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Index Terms— motion coordination, optimal sensor placement, cost function and to choose the best sensor locations from
Fisher Information Matrix, Kalman filtering. a grid of finite candidates. Unfortunately, these schemas tu
Abstract—This work studies optimal sensor placement and out to be not distributed since in order to define the control
motion Coor?}”aﬂon Sl.tratfegies.fﬁr mobile sensor networks. For |aw for each agent, it is necessary to know all other agents’
B e eelel® positons at each step. A second Set of elevant feferences a
it in the 2D and 3D cases, characterizing the global minima in those on distributed motion coordination. Our proposedrabn
the 2D case. We propose motion coordination algorithms that algorithms are in the same spirit as those for cyclic pu8ijt
steer the mobile sensor network to an optimal deployment and flocking [6], and coverage control [4].
B o Siiaors i o e mapenc aeoeny e contbuions of tis paper are th folloving, Under
lead to improved performance of an extengedp Kalmar? filter in the aSSl_Jmptlon O_f Gaussian noise measurements Wlth_dlhgona
a target tracking scenario. correlation, Section Il presents closed-form expressitoms
the determinant of the Fisher Information Matrix for “range
measurement” models in non-random static scenarios, for 2
|. INTRODUCTION and 3 dimensional state spaces. This determinant plays the
New advancements in the fields of microelectronics andle of an objective function: we characterize its critipaints
miniaturization have generated a tremendous surge ofityctivin the 2D version and obtain sets of positions that globally
in the development of sensor networks. The envisioned groupaximize its value. If the sensors measure distances to the
of agents are endowed with communication, sensing ataiget, then an optimal configuration is one in which the
computation capabilities, and promise great efficiencyhim t sensors are uniformly placed in circular fashion around the
realization of multiple tasks such as environmental manitotarget, confirming a natural intuition about the problenkirig
ing, exploratory missions and search and rescue operatiaiés optimal configuration as a starting point in Section lI
However, several fundamental problems need to be solvedwnr then consider a target tracking scenario where the sensor
order to make this technology possible. One main difficultyiove along the boundary of a convex set containing the target
is the requirement for decentralized architectures whaoh e We define discrete-time control laws that, relying only on
agent takes autonomous decisions based on informatioadhdocal information, achieve the uniform configuration ardun
with only a few local neighbors. Ongoing research worthe target (estimate) exponentially fast. In essence aws hre
focuses on decentralized filters and data-fusing methods f@ry intuitive and simple-to-implement interaction beioay
estimation, and on the motion algorithms that guarantee thetween the sensors along the boundary. Finally, in Sebtion
desired global behavior of the network. Ideally, both th&se numerically validate our coordination and optimal dgplo
motion control algorithms and estimation processes shouttent laws in a particular dynamic target-tracking scenario
be optimally integrated to make the most of the networklthough the network achieves global optimum configuragion
performance. for a nonrandom staticparameter estimation scenario, we
In this paper we investigate the design of distributed nmoticimulate adynamic randonscenario. Our simulations illustrate
coordination algorithms that increase the informatiorhgetd the following reasonable conjecture: optimizing the s@énsj
by a network in static and dynamic target-tracking scemsaridunction for the static non-random case improves the perfor
To do this, we define an aggregate cost function encodingreance of a filter (in our case an EKF) for the dynamic random
“sensitivity performance measure” and design our algorith scenario.
to maximize it. This idea has been widely used in papersFinally, we point out that we assume that the process of
on optimum experimental design for dynamical systems wigrstimation is performed by a central site or by a distributed
applications to measurement problems. An incomplete fist process that we do not implement here. For works dealing with
references is [3, 7, 11, 14]. For example [11, 14] deal witmultisensor fusion possibly under communication constsai
problems on target tracking and parameter identification wfe refer to [5, 10, 12, 13] and references therein.
distributed parameter systems. The motion control algorst
proposed in these papers either are computed via some off- Il. OPTIMAL PLACEMENT OF SENSORS
line numerical method or are gradient algorithms. Ofters¢he Here we present the assumptions on our sensor network and
algorithms are designed to maximize an appropriate scatarget models in (1) (non-random) static estimation sdesar



