CDC 2004, To appear

Coordinated deployment of mobile sensing
networks with limited-range interactions

Jorge Cors Sonia Martnez  Francesco Bullo
Applied Mathematics and Statistics Mechanical and Environmental Engineering
University of California at Santa Cruz University of California at Santa Barbara
Santa Cruz, California 95064, USA Santa Barbara, California 93106, USA
j cortes@oe. ucsc. edu {smartine, bul | o}@ngi neeri ng. ucsh. edu

Abstract— This paper presents coordination algorithms for  ones truly amenable to implementation in a group of agents
groups of mobile agents performing deployment and coverage exchanging information over a communication network. We
tasks. As an important modeling constraint, we assume that - jeq| \ith these problems via a combination of tools from

each mobile agent has a limited sensing or communication h th | fi | optimizati d t th
radius. We focus on (1) a comprehensive smoothness analysisgrap eory, locational optimization, and systems theory

of a class of locational optimization functions (including a gen-  The contributions of the paper are the following: First,
eralized statement of the Conservation-of-Mass Law), and (2) a we formalize the concept of spatially-distributed aldamits
discrete-time convergence result based on a recently-developed via the notion of proximity graphs. Second, we analyze
generalized statement of LaSalle Invariance Principle. Our the smoothness properties of an important class of objec-

coordination algorithms have convergence guarantees and are tive functi led i ter functi .
spatially distributed with respect to appropriate proximity V€ TUNclons, called mulli-center functions, common in

graphs. Numerical simulations illustrate the results. locational optimization, quantization theory, and gearet
optimization. Our analysis supersedes the results in [9],
. INTRODUCTION [10], [11]. As an important outcome, we determine the

The current technological development of relatively inexextent in which certain multi-center functions are spétial
pensive communication, computation, and sensing devicdsstributed and with respect to which proximity graphs.
has lead to an intense research activity devoted to thenally, we design novel spatially-distributed discrétae
distributed control and coordination of networked systemsontrol laws for groups of robots with the objective of
The potential advantages of networked robotic systems asteering the location of a group of robots to local maxima
their versatility and robustness in the realization of mplét of the multi-center function. We formally analyze their
tasks such as manipulation in hazardous environments, ppkrformance and illustrate their behavior in simulations.
lution detection, estimation and map-building of unknowrin our analysis, we make use of useful extensions of the
environments. A fundamental problem in the distributedConservation-of-Mass Law and of the discrete-time LaSalle
coordination of mobile robots is that of providing stablelnvariance Principle. These extensions are, to the beairof o
and decentralized control laws that are scalable with thenowledge, not present in classical texts on the subject.
number of network agents. Indeed, there have been variousOne fundamental scientific problem in the study of
efforts to provide rigorous procedures with convergenceoordination is scalability with respect to communication
guarantees using a combination of potential energy shapisgmplexity. It is important to design algorithms with com-
methods, gyroscopic forces, and graph theory (see [1], [2hunication requirements that scale nicely with the number
[3], [4], [5], [6], [7] and references therein). In our previs of network agents. However, it is impossible to quantify
work [8], we studied distributed algorithms for deploymenthe communication complexity of any algorithm without a
and optimal coverage using tools from computational gedetailed communication model. Adopting a computational
ometry, nonsmooth analysis and geometric optimization. geometric approach, we classify the complexity of coordi-

In devising coordination algorithms it is important tonation algorithms via the proximity graphs with respect to
progressively account for the various restrictions that-re which they are spatially distributed. The underlying asgum
world systems impose. Building on [8], this paper develtion is that low complexity proximity graphs (e.g., graphs
ops spatially-distributed algorithms for coverage cadntrowith a low number of edges) require limited communication
amenable to implementation on (more) realistic networin a realistic implementation. Throughout the paper we
models; we do this by considering the following newconsider only extremely simple models for the dynamics of
aspects. First, we enforce the communication or sensimgch individual agent. This feature is a natural consecienc
capacity of an agent to be restricted to a bounded regioaf our focus on network-wide coordination aspects. We shall
typically much smaller than the environment of interestalso interchangeably refer to agent as location or point.
We refer to these information exchanges between agentsThe organization of the paper is as follows. In Section Il
as “limited-range interactions.” Second, we design discre we review various preliminary mathematical concepts and
time gradient ascent control laws, motivated by the arguwe develop useful extensions of classical analysis results
ment that discrete-time feedback algorithms are indeed tle Section Il we study the smoothness of the multi-center



function and show in what sense its gradient is spatially Delaunay graph r-disk graph
distributed. In Section IV we design spatially-distribdite V) v .
coverage algorithms in discrete time. The numerical out-| * "« . |t
comes of the algorithms’ implementation are reported in . N . >4

