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Abstract— This paper presents coordination algorithms for
groups of mobile agents performing deployment and coverage
tasks. As an important modeling constraint, we assume that
each mobile agent has a limited sensing or communication
radius. We focus on (1) a comprehensive smoothness analysis
of a class of locational optimization functions (including a gen-
eralized statement of the Conservation-of-Mass Law), and (2) a
discrete-time convergence result based on a recently-developed
generalized statement of LaSalle Invariance Principle. Our
coordination algorithms have convergence guarantees and are
spatially distributed with respect to appropriate proximity
graphs. Numerical simulations illustrate the results.

I. I NTRODUCTION

The current technological development of relatively inex-
pensive communication, computation, and sensing devices
has lead to an intense research activity devoted to the
distributed control and coordination of networked systems.
The potential advantages of networked robotic systems are
their versatility and robustness in the realization of multiple
tasks such as manipulation in hazardous environments, pol-
lution detection, estimation and map-building of unknown
environments. A fundamental problem in the distributed
coordination of mobile robots is that of providing stable
and decentralized control laws that are scalable with the
number of network agents. Indeed, there have been various
efforts to provide rigorous procedures with convergence
guarantees using a combination of potential energy shaping
methods, gyroscopic forces, and graph theory (see [1], [2],
[3], [4], [5], [6], [7] and references therein). In our previous
work [8], we studied distributed algorithms for deployment
and optimal coverage using tools from computational ge-
ometry, nonsmooth analysis and geometric optimization.

In devising coordination algorithms it is important to
progressively account for the various restrictions that real-
world systems impose. Building on [8], this paper devel-
ops spatially-distributed algorithms for coverage control
amenable to implementation on (more) realistic network
models; we do this by considering the following new
aspects. First, we enforce the communication or sensing
capacity of an agent to be restricted to a bounded region,
typically much smaller than the environment of interest.
We refer to these information exchanges between agents
as “limited-range interactions.” Second, we design discrete-
time gradient ascent control laws, motivated by the argu-
ment that discrete-time feedback algorithms are indeed the

ones truly amenable to implementation in a group of agents
exchanging information over a communication network. We
deal with these problems via a combination of tools from
graph theory, locational optimization, and systems theory.

The contributions of the paper are the following: First,
we formalize the concept of spatially-distributed algorithms
via the notion of proximity graphs. Second, we analyze
the smoothness properties of an important class of objec-
tive functions, called multi-center functions, common in
locational optimization, quantization theory, and geometric
optimization. Our analysis supersedes the results in [9],
[10], [11]. As an important outcome, we determine the
extent in which certain multi-center functions are spatially
distributed and with respect to which proximity graphs.
Finally, we design novel spatially-distributed discrete-time
control laws for groups of robots with the objective of
steering the location of a group of robots to local maxima
of the multi-center function. We formally analyze their
performance and illustrate their behavior in simulations.
In our analysis, we make use of useful extensions of the
Conservation-of-Mass Law and of the discrete-time LaSalle
Invariance Principle. These extensions are, to the best of our
knowledge, not present in classical texts on the subject.

One fundamental scientific problem in the study of
coordination is scalability with respect to communication
complexity. It is important to design algorithms with com-
munication requirements that scale nicely with the number
of network agents. However, it is impossible to quantify
the communication complexity of any algorithm without a
detailed communication model. Adopting a computational
geometric approach, we classify the complexity of coordi-
nation algorithms via the proximity graphs with respect to
which they are spatially distributed. The underlying assump-
tion is that low complexity proximity graphs (e.g., graphs
with a low number of edges) require limited communication
in a realistic implementation. Throughout the paper we
consider only extremely simple models for the dynamics of
each individual agent. This feature is a natural consequence
of our focus on network-wide coordination aspects. We shall
also interchangeably refer to agent as location or point.