and (2) (random) dynamic parameter estimation scenaries. B/ The dynamic parameter estimation scenario
obtain the corresponding Fisher Information Matrices ()M Dynamic targets can be thought of as random parameters

and analyze the global minima of their determinant as golving under a stochastic difference equation. Here we

means to guarantee increased sensitivity with respecteio fksyme that the target positiarik), at time k& € NU{0}
sensors’ measurements. See [2] for a comprehensive treatm@yisfies:

on estimation and tracking.
q(k) = Fr(q(k = 1)) +v(k), k=1, ¢(0) €@,

A. The static parameter estimation scenario for some functionsF, : RY — R? andv(k) i.i.d asv(k) ~

_ T
The localization of static targets can be solved as a no/M(O’N(k))’ ¥vhere N(k) = N(k)" >0, for k.z. 0, and
random parameter estimation problem as follows.jLet R<, Elv(ky)v(ks)"] = 612N (ky), for ki, ky > 0. Similarly as
je{1,...,n}, denote the position af sensors moving in a °€fore, we model our sensor network as
convex region C R? and letgy € Q be the unknown target Z(k) = Hy(q(k), pr(k), ..., pu(k)) + w(k), k>0,

position to be estimated by means of the measurement model:

with Hy.(q(k), pr(k), ..., pn(k))=(h(llq(k) — p1(R)I]), ...,
zj(@) = h(lg = p;ll) +wj, q€@, @ h(lgk) — pa(k)]))), where hy : Ry — R, and
Z(k)=(z1(k),...,zn(k)), &k > 0. We will assume that (k) ~

for j € {1,...,n}. Here,h : [0,400) = Ry — R is N(0, R(k)), where R(k) — R(k)T > 0, k > 0, and that

defined according to the particular sensors’ specificateors T
w; represents a white noisg, € {1,...,n}. The stacked Elw(ki)w(ka)"] = d12R(k1), for ks, kz > 0.
. ; : An estimation method that is widely employed for target
vector of measurements at a given instant is a random vector . =~ .
normally distributed as tracking is that of the Extended Kalman Filter (EKF) [2]. The
y assumptions for the filter requikgk) and Z (k) to be jointly

2 h(llg = p1ll) Gaussian distributed with covariande(k) = P(k)”, and
72| | ~N : R, Elq(k1)w(ks)] = 0, for k1, ke > 0. The EKF provides a state
: ' estimateg. (k) together with an estimate for the covariance of
Zn hllla = pall) the errorP, (k):
whereR = RT > 0isthenxn covaria_nce matrix. From now Po(k) = Py(k) — W(k)SE)W(H)T, k>1,
on, we will use the shorthand notatidh = (z1,...,2,)7,
and H will denote the functionH (¢, p1, . ..,pn) = (h(]g — WhereP,(k) is the predicted covariance of the error adk),
pil)s- - hllg = pall)T S(k) are some matrices appropriately defined [2]. 4,gt) be

The Fisher Information Matrix(FIM) for non-random pa- the predicted value of(k). Some standard computations [2,
rameters, denoted byng, is defined as the expected valud.0], allow us to say that

with respect to the probability distributiop(Z|q): Pl (k) = Pgl(k) + (Vg Hyg (k))TRfl(k)ququ *)
IR £ E [(vq log A) - (Vg log A)T]

a=q0 ’ or, denoting(V, Hyq, (k)" B~ (k)V ¢ Hyg, (k) = Inr(k),
whereq is the true value of the target location or an estimate PYE) = P~ (k) + Jua(k k>0 3
ofit, Vo = (521, 52)", and A is thelikelihood function e (k) =P, (k) + Jnr(k), k>0, 3)
Similarly, it can be seen that for linear measurement arehlin
A(g,p15---Pn) = target models, the FIM for dynamic (random) parameters,