Section V. Finally, we discuss possible avenues of future * *

research in Section VI. We refer the interested reader to r-Delaunay graph r-limited Delaunay graph
the full journal version [12] of this work for a detailed | % * ° Ny o .
discussion of the computational geometric and algorithmic| « *., W, | N -,
aspects, and the proofs of all statements presented here. 7 2 ) 2

Il PRELIMINARY DEVELOPMENTS Fig. 1. Delaunayy-disk, r-Delaunay, and-limited Delaunay graphs for

; ; ; i arandom configuration of6 generators with coordinates contained in the
In this Se.CtI.On we present a variety .Of prellmlnary Con[ectangle[o, 1.9] x [0,.75]. The parameter is taken equal to45.
cepts. Proximity graphs from computational geometry wil
allow us to introduce the notion of spatially-distributed; ¢ {1,... n}, of distinct arcsarc; 1 (7), ..., arc; ar, () (r)

algorithms. We refer the reader to [13, Chapter 1] for ag¢ radius % in O(Vi(P) N Bz (p;)) with the property that
exposition of standard graph-theoretical notions. :
o(Vi(P)n Bg(pi)) = (U, ENGLo () m; (P) Ai;(r))

U (Uiegr,...m, (ry arci(r))
We rgfer tp_ [14], [10] for. comprehe_:nsive treatr_nents OQyhere Noior.p.(P) denotes the set of neighbors in
Voronoi partitions. Acovering of R? is a collection of Gio(P,r) of the vertexp;
subsets ofR? whose union isR?; a partiion of R? is % v
a covering whose subsets have disjoint interiors. Pet
be a set ofn distinct points {pi,...,p,} in R% The
Voronoi partition of R? generated byP is the collection
{Vi(P)}icq1,..ny, WhereVi(P) = {g € R? || |lq — pil| <
llg — pj|, for all p; € P}. Here,|| - || denotes the standard
Euclidean norm. It is customary to refer ¥¢(P) asV;.

Next, we present some relevant concepts on proximity
graph functions [15]. LeF(R?) be the collection of finite
point sets inR?; an element ofF(R?) is denoted by
P ={p1,...,pn} C R?, wherepy,...,p, are distinct. Let
G(R?) be the set of undirected graphs whose vertex set is
element off(R?). A proximity graph functiorg : F(R?) — - - ] i
G(RR?) associates to a point sBtan undirected graph with ~_ The notion of proximity graph is defined for sets of
vertex setP and edge sefg(P), where &g : F(R?) — dIStIr!C'[ pointsP = {p1,...,p,}. However, we will often
F(R? x R?) is such thatsg(P) C P x P \ diag(P x P) consider tuples of elements dk? o_f the _for_m P =
for anyP. Here,diag(PxP) = {(p,p) e P x P |pe P}. (P, e ,Pn), i€., ordered sets of possibly coincident points.
In other words, the edge set of a proximity graph depend<et i : (R?)" — F(R?) be the natural immersion, i.e.,

A. Voronoi partitions and proximity graphs
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Fig. 2. The shaded regions are examples of §&{$) N Bg(pi).

¥ Spatially-distributed functions and set-valued maps

on the location of its vertices. Fore R? andr ¢ R, = P = ir(P) is the point set that contains only the distinct
[0,400), let B,(p) = {q€R?||¢—p| <r}. Consider points in P. Note thatir is invariant under permutations of
the following proximity graphs (see Figure 1): its arguments and that the cardinalityigf P) is in general

