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Abstract—This work studies optimal sensor placement and
motion coordination strategies for mobile sensor networks.
For a target tracking application with range sensors, we
investigate the determinant of the Cramer-Rao Lower Bound
and compute it in the 2D and 3D cases. We characterize the
global minima of the 2D case. We propose and characterize
motion coordination algorithms that steer the mobile sensor
network to an optimal deployment and that are amenable
to a decentralized implementation. Finally, our numerical
simulations illustrate how the proposed motion coordination
algorithms lead to the improved performance of an extended
Kalman filter in a target tracking scenario.

motion coordination, optimal sensor placement, Cramer-

Rao Lower Bound, Kalman filtering.

I. INTRODUCTION

New advancements in the fields of microelectronics

and miniaturization have generated a tremendous surge

of activity in the design and development of sensor net-

works. The envisioned groups of agents are endowed with

communication, sensing and computation capabilities, and

promise great efficiency in the realization of multiple tasks

such as environmental monitoring, exploratory missions

and search and rescue operations. However, several fun-

damental problems need to be solved in order to make this

future technology possible.

One main difficulty is the requirement for decentralized

architectures in which each agent takes autonomous deci-

sions based on information shared with only a few local

neighbors. Ongoing research work focuses on decentralized

filters and data-fusing methods for estimation, and on

the motion algorithms that guarantee the desired global

behavior of the network. Ideally, both the motion control

algorithms and estimation processes should be optimally

integrated to make the most of the network performance.

In this paper we investigate the design of distributed mo-

tion coordination algorithms that increase the information

gathered by a network in static and dynamic target-tracking

scenarios. In order to do this, we define an aggregate cost

function that encodes a “sensitivity performance measure”

and design motion coordination algorithms maximizing it.

This idea has been widely used in papers on optimum

experimental design for dynamical systems with appli-

cations to measurement problems. An incomplete list of

references is [1], [2], [3], [4], [5], [6]. For example [3],

[4], [5] deal with problems on target tracking and param-

eter identification of distributed parameter systems. The

motion control algorithms proposed in these papers either

are computed via some off-line numerical method or are

gradient algorithms. Often these algorithms are designed to

maximize an appropriate scalar cost function and to choose

the best sensor locations from a grid of finite candidates.

Unfortunately, these schemes turn out to be not distributed

since in order to define the control law for each agent, it is

necessary to know all other agents’ positions at each step.

A second set of relevant references are those on dis-

tributed motion coordination. To define our proposed con-

trol algorithm we build on recent results on the analysis of

cyclic pursuit [7], flocking [8], and consensus [9].

The contributions of this paper are the following. Un-

der the assumption of Gaussian noise measurements with

diagonal correlation, we obtain in Section II closed-form

expressions for the determinant of the Fisher Information

Matrix for “range-measurement” models in non-random

static scenarios, for 2 and 3 dimensional state spaces. We

characterize the critical points of these functions and obtain

sets of positions that globally maximize the value of the

2D version. If the sensors measure distances to the target,

then a optimal configuration is one in which the sensors

are uniformly placed in circular fashion the target.

This optimal configuration serves as a starting point in

Section III. Here we consider a target tracking scenario

described by the following assumptions: the sensors move

along the boundary of a convex set containing the target.

We define discrete-time control laws that, relying only on

local information, achieve the uniform configuration around

the target (estimate) exponentially fast. In essence, our

laws are very intuitive and simple-to-implement interaction

behaviors between the sensors.

Finally, in Section IV, we validate our control laws in

a particular dynamic target-tracking scenario. Although we



studied the global optimum configurations for a nonrandom

static parameter estimation scenario we adopt the results in

a dynamic random scenario. Our simulations illustrate the

following reasonable conjecture: optimizing the sensitivity

function for the static non-random case improves the per-

formance of a filter (in our case an EKF) for the dynamic

random scenario.

As a final remark, we point out that we do not deal

here with the problem of decentralized filters and data-

fusion, taking into account communication constraints. It

is assumed that the process of estimation is performed by

a central site or by a distributed process that we do not

implement. For works that deal with multisensor fusion

possibly under communication constraints we refer to [10],

[11], [12], [13] and references therein.

II. OPTIMAL PLACEMENT OF SENSORS

Here we present the assumptions over our sensor net-

work and target models in (1) non-random static parameter

estimation scenarios and (2) random dynamic parameter es-

timation scenarios. We obtain the corresponding Fisher In-

formation Matrices (FIMs) and Cramer-Rao Lower Bounds

(CRLBs). We analyze the global minima of the determinant

of the CRLB as a means to guarantee increased sensitivity

with respect to the sensors’ measurements. See [14] for a

comprehensive treatment on estimation and tracking.

A. The non-random parameter estimation scenario

The localization of static targets can be solved as a

non-random parameter estimation problem as follows. Let

pj ∈ Rd, j ∈ {1, . . . , n}, denote the position of n sensors

moving in a convex region Q ⊆ Rd and let q0 ∈ Q be the

unknown target position to be estimated by means of the

measurement model:

zj(q) = h(‖q − pj‖) + wj , q ∈ Q , (1)

for j ∈ {1, . . . , n}. Here, h : [0,+∞) = R+ → R is

defined according to the particular sensors’ specifications

and wj represents a white noise, j ∈ {1, . . . , n}.