Jor(k), and Jyr(k) satisfy

—l(z - HTRY(Z - H)) :
Jor(k) = Inr(k) + J(k), T(k)=T(FE)">0. (4)

1
—————— ex
V2rdet R p( 2
A few computations showng = (V H)I R (V,H),,. Let

q=(q¢...,qH)7T, and define the shorthands C. Cost functions for optimal sensing
L0 As is well known, the FIM encodes the amount of informa-
dehj(qo,p1,-- - pn) = WMHCI - pj||)‘q_q ; tion that a set of measurements produces in estimating & set o
=40

parameters. Under the assumptions made in former sections,
for je{1,...,n} and¢ € {1,...,d}. Then(V,H),, : R x we have FIM = CRLB!; i.e., the FIM is the inverse of the
(R™)? — R™*" can be computed to be Cramer Rao Lower Bound, which in turn lower bounds the
covariance of the errér

((qu)qo)jZ(QO;plg s 7p’ﬂ) = 8€hj((I07p17 R 7pn) ) -
FIM™ = CRLB < E[(¢ — q0)(d — 90)"].

for j € {1,...,n} and? € {1,...,d}. In the particular case

that R = ¢%1,,, the FIM Jyr can be expressed as: Because of this, one expects that “minimizing the CRLB”"
results in a decrease of uncertainty.
INR(G0: DL, - -1 Pn) = %(qu)Z;(qu)qo This line of reasoning has been a main theme in sev-
o ) eral papers dealing witloptimum experimental desigand
Lo (O1h;) o (01h;)(9ahy) active sensinge.g., see [11, 14]. Starting from the FIM
= : - : . (2) (resp. the CRLB) of the estimation approach, @amluation
= : . : ®)
7=V (Oahy)(01hs) ... (adhj)z IFor efficient estimators, the inequality is an equality.



functionis defined (usually the determinant or the trace of thej;, . .., 7,) is a global maximum ofr and (r; —¢; )%~ =

FIM/CRLB) whose maximization (resp. its minimization) isM, for alli € {1,...,n}. We now analyze the maxima df.

to be achieved. For example, tdet FIM is the cost function  Proposition 2.2: The following statements hold true.

is “D-optimum deS|gn; as discussed by [14]. (i) The point(ny,...,m,) € T" is a critical point for Ly
As before, lety € R? be the true value of the target location if either any two vectors in{(cos 27;,sin 27;)}7_, are

or an estimate of it. Under the assumptions of Subsectién II- aligned or

and 1I-B, we define our cost functiod,, : (R%)" — R, by
Z cos2n; =0, and Z sin2n; = 0,
’CQO(p1»~~'apn) :detJNR(Q(J?pl?"'vpn)v (5) .

with Jnr given in (2). Because of (3) and (4), we are guaran-,.. . . e
teed that, if we optimizeC,, with respect to the positions of (i) The following three quantities are eqdu 402d"’
the sensors, then we will get increased performance ircstati ™8 {£40(($p17 e gpn) |5P1, . -épn €ER } an
estimation scenarios, and expect reasonably good perfimena max {Lr(d1,. .., 0n) [ 1., 0n € T}
in dynamic ones. @iy If n; =G —Dn/n,ie€{l,...,n}, then

In what follows we derive the expression for the cost
function £,, for d = 2 andd = 3 and analyze its critical (OB, 4 )[R, oo € 2}
points and global maxima. To do this, we shall assume that  are global maxima forr.

