaSalle Invariance Principle for nondeterministic
discrete-time dynamical systems. Section III contains (i)a
model of robotic network, (ii) the statement of the rendezvous
problem, (iii) the statement of the so-called Circumcenter
Algorithm over a proximity graph, and (iv) the theorems
on asymptotic convergence and robustness to link failures
and the use of different proximity graphs by each agent to
compute its neighbors. Section IV contains all the proofs, and
Section V contains some instructive simulations in two and
three dimensions. Finally, we provide a summary and future
directions of research in Section VI.

II. PRELIMINARY DEVELOPMENTS

Here we collect some known and some novel concepts
that will be required in the later sections. First, we review
some geometric concepts related to proximity graphs. Next,
we provide a formally accurate notion of spatially distributed
maps and obtain some fundamental properties associated with
it. Finally, we present a recently-developed version of the
LaSalle Invariance Principle.

A. Basic geometric notions and the circumcenter of a set

We review some notation for standard geometric objects;
for additional information we refer the reader to [20] and
references therein. We letR+ and R+ denote the positive
and the nonnegative real numbers, respectively. We letN and
N0 denote natural numbers and nonnegative integer numbers,
respectively. For a bounded setS ⊂ R

d, d ∈ N, we let
co(S) denote the convex hull ofS. For p, q ∈ R

d, we let
]p, q[= {λp + (1 − λ)q | λ ∈]0, 1[} and [p, q] = co({p, q})
denote theopen and closed segmentwith extreme pointsp
andq, respectively. For a bounded setS ⊂ R

d, we letCC(S)
and CR(S) denote thecircumcenterand circumradiusof S,
respectively, that is, the center and radius of the smallest-
radiusd-sphere enclosingS. Note that the computation of the
circumcenter and circumradius of a bounded set is a strictly
convex problem and in particular a quadratically constrained
linear program. Forp ∈ R

d, we letB(p, r) andB(p, r) denote
the open and closed ball centered atp of radius r ∈ R+,
respectively. Apolytope is the convex hull of a finite point
set.1 We let Ve(Q) denote the set of vertices of a polytope
Q, and we emphasize that any vertex ofQ is strictly convex,
i.e., v ∈ Ve(Q) if and only if there existsu ∈ R

d such that
(s − v) · u > 0 for all s ∈ Q \ {v}.

Proposition 2.1:Let S be a finite set inRd. The following
statements hold:

(i) CC(S) ∈ co(S) \ Ve(co(S));
(ii) if p ∈ S \CC(S) andr ∈ R+ satisfyS ⊂ B(p, r), then

]p,CC(S)[ has nonempty intersection withB(p+q
2 , r

2 )
for all q ∈ S.

Proof: The first statement follows directly from the
definition of circumcenter and of vertex of a polytope. Let us
provide a proof for the second statement. Sincep 6= CC(S)
and S ⊂ B(p, r), we deduce thatCR(S) < r. Let q ∈ S. If
‖p − q‖ < r, thenp ∈ B(p+q

2 , r
2 ), and therefore]p,CC(S)[

has nonempty intersection withB(p+q
2 , r

2 ). Consider the case
when ‖p − q‖ = r. Since p, q ∈ B(CC(S),CR(S)) and
CR(S) < r, it follows thatCC(S) ∈ B(p, r)∩B(q, r). From
this, we deduce that]p,CC(S)[ has nonempty intersection
with B(p+q

2 , r
2 ), as claimed.

B. Proximity graphs and their properties

We introduce some concepts regarding proximity graphs for
point sets inR

d. We assume the reader is familiar with the
standard notions of graph theory as defined in [21, Chapter 1].
We begin with some notation. Given a vector spaceV, let
F(V) be the collection of finite subsets ofV. Accordingly,
F(Rd) is the collection of finite point sets inRd; we shall
denote an element ofF(Rd) by P = {p1, . . . , pn} ⊂ R

d,
wherep1, . . . , pn are distinct points inRd. Let G(Rd) be the
set of undirected graphs whose vertex set is an element of
F(Rd).

A proximity graph functionG : F(Rd) → G(Rd) associates
to a point setP an undirected graph with vertex setP and
edge setEG(P), whereEG : F(Rd) → F(Rd × R

d) has the
property thatEG(P) ⊆ P×P \diag(P ×P) for anyP. Here,

1Note that with this definition polytopes are automatically convex.
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diag(P × P) = {(p, p) ∈ P × P | p ∈ P}. In other words,
the edge set of a proximity graph depends on the location of
its vertices. General properties of proximity graphs and the
following examples are defined in [20], [17], [13]:

(i) the r-disk graphGdisk(r), for r ∈ R+, with (pi, pj) ∈
EGdisk(r)(P) if ‖pi − pj‖ ≤ r;

(ii) the Delaunay graphGD, with (pi, pj) ∈ EGD(P) if the
Voronoi regions ofpi andpj have non-empty intersec-
tion;

(iii) the Relative Neighborhood graphGRN, with (pi, pj) ∈
EGRN(P) if, for all pk ∈ P \ {pi, pj}, pk 6∈ B(pi, ‖pi −
pj‖)∩B(pj , ‖pi − pj‖);

(iv) the Gabriel graphGG, with (pi, pj) ∈ EGG(P) if, for all
pk ∈ P \ {pi, pj}, pk 6∈ B

(pi+pj

2 ,
‖pi−pj‖

2

)
;

(v) the Euclidean Minimum Spanning TreeGEMST, which
for eachP, is a minimum-weight spanning tree of the
complete graph(P,P ×P \ diag(P ×P)) whose edge
(pi, pj) has weight‖pi − pj‖.

If needed, we shall writeGdisk(P, r) to denoteGdisk(r) at
P. In what follows, we will consider the proximity graphs
GRN ∩disk(r) and GG ∩disk(r) defined by the intersection of
GRN and GG with Gdisk(r), r ∈ R+, respectively. A different
proximity graph related to, but different from, the intersection
GD ∩disk(r) of GD with Gdisk(r) is ther-limited Delaunay graph
GLD(r), as defined in [13].

