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Abstract— This work studies optimal sensor placement and
motion coordination strategies for mobile sensor networks. For
a target tracking application with range sensors, we investigate
the determinant of the Cramer Rao Lower Bound and compute
it in the 2D and 3D cases, characterizing the global minima in
the 2D case. We propose motion coordination algorithms that
steer the mobile sensor network to an optimal deployment and
that are amenable to a decentralized implementation. Finally,
our numerical simulations illustrate how the proposed algorithms
lead to improved performance of an extended Kalman filter in
a target tracking scenario.

I. I NTRODUCTION

New advancements in the fields of microelectronics and
miniaturization have generated a tremendous surge of activity
in the development of sensor networks. The envisioned groups
of agents are endowed with communication, sensing and
computation capabilities, and promise great efficiency in the
realization of multiple tasks such as environmental monitor-
ing, exploratory missions and search and rescue operations.
However, several fundamental problems need to be solved in
order to make this technology possible. One main difficulty
is the requirement for decentralized architectures where each
agent takes autonomous decisions based on information shared
with only a few local neighbors. Ongoing research work
focuses on decentralized filters and data-fusing methods for
estimation, and on the motion algorithms that guarantee the
desired global behavior of the network. Ideally, both the
motion control algorithms and estimation processes should
be optimally integrated to make the most of the network
performance.

In this paper we investigate the design of distributed motion
coordination algorithms that increase the information gathered
by a network in static and dynamic target-tracking scenarios.
To do this, we define an aggregate cost function encoding a
“sensitivity performance measure” and design our algorithms
to maximize it. This idea has been widely used in papers
on optimum experimental design for dynamical systems with
applications to measurement problems. An incomplete list of
references is [3, 7, 11, 14]. For example [11, 14] deal with
problems on target tracking and parameter identification of
distributed parameter systems. The motion control algorithms
proposed in these papers either are computed via some off-
line numerical method or are gradient algorithms. Often these
algorithms are designed to maximize an appropriate scalar

cost function and to choose the best sensor locations from
a grid of finite candidates. Unfortunately, these schemes turn
out to be not distributed since in order to define the control
law for each agent, it is necessary to know all other agents’
positions at each step. A second set of relevant references are
those on distributed motion coordination. Our proposed control
algorithms are in the same spirit as those for cyclic pursuit[8],
flocking [6], and coverage control [4].

The contributions of this paper are the following. Under
the assumption of Gaussian noise measurements with diagonal
correlation, Section II presents closed-form expressionsfor
the determinant of the Fisher Information Matrix for “range-
measurement” models in non-random static scenarios, for 2
and 3 dimensional state spaces. This determinant plays the
role of an objective function: we characterize its criticalpoints
in the 2D version and obtain sets of positions that globally
maximize its value. If the sensors measure distances to the
target, then an optimal configuration is one in which the
sensors are uniformly placed in circular fashion around the
target, confirming a natural intuition about the problem. Taking
this optimal configuration as a starting point in Section III,
we then consider a target tracking scenario where the sensors
move along the boundary of a convex set containing the target.
We define discrete-time control laws that, relying only on
local information, achieve the uniform configuration around
the target (estimate) exponentially fast. In essence, our laws are
very intuitive and simple-to-implement interaction behaviors
between the sensors along the boundary. Finally, in SectionIV,
we numerically validate our coordination and optimal deploy-
ment laws in a particular dynamic target-tracking scenario.
Although the network achieves global optimum configurations
for a nonrandom staticparameter estimation scenario, we
simulate adynamic randomscenario. Our simulations illustrate
the following reasonable conjecture: optimizing the sensitivity
function for the static non-random case improves the perfor-
mance of a filter (in our case an EKF) for the dynamic random
scenario.

Finally, we point out that we assume that the process of
estimation is performed by a central site or by a distributed
process that we do not implement here. For works dealing with
multisensor fusion possibly under communication constraints
we refer to [5, 10, 12, 13] and references therein.