(i) the Delaunay graphgo with (pi, p;) € Eo(P) if and less than or equal ta. More precisely, if

only if V;(P)NV;(P) # 0; S={Pec (R*)"|p; =p, for somei#j € {1,...,n}},
(ii) the r-disk graphGuisk(r) with (pi, p;) € Eaisk(P,7) it thensp < nif P € S and#P = n if P ¢ S. TheVoronoi
_andonly if|[p; — pjl| <r; o _ coveringV(py, ..., pn) = {Vi(p1,- -, Pn) tieq,...n} 9€N-
(iii) the r-Delaunay graptGasicio () is the intersection of g ated by the tupléps, ..., py) is defined by assigning to
_ Gaisi(r) and Gp; _ each pointp; its corresponding Voronoi cell in the Voronoi
(iv) the r-limited Delaunay graptGip (r) WIAth (Pisj) € partition generated byP. Coincident points in the tuple
&o(P,r) if and only if Ay(P,r) £ (Vi(P) (p1,...,pn) have the same Voronoi cell.

B%(Pi)) N (VJ'(P) NBs (pj)) # 0. We can now extend the notion of proximity graphs to
Remark 2.1:Let P € F(R?) andr € R,. The collec- this setting. Given a proximity graph functighwith edge
tion {Vi(P) N Bz (pi)}icq1,...ny IS @ partition of the set set functionfg, we define (with a slight abuse of notation)

U;B:r (p;) C R2. The boundary ofV;(P) N B:x (p;) is the _ . movn 2
unioﬁ(of)a finite number of segmenté a)nd arés(; s)ee Figure 2. G=Goir i R )2 —GR )2’ )
Therefore, at fixedP, there existn numbersi;(r) > 0, &g = &g oip : (R7)" — F(R” x R).



Moreover, the map\Ng : (R?)" — (F(R?))" is the wheren : 0Q(z) — R?, ¢ — n(g), is the unit outward
function whose jth component isNg ;(p1,...,p,) = normal todQ(z) atq € 9Q(z), andy : S' x (a,b) — R? is
Ng p, (ig(p1,...,pn)). Coincident points in the tuple aparameterization for the famil2(z) C R? | z € (a,b)}.
(p1,...,pn) have the same set of neighbors.

Given a sef’” and a proximity graph functiog, a map D. Discrete-time LaSalle Invariance Principle

T : (R?)" — Y™ is spatially distributed overg if there We review here some notions on discrete-time algo-
exist a mapl : R? x F(R?) — Y, with the property that, "thms [17]. Analgorithm onS C RY is a set-valued map
for all (pr,..p.) € (R1)" and forallj e {1,... n}, 1S —2°\{0).Amapfroms to s is simply a singleton-
. valued map. For any, € S, T generates feasible sequences

Tj(p1s-- - pn) = T(pj, Ng,j(P1,- -, Pn)) as follows: givenz,, € S, the mapT yields T'(z,) C S.
where T; denotes thejth-component of 7. In other From this set, an arbitrary element . ; may be selected,
words, thejth component of a spatially distributed map at Tpy1 € T(x,), neNU{0}. (1)
(p1,-..,pn) can be computed with only the knowledge of

the vertexp,; and the neighboring vertices in the undirectecf‘n algorithm T' is closed atz < S if for all convergent
J ; o sequences, — x, z, — ' with 2, € T(z), one has
graphG({p1,...,pn}). We are now in a position to state Pk k '

) . . L
an important property of the-limited Delaunay graph. @' € T(x). An algorithm 'SCl(.)SEd oW C 5 it Itis closed
Lemma 2.2:Let » € R,. The set of neighbors map at x, for all z € W. In particular, every continuous map

- : — T:S — Sisclosed onS. AsetC C S isweakly positively
of is spatially distributed ove@g; .
{_vc’)gc;?s(é?y spgeL;k(QQ, thiz resallt means that, ?gdig(é)m@ invariant with respect tdl’ if for any z € C there exists
each agent needs to know only the location of all the agerits € £ (%0) such thf‘m € C. Th_? func;nonU : Sf_’ Iﬁ
in a disk of radius-. This property is to be contrasted with 'S Non-increasing along” on 17 1 U(z') < U(x) for a

the centralized computation required to deter . TET@andalzeW. . e
P q Mg Theorem 2.4 (Discrete-time LaSalle Invariance Principle)