In other words, the stacked vector of measurements at a

certain instant is a random vector normally distributed as

Z ≡







z1
...

zn






∼ N













h(‖q − p1‖)
...

h(‖q − pn‖)






, R






,

where R = RT > 0 is the n × n covariance ma-

trix. From now on, we will use the shorthand notation

Z = (z1, . . . , zn)
T , and H will denote the function

H(q, p1, . . . , pn) = (h(‖q − p1‖), . . . , h(‖q − pn‖))T .

The Fisher Information Matrix (FIM) for non-random

parameters, denoted by JNR, is defined as the expected

value with respect to the probability distribution p(Z|q):

JNR , E
[

(∇q log Λ) · (∇q log Λ)
T
]

q=q0
,

where q0 is the true value of the target location or an esti-

mate of it, ∇q = [ ∂
∂q1 , . . . ,

∂
∂qd

]T , and Λ is a shorthand for

Λ(q, p1, . . . , pn) = p(z1, . . . , zn|q), the likelihood function,

Λ(q, p1, . . . , pn) =

1√
2π detP

exp

(

−1

2
(Z −H)TR−1(Z −H)

)

.

A few computations show JNR = (∇qH)Tq0R
−1(∇qH)q0 .

The matrix G = (∇qH)q0 is usually called the Sensitivity

Matrix associated with our set of measurements.

Let q = (q1, . . . , qd)T , and define the shorthands

∂ℓhj(q0, p1, . . . , pn) ,
∂

∂qℓ
h(‖q − pj‖)

∣

∣

∣

q=q0
,

for j ∈ {1, . . . , n} and ℓ ∈ {1, . . . , d}. Then G : Rd ×
(Rn)d → Rn×n can be computed to be

Gjℓ(q0, p1, . . . , pn) = ∂ℓhj(q0, p1, . . . , pn) ,

for j ∈ {1, . . . , n} and ℓ ∈ {1, . . . , d}. In the particular

case that R = σ2In, the FIM JNR can be expressed as:

JNR(q0, p1, . . . , pn) =
1

σ2
GTG(q0, p1, . . . , pn)

=
1

σ2

n
∑

j=1







(∂1hj)
2 . . . (∂1hj)(∂dhj)

...
. . .

...

(∂dhj)(∂1hj) . . . (∂dhj)
2






. (2)

B. The dynamic random parameter estimation scenario

Dynamic targets can be thought of random parameters

evolving under a stochastic difference equation. Here we

assume that the target position q(k) at time k ∈ N∪{0}
satisfies:

q(k) = Fk(q(k − 1)) + v(k) , k ≥ 1, q(0) = q0 ,

for some functions Fk : Rd → R
d and v(k) i.i.d as v(k) ∼

N (0, N(k)), where N(k) = N(k)T > 0, ∀k ≥ 0, and

E[v(k1)v(k2)
T ] = δ12N(k1), ∀k1, k2 ≥ 0. Similarly as

before, we model our sensor network as

Z(k) = Hk(q(k), p1(k), . . . , pn(k)) + w(k), k ≥ 0,

with Hk(q(k), p1(k), . . . , pn(k))=(hk(‖q(k)−p1(k)‖, . . . ,
hk(‖q(k) − pn(k)‖)), for some functions hk : R+ → R,

and Z(k)=(z1(k), . . . , zn(k)), k ≥ 0. We will assume that

w(k) ∼ N (0, R(k)), where R(k) = R(k)T > 0, k ≥ 0,

and that E[w(k1)w(k2)
T ] = δ12R(k1), ∀k1, k2 ≥ 0.

An estimation method that is widely employed for the

detection of targets is that of the Extended Kalman Filter

(EKF) [14]. The assumptions for the filter require q(k) and

Z(k) to be jointly Gaussian distributed with covariance

P (k) = P (k)T , and E[q(k1)w(k2)] = 0, ∀k1, k2 ≥ 0.

The EKF provides a state estimate q̂(k) together with an

estimate for the covariance of the error Pe(k):

Pe(k) = Pp(k)−W (k)S(k)W (k)T , k ≥ 1 .

Here, Pp(k) is the predicted covariance of the er-

ror, W (k) = Pp(k)(∇q(k)Fk)
TS−1(k) and S(k) =

(∇q(k)Fk)Pp(k)(∇q(k)Fk)
T + R(k). Let qp(k) be the



predicted value of q(k). Some standard computations [14],

[11], allow us to say that

P−1
e (k) = P−1

p (k) + (∇qHk|qp(k))
TR−1(k)∇qHk|qp(k)

or, denoting (∇qHk|qp(k))
TR−1(k)∇qHk|qp(k) = JNR(k),

P−1
e (k) = P−1

p (k) + JNR(k) , k ≥ 0 . (3)

That is, the FIM for the non-random case appears as a

summand in the expression for the inverse of the predicted

covariance matrix of the EKF. Similarly, when the mea-

surement model is linear, an analogous set of computations

allows us to derive a relationship between the FIM for

dynamic random parameters, denoted by JDR at step k ≥ 0,

and JNR(k) given by

JDR(k) = P−1
qq + JNR(k) , (4)

where Pqq = E[(q(k)− q̄k)(q(k) − q̄k)
T ].