II. OPTIMAL PLACEMENT OF SENSORS

Here we present the assumptions on our sensor network and
target models in (1) (non-random) static estimation scenarios



and (2) (random) dynamic parameter estimation scenarios. We
obtain the corresponding Fisher Information Matrices (FIMs)
and analyze the global minima of their determinant as a
means to guarantee increased sensitivity with respect to the
sensors’ measurements. See [2] for a comprehensive treatment
on estimation and tracking.

A. The static parameter estimation scenario

The localization of static targets can be solved as a non-
random parameter estimation problem as follows. Letpj ∈ R

d,
j ∈ {1, . . . , n}, denote the position ofn sensors moving in a
convex regionQ ⊆ R

d and letq0 ∈ Q be the unknown target
position to be estimated by means of the measurement model:

zj(q) = h(‖q − pj‖) + wj , q ∈ Q , (1)

for j ∈ {1, . . . , n}. Here, h : [0,+∞) = R+ → R is
defined according to the particular sensors’ specificationsand
wj represents a white noise,j ∈ {1, . . . , n}. The stacked
vector of measurements at a given instant is a random vector
normally distributed as
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whereR = RT > 0 is then×n covariance matrix. From now
on, we will use the shorthand notationZ = (z1, . . . , zn)T ,
and H will denote the functionH(q, p1, . . . , pn) = (h(‖q −
p1‖), . . . , h(‖q − pn‖))T .

The Fisher Information Matrix(FIM) for non-random pa-
rameters, denoted byJNR, is defined as the expected value
with respect to the probability distributionp(Z|q):

JNR , E
[

(∇q log Λ) · (∇q log Λ)T
]

q=q0

,

whereq0 is the true value of the target location or an estimate
of it, ∇q = ( ∂

∂q1 , . . . , ∂
∂qd )T , andΛ is the likelihood function,

Λ(q, p1, . . . , pn) =

1√
2π det R

exp

(

−1

2
(Z − H)T R−1(Z − H)

)

.

A few computations showJNR = (∇qH)T
q0

R−1(∇qH)q0
. Let

q = (q1, . . . , qd)T , and define the shorthands

∂`hj(q0, p1, . . . , pn) ,
∂
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for j ∈ {1, . . . , n} and` ∈ {1, . . . , d}. Then(∇qH)q0
: R

d ×
(Rn)d → R

n×n can be computed to be

((∇qH)q0
)j`(q0, p1, . . . , pn) = ∂`hj(q0, p1, . . . , pn) ,

for j ∈ {1, . . . , n} and ` ∈ {1, . . . , d}. In the particular case
that R = σ2In, the FIM JNR can be expressed as:

JNR(q0, p1, . . . , pn) =
1
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B. The dynamic parameter estimation scenario

Dynamic targets can be thought of as random parameters
evolving under a stochastic difference equation. Here we
assume that the target positionq(k), at time k ∈ N∪{0}
satisfies:

q(k) = Fk(q(k − 1)) + v(k) , k ≥ 1, q(0) ∈ Q ,

for some functionsFk : R
d → R

d and v(k) i.i.d as v(k) ∼

N (0, N(k)), where N(k) = N(k)T > 0, for k ≥ 0, and
E[v(k1)v(k2)

T ] = δ12N(k1), for k1, k2 ≥ 0. Similarly as
before, we model our sensor network as

Z(k) = Hk(q(k), p1(k), . . . , pn(k)) + w(k), k ≥ 0,

with Hk(q(k), p1(k), . . . , pn(k))=(hk(‖q(k) − p1(k)‖), . . . ,
hk(‖q(k) − pn(k)‖)), where hk : R+ → R, and
Z(k)=(z1(k), . . . , zn(k)), k ≥ 0. We will assume thatw(k) ∼

N (0, R(k)), where R(k) = R(k)T > 0, k ≥ 0, and that
E[w(k1)w(k2)

T ] = δ12R(k1), for k1, k2 ≥ 0.
An estimation method that is widely employed for target

tracking is that of the Extended Kalman Filter (EKF) [2]. The
assumptions for the filter requireq(k) andZ(k) to be jointly
Gaussian distributed with covarianceP (k) = P (k)T , and
E[q(k1)w(k2)] = 0, for k1, k2 ≥ 0. The EKF provides a state
estimateqe(k) together with an estimate for the covariance of
the errorPe(k):