The organization of the paper is as follows. In Section II
we review various preliminary mathematical concepts and
we develop useful extensions of classical analysis results.
In Section III we study the smoothness of the multi-center



function and show in what sense its gradient is spatially
distributed. In Section IV we design spatially-distributed
coverage algorithms in discrete time. The numerical out-
comes of the algorithms’ implementation are reported in
Section V. Finally, we discuss possible avenues of future
research in Section VI. We refer the interested reader to
the full journal version [12] of this work for a detailed
discussion of the computational geometric and algorithmic
aspects, and the proofs of all statements presented here.

II. PRELIMINARY DEVELOPMENTS

In this section we present a variety of preliminary con-
cepts. Proximity graphs from computational geometry will
allow us to introduce the notion of spatially-distributed
algorithms. We refer the reader to [13, Chapter 1] for an
exposition of standard graph-theoretical notions.

A. Voronoi partitions and proximity graphs

We refer to [14], [10] for comprehensive treatments on
Voronoi partitions. A covering of R

2 is a collection of
subsets ofR2 whose union isR

2; a partition of R
2 is

a covering whose subsets have disjoint interiors. LetP
be a set ofn distinct points {p1, . . . , pn} in R

2. The
Voronoi partition of R

2 generated byP is the collection
{Vi(P)}i∈{1,...,n}, whereVi(P) = {q ∈ R

2 ‖ ‖q − pi‖ ≤
‖q − pj‖ , for all pj ∈ P}. Here,‖ · ‖ denotes the standard
Euclidean norm. It is customary to refer toVi(P) asVi.

Next, we present some relevant concepts on proximity
graph functions [15]. LetF(R2) be the collection of finite
point sets in R

2; an element ofF(R2) is denoted by
P = {p1, . . . , pn} ⊂ R

2, wherep1, . . . , pn are distinct. Let
G(R2) be the set of undirected graphs whose vertex set is an
element ofF(R2). A proximity graph functionG : F(R2) →
G(R2) associates to a point setP an undirected graph with
vertex setP and edge setEG(P), whereEG : F(R2) →
F(R2 × R

2) is such thatEG(P) ⊆ P × P \ diag(P × P)
for anyP. Here,diag(P×P) = {(p, p) ∈ P × P | p ∈ P}.
In other words, the edge set of a proximity graph depends
on the location of its vertices. Forp ∈ R

2 and r ∈ R+ =
[0,+∞), let Br(p) =

{

q ∈ R
2 | ‖q − p‖ ≤ r

}

. Consider
the following proximity graphs (see Figure 1):

(i) the Delaunay graphGD with (pi, pj) ∈ ED(P) if and
only if Vi(P)∩Vj(P) 6= ∅;

(ii) the r-disk graphGdisk(r) with (pi, pj) ∈ Edisk(P, r) if
and only if ‖pi − pj‖ ≤ r;

(iii) the r-Delaunay graphGdisk∩D(r) is the intersection of
Gdisk(r) andGD;

(iv) the r-limited Delaunay graphGLD(r) with (pi, pj) ∈
ELD(P, r) if and only if ∆ij(P, r) ,

(

Vi(P) ∩
B r

2
(pi)

)

∩
(

Vj(P) ∩ B r
2
(pj)

)

6= ∅.

Remark 2.1:Let P ∈ F(R2) and r ∈ R+. The collec-
tion {Vi(P) ∩ B r

2
(pi)}i∈{1,...,n} is a partition of the set

∪iB r
2
(pi) ⊂ R

2. The boundary ofVi(P) ∩ B r
2
(pi) is the

union of a finite number of segments and arcs; see Figure 2.
Therefore, at fixedP, there existn numbersMi(r) ≥ 0,

Delaunay graph r-disk graph

r-Delaunay graph r-limited Delaunay graph

Fig. 1. Delaunay,r-disk, r-Delaunay, andr-limited Delaunay graphs for
a random configuration of16 generators with coordinates contained in the
rectangle[0, 1.9] × [0, .75]. The parameterr is taken equal to.45.

i ∈ {1, . . . , n}, of distinct arcsarci,1(r), . . . , arci,Mi(r)(r)
of radius r

2 in ∂(Vi(P) ∩ B r
2
(pi)) with the property that

∂
(

Vi(P) ∩ B r
2
(pi)

)

=
(

∪pj∈NGLD(r),pi
(P) ∆ij(r)

)

∪
(

∪l∈{1,...,Mi(r)} arci,l(r)
)

,

where NGLD(r),pi
(P) denotes the set of neighbors in

GLD(P, r) of the vertexpi.
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Fig. 2. The shaded regions are examples of setsVi(P) ∩ B r
2
(pi).