our measurement model is The proof of this result is in [1].
(r—c1)l +co, Ro<r<R Rgmark 2.3:By (iii) there could .l:.ue globgl maxima with
h(r) = 0 ’ otherwis ’ (6) multiple sensors at the same position. This could be a con-
’ € sequence of our assumptions that the measurement nojses
for b € Z, and constants?; > Ry > 0, c,c; € R,. Range are uncorrelated. Itis a conjecture that, if the depended on
sensors such as sonars can be modeled by1 and¢; = the sensors locations, then coincident locations couldbeot
ey = 0. part of the set of maximum points. .
Proposition 2.1:For ¢y € R?, let £,, : (RY)" — R, be
defined as in (5) and be defined as in (6). L&, (p1,...,pn) I1l. DECENTRALIZED MOTION COORDINATION FOR THE
be the set of indicese {1,...,n} such thatRy < ||pi—qo|l < NON-RANDOM PARAMETER SCENARIO

Ry. The following statements hold true. This section presents a family of decentralized controklaw

(i) Ford=2, that steers the sensors to a set of points of maximum for the
1 ) 9 . o cost functions previously defined. Our analysis is relateithé
LooP1,--spn) = 55 > il sin® oy approaches in [4, 6, 8]. We make the following assumptions
1,7€Sqg on the agents’ motion, sensing, and communication:
where a;; £ L(vi,vy), vi = (O1hi,d2h4,0), and (i) a static target, takes values in the interior of a compact
Ivil2 = 82(lpi — ol — )2V, for i,j € _convex set) with boundaryoQ); . .
Sao (D1, D) (i) the measurement model is the one described in equa-
(i) For d =3, tion (1) with h(r) = r, i.e., equation (6) withy = 1,
b=1,¢1=c =0, Ry =0, Ry = +0o0;
Lo (D1, s0n) = (iii) each of the sensor§py, ..., p,} moves in discrete time
1 2 2 2 . 2 2 . alongaQ; L. .
602 Z [Vl [1v; [ [Ivell” sin® a; cos® Bijk (iv) each o_f the sensor{;pl,...,pn_} dete(_:ts its immediate
1,§,k€Sq, clockwise and counterclockwise neighborsdd) and

acquires the corresponding distances.
WhereOéij £ K(V,’,V]‘), ﬂij,k & K(Vi X Vj,Vk), and q P ¢

vi = (01h;, Dahi, B5h;), with [|v;[|* = b*(||p; — qol| —

c1)20=D fori, j, k€ Sy (p1y- - - > Pn)- B %

Here we understand tha,, = 0 whenS,, = 0.

The proof of this result is in [1].

Let us now introduce some useful notation. etbe the ,
circle in the plane and definér : T" — R, by P3 o ®
4172
ET(51,...,57,) = 1)2% N Z sinz(éi —6j), P4 Ps
i,j€{1,...,n}

Fig. 1. Assumptions (i) and (iii): the sensors move along thenbary of
where M = max,¢[r,, r,] (T — c1)?®=1) > 0. Now, letd =2 Q@ and the target moves insidg.

and assumey, # p;, for i € {1,...,n}. Consider a polar

change of coordinates centeredggte R2?, and identifyp; € For this static scenario with limited information, the nuoti
R? with (;,r;) for somen; € T andr; € R,,i € {1,...,n}. coordination objective is to stedp,...,p,} to the equally-
We then have that, (pi,...,pn) < Lr(m,...,n,) and spaced angular positions around the targetexponentially
(p1,---,pn) is a global maximum ofl,, if and only if fast.



Remark 3.1: « Assumption (iv) means that an imple-following sensor. In the original coordinate system, eaa-s
mentable control law for an agent can only depend on tker moves alon@(@ towards the bisector of the triangle with
agent’s position relative to its neighbors (in the naturalertex g and vertices given by the preceding and following
ring topology along)@Q). We will call such a control law sensor. A second intuitive rule is the OGGTOWARDS THE
spatially distributed alon@Q.

o We will allow the control law to depend on the current
estimate of the target location. This strategy is said to be
of the “certainty equivalence” type. °

A. From the boundary of) to a circle and back

Because we assume that the sensors can be placed
only along 9@, we will work with the polar coordinates of
{p1,...,pn} centered atg, and define our motion control
algorithms on the circle.