To each proximity graph functionG, one can associate the
set of neighbors mapNG : R

d × F(Rd) → F(Rd), defined by

NG(p,P) = {q ∈ P | (p, q) ∈ EG(P ∪ {p})}.
Typically, p is a point inP, but the definition is well-posed
for any p ∈ R

d. Given p ∈ R
d, it is convenient to define the

mapNG,p : F(Rd) → F(Rd) by NG,p(P) = NG(p,P).
Let G1 and G2 be two proximity graph functions. We say

that G1 is spatially distributed overG2 if, for all p ∈ P,

NG1,p(P) = NG1,p

(
NG2,p(P)

)
.

It is straightforward to deduce that ifG1 is spatially distributed
overG2, thenG1 is a subgraph ofG2, that is,G1(P) ⊂ G2(P)
for all P ∈ F(Rd). The converse is in general not true (for
instance, the graphGD ∩disk is a subgraph ofGdisk, but it is not
spatially distributed over it, see [13]).

We say that two proximity graph functionsG1 andG2 have
the same connected componentsif, for all point setsP, the
graphsG1(P) andG2(P) have the same number of connected
components consisting of the same vertices.

Theorem 2.2:For r ∈ R+, the following statements hold:

(i) GEMST ⊂ GRN ⊂ GG andGG∩disk(r) ⊂ GLD(r);
(ii) Gdisk(r) is connected if and only ifGEMST ⊂ Gdisk(r);
(iii) GRN ∩disk(r), GG ∩disk(r), and GLD(r) are spatially dis-

tributed overGdisk(r);
(iv) GEMST ∩disk(r), GRN ∩disk(r), GG ∩disk(r) andGLD(r) have

the same connected components asGdisk(r).
Proof: Fact (i) is mostly taken from [17] and [20].

Facts (ii) and (iii) are taken from [13]. Here we prove fact (iv).
For r ∈ R+, it is enough to show thatGEMST ∩disk(r) has the
same connected components asGdisk(r), since this implies that
the same result holds forGRN ∩disk(r), GG ∩disk(r) andGLD(r).

Let P ∈ F(Rd). SinceGEMST ∩disk(r) is a subgraph ofGdisk(r),
it is clear that vertices belonging to the same connected
component ofGEMST ∩disk(P, r) must also belong to the same
connected component ofGdisk(P, r). To prove the converse
assumepi and pj in P verify ‖pi − pj‖ ≤ r. Let C be the
connected component ofGdisk(P, r) to which they belong, with
verticesV (C). SinceC is connected, thenGEMST(V (C)) ⊂ C
by (ii). Now, using the definition of the Euclidean Minimum
Spanning Tree and the fact thatC is a connected component of
Gdisk(P, r), one can show thatGEMST(V (C)) = GEMST(P)[C],
where the latter denotes the subgraph ofGEMST(P) induced
by C (see [21] for the notion of induced graph). From this, we
deduce thatGEMST(V (C)) ⊂ GEMST ∩disk(P, r), and therefore
pi andpj belong to the same component ofGEMST ∩disk(P, r).
This implies the result.

We conclude this section with some examples of proximity
graphs inR

2 andR
3; see Figures 1 and 2.

r-disk graph r-lim. Delaunay graph EMST graph

Fig. 1. From left to right,r-disk, r-limited Delaunay, and Euclidean
Minimum Spanning Tree graphs inR2 for a configuration of25 agents with
coordinates uniformly randomly generated within the square[−7, 7]×[−7, 7].
The parameterr is taken equal to4.

r-disk graph

xx

y

z

Gabriel graph

xx

y

z

Rel. Neigh. graph

xx

y

z

Fig. 2. From left to right,r-disk, Gabriel, and Relative Neighborhood graphs
in R

3 for a configuration of25 agents with coordinates uniformly randomly
generated within the square[−7, 7] × [−7, 7] × [−7, 7]. The parameterr is
taken equal to4.

C. Proximity graphs over arrays of possibly coincident points
and spatially distributed maps

The notion of proximity graph is defined for sets of distinct
points P = {p1, . . . , pn}. However, we will often consider
tuples of elements ofRd of the form P = (p1, . . . , pn), i.e.,
ordered sets of possibly coincident points. LetiF : (Rd)n →
F(Rd) be the natural immersion, i.e.,iF(P ) is the point set
that contains only the distinct points inP = (p1, . . . , pn).
Note thatiF is invariant under permutations of its arguments
and that the cardinality ofiF(p1, . . . , pn) is in general less
than or equal ton. In what follows,P = iF(P ) will always
denote the point set associated toP ∈ (Rd)n.
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We can now extend the notion of proximity graphs to this
setting. Given a proximity graph functionG with edge set
function EG , we define (with a slight abuse of notation)

G = G ◦ iF : (Rd)n → G(Rd),

EG = EG ◦ iF : (Rd)n → F(Rd × R
d).

Additionally, we define the set of neighbors mapNG :
(Rd)n → (F(Rd))n as the function whosejth component is

NG,j(p1, . . . , pn) = NG(pj , iF(p1, . . . , pn)).

Note that coincident points in the tuple(p1, . . . , pn) will have
the same set of neighbors.

Given a setY and a proximity graph functionG, a map
T : (Rd)n → Y n is spatially distributed overG if there exists
a mapT̃ : R

d × F(Rd) → Y , with the property that, for all
(p1, . . . , pn) ∈ (Rd)n and for all j ∈ {1, . . . , n},

Tj(p1, . . . , pn) = T̃ (pj ,NG,j(p1, . . . , pn)) ,

whereTj denotes thejth-component ofT . In other words, the
jth component of a spatially distributed map at(p1, . . . , pn)
can be computed with only the knowledge of the vertex
pj and the neighboring vertices in the undirected graph
G({p1, . . . , pn}).