C. Cost functions for optimal sensing

As is well known, the FIM encodes the amount of infor-

mation that a set of measurements produces in estimating

a set of parameters. Under the assumptions we have made

in former sections FIM = CRLB−1; i.e., the FIM is the

inverse of the Cramer Rao Lower Bound, which is known

to lower bound the inverse of the covariance of the error1

J−1 = CRLB ≤ E[(q̂ − q0)(q̂ − q0)
T ].

Because of this, one expects that “minimizing the CRLB”

results in a decrease of uncertainty.

This line of reasoning has been a main theme in several

papers dealing with optimum experimental design and

active sensing e.g., see [3], [4], [15], [1]. Starting from

the FIM (resp. the CRLB) of the estimation approach, an

evaluation function is defined (usually the determinant or

the trace of the FIM/CRLB) whose maximization (resp. its

minimization) is to be achieved.2

As before, let q0 ∈ Rd be the true value of the target

location or an estimate of it. Under the assumptions of

Subsection II-A and II-B, we define our cost function Lq0 :
(Rd)n → R+ by

Lq0 (p1, . . . , pn) = det JNR(q0, p1, . . . , pn), (5)

with JNR given in (2). Because of the relationships (3)

and (4), we are guaranteed that, if we optimize Lq0 with

respect to the positions of the sensors, then we will get in-

creased performance in both the non-random and dynamic

random parameter estimation scenarios with EKFs.

In what follows we derive the expression for the cost

function Lq0 for d = 2 and d = 3 and analyze its critical

points and global maxima. To do this, we shall assume that

our measurement model is

h(r) =

{

γ(r − c1)
β + c2, R0 < r < R1

0, otherwise
(6)

1For efficient estimators, this inequality becomes an equality.
2For det J , this technique is known as the D-optimum design [15].

for γ ∈ {−1,+1}, β ∈ Z, and constants R1 > R0 > 0,

c2, c1 ∈ R+. Range sensors such as sonars can be modeled

by β = 1, γ = 1 and c1 = c2 = 0.

Proposition 2.1: For q0 ∈ Rd, let Lq0 : (Rd)n → R+

be defined as in (5) and h be defined as in equation (6).

Consider the set S = {pi ∈ {p1, . . . , pn} |h(‖pi − q0‖) 6=
0}. The following statements hold true.

(i) For d = 2,

Lq0(p1, . . . , pn) =
1

2σ2

∑

i,j∈S

‖vi‖2‖vj‖2 sin2 αij

where αij , ∡(vi,vj), and vi = (∂1hi, ∂2hi, 0),
‖vi‖2 = β2(‖pi − q0‖ − c1)

2(β−1), i, j ∈ S.

(ii) For d = 3,

Lq0 (p1, . . . , pn) =

1

6σ2

∑

i,j,k∈S

‖vi‖2 ‖vj‖2 ‖vk‖2 sin2 αij cos
2 βij,k

where αij , ∡(vi,vj), βij,k , ∡(vi × vj ,vk), and

vi = (∂1hi, ∂2hi, ∂3hi), with ‖vi‖2 = β2(‖pi −
q0‖ − c1)

2(β−1), for i, j, k ∈ S.

The proof can be found in Appendix A.

Let us now introduce some useful notation. Let T be the

circle in the plane and let LT : Tn → R+ be defined by

LT(δ1, . . . , δn) =
β4R2

2σ2

∑

i,j∈S

sin2(δi − δj),

where R = maxr∈[R0,R1](r − c1)
2(β−1) ≥ 0. Now, let

d = 2 and assume q0 6= pi, for i ∈ {1, . . . , n}. Consider

a polar change of coordinates centered at q0 ∈ R2, and

identify pi ∈ R2 with (ηi, ri) for some angle ηi ∈ T and

ri ∈ R+, i ∈ {1, . . . , n}. With these notations, we have that

Lq0 (p1, . . . , pn) ≤ LT(η1, . . . , ηn) and (p1, . . . , pn) is a

global maximum of Lq0 if and only if (ri−c1)
2(β−1) = R,

i ∈ S and (η1, . . . , ηn) is a global maximum of LT. With

these assumptions (d = 2) we analyze the maxima of LT.

Proposition 2.2: The following statements hold true.

(i) The point (η1, . . . , ηn) ∈ Tn is a critical point for

LT if and only if either
∑

i∈S

cos 2ηi = 0 ,
∑

i∈S

sin 2ηi = 0,

or any two vectors in {(cos 2ηi, sin 2ηi)}i∈S , are

aligned.

(ii) maxLq0 = maxLT = β4R2

4σ2 nS , where nS = |S|.
(iii) For nS = |S|, define ηis = (s − 1)π/n, and η′is =

(s − 1)2π/n, where is ∈ S, and s ∈ {1, . . . , nS}.

Then, {(η1 + k1π, . . . , ηn + knπ) | k1, . . . , kn ∈
Z}∪{(η′1+k1π, . . . , η

′
n+knπ) | k1, . . . , kn ∈ Z} are

global maxima for LT.

We refer to Appendix B for a proof.