B. Spatially-distributed functions and set-valued maps

The notion of proximity graph is defined for sets of
distinct pointsP = {p1, . . . , pn}. However, we will often
consider tuples of elements ofRd of the form P =
(p1, . . . , pn), i.e., ordered sets of possibly coincident points.
Let iF : (Rd)n → F(Rd) be the natural immersion, i.e.,
P = iF(P ) is the point set that contains only the distinct
points inP . Note thatiF is invariant under permutations of
its arguments and that the cardinality ofiF(P ) is in general
less than or equal ton. More precisely, if

S = {P ∈ (R2)n | pi = pj for somei 6=j ∈ {1, . . . , n}},

then#P < n if P ∈ S and#P = n if P 6∈ S. TheVoronoi
coveringV(p1, . . . , pn) = {Vi(p1, . . . , pn)}i∈{1,...,n} gen-
erated by the tuple(p1, . . . , pn) is defined by assigning to
each pointpi its corresponding Voronoi cell in the Voronoi
partition generated byP. Coincident points in the tuple
(p1, . . . , pn) have the same Voronoi cell.

We can now extend the notion of proximity graphs to
this setting. Given a proximity graph functionG with edge
set functionEG , we define (with a slight abuse of notation)

G = G ◦ iF : (R2)n → G(R2),

EG = EG ◦ iF : (R2)n → F(R2 × R
2).



Moreover, the mapNG : (R2)n → (F(R2))n is the
function whose jth component isNG,j(p1, . . . , pn) =
NG,pj

(iF(p1, . . . , pn)). Coincident points in the tuple
(p1, . . . , pn) have the same set of neighbors.

Given a setY and a proximity graph functionG, a map
T : (R2)n → Y n is spatially distributed overG if there
exist a mapT̃ : R

2 × F(R2) → Y , with the property that,
for all (p1, . . . , pn) ∈ (Rd)n and for all j ∈ {1, . . . , n},

Tj(p1, . . . , pn) = T̃ (pj ,NG,j(p1, . . . , pn)) ,

where Tj denotes thejth-component ofT . In other
words, thejth component of a spatially distributed map at
(p1, . . . , pn) can be computed with only the knowledge of
the vertexpj and the neighboring vertices in the undirected
graphG({p1, . . . , pn}). We are now in a position to state
an important property of ther-limited Delaunay graph.

Lemma 2.2:Let r ∈ R+. The set of neighbors map
NGLD(r) of GLD(r) is spatially distributed overGdisk(r).
Loosely speaking, this result means that, to computeGLD ,
each agent needs to know only the location of all the agents
in a disk of radiusr. This property is to be contrasted with
the centralized computation required to determineGdisk∩D.

C. Piecewise smooth sets and Conservation-of-Mass Law

A setS ⊂ R
2 is strictly star-shapedif there exists a point

p ∈ S such that for alls ∈ ∂S and allλ ∈ (0, 1], one has
λp + (1 − λ)s ∈ int(S). A curveC in R

2 is the image of
a mapγ : [a, b] → R

2. The mapγ is a parameterization
of C. A curve γ : [a, b] → R

2 is simple if γ is injective
on (a, b). A curve is closed if γ(a) = γ(b). A set Ω ⊂
R

2 is piecewise smoothif its boundary,∂Ω, is a simple
closed curve that admits a continuous and piecewise smooth
parameterizationγ : S