Remark 2.3:With this definition of spatially distributed
map, one can see that the proximity graph functionG1 is
spatially distributed over the proximity graph functionG2

if and only if the set of neighbors mapNG1
is spatially

distributed overG2. �

D. LaSalle Invariance Principle for nondeterministic discrete-
time dynamical systems

We review some concepts regarding the stability of discrete-
time dynamical systems and set-valued maps following [22],
[13]. For d ∈ N, an algorithm on R

d is a set-valued map
T : R

d → 2(Rd) with the property thatT (p) 6= ∅ for all
p ∈ R

d. Note that a map fromRd to R
d can be interpreted as

a singleton-valued map. Atrajectory of an algorithmT is a
sequence{pm}m∈N0

⊂ R
d with the property that

pm+1 ∈ T (pm) , m ∈ N0 .

In other words, given any initialp0 ∈ R
d, a trajectory ofT is

computed by recursively settingpm+1 equal to an arbitrary el-
ement inT (pm). An algorithm is therefore a nondeterministic
discrete-time dynamical system.

An algorithm T is closed atp ∈ R
d if for all pairs of

convergent sequencespk → p and p′k → p′ such thatp′k ∈
T (pk), one has thatp′ ∈ T (p). An algorithm is closed on
W ⊂ R

d if it is closed atp, for all p ∈ W . In particular,
every continuous mapT : R

d → R
d is closed onR

d. A
set C is weakly positively invariant with respect toT if, for
any p0 ∈ C, there existsp ∈ T (p0) such thatp ∈ C. A
point p0 is said to be afixed point ofT if p0 ∈ T (p0). The
function V : R

d → R is non-increasing alongT on W ⊂ R
d

if V (p′) ≤ V (p) for all p ∈ W andp′ ∈ T (p). We are ready
to state the following result, whose proof is provided in [13].

Theorem 2.4: (LaSalle Invariance Principle for closed al-
gorithms)Let T be a closed algorithm onW ⊂ R

d and let

V : R
d → R be a continuous function non-increasing along

T on W . Assume the trajectory{pm}m∈N0
of T takes values

in W and is bounded. Then there existsc ∈ R such that

pm −→ M ∩ V −1(c) ,

where M is the largest weakly positively invariant set con-
tained in

{p ∈ W | ∃p′ ∈ T (p) such thatV (p′) = V (p)}.
Remark 2.5:If W is closed, thenT is closed onW if

and only if the graph ofT restricted toW , Graph(T )|W =
{(p, p′) | p ∈ W,p′ ∈ T (p)} is a closed set. From [23,
Lemma 14], ifT is bounded on a neighborhood ofW , then
Graph(T )|W being closed is equivalent toT being upper
semi-continuous onW . �

III. R ENDEZVOUS VIA PROXIMITY GRAPHS

In this section we state the model, the control objective,
the motion coordination algorithm, and the properties of the
resulting closed-loop system.

A. Modeling a network of robotic agents

We begin by introducing the notions ofrobotic agentand of
network of robotic agents. Let n be the number of agents in the
network. Each agent has the following sensing, computation,
communication, and motion control capabilities. Theith agent
has a processor with the ability of allocating continuous and
discrete states and performing operations on them. Theith
agent occupies a locationpi ∈ R

d, d ∈ N, and it is capable
of moving at any timem ∈ N, for any unit period of time,
according to the discrete-time control system

pi(m + 1) = pi(m) + ui(m). (1)

Here, the controlui(m) takes values in a bounded subset of
R

d. We assume that there is a maximum step sizesmax ∈ R+

common to all agents, that is,‖ui(m)‖ ≤ smax, for all i ∈
{1, . . . , n} and all m ∈ N. The sensing and communication
model is the following. The processor of each agent has access
to its location, and transmits this information to any other
agent within a closed disk of radiusr ∈ R+. Note that we are
assuming the communication radius is the same for all agents.

Remarks 3.1: • Equivalently, we shall consider groups
of robotic agents without communication capabilities, but
instead capable of measuring the relative position of each
other agent within a closed disk of radiusr ∈ R+.

• At first we assume that all communication between agents
and all sensing of agents locations are accurate. We
shall later analyze the robustness of our algorithms with
respect to communication link failures. We will instead
not address in this paper the correctness of our algorithms
in the presence of measurement errors or communication
quantization.

• Our network model is synchronous. Regarding asyn-
chronous network models in rendezvous problems, we
refer to [1] for early numerical results and to [3] for a
thorough theoretical analysis. �
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B. The rendezvous motion coordination problem

We now state the control design problem for the network
of robotic agents. Therendezvous objectiveis to achieve
agreement over the location of the agents in the network, that
is, to steer each agent to a common location. This objective
is to be achieved with the limited information flow described
in the model above.

Typically, it will be impossible to solve the rendezvous
problem if the agents are placed in such a way that they do
not form a connected communication graph. Arguably, a good
property of any algorithm for rendezvous is that of maintaining
some form of connectivity among agents.

C. The Circumcenter Algorithm

Here is an informal description of what we shall refer to as
the Circumcenter Algorithm over a proximity graphG:

Each agent performs the following tasks: (i) it de-
tects its neighbors according toG; (ii) it computes
the circumcenter of the point set comprised of its
neighbors and of itself, and (iii) it moves toward this
circumcenter while maintaining connectivity with its
neighbors.