C. Piecewise smooth sets and Conservation-of-Mass Lawet 7 be a closed algorithm of’ ¢ RY and letU be

A setS C R? is strictly star-shapedf there exists a point @ continuous non-increasing function aloiigon 1. Let
p € S such that for alls € 95 and all\ € (0,1], one has %o € W and assume the sequen¢e, | n € NU{0}}
Ap+ (1 —\)s € int(S). A curve C in R? is the image of defined viaz, ., € T(z,) belongs tol/ and is bounded.
a map~ : [a,b] — R2. The mapy is a parameterization Then there exists € R such that
of C. A curve v : [g,b] — R2 is simpleif ~ is injective Tn — MOU™Y(e),
on (a,b). A curve isclosedif v(a) = v(b). A set) C . - .
R? is piecewise smootif its boundary,dQ, is a simple where M is the largest weakly positively invariant set con-
closed curve that admits a continuous and piecewise smod@ined in{z € W | 3y € T(x) such that/ (y) = U(x)}.
parameterizatiory - S — R2, LiKEWise, a collection of sets I1l. LIMITED-RANGE LOCATIONAL OPTIMIZATION
{Qz) CR? |z € (a,b)} is apiecewise smooth familif
Q(x) is piecewise smooth for alt € (a, b), and there exists
v : St x (a,b) — R2, (0,z) — ~(0,z), differentiable with
respect to its second argument such that for eaeh(a, b),
the mapd — ~.(6) = (0, z) is a continuous and piecewise
smooth parameterization a¥2(z). We refer toy as a
parameterization for the familfQ(z) C R? |z € (a,b)}.
The following result is an extension of the integral form
of the Conservation-of-Mass Law in fluid mechanics [16]
Given a curveC parameterized by a piecewise smooth ma

Let Q be a simple convex polygon iR? including its
interior. Letdiam(Q) = maxg peq |l — pl|. FOré < e €
Ry, let Disq(p) = {a € R*[§ < |[lg—p| < ¢} denote
the annulus inR? centered atp of radius§ and ¢; we
also defineDy (p) = Bc(p) = {g € R* | |lg —p| <€}
and Dis o) () = {¢ €R?* [ 6 < |l¢ — p|}. Let np, () (q)
denote the unit outward normal tB.(p) at ¢ € 9B.(p).
Given S C Q, let 15 denote the indicator functions(q) =
% if ¢ € S,and1s(q) = 0 if ¢ ¢ S. Throughout the
b . aper, given a point se? = {p1,...,p,}, we consider
g : [ta’b}th_) I'C’ r_ef[:all tlhat{.%f f: f_a é(v(ﬂg{ﬁ(mg the restriction of the Voronoi partitiow(P) generated by

enotes the line integral ovey’ of £ < — P to the polygon@, {V;(P) N Q}ieq1,...,n}- For ease of

ang IS mdtgpenzdgT T tf;ze selected parameterblzatlgn. exposition, we denote this restriction in the same way as
roposition 2.3:Let {Q(z) C Q[z € (a,b)} be a o 0404 Voronoi partition.

piecewise smooth family witk(z) strictly star-sh_aped for — A density functions : Q — R, is a bounded function
a!l x € .(a,b). Let ¢ : @ x (a,.b) — R be continuously Q. Given a setS C Q, let arcay(S) = [ p(q)dg. A
differentiable with respect to its second argument for alEerformance functionf : B, — R is a non-increasing and
v € (a,b) and almost allg € ©(x), and SUCha that for piecewise differentiable function with finite jump discont
eacha € (a,b), the mapsy — (g, ) andq — 7, (q, ) nuities atR;,..., R, € Ry, with Ry < -+ < R,,. For
convenience, we sdty = 0 and R,,,+1 = +oo, and write

ox
are integrable orf)(z). Then, the function(a,b) > = —
m—+1

fQ(x) ¢(q,)dq is continuously differentiable and

[ stawda= [ Fawdes [ w o). fla)= 2, Jole) i ().

dz Jo(a) () O o0(z) O



where f, : [Ra—1,Ra] — R, a € {1,...,m + 1} are b) Area problem:If f(xz) = 1jo )(x), then’H corre-
non-increasing and differentiable wifh (R,) > fo+1(Rs) sponds to the area, measured according,t@overed by
for « € {1,...,m}. Given a density functionp and the union of then balls Bg(p:1),..., Br(pn), that is,

a performance functiory, we consider themulti-center n

function’™ : Q" — R defined by H(P) = areay (Ui, Br(pi)