Pe(k) = Pp(k) − W (k)S(k)W (k)T , k ≥ 1 ,

wherePp(k) is the predicted covariance of the error andW (k),
S(k) are some matrices appropriately defined [2]. Letqp(k) be
the predicted value ofq(k). Some standard computations [2,
10], allow us to say that

P−1
e (k) = P−1

p (k) + (∇qHk|qp(k))
T R−1(k)∇qHk|qp(k)

or, denoting(∇qHk|qp(k))
T R−1(k)∇qHk|qp(k) = JNR(k),

P−1
e (k) = P−1

p (k) + JNR(k) , k ≥ 0 . (3)

Similarly, it can be seen that for linear measurement and linear
target models, the FIM for dynamic (random) parameters,
JDR(k), andJNR(k) satisfy

JDR(k) = JNR(k) + J(k), T (k) = T (k)T ≥ 0 . (4)

C. Cost functions for optimal sensing

As is well known, the FIM encodes the amount of informa-
tion that a set of measurements produces in estimating a set of
parameters. Under the assumptions made in former sections,
we have FIM = CRLB−1; i.e., the FIM is the inverse of the
Cramer Rao Lower Bound, which in turn lower bounds the
covariance of the error1

FIM−1 = CRLB ≤ E[(q̂ − q0)(q̂ − q0)
T ].

Because of this, one expects that “minimizing the CRLB”
results in a decrease of uncertainty.

This line of reasoning has been a main theme in sev-
eral papers dealing withoptimum experimental designand
active sensing, e.g., see [11, 14]. Starting from the FIM
(resp. the CRLB) of the estimation approach, anevaluation

1For efficient estimators, the inequality is an equality.



function is defined (usually the determinant or the trace of the
FIM/CRLB) whose maximization (resp. its minimization) is
to be achieved. For example, thedet FIM is the cost function
is “D-optimum design” as discussed by [14].

As before, letq0 ∈ R
d be the true value of the target location

or an estimate of it. Under the assumptions of Subsection II-A
and II-B, we define our cost functionLq0

: (Rd)n → R+ by

Lq0
(p1, . . . , pn) = detJNR(q0, p1, . . . , pn), (5)

with JNR given in (2). Because of (3) and (4), we are guaran-
teed that, if we optimizeLq0

with respect to the positions of
the sensors, then we will get increased performance in static
estimation scenarios, and expect reasonably good performance
in dynamic ones.

In what follows we derive the expression for the cost
function Lq0

for d = 2 and d = 3 and analyze its critical
points and global maxima. To do this, we shall assume that
our measurement model is

h(r) =

{

(r − c1)
b + c2, R0 < r < R1,

0, otherwise,
(6)

for b ∈ Z, and constantsR1 > R0 > 0, c2, c1 ∈ R+. Range
sensors such as sonars can be modeled byb = 1 and c1 =
c2 = 0.

Proposition 2.1:For q0 ∈ R
d, let Lq0

: (Rd)n → R+ be
defined as in (5) andh be defined as in (6). LetSq0

(p1, . . . , pn)
be the set of indicesi ∈ {1, . . . , n} such thatR0 < ‖pi−q0‖ <
R1. The following statements hold true.

(i) For d = 2,

Lq0
(p1, . . . , pn) =

1

2σ2

∑

i,j∈Sq0

‖vi‖2‖vj‖2 sin2 αij

where αij , ](vi,vj), vi = (∂1hi, ∂2hi, 0), and
‖vi‖2 = b2(‖pi − q0‖ − c1)

2(b−1), for i, j ∈
Sq0

(p1, . . . , pn).
(ii) For d = 3,

Lq0
(p1, . . . , pn) =

1

6σ2

∑

i,j,k∈Sq0

‖vi‖2 ‖vj‖2 ‖vk‖2 sin2 αij cos2 βij,k

where αij , ](vi,vj), βij,k , ](vi × vj ,vk), and
vi = (∂1hi, ∂2hi, ∂3hi), with ‖vi‖2 = b2(‖pi − q0‖ −
c1)

2(b−1), for i, j, k ∈ Sq0
(p1, . . . , pn).