This algorithm is an extension of the one introduced in [1].
Let us clarify which proximity graphs are allowable and how
connectivity is maintained. Firstly, we are allowed to design
motion coordination algorithms that are spatially distributed
over ther-disk graphGdisk(r), or more generally, over any
proximity graphG that is spatially distributed overGdisk(r).
This is a direct consequence of our modeling assumption that
each agent can acquire the location of each other agent within
distance less than or equal tor ∈ R+. Secondly, we maintain
connectivity by restricting the allowable motion of each agent.
In particular, we will show that it suffices to restrict the motion
of each agent as follows. If agentspi and pj are neighbors
in the proximity graphG, then their subsequent positions
are required to belong toB

(pi+pj

2 , r
2

)
. If an agentpi has

its neighbors at locations{q1, . . . , ql}, then itsconstraint set
Cpi,r

(
{q1, . . . , ql}

)
is

Cpi,r

(
{q1, . . . , ql}

)
=

⋂

q∈{q1,...,ql}

B
(pi + q

2
,
r

2

)
.

Before stating the algorithm in a more formal fashion, let
us introduce one final concept. Forq0 and q1 in R

d, and for
a convex closed setQ ⊂ R

d with q0 ∈ Q, let λ(q0, q1, Q)
denote the solution of the strictly convex problem:

maximize λ

subject toλ ≤ 1, (1 − λ)q0 + λq1 ∈ Q.
(2)

Note that this convex optimization problem has the following
interpretation: move along the segment fromq0 to q1 the
maximum possible distance while remaining inQ. Under the
stated assumptions the solution exists and is unique. With these
notions, the algorithm can be formally described as in Table3.

In what follows we shall refer to the Circumcenter Algo-
rithm over the proximity graphG as the mapTG : (Rd)n →
(Rd)n.

Name: Circumcenter Algorithm overG
Goal: Solve the rendezvous problem
Assumes: (i) smax ∈ R+ is maximum step size

(ii) r ∈ R+ is communication radius
(iii) G is spatially distributed proximity

graph overGdisk(r)

For i ∈ {1, . . . , n}, agenti executes at each time instant inN:

1: acquire{q1, . . . , qk} := NGdisk(r),pi
(P)

2: computeMi := NG,pi
({q1, . . . , qk}) ∪ {pi}

3: computeQi := Cpi,r

(
Mi \ {pi}

)
∩B(pi, smax)

4: computeλ∗
i := λ(pi,CC(Mi), Qi) according to eq. (2)

5: setui := λ∗
i · (CC(Mi) − pi), i.e.,

move frompi to (1 − λ∗
i )pi + λ∗

i CC(Mi)

Fig. 3. Circumcenter Algorithm overG (see the discussion in Section III-C
for the notation used in the statement).

D. Asymptotic correctness of the Circumcenter Algorithm

We are now ready to state the main convergence result,
whose proof is postponed to the following section.

Theorem 3.2:Let p1, . . . , pn be a network of robotic agents
in R

d, for d ∈ N, with maximum step sizesmax ∈ R+ and
communication radiusr ∈ R+. Let the proximity graphG be
spatially distributed overGdisk(r) and have the same connected
components asGdisk(r). Any trajectory{Pm}m∈N0

of TG has
the following properties:

(i) if the locations of two agents belong to the same
connected component ofGdisk(Pk, r) for somek ∈ N0,
then they remain in the same connected component of
Gdisk(Pm, r) for all m ≥ k;

(ii) there existsP ∗ = (p∗1, . . . , p
∗
n) ∈ (Rd)n with the

following properties:Pm → P ∗ as m → +∞, and
p∗i = p∗j or ‖p∗i − p∗j‖ > r for eachi, j ∈ {1, . . . , n};

(iii) if G = Gdisk(r), then there existsk ∈ N such thatPm =
P ∗ for all m ≥ k, that is, convergence is achieved in
finite time.

Remarks 3.3: • A consequence of Theorem 3.2(i)
and (ii) is that, if the locations of two agents belong to the
same connected component ofG at some time, then they
converge to the same point inRd. In particular, if G is
connected at some time, then the circumcenter algorithm
guarantees that all agents converge to the same point, i.e.,
the rendezvous objective is achieved.

• The statements Theorem 3.2(i) and (ii) were originally
proved in [1] for the Circumcenter Algorithm overGdisk

and ford = 2. This result was extended to other control
policies by [2], [3] (still on the plane and withGdisk

communication topology).
• It is instructive to consider two alternative strategies. With

the same notation as in the Circumcenter Algorithm, they
can be described as follows:

(i) each agent moves to the orthogonal projection of
the circumcenterCC(Mi) onto the convex set
Qi ∩ co(Mi);

(ii) each agent moves to the point inQi ∩ co(Mi)
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that minimizes the maximum distance to each point
in Mi.

These algorithms are also the solutions to convex opti-
mization problems. However, at this time, it is not clear
what, if any, advantages they possess in comparison with
the Circumcenter Algorithm. We conjecture that their
correctness can be established along similar lines as the
ones provided in the next section for Theorem 3.2.�

E. Robustness of the Circumcenter Algorithm when link fail-
ures are present

Here we characterize the robustness of the Circumcenter
Algorithm with respect to link failures. We provide no physical
model to motivate the occurrence for link failures; rather we
analyze the resulting closed-loop network.

Definition 3.4: A link failure in Gdisk(r) at P ∈ (Rd)n is
said to occur at agentpi if (pi, pj) is an edge inGdisk(P, r)
and the agentpi does not detect agentpj . ForP = iF(P ), we
denote this link failure by the directed edge(pi, pj) ∈ P ×P.
�

Remark 3.5:Consider an application of the Circumcenter
Algorithm over a proximity graphG as described in the steps
1-5 above. If the link failure(pi, pj) takes place at step1,
then the following two events will ensue:

(i) if pj is a neighbor ofpi according toG, thenpi looses
the neighborpj at step2,

(ii) if pk is not a neighbor ofpi according toG because
of the presence ofpj , thenpi gains the neighborpk at
step2.