1 → R
2. Likewise, a collection of sets

{

Ω(x) ⊂ R
2 | x ∈ (a, b)

}

is a piecewise smooth familyif
Ω(x) is piecewise smooth for allx ∈ (a, b), and there exists
γ : S

1 × (a, b) → R
2, (θ, x) 7→ γ(θ, x), differentiable with

respect to its second argument such that for eachx ∈ (a, b),
the mapθ 7→ γx(θ) = γ(θ, x) is a continuous and piecewise
smooth parameterization of∂Ω(x). We refer to γ as a
parameterization for the family

{

Ω(x) ⊂ R
2 | x ∈ (a, b)

}

.
The following result is an extension of the integral form
of the Conservation-of-Mass Law in fluid mechanics [16].
Given a curveC parameterized by a piecewise smooth map
γ : [a, b] → C, recall that

∫

C
f =

∫ b

a
f(γ(t)) |γ̇(t)| dt

denotes the line integral overC of f : C ⊂ R
2 → R,

and is independent of the selected parameterization.
Proposition 2.3:Let {Ω(x) ⊂ Q |x ∈ (a, b)} be a

piecewise smooth family withΩ(x) strictly star-shaped for
all x ∈ (a, b). Let φ : Q × (a, b) → R be continuously
differentiable with respect to its second argument for all
x ∈ (a, b) and almost allq ∈ Ω(x), and such that for
eachx ∈ (a, b), the mapsq 7→ φ(q, x) and q 7→ ∂φ

∂x
(q, x)

are integrable onΩ(x). Then, the function(a, b) 3 x 7→
∫

Ω(x)
φ(q, x)dq is continuously differentiable and

d

dx

∫

Ω(x)

φ(q, x)dq =

∫

Ω(x)

∂φ

∂x
(q, x)dq+

∫

∂Ω(x)

nt ∂γ

∂x
φ(·, x) ,

where n : ∂Ω(x) → R
2, q 7→ n(q), is the unit outward

normal to∂Ω(x) at q ∈ ∂Ω(x), andγ : S
1× (a, b) → R

2 is
a parameterization for the family

{

Ω(x) ⊂ R
2 | x ∈ (a, b)

}

.

D. Discrete-time LaSalle Invariance Principle

We review here some notions on discrete-time algo-
rithms [17]. An algorithm onS ⊂ R

N is a set-valued map
T : S → 2S\{∅}. A map fromS to S is simply a singleton-
valued map. For anyx0 ∈ S, T generates feasible sequences
as follows: givenxn ∈ S, the mapT yields T (xn) ⊂ S.
From this set, an arbitrary elementxn+1 may be selected,

xn+1 ∈ T (xn) , n ∈ N ∪ {0} . (1)

An algorithm T is closed atx ∈ S if for all convergent
sequencesxk → x, x′

k → x′ with x′
k ∈ T (xk), one has

x′ ∈ T (x). An algorithm isclosed onW ⊂ S if it is closed
at x, for all x ∈ W . In particular, every continuous map
T : S → S is closed onS. A setC ⊂ S is weakly positively
invariant with respect toT if for any x0 ∈ C there exists
x ∈ T (x0) such thatx ∈ C. The functionU : S → R

is non-increasing alongT on W if U(x′) ≤ U(x) for all
x′ ∈ T (x) and allx ∈ W .

Theorem 2.4 (Discrete-time LaSalle Invariance Principle):
Let T be a closed algorithm onW ⊂ R

N and let U be
a continuous non-increasing function alongT on W . Let
x0 ∈ W and assume the sequence{xn | n ∈ N ∪ {0}}
defined viaxn+1 ∈ T (xn) belongs toW and is bounded.
Then there existsc ∈ R such that

xn −→ M ∩ U−1(c) ,

whereM is the largest weakly positively invariant set con-
tained in

{

x ∈ W | ∃y ∈ T (x) such thatU(y) = U(x)
}

.