Here we understand thatLq0
= 0 whenSq0

= ∅.
The proof of this result is in [1].

Let us now introduce some useful notation. LetT be the
circle in the plane and defineLT : T

n → R+ by

LT(δ1, . . . , δn) =
b4M2

2σ2

∑

i,j∈{1,...,n}

sin2(δi − δj),

whereM = maxr∈[R0,R1](r − c1)
2(b−1) > 0. Now, let d = 2

and assumeq0 6= pi, for i ∈ {1, . . . , n}. Consider a polar
change of coordinates centered atq0 ∈ R

2, and identifypi ∈
R

2 with (ηi, ri) for someηi ∈ T andri ∈ R+, i ∈ {1, . . . , n}.
We then have thatLq0

(p1, . . . , pn) ≤ LT(η1, . . . , ηn) and
(p1, . . . , pn) is a global maximum ofLq0

if and only if

(η1, . . . , ηn) is a global maximum ofLT and(ri−c1)
2(b−1) =

M , for all i ∈ {1, . . . , n}. We now analyze the maxima ofLT.
Proposition 2.2:The following statements hold true.

(i) The point (η1, . . . , ηn) ∈ T
n is a critical point forLT

if either any two vectors in{(cos 2ηi, sin 2ηi)}n
i=1 are

aligned or
∑

i∈{1,...,n}

cos 2ηi = 0, and
∑

i∈{1,...,n}

sin 2ηi = 0,

(ii) The following three quantities are equal:b4M2

4σ2 n,
max

{

Lq0
(p1, . . . , pn) | p1, . . . , pn ∈ R

d
}

, and
max {LT(δ1, . . . , δn) | δ1, . . . , δn ∈ T}.

(iii) If ηi = (i − 1)π/n, i ∈ {1, . . . , n}, then

{(η1 + k1π, . . . , ηn + knπ) | k1, . . . , kn ∈ Z}
are global maxima forLT.

The proof of this result is in [1].
Remark 2.3:By (iii) there could be global maxima with

multiple sensors at the same position. This could be a con-
sequence of our assumptions that the measurement noiseswj

are uncorrelated. It is a conjecture that, if thewj depended on
the sensors locations, then coincident locations could notbe
part of the set of maximum points. •

III. D ECENTRALIZED MOTION COORDINATION FOR THE

NON-RANDOM PARAMETER SCENARIO

This section presents a family of decentralized control laws
that steers the sensors to a set of points of maximum for the
cost functions previously defined. Our analysis is related to the
approaches in [4, 6, 8]. We make the following assumptions
on the agents’ motion, sensing, and communication:

(i) a static targetq0 takes values in the interior of a compact
convex setQ with boundary∂Q;

(ii) the measurement model is the one described in equa-
tion (1) with h(r) = r, i.e., equation (6) withγ = 1,
b = 1, c1 = c2 = 0, R0 = 0, R1 = +∞;

(iii) each of the sensors{p1, . . . , pn} moves in discrete time
along∂Q;

(iv) each of the sensors{p1, . . . , pn} detects its immediate
clockwise and counterclockwise neighbors in∂Q and
acquires the corresponding distances.

p4

p3

p1

q0

p2

p5

Fig. 1. Assumptions (i) and (iii): the sensors move along the boundary of
Q and the target moves insideQ.

For this static scenario with limited information, the motion
coordination objective is to steer{p1, . . . , pn} to the equally-
spaced angular positions around the targetq0 exponentially
fast.



Remark 3.1: • Assumption (iv) means that an imple-
mentable control law for an agent can only depend on the
agent’s position relative to its neighbors (in the natural
ring topology along∂Q). We will call such a control law
spatially distributed along∂Q.

• We will allow the control law to depend on the current
estimate of the target location. This strategy is said to be
of the “certainty equivalence” type. •

A. From the boundary ofQ to a circle and back

Because we assume that then sensors can be placed
only along∂Q, we will work with the polar coordinates of
{p1, . . . , pn} centered atq0 and define our motion control
algorithms on the circle.