Note that, after steps1 and 2, the collection of neighbors
has been computed inaccurately. Nevertheless the execution
of steps3 through5 can continue. �

Definition 3.6: For P ∈ (Rd)n, let P = iF(P ). Let G be
a proximity graph function that is spatially distributed over
Gdisk(r) and letF ⊂ P × P be a set of link failures. Let

(i) Gdisk(P, r) 8 F be the directed graph with vertex set
P and with edge setEdisk(P, r) \ F ;

(ii) G(P) 8 F be the directed graph with vertex setP
and with edges determined as follows; the neighbors of
p ∈ P are

NG,p

(
{q | (p, q) ∈ Edisk(P, r) \ F}

)
,

that is, the edges ofG(P) 8 F arise from the compu-
tation ofG(P) with the link failuresF , as described in
Remark 3.5;

(iii) TG8F (P ) is the configuration obtained from applying
the Circumcenter Algorithm overG (steps1-5) at con-
figurationP with the link failuresF at step1. �

Note that only a finite number of possible link failures can
occur at any configuration. Consequently, the set of possible
directed graphs arising from link failures is finite. We are now
ready to state the main robust convergence result, whose proof
is postponed to the following section.

Theorem 3.7:Let the networkp1, . . . , pn and the proximity
graphG have the same properties as in Theorem 3.2. Given
P0 ∈ (Rd)n, consider the two sequences{Pm}m∈N0

and
{Fm}m∈N0

defined recursively by

(i) Fm is a set of link failures inGdisk(r) at Pm, and
(ii) Pm+1 = TG8Fm

(Pm).

If there existsℓ ∈ N such that at least one graph of any
ℓ consecutive elements of{G(Pm) 8 Fm}m∈N0

is strongly
connected, then there existsp∗ ∈ R

d such thatPm → P ∗ =
(p∗, . . . , p∗) asm → +∞.

Remarks 3.8: • One could also state a version of this
result for each connected component of the network, in a
similar way to Theorem 3.2. We leave this to the reader.

• Theorem 3.7 provides the first theoretical explanation for
the robustness behavior against sensor and control errors
of the Circumcenter Algorithm overGdisk(r) observed
in [1]. �

Corollary 3.9: With the same notation as in Theorem 3.7,
if at each stepm ∈ N, the proximity graphG(Pm) is km-edge
connected2 and if Fm contains at mostkm − 1 link failures,
then there existsp∗ ∈ R

d such thatPm → P ∗ = (p∗, . . . , p∗)
asm → +∞.

F. Robustness of the Circumcenter Algorithm when each agent
operates with a different proximity graph

Next, we analyze the performance of the Circumcenter
Algorithm when each agent of the mobile network at each time
step is allowed to use a different proximity graph to compute
its neighbors. The following definition formalizes this idea.

Definition 3.10: Let S be a set of proximity graph functions
that are spatially distributed overGdisk(r). The Circumcenter
Algorithm overS is the Circumcenter Algorithm where step2

is replaced by

2(a): choose anyG ∈ S
2(b): computeMi := NG,pi

({q1, . . . , qk}) ∪ {pi}.

The selection algorithm for each agent at each execution of
step2(a) is left unspecified. �

The following result guarantees that, under suitable condi-
tions on the setS, rendezvous is still attained by the mobile
network executing the Circumcenter Algorithm overS.

Corollary 3.11: Let the networkp1, . . . , pn be as in The-
orem 3.2. LetS be a set of proximity graph functions that
are spatially distributed overGdisk(r). Assume there exists
a proximity graphF with the same connected components
as Gdisk(r) such thatF ⊂ G, for all G ∈ S. Then any
trajectory{Pm}m∈N0

of the Circumcenter Algorithm overS
has properties (i) and (ii) in Theorem 3.2.

We postpone the proof of this result to the following section.
Note that, forr ∈ R+, the proximity graphs introduced in
Section II-B,GRN ∩disk(r), GG ∩disk(r) andGLD(r) are spatially
distributed overGdisk(r) and containGEMST ∩disk(r), which has
the same connected components asGdisk(r) (cf. Theorem 2.2).
Therefore, any setS ⊂ {GRN ∩disk(r),GG ∩disk(r),GLD(r)}
satisfies the hypothesis of Corollary 3.11.

2An undirected graph isk-edge connected if it remains connected after any
k − 1 edges have been removed, see [21].
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IV. CONVERGENCE ANALYSIS

This section presents the proof of the main results of the
paper. Before going into the details, let us introduce some
useful notation. LetG be a directed graph with vertex set
{1, . . . , n} and edge setE ⊂ {1, . . . , n} × {1, . . . , n}. Let
NG(i) = {j ∈ {1, . . . , n} | (i, j) ∈ E}. Given P ∈ (Rd)n,
let P (NG(i)) = {pj ∈ R

d | (i, j) ∈ E}. To a proximity
graph functionG that is spatially distributed overGdisk(r), a
configurationP ∈ (Rd)n, and a set of link failuresF ⊂ P ×
P (whereP = iF(P )), one may associate a directed graph
GG(P )8F = ({1, . . . , n}, E) by defining(i, j) ∈ E if (pi, pj)
is an edge ofG(P ) 8 F . Note that ifF is empty, then(i, j) ∈
E if and only if (pi, pj) ∈ EG(P ). Clearly, for eachP ∈
(Rd)n, P (NGG(P )8F

(i)) is equal to the set of neighbors ofpi

with respect to the directed graphG(P ) 8 F .
Given a directed graphG = ({1, . . . , n}, E) and r ∈ R+,

define theCircumcenter Algorithm at Fixed TopologyTG,r :
(Rd)n → (Rd)n whoseith component is

(TG,r)i(p1, . . . , pn) = (1−µ∗
i )pi+µ∗

i CC
(
{pi}∪P (NG(i))

)
,

where the coefficient of the convex combination is

µ∗
i = λ

(
pi,CC

(
{pi} ∪ P (NG(i))

)
, Q̃i

)
,

and the constraint set is defined by

ri(P ) = max{r,max{‖pi − pj‖ | (i, j) ∈ E}},
Q̃i = Cpi,ri(P )

(
P (NG(i))

)
∩B(pi, smax).