Remark 2.3: Due to the periodicity of LT for T = π,

there also are global maximum with multiple sensors at the

same position. This could be a consequence of our assump-

tions that the measurement noises wj are uncorrelated. It

is a conjecture that, if the wj depended on the sensors



locations, then coincident locations could not be part of

the set of maximum points. •

III. DECENTRALIZED MOTION COORDINATION FOR THE

NON-RANDOM PARAMETER SCENARIO

In this section we present a family of decentralized

control laws that steers the sensors locations to a set of

points of maximum for the cost functions discussed in the

previous section. Our analysis methods are related to the

approaches in [7], [8], [9]. We make the following assump-

tions on the agents’ motion, sensing, and communication:

(i) a static target q0 belongs to the interior of a compact

convex set Q with boundary ∂Q;

(ii) the measurement model is the one described in

equation (1) with h(r) = r, i.e., equation (6) with

γ = 1, β = 1, c1 = c2 = 0, R0 = 0, R1 = +∞;

(iii) each of the sensors {p1, . . . , pn} moves in discrete

time in an unbounded fashion along ∂Q;

(iv) each of the sensors {p1, . . . , pn} detects its immedi-

ate clockwise and counterclockwise neighbors in ∂Q
and knows its relative position along ∂Q.

p4

p3

p1

q0

p2

p5

Fig. 1. Assumptions (i) and (iii): the sensors move along the boundary
of Q and the target moves inside Q.

For this non-random parameter estimation scenario with

limited information, the motion coordination objective is

to steer {p1, . . . , pn} to the equally-spaced angle positions

around the target q0 exponentially fast.

Remark 3.1:

• Assumptions (ii), (iii) and (iv) could be modified to

include an upper bound on the motion and detection

range of the sensors; we leave these important exten-

sions to future works (in the interest of brevity).

• Assumption (iv) means that an implementable control

law for an agent can only depend on the agent’s

position relative to its neighbors (in the natural ring

topology along ∂Q). We will call such a control law

spatially distributed along ∂Q.

• We will allow the control law to depend on the current

estimate of the target location. This strategy is said to

be of the “certainty equivalence” type. •

A. From the boundary of Q to a circle and back

Because we assume that the n sensors can be placed only

along the boundary of the convex set Q, we can simplify

the design of motion control strategies as follows. Instead

of working with the positions p1, . . . , pn in ∂Q, we will

work with their polar coordinates centered at q0, and we

will define our motion control algorithms on the circle.

Let us be more formal on this matter. Let ∂Q be

implicitly defined by the continuous equation x ∈ ∂Q if

and only if g(x) = 0. Given a point q in the interior of a

compact convex set Q, define the map ϕq : ∂Q → T by

ϕq(p) =
p− q

‖p− q‖ .

One can show that the map ϕq is continuous with contin-

uous inverse ϕ−1
q : T → ∂Q given by

ϕ−1
q (v) = q + λv,

where λ ∈ R+ the unique solution to g(q + λp) = 0.

In what follows, we let q0 denote the current estimate of

the target location and ϕq0(p) be the angular component

of the polar coordinates centered at q0. In summary, we

can identify pi ∈ ∂Q ⊂ R2 with ηi = ϕq0(pi) ∈ T, for

i ∈ {1, . . . , n}.

B. Two basic behaviors for uniform coverage of the circle

As discussed, the location of the sensors is described

by the vector (η1, . . . , ηn) of elements of T. We assume

that angles are measured counterclockwise and that the

sensors are placed in counterclockwise order (we adopt the

convention that ηn+1 = η1 and that η0 = ηn).

The motion of the sensors is described by a discrete-time

control system:

ηi(k + 1) = ηi(k) + ui, i ∈ {1, . . . , n} .

Here ui is the scalar control magnitude of the ith sensor.

The control can depend only the measurement and commu-

nication available to the sensor, i.e., ui is a function only

of the relative angular distances in the counterclockwise

direction dcounter-clock,i = ηi+1 − ηi > 0 and clockwise

direction dclock,i = ηi − ηi−1 > 0. We also assume

that each sensor obeys the same motion control law u :
[0, 2π]× [0, 2π] → R, so that the closed-loop system will

be

ηi(k + 1) = ηi(k) + u(dcounterclock,i(k), dclock,i(k)),

dcounterclock,i(k) = ηi+1(k)− ηi(k),

dclock,i(k) = ηi(k)− ηi−1(k).

In order to achieve uniform distribution of the sensors

on the circle, two simple behaviors arise fairly naturally,

see Figure 2. First, we consider the GO TOWARDS THE

MIDPOINT behavior umidpoint : [0, 2π]× [0, 2π] → R given

by:

umidpoint(dcounterclock, dclock) =
1

2

(

dcounterclock − dclock

)

.

The interpretation is clear: each sensor moves towards the

midpoint of the angular segment between the preceding

and following sensor. In the original coordinate system,

each sensor moves along ∂Q towards the bisector of the

triangle with vertex q0 and vertices given by the preceding

and following sensor.



ηi−1

u1/2 u1/4

d co
unte

rc
lo
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w

ise

dclockwise

ηi−1+ηi
2

ηi+ηi+1

2

ηi+1

ηi

Fig. 2. The GO TOWARDS THE MIDPOINT u1/2 and GO TOWARDS THE

MIDPOINT OF VORONOI SEGMENT u1/4 behaviors.

A second intuitive rule is the GO TOWARDS THE MID-

POINT OF VORONOI SEGMENT behavior umidpoint Voronoi :
[0, 2π]× [0, 2π] → R given by:

umidpoint Voronoi(dcounterclock, dclock) =
1

4

(

dcounterclock − dclock

)

.