Let ∂Q be implicitly defined by the continuous equation
x ∈ ∂Q if and only if g(x) = 0. Given a pointq in the interior
of a compact convex setQ, define the mapϕq : ∂Q → T by

ϕq(p) =
p − q

‖p − q‖ .

One can show thatϕq is continuous with continuous inverse
ϕ−1

q : T → ∂Q given byϕ−1
q (v) = q + λv whereλ ∈ R+ the

unique solution tog(q + λp) = 0.
In what follows, we letq0 denote the current estimate of

the target location, we letϕq0
(p) be the angular component

of the polar coordinates ofp centered atq0, and we identify
pi ∈ ∂Q ⊂ R

2 with ηi = ϕq0
(pi) ∈ T, for all i.

B. Basic behaviors for uniform coverage of the circle

As discussed, the location of the sensors is described by
the vector (η1, . . . , ηn) of elements ofT. We assume that
angles are measured counterclockwise and that the sensors are
placed in counterclockwise order (we adopt the convention that
ηn+1 = η1 and thatη0 = ηn).

As described Assumption (iii), the sensors motion is de-
scribed by a discrete-time control system:

ηi(k + 1) = ηi(k) + ui, i ∈ {1, . . . , n} .

Here ui is the scalar control magnitude of theith sensor.
In a way consistent with Assumption (iv), we assumeui

is a function only of the relative angular distances in the
counterclockwise directiondcounterclock,i = ηi+1 − ηi > 0
and clockwise directiondclock,i = ηi − ηi−1 > 0. We also
assume that each sensor obeys the same motion control law
u : [0, 2π] × [0, 2π] → R, so that the closed-loop system
becomes:

ηi(k + 1) = ηi(k) + u(dcounterclock,i(k), dclock,i(k)),

dcounterclock,i(k) = ηi+1(k) − ηi(k),

dclock,i(k) = ηi(k) − ηi−1(k).

In order to achieve uniform distribution of the sensors on the
circle, two simple behaviors arise fairly naturally, see Figure 2.
First, we consider the GO TOWARDS THE MIDPOINTbehavior
with umidpoint : [0, 2π] × [0, 2π] → R

umidpoint(dcounterclock, dclock) =
1

2

(

dcounterclock− dclock
)

.

The interpretation is clear: each sensor moves towards the
midpoint of the angular segment between the preceding and

following sensor. In the original coordinate system, each sen-
sor moves along∂Q towards the bisector of the triangle with
vertex q0 and vertices given by the preceding and following
sensor. A second intuitive rule is the GO TOWARDS THE

ηi−1

u1/2 u1/4

d co
untercl

ock
wise

dclockwise

ηi−1+ηi

2
ηi+ηi+1

2

ηi+1

ηi

Fig. 2. The GO TOWARDS THE MIDPOINT u1/2 and GO TOWARDS THE
MIDPOINT OF VORONOI SEGMENTu1/4 behaviors.

MIDPOINT OF VORONOI SEGMENTbehaviorumidpoint Voronoi :
[0, 2π] × [0, 2π] → R

umidpoint Voronoi(dcounterclock, dclock) =

1

4

(

dcounterclock− dclock
)

.

The interpretation is the following: the Voronoi segment ofthe
ith sensor at positionηi is the angular segment from(ηi−1 +
ηi)/2 to (ηi + ηi+1)/2, and the control law GO TOWARDS

THE MIDPOINT OF VORONOI SEGMENTsteersηi towards the
midpoint of this segment.

These two rules are particular instances of the following
family of linear algorithms parametrized byK ∈ R:

uK(dcounterclock, dclock) = K(dcounterclock− dclock).

Clearly, umidpoint and umidpoint Voronoi are equal touK for K =
1/2 andK = 1/4, respectively. BecauseuK(d, d) = 0 for all
d ∈ R+, the equally-spaced angle position (where the sensors
are uniformly distributed around the target) is an equilibrium
point2 for the uK-closed-loop system.