Note that if‖pi − pj‖ ≤ r for all j ∈ NG(i), thenri(P ) = r.
There are two differences betweenTG,r and the algorithm

TG defined in Section III-C: (1) the topology of the network is
fixed in TG,r and changing inTG , and (2) the constraint sets
are, in general, bigger inTG,r than inTG . The reason for the
latter difference is purely technical and will become clearin
the proof of Theorem 4.6 below.

Lemma 4.1:Let P ∈ (Rd)n and r ∈ R+. Let G be
a proximity graph function that is spatially distributed over
Gdisk(r) and letF ⊂ P × P be a set of link failures. Then
TGG(P )8F ,r(p1, . . . , pn) = TG8F (p1, . . . , pn). In particular,
TGG(P )8∅,r(p1, . . . , pn) = TG(p1, . . . , pn).

Proof: The result follows from the definition of the
directed graphGG(P )8F .

With a slight abuse of notation, we introduce the convex
hull function co : (Rd)n → 2(Rd) by co(P ) = co(iF(P )),
where we implicitly represent a polytope inRd by its set of
vertexes.

Lemma 4.2:ForG = ({1, . . . , n}, E) andr ∈ R+, the map
TG,r : (Rd)n → (Rd)n has the following properties:

(i) TG,r is continuous;
(ii) co(TG,r(P )) ⊂ co(P ), for P ∈ (Rd)n;

Proof: Statement (i) is a consequence of the fol-
lowing two facts: the circumcenter of a point set depends
continuously on their location, and the solutionsµ∗

i , i ∈
{1, . . . , n}, of the convex optimization problem (2) depend
continuously on the data. From Proposition 2.1(i), we deduce
(TG,r)i(p1, . . . , pn) ∈ co(P ) for all i ∈ {1, . . . , n}, which
implies statement (ii).

Given r ∈ R+, define the set-valued mapT : (Rd)n →
2((Rd)n) by

Tr(P ) = {TG,r(P ) ∈ (Rd)n | G = ({1, . . . , n}, E) is

strongly connected} .

We shall refer toTr as to theCircumcenter Algorithm at
All Strongly Connected Topologies. Because there are a finite
number of strongly connected directed graphs withn vertices,
the setTr(P ) is finite.

Proposition 4.3:For r ∈ R+, the mapTr : (Rd)n →
2((Rd)n) has the following properties:

(i) co(P ′) ⊂ co(P ) for all P ′ ∈ Tr(P ) andP ∈ (Rd)n;
(ii) Tr is closed on(Rd)n.

Proof: Fact (i) is a consequence of Lemma 4.2(ii).
Next, we prove fact (ii). TakeP∗ ∈ (Rd)n and let us prove
that Tr is closed atP . Consider two convergent sequences
Pm → P∗ and P ′

m → P ′
∗ with P ′

m ∈ Tr(Pm) for all
m ∈ N. We have to prove thatP ′

∗ ∈ Tr(P∗). In order to
do so, we reason by contradiction. AssumeP ′

∗ 6∈ Tr(P∗),
i.e, P ′

∗ 6= TG,r(P∗) for any strongly connected directed graph
G = ({1, . . . , n}, E). Let ε = min{‖P ′

∗ − TG,r(P∗)‖ | G =
({1, . . . , n}, E) is strongly connected} > 0. On the other
hand, since for each directed graphG, the map TG,r is
continuous atP∗, there existsδG > 0 such that if ‖P −
P∗‖ ≤ δG, then ‖TG,r(P ) − TG,r(P∗)‖ ≤ ε/2. Take δ =
min{δG | G = ({1, . . . , n}, E) is strongly connected} > 0.
Using the fact that the sequence{Pm}m∈N converges toP∗,
we deduce that there existsm0 such that‖Pm − P∗‖ ≤ δ
for all m ≥ m0. Therefore, for allm ≥ m0, one has
‖TG,r(Pm) − TG,r(P∗)‖ ≤ ε/2 for any strongly connected
directed graphG. From P ′

m ∈ Tr(Pm) for eachm ∈ N, we
deduce that there exists a strongly connected directed graph
Gm such thatP ′

m = TGm,r(Pm). In particular, note that for
all m ≥ m0, we have that‖TGm,r(Pm) − TGm,r(P∗)‖ ≤
ε/2. Using these facts, we deduce the following chain of
inequalities,

‖P ′
∗ − P ′

m‖ = ‖P ′
∗ − TGm,r(Pm)‖ ≥∣∣∣‖P ′

∗ − TGm,r(P∗)‖ − ‖TGm,r(P∗) − TGm,r(Pm)‖
∣∣∣ ≥ ε

2
,

for all m ≥ m0, which contradictsP ′
m → P ′

∗.
Next, let us study some properties of the diameter of a set.

Thediameterfunctiondiam : 2(Rd) → R+∪{+∞} is defined
by

diam(S) = sup{‖p − q‖ | p, q ∈ S}.

Lemma 4.4:The functiondiam has the following proper-
ties:

(i) diam(S) = 0 if and only if S is a singleton;
(ii) if S ⊂ R ⊂ R

d, thendiam(S) ≤ diam(R);
(iii) diam(S) = diam(co(S)) for all S ⊂ R

d;
(iv) if S ⊂ R

d and Q a polytope inR
d satisfy S ⊂ Q \

Ve(Q), thendiam(S) < diam(Q).
Proof: The proof of these statements is straightforward

and we do not include it here in the interest of space.
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It is now possible to define the functionVdiam = diam ◦ co :
(Rd)n → R+, by

Vdiam(P ) = diam(co(P ))

= max{‖pi − pj‖ | i, j ∈ {1, . . . , n}}.
Let diag((Rd)n) = {(p, . . . , p) ∈ (Rd)n | p ∈ R

d}.
Lemma 4.5:The functionVdiam = diam ◦ co : (Rd)n →

R+ has the following properties:

(i) Vdiam is continuous and invariant under permutations of
its arguments;

(ii) Vdiam(P ) = 0 if and only if P ∈ diag((Rd)n);
(iii) Vdiam is non-increasing alongTr, r ∈ R+, on (Rd)n.