III. L IMITED -RANGE LOCATIONAL OPTIMIZATION

Let Q be a simple convex polygon inR2 including its
interior. Let diam(Q) = maxq,p∈Q ‖q − p‖. For δ < ε ∈
R+, let D[δ,ε](p) =

{

q ∈ R
2 | δ ≤ ‖q − p‖ ≤ ε

}

denote
the annulus inR

2 centered atp of radius δ and ε; we
also defineD[0,ε](p) = Bε(p) =

{

q ∈ R
2 | ‖q − p‖ ≤ ε

}

and D[δ,+∞)(p) =
{

q ∈ R
2 | δ ≤ ‖q − p‖

}

. Let nBε(p)(q)
denote the unit outward normal toBε(p) at q ∈ ∂Bε(p).
GivenS ⊂ Q, let 1S denote the indicator function,1S(q) =
1 if q ∈ S, and 1S(q) = 0 if q 6∈ S. Throughout the
paper, given a point setP = {p1, . . . , pn}, we consider
the restriction of the Voronoi partitionV(P) generated by
P to the polygonQ, {Vi(P) ∩ Q}i∈{1,...,n}. For ease of
exposition, we denote this restriction in the same way as
the standard Voronoi partition.

A density functionφ : Q → R+ is a bounded function
on Q. Given a setS ⊂ Q, let areaφ(S) =

∫

S
φ(q)dq. A

performance functionf : R+ → R is a non-increasing and
piecewise differentiable function with finite jump disconti-
nuities atR1, . . . , Rm ∈ R+, with R1 < · · · < Rm. For
convenience, we setR0 = 0 andRm+1 = +∞, and write

f(x) =
m+1
∑

α=1

fα(x) 1[Rα−1,Rα)(x) ,



where fα : [Rα−1, Rα] → R, α ∈ {1, . . . ,m + 1} are
non-increasing and differentiable withfα(Rα) > fα+1(Rα)
for α ∈ {1, . . . ,m}. Given a density functionφ and
a performance functionf , we consider themulti-center
functionH : Qn → R defined by

H(P ) =

∫

Q

max
i∈{1,...,n}

f(‖q − pi‖)φ(q)dq. (2)

Note that H is an aggregate objective function since it
depends on all the locationsp1, . . . , pn. It will be of interest
to find local maxima forH.

Remark 3.1:In the optimal placement problem of large
numbers of spatially-distributed sensors, (1)H provides the
expected value of the sensing performanceprovided by the
group of sensors over any point in the environmentQ,
where (2)φ is thedistribution density functionrepresenting
a measure of information or probability that some event take
place overQ, and (3)f describes thesensing performance
of the sensors. Because of noise and loss of resolution, the
sensing performance at pointq taken from theith sensor at
the positionpi degrades with the distance‖q − pi‖. •

Theorem 3.2:Given a density functionφ and a perfor-
mance functionf , the multi-center functionH is globally
Lipschitz onQn, and continuously differentiable onQn\S,
where for eachi ∈ {1, . . . , n}

∂H

∂pi

(P )=

∫

Vi(P )

∂

∂pi

f(‖q − pi‖)φ(q)dq +

m
∑

α=1

(fα(Rα)−

fα+1(Rα)) ·
(

Mi(2Rα)
∑

k=1

∫

arci,k(2Rα)

nBRα (pi)(q)φ(q)dq
)

, (3)

with arci,k(2Rα), k ∈ {1, . . . ,Mi(2Rα)} the arcs in the
boundary ofVi(P )∩BRα

(pi).
This result is a consequence of Proposition 2.3; we refer the
interested reader to [12] for a detailed proof. For particular
choices of performance function, the corresponding multi-
center function and its gradient have different features.

a) Centroid problem:If f is piecewise differentiable
with no jump discontinuities, then

∂H

∂pi

(P ) =

∫

Vi(P )

∂

∂pi

f(‖q − pi‖)φ(q)dq .