The interpretation is the following: the Voronoi segment of

the ith sensor at position ηi is the angular segment from

(ηi−1 + ηi)/2 to (ηi + ηi+1)/2, and the control law GO

TOWARDS THE MIDPOINT OF VORONOI SEGMENT steers

ηi towards the midpoint of this segment.

These two rules are particular instances of the following

family of linear algorithms parametrized by K ∈ R:

uK(dcounterclock, dclock) = K(dcounterclock − dclock).

Clearly, umidpoint and umidpoint Voronoi are equal to uK for

K = 1/2 and K = 1/4, respectively. Because uK(d, d) = 0
for all d ∈ R+, the equally-spaced angle position (where

the sensors are uniformly distributed around the target) is

an equilibrium point3 for the uK-closed-loop system.

C. Convergence analysis

To perform a convergence analysis, it is convenient to

define the relative angular distances di = ηi+1−ηi, for i ∈
{1, . . . , n} (and adopt the usual convention that dn+1 = d1
and that d0 = dn). So long as the counterclockwise order of

the sensors is not violated, we have (d1, . . . , dn) ∈ S2π =
{x ∈ Rn | xi ≥ 0,

∑n
i=1 xi = 2π}. The change of coordi-

nates from (η1, . . . , ηn) to (d1, . . . , dn) and the control law

uK jointly lead to the closed-loop system

di(k + 1) = Kdi+1(k) + (1− 2K)di(k) +Kdi−1(k).

This is a linear time-invariant dynamical system with state

d = (d1, . . . , dn), transition matrix AK given by










1− 2K K · · · K
K 1− 2K · · · 0
...

. . .
. . .

...

K 0 K 1− 2K











,

3The more general linear feedback u(dcounterclock, dclock) =
adcounterclock + bdclock does not have the desired equilibrium set unless
a + b = 0. The case of a + b 6= 0 is studied in the context of cyclic
pursuit, see [7] and references therein.

and governing equation

d(k + 1) = AKd(k), for k ∈ N∪{0}. (7)

Theorem 3.2: The control law uK is spatially distributed

along ∂Q, and, for K ∈]0, 1/2[, the solutions to the

corresponding closed-loop system (7) preserve the counter-

clockwise order of the sensors and converge exponentially

fast to (2π/n, . . . , 2π/n).
Recall the notion and properties of circulant matrices from

Appendix C. Note that AK is circulant with representer

pAK
(s) = (1− 2K) +Ks+Ksn−1. Theorem A.1 implies

that the eigenvalues of AK are

λℓ = pAK

(

exp
(2πℓ

√
−1

n

)

)

= 1− 2K+ 2K cos
(2πℓ

n

)

,

for ℓ ∈ {1, . . . , n}. It is easy to see that λn = 1 and that

the corresponding eigenvector is 1T = (1, . . . , 1). If K > 0
and ℓ ∈ {1, . . . , n− 1}, then

−1 ≤ cos
(2πℓ

n

)

< 1 =⇒ 1− 4K ≤ λℓ < 1.

Therefore, if K ∈]0, 1/2[, then the eigenvalues

λ1, . . . , λn−1 belong to the open interval ] − 1, 1[.
Additionally, if K ∈]0, 1/2[, then AK is a doubly-

stochastic matrix, so that S2π is invariant for AK.

Let {e1, · · · , en−1,1} be a basis of orthogonal eigenvec-

tors for AK corresponding to the eigenvalues {λ1, . . . , λn},

respectively. Any initial condition d(0) satisfies

d(0) =

n−1
∑

ℓ=1

ρℓeℓ + ρn1 .

Since
∑n

i=1 di(0) = 2π, we have that

2π = 1
Td(0) = ρn1

T
1 = ρnn =⇒ ρn =

2π

n
.

On the other hand,

d(k) = AKd(k − 1) =

n−1
∑

ℓ=1

λk
ℓ ρℓ eℓ + ρn1 .

If K ∈]0, 1/2[, then each |λℓ| < 1, for ℓ ∈ {1, . . . , n− 1}
and, therefore, each trajectory k 7→ d(k) converges to ρn1,

the equal-angle configuration, exponentially fast.

Remark 3.3:

(i) The properties of uK in Theorem 3.2 are independent

of the number n of sensors.

(ii) If K < 0 or K > 1/2, then there exist initial

conditions from which the counterclockwise order of

the sensors is not preserved in the closed loop.

(iii) Consider the K = 1/2 case, corresponding to the

GO TOWARDS THE MIDPOINT behavior. Although

GO TOWARDS THE MIDPOINT is a very natural

algorithm to consider, it does not ensure conver-

gence to the desired configuration whenever n is

even. In fact, if n = 2L with L ∈ Z, then

1 and e
T
L = (−1, 1,−1, . . . ,−1, 1) are eigenvec-

tors with eigenvalues 1 and −1 respectively. Given

{e1 . . . , en−1,1} an orthogonal basis of eigenvectors

for A1/2 and d(0) =
∑n−1

i=1 ρiei + ρn1, one can



show that the system will exponentially converge to

a steady oscillation between u1 = ρn1 + ρLeL and

u2 = ρn1− ρLeL. •

IV. TARGET TRACKING SIMULATIONS WITH KALMAN

FILTERING AND MOTION COORDINATION ALGORITHMS

Here we combine the developments of former sections to

define the Active Target Tracking algorithm for collective

improved sensing performance. We numerically simulate

the algorithm to validate our approach. It is assumed that

the estimation step is carried out after a round of commu-

nication has taken place to propagate all the measurements

taken among the agents4. The algorithm is summarized in

the following table.