Proof: Fact (i) is a straightforward consequence of the
definition ofVdiam. Fact (ii) is a consequence of Lemma 4.4(i).
Proposition 4.3(i) implies fact (iii).

We are now ready to analyze the asymptotic convergence
properties of the algorithmTr, for r ∈ R+.

Theorem 4.6: (Rendezvous via switching strongly con-
nected graphs and suitable constraints):For r ∈ R+ andP0 ∈
(Rd)n, any sequence{Pm}m∈N0

, defined byPm+1 ∈ Tr(Pm),
converges to a point of the form(p, . . . , p) ∈ (Rd)n.

Proof: From Lemma 4.5, we know thatVdiam : (Rd)n →
R+ is non-increasing alongTr on (Rd)n. Proposition 4.3(i)
implies that the evolution of the sequence{Pm}m∈N0

is
contained in the compact setco(P0). Since Tr is closed
(cf. Proposition 4.3), we can resort to the LaSalle Invariance
Principle for closed algorithms (cf. Theorem 2.4) to deduce
that Pm → M , where M is the largest weakly positively
invariant set contained in

{P ∈ (Rd)n | ∃P ′ ∈ Tr(P ) such thatdiam(P ′) = diam(P )} .

Let us show thatM = diag((Rd)n). Clearly,diag((Rd)n) ⊂
M . To prove the other inclusion, we reason by contradiction.
AssumeP ∈ M \ diag((Rd)n), and thereforediam(P ) >
0. Let G be a strongly connected directed graph and con-
sider TG,r(P ). Clearly, by Proposition 2.1(i), for allpj 6∈
Ve(co(P )), we have that(TG,r)j(P ) ∈ co(P ) \ Ve(co(P )).
Let pi be a (strictly convex) vertex of the polytopeco(P ).
In general, there might exist more than one agent located at
the same positionpi. Let us see that the application ofTG,r

will strictly decrease the number of agentsNpi
(P ) located

at pi. Since the directed graphG is strongly connected,
there must existi∗ with pi∗ = pi such that there exists
j ∈ NG(i∗) with pj 6= pi∗ . By Proposition 2.1(i),CC

(
{pi∗}∪

P (NG(i∗))
)
∈ co(P )\Ve(co(P )), which in particular implies

thatCC
(
{pi∗}∪P (NG(i∗))

)
6= pi∗ . Using this fact, together

with {pi∗} ∪ P (NG(i∗)) ⊂ B(pi∗ , ri∗(P )), we deduce (cf.
Proposition 2.1(ii)) that]pi∗ ,CC

(
{pi∗} ∪ P (NG(i∗))

)
[ has

nonempty intersection withB
(pi∗+q

2 ,
ri∗ (P )

2

)
for all q ∈

P (NG(i∗)). Therefore, the solutionµ∗
i∗

of the convex opti-
mization problem (2) is strictly positive. As a consequence,
we have that(TG,r)i∗(P ) ∈ co(P ) \ Ve(co(P )). Therefore,
Npi

(TG,r(P )) < Npi
(P ).

Next, let us show that, after a finite number of steps,
no agents will remain at the locationpi. Define N =
max{Npi

(P ) | pi ∈ Ve(co(P ))} < n − 1. Then all
agents in the configurationTG1,r(TG2,r(. . . TGN ,r(P ))) are

contained inco(P ) \ Ve(co(P )), for any strongly connected
directed graphsG1, . . . , GN . Therefore, by Proposition 2.1(ii),
diam(TG1,r(TG2,r(. . . TGN ,r(P )))) < diam(P ), which con-
tradicts the fact thatM is weakly invariant.

Therefore, we have proved that for any initial condition
P0 ∈ (Rd)n, any sequence{Pm}m∈N0

, defined byPm+1 ∈
Tr(Pm), converges to the setdiag((Rd)n). To finish the proof,
let us show that indeed{Pm}m∈N0

must converge to a point
that belongs todiag((Rd)n). Since the sequence is contained
in the compact setco(P0), there must exist a convergent
subsequence{Pmk

}k∈N0
, Pmk

→ (p∗, . . . , p∗) when k →
+∞. Therefore, for anyε > 0, there existsk0 such that for
k ≥ k0 one has‖(pi)mk

− p∗‖ ≤ ε/
√

n, or equivalently,
co(Pmk

) ⊂ B(p∗, ε/
√

n). From Proposition 4.3(i) we deduce
that co(Pm) ⊂ B(p∗, ε/

√
n) for all m ≥ mk0

, which in turn
implies that‖Pm − (p∗, . . . , p∗)‖ ≤ ε for all m ≥ mk0

, as
desired.

Finally, we are ready to present the proof of Theorem 3.2.
Proof of Theorem 3.2:We start by proving fact (i). Let

k ∈ N0 and takeC a connected component ofGdisk(Pk, r).
By assumption,G and Gdisk(r) have the same connected
components, and thereforeC is also a connected component
of G(Pk). By definition of TG , if agentsi and j are neigh-
bors according to the graphG(Pk), then (pi)k+1, (pj)k+1 ∈
B

( (pi)k+(pj)k

2 , r
2

)
, which in particular implies that‖(pi)k+1−

(pj)k+1‖ ≤ r. Therefore, the agents inC remain connected in
ther-disk graph at stepk+1, i.e., the agents inC are contained
in the same connected component ofGdisk(Pk+1, r).

Now, let us prove fact (ii). From (i), we deduce that the
number of vertices in each of the connected components of
G(Pm) is non-decreasing. Since there is a finite number of
agents, there must existm0 such that the identity of the
agents in each connected component is fixed for allm ≥ m0

(i.e., no more agents are added to the connected component
afterwards). LetC = {pi1 , . . . , piK

} be any of these connected
components. As a consequence of Theorem 4.6, we deduce
that all the agents inC asymptotically converge to the same
location in R

d (since their evolution underTG is one of
the many possible evolutions under the algorithmTr, see
Lemma 4.1).