C. Convergence analysis

To perform a convergence analysis, it is convenient to
define the relative angular distancesdi = ηi+1 − ηi, for
i ∈ {1, . . . , n} (and adopt the usual convention thatdn+1 = d1

and thatd0 = dn). So long as the counterclockwise order of
the sensors is not violated, we have(d1, . . . , dn) ∈ S2π =
{x ∈ Rn | xi ≥ 0,

∑n
i=1 xi = 2π}. The change of coordinates

from (η1, . . . , ηn) to (d1, . . . , dn) and the control lawuK

jointly lead to the closed-loop system

di(k + 1) = Kdi+1(k) + (1 − 2K)di(k) + Kdi−1(k).

2The more general linear feedbacku(dcounterclock, dclock) = adcounterclock+
bdclock does not have the desired equilibrium set unlessa + b = 0. The case
of a + b 6= 0 is studied in the context of cyclic pursuit, e.g., see [8].



This is a linear time-invariant dynamical system with state
d = (d1, . . . , dn), transition matrixAK given by
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,

and governing equation

d(k + 1) = AKd(k), for k ∈ N∪{0}. (7)

Theorem 3.2:The control lawuK is spatially distributed
along ∂Q, and, forK ∈]0, 1/2[, the solutions to the corre-
sponding closed-loop system (7) preserve the counterclock-
wise order of the sensors and converge exponentially fast to
(2π/n, . . . , 2π/n).
Proof. Recall the notion and properties of circulant matrices
from [9]. Note thatAK is circulant with representerpAK

(s) =
(1− 2K) +Ks +Ksn−1. This implies that the eigenvalues of
AK are

λ` = pAK

(

exp
(2π`

√
−1

n

)

)

= 1 − 2K + 2K cos
(2π`

n

)

,

for ` ∈ {1, . . . , n}. One can see thatλn = 1 with cor-
responding eigenvector1T = (1, . . . , 1). If K > 0 and
` ∈ {1, . . . , n − 1}, then

−1 ≤ cos
(2π`

n

)

< 1 =⇒ 1 − 4K ≤ λ` < 1.

Therefore, ifK ∈]0, 1/2[, then the eigenvaluesλ1, . . . , λn−1

belong to the interval] − 1, 1[. Additionally, if K ∈]0, 1/2[,
thenAK is a doubly-stochastic matrix, which implies thatS2π

is invariant forAK.
Let {e1, · · · , en−1,1} be a basis of orthogonal eigenvec-

tors for AK corresponding to the eigenvalues{λ1, . . . , λn},
respectively. Any initial conditiond(0) can be written as

d(0) =

n−1
∑

`=1

ρ`e` + ρn1 .

Since
∑n

i=1 di(0) = 2π, one can see thatρn = 2π
n . Therefore

d(k) = AKd(k − 1) =

n−1
∑

`=1

λk
` ρ` e` +

2π

n
1 .

If K ∈]0, 1/2[, then each|λ`| < 1, for ` ∈ {1, . . . , n − 1}
and, therefore, each trajectoryk 7→ d(k) converges to2π

n 1,
the equal-angle configuration, exponentially fast.

Remark 3.3: (i) The properties ofuK in Theorem 3.2 are
independent of the numbern of sensors.

(ii) If K < 0 or K > 1/2, then there exist initial conditions
from which the counterclockwise order of the sensors is
not preserved in the closed loop.

(iii) Consider the K = 1/2 case, corresponding to the
GO TOWARDS THE MIDPOINT behavior. Although GO
TOWARDS THE MIDPOINT is a very natural algorithm to
consider, it doesnot ensure convergence to the desired
configuration whenevern is even. In fact, ifn = 2L

with L ∈ Z, then 1 and e
T
L = (−1, 1,−1, . . . ,−1, 1)

are eigenvectors with eigenvalues1 and−1 respectively.
Given {e1 . . . , en−1,1} an orthogonal basis of eigen-
vectors forA1/2 andd(0) =

∑n−1
i=1 ρiei +ρn1, one can

show that, starting from arbitrary initial conditions, the
system will exponentially converge to a steady oscilla-
tion betweenu1 = ρn1 + ρLeL andu2 = ρn1− ρLeL.