Let 9Q be implicitly defined by the continuous equation Mit1
x € 0Q if and only if g(z) = 0. Given a poinf in the interior
of a compact convex se&g, define the magp, : 0Q — T DY g 2 The @ TowarDS THE MIDPOINT ;o and GO TOWARDS THE

p—q MIDPOINT OF VORONOI SEGMENTu /4 behaviors.
Pq(p) =

lp —dall’
One can show thap, is continuous with continuous inverseM!DPOINT OF VORONOI SEGMENTbehavior umidpoint vorono :
o '+ T — 9Q given by (v) = ¢+ Av where) € R, the [0,27] x [0,27] — R
unique solution tay(q + Ap) = 0.

In what follows, we letg, denote the current estimate of wumigpoint vorono dcounterciock delock) =
the target location, we lep,, (p) be the angular component 1
of the polar coordinates qf centered aty, and we identify i(dcounterclock* dclock)-
pi € 0Q C R? with n; = ¢y, (p;) € T, for all 4.

The interpretation is the following: the Voronoi segmentio#
B. Basic behaviors for uniform coverage of the circle ith sensor at position; is the angular segment frofm;_; +

As discussed, the location of the sensors is described B /2 10 (m; + mi11)/2, and the control law @ TOWARDS
the vector (1n.....1.) of elements ofT. We assume that THEE MIDPOINT OF VORONOI SEGMENTSteersy; towards the

angles are measured counterclockwise and that the serneorsma'tdpomt of this segment.

placed in counterclockwise order (we adopt the conventian t T.r;esef It,WO ruITzs a}rﬁ particular mstaénces ?é.the following
M1 = 1 and thatny = 7). amily of linear algorithms parametrized g € R:

As described Assumption (iii), the sensors motion is de-
scribed by a discrete-time control system: U)C(dcounterclock dclock) = K(dcounterclock_ dclock)~

ni(k+1)=ni(k)+u;, i€{l,...,n}. Clearly, umidpoint 2Nd tmigpoint voronoi are equal toux for K =

1/2 and K = 1/4, respectively. Becausex(d,d) = 0 for all

d € R4, the equally-spaced angle position (where the sensors
are uniformly distributed around the target) is an equiilibor
point for the ux-closed-loop system.

Here u; is the scalar control magnitude of théh sensor.
In a way consistent with Assumption (iv), we assumg
is a function only of the relative angular distances in th
counterclockwise directionlcounterciocki = 7i+1 — 17 > 0
and clockwise directionlgiocki = 7: — m—1 > 0. We also
assume that each sensor obeys the same motion control law )
u : [0,27] x [0,27r] — R, so that the closed-loop systemC. Convergence analysis

becomes: To perform a convergence analysis, it is convenient to
ni(k +1) = ni(k) +U(dcounterclocki(k)adclock,q‘,(k’)), define the relati\:je gngmﬁr distalncdg = Mit1 = s f:i)r
i1 €{1,...,n} (and adopt the usual convention t =
deounterciocki (k) = i1 () — mi(k), and{thatdo :}t(in). So I(F))ng as the counterclockl\fjlv@ige1 ordér of
detock i (k) = 1i (k) = 1i—1(F). the sensors is not violated, we hayé,,...,d,) € Sor =
In order to achieve uniform distribution of the sensors am th{z € Ry, | 2; > 0,Y_"" | x; = 27 }. The change of coordinates
circle, two simple behaviors arise fairly naturally, segufe 2. from (11,...,7,) to (di,...,d,) and the control lawux

First, we consider the G TOWARDS THE MIDPOINTbehavior jointly lead to the closed-loop system
with Umidpoint * [0,277] X [0,27‘(‘] — R
dy(k+ 1) = Kdyor (k) + (1 — 2K)di (k) + Kdyr (k).