Finally, we prove fact (iii). It suffices to prove that the agents
in C will rendezvous in finite time. Leta = min{smax,

r
2} ∈

R+. By the previous discussion, there existsk ∈ N such that
the location of the agents inC belongs to a closed ball of
radius

√
2a/2. In such a case, we deduce that (1)Gdisk(r) at C

is the complete graph, and therefore all agents inC compute
the same circumcenter pointCC, and (2) the corresponding
circumradius can be seen to be less than or equal toa using
a simple geometric argument. From the latter, we deduce
that CC ∈ B(pi, smax) and CC ∈ Cpi,r

(
P \ {pi}

)
, i.e., the

circumcenter belongs toQi, for all i ∈ {1, . . . , n}. As a
consequence, all mobile agents inC rendezvous at the same
locationCC at stepk + 1.

Proof of Theorem 3.7:The proof of this result goes along
the same lines as the one of Theorem 4.6. Givenr ∈ R+, de-
fine the set-valued mapP ∈ (Rd)n 7→ T̃r(P ) = {TG,r(P ) ∈
(Rd)n | G = ({1, . . . , n}, E) directed graph}. Reasoning as
in the proof of Proposition 4.3, one can show thatT̃r is closed.
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Given two set-valued mapsT1, T2 : (Rd)n → 2((Rd)n), define
its composition as the set-valued mapT1 ◦ T2 : (Rd)n →
2((Rd)n) given by (T1 ◦ T2)(P ) = {P ′′ ∈ (Rd)n | ∃P ′ ∈
(Rd)n such that P ′′ ∈ T1(P

′) and P ′ ∈ T2(P )}. For
k ∈ N, we denote byT̃ k

r the composition ofk instances of
T̃r. Now, let us define the set-valued mapP ∈ (Rd)n 7→
Tr,ℓ(P ) = {P ′ ∈ (Rd)n | ∃k ∈ {0, . . . , ℓ − 1} such thatP ′ ∈
T̃ k

r (Tr(P ))}. Using Lemma 4.2(ii), together with the fact that
T̃r and Tr are closed, we deduce thatTr,ℓ is also closed.
Reasoning as in the proof of Theorem 4.6, one can show that
any sequence defined byTr,ℓ converges to a point that belongs
to diag((Rd)n). This concludes the result, since the hypotheses
of the statement of the theorem imply that the evolution of the
network,{Pm}m∈N0

, is one of the many possible evolutions
underTr,ℓ, see Lemma 4.1.

Proof of Corollary 3.11:The proof of fact (i) is parallel to
that of Theorem 3.2(i) invoking now thatF ⊂ G, for all G ∈ S,
and thatF andGdisk(r) have the same connected components.
Fact (ii) is a consequence of Theorem 3.7 since any execution
of the Circumcenter Algorithm over(S1, . . . ,Sn) can be seen
as an instance of the Circumcenter Algorithm overGdisk(r)
with appropriately selected link failures at each step.

V. SIMULATIONS

In order to illustrate the performance of our rendezvous
algorithms, we developed a library of basic geometric routines.
The resulting MathematicaR© packagesPlanGeom.m (con-
taining the 2-dimensional routines) andSpatialGeom.m
(containing the 3-dimensional routines) are freely available at
http://www.soe.ucsc.edu/˜jcortes .

We implemented the Circumcenter Algorithm in the plane,
d = 2, over ther-limited Delaunay proximity graph with link
failures. The simulation run is illustrated in Figure 4. The
25 vehicles have a maximum step sizesmax = .15, and a
communication radiusr = 4. The initial configuration of the
network is as in Figure 1 over the square[−7, 7] × [−7, 7].
At each time step, a set consisting of18 numbers between1
and 25 is randomly selected, corresponding to the identities
of the agents where link failures occur. For each of them,
a randomly selected link failure inGdisk(r) is chosen. Note
that, the identity of an agent might appear more than once
in the random set, and therefore, more than one link failure
may occur at the same agent. Nevertheless, rendezvous is
asymptotically achieved according to Theorem 3.7 (indeed,
in the various simulations that we ran, usually after 80 steps).

We also implemented the Circumcenter Algorithm in space,
d = 3, over the set of proximity graphs{Gdisk(r),GG(r) ∩
Gdisk(r),GRN(r) ∩ Gdisk(r)}. The simulation run is illustrated
in Figure 5. The25 vehicles have, as before, a maximum
step sizesmax = .15, and a communication radiusr = 4.
The initial configuration of the network is as in Figure 2
over the square[−7, 7] × [−7, 7] × [−7, 7]. At each time
step, each agent randomly selects one of the proximity graphs
in {Gdisk(r),GRN∩disk(r),GG∩disk(r)} and computes its corre-
sponding set of neighbors according to it. Then, it executes
steps3 through5 of the Circumcenter Algorithm. Rendezvous
is achieved in a finite number of steps (in the various simula-
tions that we ran, usually after 100 steps).

Fig. 4. Evolution (in light gray) of the Circumcenter Algorithm over the
r-limited Delaunay graphGLD(r) with link failures. The initial configuration
of the network is as in Figure 1.

VI. CONCLUSIONS

We have designed and analyzed a class of circumcenter
algorithms over proximity graphs for multi-agent rendezvous.
Additionally, we have provided a set of novel tools that we
believe are important in the design and analysis of general
motion coordination algorithms. We believe that the results
of this work could be extended to agents operating under
different communication radii and under certain classes ofun-
deractuated dynamics. Future directions of research in motion
coordination include the study of increasingly complex com-
munication settings (quantization, asynchronism, media access
and power control issues), the analysis of the performance and
complexity of the algorithms, and the formal design of other
spatially distributed coordination primitives.
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