-2

Name: ACTIVE TARGET TRACKING ALGORITHM

Goal: Decentralized motion coordination of sen-

sors and joint localization of target
Data: (i) Constant K ∈]0, 1/2[.

(ii) Equation for the boundary of the con-

tainment region, g(q) = 0.

(iii) Initial guess for the target initial posi-

tion q̂0(0).

At time k, local agent i ∈ {1, . . . , n} performs:

1: Receive estimate q̂0(k) from fusion center.

2: Detect counterclockwise and clockwise neighbors

along ∂Q, compute angular distances in polar coor-

dinates about q̂0(k).
3: Compute control uK, next desired position ηi(k+1) ∈

T, and corresponding point pi(k + 1) ∈ ∂Q.

4: Move to new position pi(k + 1) along ∂Q.

5: Take new measurement of target zi(k + 1), and send

it to fusion center, that will update target estimate

according to EKF.

In what follows we present our numerical results. we

compare the estimation errors of the trajectory of a dynamic

target obtained from a set of four stationary and moving

sensors. For the purpose of the simulation, Q will be a ball

centered at the origin with radius 1.5m, and the trajectory

or the target will be the eight-shaped curve:
[

q10(k)
q20(k)

]

=

[

sin(ωk)
sin(ωk) cos(ωk)

]

, k ≥ 0 .

Here (q10 , q
2
0) are measured in meters and ω = .1 rad/sec.

In all the subsequent figures, the plots compares the

evolution of the absolute error trajectories along time,

E(k) = ‖q0(k)− q̂0(k)‖ for stationary sensors (solid blue

line) and moving sensors (dashed red line), for k ≥ 0.

The first set of simulations, Figure 3, reproduce the

results obtained for four sensors initially positioned at

2.1818, 2.4500, 3.7160, and 4.5167 radians. As can be

seen, the moving sensors perform better on average as

the variance increases. In the second set of simulations,

Figure 4, we take as the initial position for the sensors the

optimal position to estimate 0. That is, 0, π/2, π and 3π/2,

4This would be equivalent as having a fusion center that centralizes the
estimation process
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Fig. 3. Evolution of absolute error trajectories with variances of measured
noise 5× 10−3 (left) and 5× 10−2 (right).

are the initial positions for both stationary and moving

sensors. Though the set of moving sensors performs better,
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Fig. 4. Evolution of absolute error trajectories with variances of measured
noise 5× 10−3 (left) and 10−1 (right).

the differences between the estimates of the stationary

and moving sensors are comparable for variances of order

10−4, 10−3 (the absolute error trajectories overlap) and

even not so different when the variances are increased

to order 10−2. One has to increase the order of noise

to 10−1 to observe a clear difference in performance.

Qualitatively, Figure 5 shows how the estimated trajectories

of the moving sensors (green solid line) behaves compared

with the estimation provided by the stationary sensors

(black dashed line). The green solid trajectory is very close

to the actual trajectory of the target that we do not plot.

Note that in all the simulations, the variance of the process

noise is kept minimum of order 10−5. It can be observed in

the simulations that when the variance of the measurement

is kept constant and the variance of the process noise is

varied, both performances of stationary and moving sensors

give very similar results.
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Fig. 5. Qualitative evolution of the estimated trajectories by moving
and stationary sensors. Initial positions are (0, π/2, π, 3π/2) (left) and
(2.1818, 2.4500, 3.7160, 4.5167) (right) and variances are in both cases
5× 10−2.



V. CONCLUSIONS AND FUTURE WORK

We have presented novel decentralized control laws for

the optimal positioning of sensor networks that track a

target. Future research lines include (1) the consideration

of heterogeneous collections of sensors, (2) the dynamic

assignment of sensors to different targets and (3) investi-

gation of decentralized estimation and fusion schemes.
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APPENDIX

A. Proof of Proposition 2.1

(i) Let d = 2. The determinant of JNR is computed as

follows:

σ2 detJNR =
(

n
∑

i=1

(∂1hi)
2

)





n
∑

j=1

(∂2hj)
2



−
(

n
∑

i=1

∂1hi ∂2hi

)2

=

n
∑

i=1

(∂1hi)
2(∂2hi)

2 +

n
∑

i, j = 1

i 6= j

(∂1hi)
2(∂2hj)

2−

(

n
∑

i=1

(∂1hi)
2(∂2hi)

2+

n
∑

i, j = 1

i 6= j

∂1hi ∂2hi ∂1hj ∂2hj







=
n
∑

i, j = 1

i 6= j

(

(∂1hi)
2(∂2hj)

2 − ∂1hi ∂2hi ∂1hj ∂2hj

)

=

n
∑

i, j = 1

i ≤ j

(

(∂1hi)
2(∂2hj)

2 + (∂1hj)
2(∂2hi)

2
)

− 2
n
∑

i, j = 1

i ≤ j

∂1hi ∂2hi ∂1hj ∂2hj

=

n
∑

i, j = 1

i ≤ j

(∂1hi ∂2hj − ∂2hi ∂1hj) .