1
Umidpoint(dcounterclock dclock) =35 (dcounterclock_ dclock)~

2

The interpretation is clear: each sensor moves towards
midpoint of the angular segment between the preceding asi

gairhe more general linear feedbaachounterclock dclock) = adcounterclockt

gock does not have the desired equilibrium set unkessb = 0. The case
+ b # 0 is studied in the context of cyclic pursuit, e.g., see [8].



This is a linear time-invariant dynamical system with state

d=(dy,...,dy), transition matrixAx given by
1 —2K K 0 0 K 7
K 1-2K K 0
0 K 1-2K :
. 0 ’
0 . K 1-2K K
L K 0 0 K 1—2K]

and governing equation
d(k+1) = Agd(k), for k € NU{0}. @)

Theorem 3.2:The control lawux is spatially distributed
along 9@, and, for K €]0,1/2[, the solutions to the corre-

with L € Z, then1 andef = (-1,1,-1,...,-1,1)
are eigenvectors with eigenvaluesind—1 respectively.
Given {e; ...,e,_1,1} an orthogonal basis of eigen-
vectors forA, , andd(0) = Z?:_f pie; +py1, one can
show that, starting from arbitrary initial conditions, the
system will exponentially converge to a steady oscilla-
tion betweemu; = p, 1+ prer anduy = p,1 — prer.

IV. TARGET TRACKING SIMULATIONS WITH KALMAN
FILTERING AND MOTION COORDINATION ALGORITHMS

Here we combine the developments of former sections to
define the Active Target Tracking algorithm for collective
improved sensing performance. We numerically simulate the
algorithm to validate our approach. It is assumed that tkie es
mation step is carried out after a round of communication has
taken place to propagate all the measurements taken am@ng th

sponding closed-loop system (7) preserve the counterclogigents. The algorithm is summarized in the following table.

wise order of the sensors and converge exponentially fast
(27 /n,...,27/n).

Proof. Recall the notion and properties of circulant matrice
from [9]. Note thatAx is circulant with representer,,. (s)
(1—2K) + Ks+ Ks"~1. This implies that the eigenvalues of
Ay are

2

27%7—1)) =1-2K+ 2K cos (ﬂ),
n n

Y

for ¢ € {1,...,n}. One can see thak, = 1 with cor-

responding eigenvectot” = (1,...,1). If X > 0 and
ted{l,...,n—1}, then
27l
—1<cos(=—)<1 = 1-4K<N\ <L
n

Therefore, ifiC €]0,1/2[, then the eigenvalues,,..., \,_1
belong to the interva] — 1, 1[. Additionally, if K €]0,1/2],
then Ax is a doubly-stochastic matrix, which implies tht,
is invariant for Ay.

t
Lf\lame: ACTIVE TARGET TRACKING ALGORITHM
s Goal: Decentralized motion coordination of sensors
and joint localization of target

Data: (i) ConstantC €]0,1/2].
(i) Equation for the boundary of the contain-
ment regiong(q) = 0.
(ii) Guess for target initial positioy(0).
At time k, local agent € {1,...,n} performs:

1
2:

Receive estimatéy (k) from fusion center.

Detect counterclockwise and clockwise neighbors a

0@, compute angular distances in polar coordin

aboutdgo (k).

: Compute controlic, next desired position; (k+1) €
and corresponding point;(k + 1) € 9Q.

: Move to new positiorp;(k + 1) along9Q.

: Take new measurement of targetk+1), and send it t¢

fusion center, that will update target estimate accor

to EKF.

ong
ates

Ta

)
ding

Let {e1,--- ,e,_1,1} be a basis of orthogonal eigenvec
tors for A corresponding to the eigenvalu¢s,,..., \,},
respectively. Any initial conditioni(0) can be written as

n—1
d(0) = Z peer+ pnl.
=1

Since"!" ; d;(0) = 27, one can see that, = 2Z. Therefore

n—1 o
dk) = Axd(k—1) =Y Xpres+—1.
(k) = Axh=1) = 3 -

If I €]0,1/2], then each)\, < 1, for £ € {1,...,n—1}

and, therefore, each trajectoty— d(k) converges to%”l,

the equal-angle configuration, exponentially fast.
Remark 3.3: (i) The properties ofic in Theorem 3.2 are
independent of the number of sensors.