In this case, the first term in equation (3) vanishes and then

H(P) = —p; dq. 2
(P) Qieﬁl,?fn}f(||q pil)é(a)dq 2 . 2R
Note thatH is an aggregate objective function since it %(P) = / - NBr(p) P
depends on all the locations, . . . , p,.. It will be of interest k=1 Jarci(2R)
to find local maxima forH. Given P € ", if the ith agent is surrounded by neighbors

Remark 3.1:In the optimal placement problem of largein the graphG.p(2R) in such a way thab/;(2R) = 0, then
numbers of spatially-distributed sensors, H provides the the H does not depend op;. This situation is depicted in
expected value of the sensing performapoavided by the Figure 2 (see the example on the right) and captures the
group of sensors over any point in the environménht fact that the total area covered by the agents is not affected
where (2)¢ is thedistribution density functiomepresenting by an infinitesimal displacement of thigh agent.

a measure of information or probability that some eventtake ¢) Mixed centroid-area problemlf f is given byz —
place overQ, and (3) f describes theensing performance f(z) = —2? 1o g) (@) + b - L[ 4+00)(x), for b < —R?, the
of the sensors. Because of noise and loss of resolution, thaulti-center function takes the form

sensing performance at poigptaken from theith sensor at n
the positionp; degrades with the distandg — p;||. o H(P) :—Z Jv,(P)nBr(p:),p: + 0 areag(Q \ Ui Br(pi)),
Theorem 3.2:Given a density functionp and a perfor- i=1

mance functionf, the multi-center functiort{ is globally  and its partial derivative with respept is
Lipschitz on@Q™, and continuously differentiable ap™\ S,

’ OH
where for each € {L,...,n} Op; (P) = 2My;(P)nBr(p:) (CMvi (P)BR(pi) —Pi)
OH 0 i M;(2R)
P = — P d «@ Ra -
D). 3l = pDo@ + 3 @)Y [ e
M;(2R.) . k=1 ercin(2R)
7 (o3 ) 2 ) )
fat1(Ra)) - / n J(@)é(g)dg), (3) In the particular case wheh = —R*, the function f is
- ( kz:‘: arCi,k(zRa)BR” v ) continuous and therefore the gradientfoftakes the form
with arc; »(2R,), k € {1,...,M;(2R,)} the arcs in the oK
’ ) ’ v @ :2M g X M . N —Pi) -
boundary ofV;(P) N B, (p;). op; ) Vi) (OMviPInBaG) ~P1)
Thls result is a consequence of Prqposmon 2.3; we referthﬁ this case, the critical points off are P € Q" such
interested reader to [12] for a detailed proof. For paréicul 5t pi = CMy,(pynsa) for all i € {1,...,n}. We

choices of performance function, the corresponding multiefer 1o them ask-centroidal Voronoi configurationsFor

center function and its gradient have different features. p - diam(Q), they coincide with the standard centroidal
a) Centroid problem:If f is piecewise differentiable \ronei config,]urations ovet).

with no jump discontinuities, then Corollary 3.3: Let ¢ and f be a density and a perfor-
OH _ mance function, respectively. The gradient 7gf with re-
A, (P)= /WP) apim'q — pil)¢(a)dg.- spect to the agents’ locatia € Q™ is spatially distributed

over Gp. Furthermore, iff(z) = b for all z > R, then
the gradient ofH{ with respect to the agents’ location is
spatially distributed oveg,p(2R).

This is the result known in the locational optimization
literature [10], [9]. Forf(x) = —z2, H reads

H(P) = — Z/ lg — pill*(q)dg & — Z JVips IV. DESIGN OF SPATIALLY-DISTRIBUTED ALGORITHMS
im1 7 Vi(P) im1 FOR COVERAGE CONTROL

where Jyy,,, denotes the polar moment of inertia of the set Here, we design discrete-time implementations of the
W C @ about the poinp. In addition, the gradient df{ is  gradient ascent for a general aggregate objective funétion
OH We start by extending the definition &f to consider general
3 _(P)=2/ (¢ — pi)#(q)dg=2My,(p)(CMy,(py —pi).  partitionsWV of Q. Let P € Q™ and letWW = {W; C Q}""_,

bi Vi(P) be a partition ofQ such thatWW; is a convex polygon and
HereMy, andCMy, denote, respectively, the mass and the, ¢ W, fori € {1,...,n}. Define
center of mass with respect tb of W C Q. The critical

points of H are P € Q™ with p; = CMy,p) for all i € H(P,W) = 3 / —p; da.
{1,...,n}, i.e. centroidal Voronoi configurationf. [9]. W) ; w; Fla = pell#la)da