If we set vi = (∂1hi, ∂2hi, 0), i ∈ {1, . . . , n}, then

clearly,

detJNR =

1

σ2

n
∑

i, j = 1

i ≤ j

((vi × vj) · (0, 0, 1))2 =
1

σ2

n
∑

i, j = 1

i ≤ j

‖vi × vj‖2

=
1

σ2

n
∑

i, j = 1

i ≤ j

‖vi‖2‖vj‖2 sin2 αij =
1

2σ2

n
∑

i,j=1

‖vi × vj‖2 .

Here ‖vi × vj‖ represents the area of the parallelo-

gram generated by vi and vj .

(ii) Let d = 3. From the formula for the determinant of

JNR we obtain

σ2 detJ =
n
∑

i,j,k=1

∂1hi ∂2hj ∂3hk

(

∂1hi ∂2hj ∂3hk+

∂1hk ∂2hi ∂3hj + ∂1hj ∂2hk ∂3hi − ∂1hk ∂2hj ∂3hi

− ∂1hi ∂2hk ∂3hj − ∂1hj ∂2hi ∂3hk

)

.

Observe that this expression reduces to

σ2 detJ =

n
∑

i,j,k=1

∂1hi ∂2hj ∂3hk [(vi × vj) · vk] ,

with vi , (∂1hi, ∂2hi, ∂3hi), for i ∈ {1, . . . , n}.



We can further simplify the determinant as follows:

n
∑

i,j,k=1

∂1hi ∂2hj ∂3hk [(vi × vj) · vk] =

=

n
∑

i, j, k = 1

i ≤ j

∂1hi ∂2hj ∂3hk [(vi × vj) · vk]

+

n
∑

i, j, k = 1

j ≤ i

∂1hi ∂2hj ∂3hk [(vi × vj) · vk]

=

n
∑

i, j, k = 1

i ≤ j

∂3hk [∂1hi ∂2hj − ∂1hj ∂2hi] (vi × vj) · vk .

The last summand can be split into two as

n
∑

i, j, k = 1

i ≤ j

=

n
∑

i, j, k = 1

i ≤ j ≤ k

+

n
∑

i, j, k = 1

i, k ≤ j

,

now, rewriting the second of these terms as

n
∑

i, j, k = 1

i, k ≤ j

∂3hk [∂1hi∂2hj − ∂1hj∂2hi] (vi × vj) · vk =

n
∑

i, j, k = 1

k ≤ i ≤ j

∂3hk [∂1hi∂2hj − ∂1hj∂2hi] (vi × vj) · vk+

n
∑

i, j, k = 1

i ≤ k ≤ j

∂3hk [∂1hi∂2hj − ∂1hj∂2hi] (vi × vj) · vk =

n
∑

i, j, k = 1

i ≤ j ≤ k

∂3hi [∂1hj∂2hk − ∂1hk∂2hj] (vj × vk) · vi+

n
∑

i, j, k = 1

i ≤ j ≤ k

∂3hj [∂1hi∂2hk − ∂1hk∂2hi] (vi × vk) · vj ,

and using that (vj×vk)·vi are invariant under cyclic

permutations of i, j and k ∈ {1, . . . , n}, we obtain:

σ2 detJ =
∑

i≤j≤k

(

∂3hk [∂1hi ∂2hj − ∂1hj ∂2hi]

+∂3hi [∂1hj ∂2hk − ∂1hk ∂2hj ]

+∂3hj [∂1hk ∂2hi − ∂1hi ∂2hk]
)

(vi × vj) · vk .

This expression is equivalent to:

detJ =

1

σ2

∑

i≤j≤k

|(vi × vj) · vk|2

=
1

σ2

∑

i≤j≤k

‖vi‖2‖vj‖2‖vk‖2 sin2 αij cos
2 βij,k ,

where αij = ∡(vi,vj), and βij,k = ∡(vi × vj ,vk).
Here, |(vi × vj) · vk| has the interpretation of the

volume generated by the vectors vi, vj and vj . We

get in this way an analogous formula to that of d = 2.

As in the two-dimensional case, it is easy to see that

detJ =
1

6 σ2

∑

i,j,k

|(vi × vj) · vk|2 .

B. Proof of Proposition 2.2

In first place, since LT is differentiable, (η1, . . . , ηn) is

a critical point of LT if and only if

∂

∂ηk

∑

i,j∈S

sin2(ηi − ηj) = 0 , ∀k ∈ {1, . . . , n} .

In other words, for all k ∈ S we have

0 =
∑

i∈S

sin[2(ηk − ηi)] =

sin 2ηk
∑

i∈S

cos 2ηi − cos 2ηk
∑

i∈S

sin 2ηi =

(

(cos 2ηk, sin 2ηk, 0)×
∑

i∈S

(cos 2ηi, sin 2ηi, 0)
)

· e3.

This equality holds if (1) two vectors (cos 2ηk, sin 2ηk, 0)
are all aligned, k ∈ S, and perpendicular to the

non-zero vector x =
∑

i∈S (cos 2ηi, sin 2ηi, 0), or (2)
∑

i∈S (cos 2ηi, sin 2ηi, 0) = 0. That is, (η1, . . . , ηn) is a

critical point for LT if and only if

∑

i∈S

cos 2ηi = 0 ,
∑

i∈S

sin 2ηi = 0 , (8)

or any two vectors in {(cos 2ηi, sin 2ηi)}i∈S , are aligned.