IV. TARGET TRACKING SIMULATIONS WITH KALMAN

FILTERING AND MOTION COORDINATION ALGORITHMS

Here we combine the developments of former sections to
define the Active Target Tracking algorithm for collective
improved sensing performance. We numerically simulate the
algorithm to validate our approach. It is assumed that the esti-
mation step is carried out after a round of communication has
taken place to propagate all the measurements taken among the
agents3. The algorithm is summarized in the following table.

Name: ACTIVE TARGET TRACKING ALGORITHM

Goal: Decentralized motion coordination of sensors
and joint localization of target

Data: (i) ConstantK ∈]0, 1/2[.
(ii) Equation for the boundary of the contain-
ment region,g(q) = 0.
(iii) Guess for target initial position̂q0(0).

At time k, local agenti ∈ {1, . . . , n} performs:
1: Receive estimatêq0(k) from fusion center.
2: Detect counterclockwise and clockwise neighbors along

∂Q, compute angular distances in polar coordinates
about q̂0(k).

3: Compute controluK, next desired positionηi(k+1) ∈ T,
and corresponding pointpi(k + 1) ∈ ∂Q.

4: Move to new positionpi(k + 1) along∂Q.
5: Take new measurement of targetzi(k+1), and send it to

fusion center, that will update target estimate according
to EKF.

In what follows we present our numerical results. we
compare the estimation errors of the trajectory of a dynamic
target obtained from a set of four stationary and moving
sensors. For the purpose of the simulation,Q will be a ball
centered at the origin with radius1.5m, and the trajectory or
the target will be the eight-shaped curve:

[

q1
0(k)

q2
0(k)

]

=

[

sin(ωk)
sin(ωk) cos(ωk)

]

, k ≥ 0 .

Here (q1
0 , q2

0) are measured in meters andω = .1 rad/sec.
In all the subsequent figures, the plots compares the evo-

lution of the absolute error trajectories along time,E(k) =
‖q0(k) − q̂0(k)‖ for stationary sensors (solid blue line) and
moving sensors (dashed red line), fork ≥ 0.

The first set of simulations, Figure 3, reproduce the results
obtained for four sensors initially positioned at2.1818, 2.4500,
3.7160, and 4.5167 radians. As can be seen, the moving
sensors perform better on average as the variance increases.
In the second set of simulations, Figure 4, we take as the

initial position for the sensors the optimal position to estimate
0. That is,0, π/2, π and3π/2, are the initial positions for both
stationary and moving sensors. Though the set of moving

3This would be equivalent as having a fusion center that centralizes the
estimation process
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Fig. 3. Evolution of absolute error trajectories with variances of measured
noise5 × 10−3 (left) and5 × 10−2 (right).
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Fig. 4. Evolution of absolute error trajectories with variances of measured
noise5 × 10−3 (left) and10−1 (right).

sensors performs better, the differences between the estimates
of the stationary and moving sensors are comparable for
variances of order10−4, 10−3 (the absolute error trajectories
overlap) and even not so different when the variances are
increased to order10−2. One has to increase the order of
noise to10−1 to observe a clear difference in performance.
Qualitatively, Figure 5 shows how the estimated trajectories
of the moving sensors (green solid line) behaves compared
with the estimation provided by the stationary sensors (black
dashed line). The green solid trajectory is very close to the
actual trajectory of the target that we do not plot. Note thatin
all the simulations, the variance of the process noise is kept
minimum of order10−5. It can be observed in the simulations
that when the variance of the measurement is kept constant and
the variance of the process noise is varied, both performances
of stationary and moving sensors give very similar results.
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Fig. 5. Qualitative evolution of the estimated trajectoriesby moving
and stationary sensors. Initial positions are(0, π/2, π, 3π/2) (left) and
(2.1818, 2.4500, 3.7160, 4.5167) (right) and variances are in both cases
5 × 10−2.

V. CONCLUSIONS AND FUTURE WORK

We have presented novel decentralized control laws for the
optimal positioning of robotic sensor networks that track a
target. It would be of clear interest to modify our model by
including upper bounds on the motion and detection range

of the sensors. Broader future research lines include (1)
heterogeneous collections of sensors, (2) dynamic assignment
of sensors to different targets and (3) decentralized estimation
and fusion schemes.
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