The functionH, is differentiable with respect to its first interior of W. If py € int(W) is not a critical point, then

variable on the wholeQ™. Note that, if H;(p, W) = one also has tha?%(po) £ (. For both cases, there
Jw f(la — pll)é(q)dg, then we can also write existse = e(py, W) > 0 such that the poinps defined by
S ML (-, W
W):zHl(phWi)- P5:p0+5%(170)€w
The following two equalities hold has the property thak{; (ps) > Hi(po), for all § € (0,¢),

) and H;(p.) = Hi(po). As it is usually done in nonlinear

H(P) =He(P,V(P)), forall Peq", programming [17], the computation of the step-sizean

OH. (P,V(P)) = oH (P), forallPeQ@"\S. (5 be implemented numerically via a “line search”. With this
Ipi Ipi discussion in mind, let us define thiee search algorithm
Let P € S and consider a partitionV = {W; c Q}7_, Tis: Q" — 29" as follows:

of @ such thatlV; is a convex polygon ang; € W;, for Given P € Q" let P’ ¢ Ti(P) if, for i €

i € {1,...,n}. Letig,jo € {1,...,n}, ip # jo such that {1,...,n} with the property thap; # p;,j €

Pio = Pj,- Then,V; (P) = V,,(P), andV(P) is no longer {1,...,n}\ {i},

a partition of @, but a covering. Nevertheless, one could

consider the line determined by the edge, N W;, and OH1 (-, Vi(P))

; =Di+0 i) 6
the associated hyperplanés, w, ~w,, and Hj, w, nw;, Pi=pit op (p:) (©)
such thatW;, C H;, w, SOW5, and WJ0 C HJO7WLOQWJO
With a slight abuse of notation, redefining with § e | eVl <wuViP) | and, for each

Vi, (P) = Vi, (P) N Hag oo set{iy,...,is} of coinudent indexes ab € Q,
0 20 0, Wig jo ?
V. (P)=V, (PYOH; w. ~w. , OH1(+,Y;
Jo( ) Jo( ) Jo, Wiy MW, p;u =i, 45 1(8 u) (piu)’ (7)
the collectionV(P) can be seen a partition af. This p
procedure can be extended if there are more than two (pi,Ys) e(ps,Yi)
coincident agents$i, ...,is} at a pointp € @ by defining W'th 0 e- 3 2] where{Yil,....,Y.is}
is a partition ofV;, (P) = --- = V;_(P) verifying
Vi, (P) = Vi,,(P)N (Nueqr,sp\(uy Hipows, ows, ) » peYi, forpe{l,... s}
for 4 € {1,...,s}. In the following, such a construction Proposition 4.2: The algorithmTis : Q™ — 29" defined

will be tacitly performed forP € S and a partitionV of Q. by equations (6)-(7) is closed o@™ \ S, and verifies
One can show (cf. [12]) that the Voronoi partition is optimalproperties (a)-(d) in Proposition 4.1.

within the set of partitions ofQ, that is, H.(P,W) < Corollary 4.3: Consider the algorithnTjs : Q" — 29"
H.(P,V(P)) for all P € Q™. Moreover, the inequality is defined by equations (6)-(7). Then

strict if f is strictly decreasing and the partitiob$P) and (i) For a general performance functigh the algorithm

W differ by a set of non-zero measure. , Tis is spatially distributed oveto. If, in addition,
We are now ready to characterize a class of algorithms f(z) = b for all = > R, then Tjs is spatially

with guaranteed convergence to the set of critical points of  istributed overG o (2R);

the aggregate objective functic. . (i) The sequence of agents’ locations generated7ky
Proposition 4.1 (Discrete-time ascentlet 7' : Q" — according to equation (1) starting & € Q"

29" be a closed algorithm 0@" \ S such that: converges asymptotically to the set of critical points

(@ forallPeQ", T(P)NS =0; of the aggregate objective functid.