Secondly, since LT is differentiable and its domain is

open, its global maxima are contained in the set of its

critical points. Therefore, we will focus on the valuation

of LT on critical points.

Let aij denote aij = |ηi − ηj |. We have that

∑

i,j∈S

sin2(ηi − ηj) =
∑

i,j∈S

sin2 aij .

Taking complex exponentials, we compute

2
∑

i,j∈S

sin2 aij = 2
∑

i,j∈S

(

eiaij − e−iaij

2i

)2

∑

i,j∈S

(

e2iaij + e−2iaij − 2

−2

)

= n2
S −

∑

i,j∈S

cos 2aij ,

where i =
√
−1. Using now the formula for the cosine of

a sum, we obtain:
∑

i,j∈S

cos 2aij =
∑

i,j∈S

cos 2(ηi − ηj) =

∑

i,j∈S

cos 2ηi cos 2ηj + sin 2ηi sin 2ηj =

∑

i∈S

cos 2ηi
∑

j∈S

cos 2ηj +
∑

i∈S

sin 2ηi
∑

j∈S

sin 2ηj .



Therefore, at critical points for which (8) holds, we have

that

2
∑

i,j∈S

sin2 aij = n2
S .

Consider now the critical points (η1, . . . , ηn) such that any

two vectors in {(cos 2ηi, sin 2ηi)}i∈S are aligned. Let n1

be the cardinal of the set N1 of vectors that coincide with

(cos ηi1 , sin ηi1) and let n2 be the cardinal of the set N2

of vectors which are perpendicular to (cos ηi1 , sin ηi1 ), for

some i1 ∈ S. We have that

2
∑

i,j∈S

sin2 aij = 2
∑

i∈N1,j∈N2

sin2 aij + 2
∑

i∈N2,j∈N1

sin2 aij

= 2n1n2 + 2n2n1 = 4n1n2 ,

But 4n1n2 ≤ (n1 + n2)
2 = n2

S , since this is equivalent to

(n1 − n2)
2 ≥ 0. This allows us to say that

Lq0(p1, . . . , pn) = LT(η1, . . . , ηn) ≤
β4R2

4σ2
nS ,

for any critical point (η1, . . . , ηn) of LT and (p1, . . . , pn)

such that β2r
2(β−1)
i = R, i ∈ S.

To prove the third fact of the proposition, consider x0 =

e
i
2π
nS . Since x0 6= 1, x0 must be a root of p(x) where

p(x) = xn−1+xn−2+ · · ·+x+1 , p(x)(x−1) = xn−1 .

But this means

p(x0) = e
i
2π
nS

(nS−1)
+ e

i
2π
nS

(nS−2)
+ · · ·+ e

i
2π
nS + 1 = 0 ,

which is equivalent to

∑

is∈S

cos
2π

nS
(s− 1) = 0 ,

∑

is∈S

sin
2π

nS
(s− 1) = 0 .

Therefore, (η1, . . . , ηn) is a critical point of LT when ηis =
π
nS

(s − 1), is ∈ S, or ηis = 2π
nS

(s − 1), is ∈ S. Because

of the previous analysis, we have LT(η1, . . . , ηn) =
n2

SR
4σ2 .

Observe that since sin2 x = sin2(−x) is periodic of

period T = π, any configuration in

{(η1 + k1π, . . . , ηn + knπ) | k1, . . . , kn ∈ Z}
for (η1, . . . , ηn) a maximum, will be another maximum.

C. Circulant matrices

Circulant matrices are an important class of Toeplitz

matrices with useful properties and are related to the

Discrete Fourier Transform. For a comprehensive treatment

of circulant matrices we refer to [16], see also [17].

A matrix C ∈ Rn×n is (right) circulant if it is of the

form

C =











c1 c2 · · · cn
cn c1 · · · cn−1

...
. . .

. . .
...

c2 c3 · · · c1











.

In other words, a (right) circulant matrix is a matrix

obtained by stacking cyclically right-shifted versions of the

top row vector. There is a linear isomorphism circ between

R
n and the set of n× n circulant matrices: given c ∈ R

n,

circ(c) is the circulant matrix with first row equal to c
and with ith row, for i ∈ {2, . . . , n}, equal to c right-

shifted (i − 1) times. For example, the last equation says

C = circ(c1, . . . , cn).
The representer of an n × n circulant matrix C =

circ(c1, . . . , cn) is the polynomial pC(s) = c1 + c2s +
· · · + cns

n−1. For ωn = exp(2π
√
−1/n), let Fn ∈ Cn×n

be the Fourier matrix of order n given by

F ∗
n =

1√
n















1 1 1 · · · 1
1 ωn ω2

n · · · ωn−1
n

1 ω2
n ω4

n · · · ω
2(n−1)
n

...
...

...
...

1 ωn−1
n ω

2(n−1)
n · · · ω

(n−1)(n−1)
n















.

Theorem A.1 (Diagonalization of circulant matrices): If

C ∈ Rn×n is circulant, then its eigenvalues are λi =
pC(ω

i
n), for i ∈ {1, . . . , n}, and

C = F ∗
n diag(λ1, . . . , λn)Fn.