This is the result known in the locational optimization
literature [10], [9]. Forf(x) = −x2, H reads

H(P ) = −
n

∑

i=1

∫

Vi(P )

‖q − pi‖
2φ(q)dq , −

n
∑

i=1

JVi,pi
,

whereJW,p denotes the polar moment of inertia of the set
W ⊂ Q about the pointp. In addition, the gradient ofH is

∂H

∂pi

(P )=2

∫

Vi(P )

(q − pi)φ(q)dq=2MVi(P )(CMVi(P ) −pi).

HereMW andCMW denote, respectively, the mass and the
center of mass with respect toφ of W ⊂ Q. The critical
points ofH are P ∈ Qn with pi = CMVi(P ) for all i ∈
{1, . . . , n}, i.e. centroidal Voronoi configurations, cf. [9].

b) Area problem: If f(x) = 1[0,R](x), thenH corre-
sponds to the area, measured according toφ, covered by
the union of then balls BR(p1), . . . , BR(pn), that is,

H(P ) = areaφ(∪n
i=1BR(pi)) .

In this case, the first term in equation (3) vanishes and then

∂H

∂pi

(P ) =

Mi(2R)
∑

k=1

∫

arci,k(2R)

nBR(pi) φ .

Given P ∈ Qn, if the ith agent is surrounded by neighbors
in the graphGLD(2R) in such a way thatMi(2R) = 0, then
theH does not depend onpi. This situation is depicted in
Figure 2 (see the example on the right) and captures the
fact that the total area covered by the agents is not affected
by an infinitesimal displacement of theith agent.

c) Mixed centroid-area problem:If f is given byx 7→
f(x) = −x2 1[0,R)(x) + b · 1[R,+∞)(x), for b ≤ −R2, the
multi-center function takes the form

H(P ) =−
n

∑

i=1

JVi(P )∩BR(pi),pi
+ b areaφ(Q \ ∪n

i=1BR(pi)) ,

and its partial derivative with respectpi is

∂H

∂pi

(P ) = 2MVi(P )∩BR(pi)(CMVi(P )∩BR(pi) −pi)

− (R2 + b)

Mi(2R)
∑

k=1

∫

arci,k(2R)

nBR(pi) φ .

In the particular case whenb = −R2, the functionf is
continuous and therefore the gradient ofH takes the form

∂H

∂pi

(P ) = 2MVi(P )∩BR(pi)(CMVi(P )∩BR(pi) −pi) .

In this case, the critical points ofH are P ∈ Qn such
that pi = CMVi(P )∩BR(pi) for all i ∈ {1, . . . , n}. We
refer to them asR-centroidal Voronoi configurations. For
R ≥ diam(Q), they coincide with the standard centroidal
Voronoi configurations overQ.

Corollary 3.3: Let φ and f be a density and a perfor-
mance function, respectively. The gradient ofH with re-
spect to the agents’ locationP ∈ Qn is spatially distributed
over GD. Furthermore, iff(x) = b for all x ≥ R, then
the gradient ofH with respect to the agents’ location is
spatially distributed overGLD(2R).

IV. D ESIGN OF SPATIALLY-DISTRIBUTED ALGORITHMS

FOR COVERAGE CONTROL

Here, we design discrete-time implementations of the
gradient ascent for a general aggregate objective functionH.
We start by extending the definition ofH to consider general
partitionsW of Q. Let P ∈ Qn and letW = {Wi ⊂ Q}n

i=1

be a partition ofQ such thatWi is a convex polygon and
pi ∈ Wi, for i ∈ {1, . . . , n}. Define

He(P,W) =

n
∑

i=1

∫

Wi

f(‖q − pi‖)φ(q)dq .



The functionHe is differentiable with respect to its first
variable on the wholeQn. Note that, if H1(p,W ) =
∫

W
f(‖q − p‖)φ(q)dq, then we can also write

He(P,W) =
n

∑

i=1

H1(pi,Wi) .