(b) forall P eQ"\S, P eT(P)andic{l,...,n}, Remark 4.4:In a practical setting, the sensing and/or
Hilp;, Vi(P)) = Ha(pi, Vi(P)); communication capabilities of each network agent are re-

(c) forall P € Sand P’ € T(P), H(P') > H(P); stricted to a bounded region specified by a finite radius

(d) if P e@"\Sis nota critical point ofi{, then for . 5 o Therefore, as a way of approximating the gradient
all P' € T(P), there existy € {1,...,n} such that agcent of the multi-center functiok for an arbitrary per-
Ha(pj, V5(P)) > Ha(ps, Vi (P)). formance functiory, one could implement the discrete-time

Let P, € Q" denote the initial agents’ location. Then,algorithm Tjs corresponding to the multi-center function
any sequencg P, | n € NU {0}} generated according to induced by the performance functigh : R, — R given
equation (1) converges to the set of critical pointsHof by fr(z) = f(x) for x < § and fr ( ) = f(diam(Q))
This result is a consequence of Theorem 2.4; we refgpr 2 > Z. This latter algorithm has ‘the advantage of being
the interested reader to [12] for a detailed proof. In whagpatially distributed ovegip (r). We do not follow this path
follows, we devise a general algorithdi : Q" — 22"  here, and instead refer the interested reader to [12] for a
verifying properties (a)-(d) in Proposition 4.1. One caovgh complete exposition, including a detailed characterati

that if po € OW, then ¥(po) # 0 points toward the of the approximation properties of this procedure. e



V. SIMULATIONS VI. CONCLUSIONS AND FUTURE WORK

To illustrate the performance of the coordination algo- We have presented novel spatially-distributed discrete-
rithms, we include some simulation results. The algorithm8me algorithms for coordinated motion of groups of agents.
are implemented ilvat hemat i ca as a library of routines Future research include (1) distributed implementation of
and a main program running the simulation. We show exaleterministic annealing techniques, (2) visibility-bds-
cutions of the discrete-time algorithifis (cf. equations (6)- gorithms for coverage in non-convex environments, and (3)
(7)) for the area problem and the mixed centroid-aredistributed algorithms for other cooperative behaviord an

problem with discontinuous sensing performance in Figs. 8ensing tasks, e.g., detection, estimation, and mapibgild

and 4, respectively. Measuring displacements in meters, we
consider the domai®) with vertices
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The diameter of this domain idiam(Q) = 3.37796. In all
examples, the density functiah (represented by means of
its contour plot) is the sum of five Gaussian functions of the

form 5 exp(6(—(z — Zeented® — (¥ — Yeente))) With centers 1]
(Zcentes Ycente) at (2,.25), (1,2.25), (1.9,1.9), (2.35,1.25)
and(.1,.1). The area of the domain iseay () = 8.61656.
Each agent operates with a finite radius equat to .45. [l
(3]
(4]
Fig. 3.  Area problem (with agent performanggz) = 1[07%](1)):
discrete-time algorithnijs for 16 agents on a convex polygonal envi- (5]
ronment. The left figure illustrates the gradient ascent flod the right
figure represents the final location and Voronoi partitioor Each agent (6]
1, the intersectiori/; N B% (pi) is plotted in light gray. Afterl8 seconds,
the value of the multi-center function is approximatél8977. 7]
[8]
[9]
[10]

Fig. 4. Mixed centroid-area problem (with discontinuougrigperfor-
mancef(z) = —2? 1j, r(z) —diam(Q)* - 1(z , o) (x)): discrete-time
algorithmTjs for 16 agents on a convex polygonal environment. The Ieﬂ[ll]
figure illustrates the gradient ascent flow and the right &grepresents
the final location and Voronoi partition. For each agénthe intersection

Vin B% (ps) is plotted in light gray. After13.5 seconds, the value of the
multi-center function is approximateh:6.803.

[12]
As mentioned in Remark 4.4, the execution of the
coordination algorithm in Figure 4 can be regarded a3l
a limited-range implementation of the gradient ascent qi

the multi-center function{ corresponding to the agent
performancef(x) = —x?; this performance function does
not have any range limitation. To compare both executiongl,s]
we computed the percentage error in the valug{dadt their

final configurations, which is approximatedy.7%. We also  [16]
observed that the percentage error of the performance of the
limited-range implementation improves with higher values$i7]
of the ratior/ diam(Q).
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