(i) If £ <0 orK > 1/2, then there exist initial conditions
from which the counterclockwise order of the sensors
not preserved in the closed loop.

(iii) Consider the K 1/2 case, corresponding to the
GO TOWARDS THE MIDPOINT behavior. Although &
TOWARDS THE MIDPOINTIs a very natural algorithm to
consider, it doesot ensure convergence to the desire
configuration whenever is even. In fact, ifn = 2L

In what follows we present our numerical results. we
compare the estimation errors of the trajectory of a dynamic
target obtained from a set of four stationary and moving
sensors. For the purpose of the simulatighwill be a ball
centered at the origin with radius5m, and the trajectory or
the target will be the eight-shaped curve:

@(k)] _ [ sin(wk)
qa (k)| — |sin(wk) cos(wk)
Here (¢}, ¢2) are measured in meters and= .1 rad/sec.

In all the subsequent figures, the plots compares the evo-
lution of the absolute error trajectories along tindg(k) =
llgo(k) — Go(k)|| for stationary sensors (solid blue line) and
moving sensors (dashed red line), for> 0.

The first set of simulations, Figure 3, reproduce the results
obtained for four sensors initially positioned2at 818, 2.4500,
3.7160, and 4.5167 radians. As can be seen, the moving
sensors perform better on average as the variance increases

In the second set of simulations, Figure 4, we take as the
initial position for the sensors the optimal position toirastte
0. Thatis,0, /2, = and3x /2, are the initial positions for both
stationary and moving sensors. Though the set of moving

[

d 3This would be equivalent as having a fusion center that abpéis the
estimation process
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Fig. 3. Evolution of absolute error trajectories with vadas of measured

noise5 x 10~3 (left) and5 x 10~2 (right).
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Fig. 4.
noise5 x 1073 (left) and 10~ (right).

sensors performs better, the differences between theaetm

Evolution of absolute error trajectories with vadas of measured

of the sensors. Broader future research lines include (1)
heterogeneous collections of sensors, (2) dynamic assighm
of sensors to different targets and (3) decentralized esthm
and fusion schemes.
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[1]

[2]

[3]

of the stationary and moving sensors are comparable for

variances of ordet0—%, 1073 (the absolute error trajectories [4] J. Corés, S. Maiinez, T. Karatas, and F. Bullo. Coverage
overlap) and even not so different when the variances are

increased to ordei0~2. One has to increase the order of

noise to10~! to observe a clear difference in performance.[5
Qualitatively, Figure 5 shows how the estimated trajeetori
of the moving sensors (green solid line) behaves compar
with the estimation provided by the stationary sensorscibla

e[@] A. Jadbabaie, J. Lin, and A. S. Morse.

dashed line). The green solid trajectory is very close to the

actual trajectory of the target that we do not plot. Note that

all the simulations, the variance of the process noise i¢ kepy
minimum of order10~°. It can be observed in the simulations
that when the variance of the measurement is kept constelnt an
the variance of the process noise is varied, both perfore®ncyg] j. A. Marshall, M. E. Broucke, and B. A. Francis. For-

of stationary and moving sensors give very similar results.

15

Fig. 5. Qualitative evolution of the estimated trajectorieg moving
and stationary sensors. Initial positions af@ /2, m,3x7/2) (left) and

[9]

[10]

[11]

[12

(2.1818,2.4500, 3.7160,4.5167) (right) and variances are in both cases

5x 102,

V. CONCLUSIONS AND FUTURE WORK

]

[13]

We have presented novel decentralized control laws for the
optimal positioning of robotic sensor networks that track 4]

target. It would be of clear interest to modify our model by
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