The following two equalities hold

H(P ) = He(P,V(P )) , for all P ∈ Qn , (4)
∂He

∂pi

(P,V(P )) =
∂H

∂pi

(P ) , for all P ∈ Qn \ S . (5)

Let P ∈ S and consider a partitionW = {Wi ⊂ Q}n
i=1

of Q such thatWi is a convex polygon andpi ∈ Wi, for
i ∈ {1, . . . , n}. Let i0, j0 ∈ {1, . . . , n}, i0 6= j0 such that
pi0 = pj0 . Then,Vi0(P ) = Vj0(P ), andV(P ) is no longer
a partition of Q, but a covering. Nevertheless, one could
consider the line determined by the edgeWi0 ∩ Wj0 and
the associated hyperplanesHi0,Wi0

∩Wj0
and Hj0,Wi0

∩Wj0

such thatWi0 ⊂ Hi0,Wi0
∩Wj0

and Wj0 ⊂ Hj0,Wi0
∩Wj0

.
With a slight abuse of notation, redefining

Vi0(P ) = Vi0(P ) ∩ Hi0,Wi0
∩Wj0

,

Vj0(P ) = Vj0(P ) ∩ Hj0,Wi0
∩Wj0

,

the collectionV(P ) can be seen a partition ofQ. This
procedure can be extended if there are more than two
coincident agents{i1, . . . , is} at a pointp ∈ Q by defining

Viµ
(P ) = Viµ

(P )∩
(

∩ν∈{1,...,s}\{µ} Hiµ,Wiµ∩Wiν

)

,

for µ ∈ {1, . . . , s}. In the following, such a construction
will be tacitly performed forP ∈ S and a partitionW of Q.
One can show (cf. [12]) that the Voronoi partition is optimal
within the set of partitions ofQ, that is, He(P,W) ≤
He(P,V(P )) for all P ∈ Qn. Moreover, the inequality is
strict if f is strictly decreasing and the partitionsV(P ) and
W differ by a set of non-zero measure.

We are now ready to characterize a class of algorithms
with guaranteed convergence to the set of critical points of
the aggregate objective functionH.

Proposition 4.1 (Discrete-time ascent):Let T : Qn →
2Qn

be a closed algorithm onQn \ S such that:
(a) for all P ∈ Qn, T (P ) ∩ S = ∅;
(b) for all P ∈ Qn \ S, P ′ ∈ T (P ) and i ∈ {1, . . . , n},

H1(p
′
i, Vi(P )) ≥ H1(pi, Vi(P ));

(c) for all P ∈ S andP ′ ∈ T (P ), H(P ′) > H(P );
(d) if P ∈ Qn \ S is not a critical point ofH, then for

all P ′ ∈ T (P ), there existsj ∈ {1, . . . , n} such that
H1(p

′
j , Vj(P )) > H1(pj , Vj(P )).

Let P0 ∈ Qn denote the initial agents’ location. Then,
any sequence{Pn | n ∈ N ∪ {0}} generated according to
equation (1) converges to the set of critical points ofH.

This result is a consequence of Theorem 2.4; we refer
the interested reader to [12] for a detailed proof. In what
follows, we devise a general algorithmT : Qn → 2Qn

verifying properties (a)-(d) in Proposition 4.1. One can show
that if p0 ∈ ∂W , then ∂H1(·,W )

∂p
(p0) 6= 0 points toward the

interior of W . If p0 ∈ int(W ) is not a critical point, then
one also has that∂H1(·,W )

∂p
(p0) 6= 0. For both cases, there

existsε = ε(p0,W ) > 0 such that the pointpδ defined by

pδ = p0 + δ
∂H1(·,W )

∂p
(p0) ∈ W

has the property thatH1(pδ) > H1(p0), for all δ ∈ (0, ε),
andH1(pε) = H1(p0). As it is usually done in nonlinear
programming [17], the computation of the step-sizeε can
be implemented numerically via a “line search”. With this
discussion in mind, let us define theline search algorithm
Tls : Qn → 2Qn

as follows:

Given P ∈ Qn, let P ′ ∈ Tls(P ) if, for i ∈
{1, . . . , n} with the property thatpi 6= pj , j ∈
{1, . . . , n} \ {i},

p′i = pi + δ
∂H1(·, Vi(P ))

∂p
(pi) , (6)

with δ ∈
[

ε(pi,Vi(P ))
3 , ε(pi,Vi(P ))

2

]

, and, for each

set{i1, . . . , is} of coincident indexes atp ∈ Q,

p′iµ
= piµ

+ δ
∂H1(·, Yiµ

)

∂p
(piµ

) , (7)

with δ ∈
[

ε(pi,Yi)
3 , ε(pi,Yi)

2

]

, where{Yi1 , . . . , Yis
}

is a partition ofVi1(P ) = · · · = Vis
(P ) verifying

p ∈ Yiµ
, for µ ∈ {1, . . . , s}.

Proposition 4.2:The algorithmTls : Qn → 2Qn

defined
by equations (6)-(7) is closed onQn \ S, and verifies
properties (a)-(d) in Proposition 4.1.

Corollary 4.3: Consider the algorithmTls : Qn → 2Qn

defined by equations (6)-(7). Then

(i) For a general performance functionf , the algorithm
Tls is spatially distributed overGD. If, in addition,
f(x) = b for all x ≥ R, then Tls is spatially
distributed overGLD(2R);

(ii) The sequence of agents’ locations generated byTls

according to equation (1) starting atP0 ∈ Qn,
converges asymptotically to the set of critical points
of the aggregate objective functionH.

Remark 4.4:In a practical setting, the sensing and/or
communication capabilities of each network agent are re-
stricted to a bounded region specified by a finite radius
r > 0. Therefore, as a way of approximating the gradient
ascent of the multi-center functionH for an arbitrary per-
formance functionf , one could implement the discrete-time
algorithm Tls corresponding to the multi-center function
induced by the performance functionf r

2
: R+ → R given

by f r
2
(x) = f(x) for x < r

2 and f r
2
(x) = f(diam(Q))

for x ≥ r
2 . This latter algorithm has the advantage of being

spatially distributed overGLD(r). We do not follow this path
here, and instead refer the interested reader to [12] for a
complete exposition, including a detailed characterization
of the approximation properties of this procedure. •



V. SIMULATIONS

To illustrate the performance of the coordination algo-
rithms, we include some simulation results. The algorithms
are implemented inMathematica as a library of routines
and a main program running the simulation. We show exe-
cutions of the discrete-time algorithmTls (cf. equations (6)-
(7)) for the area problem and the mixed centroid-area
problem with discontinuous sensing performance in Figs. 3
and 4, respectively. Measuring displacements in meters, we
consider the domainQ with vertices

{(0, 0), (2.125, 0), (2.9325, 1.5), (2.975, 1.6),

(2.9325, 1.7), (2.295, 2.1), (0.85, 2.3), (0.17, 1.2)}.

The diameter of this domain isdiam(Q) = 3.37796. In all
examples, the density functionφ (represented by means of
its contour plot) is the sum of five Gaussian functions of the
form 5 exp(6(−(x−xcenter)

2 − (y− ycenter)
2)) with centers

(xcenter, ycenter) at (2, .25), (1, 2.25), (1.9, 1.9), (2.35, 1.25)
and(.1, .1). The area of the domain isareaφ(Q) = 8.61656.
Each agent operates with a finite radius equal tor = .45.

Fig. 3. Area problem (with agent performancef(x) = 1[0, r
2
](x)):

discrete-time algorithmTls for 16 agents on a convex polygonal envi-
ronment. The left figure illustrates the gradient ascent flow and the right
figure represents the final location and Voronoi partition. For each agent
i, the intersectionVi ∩B r

2
(pi) is plotted in light gray. After18 seconds,

the value of the multi-center function is approximately6.28977.

Fig. 4. Mixed centroid-area problem (with discontinuous agent perfor-
mancef(x) = −x2 1[0, r

2
)(x)−diam(Q)2 ·1[ r

2
,+∞)(x)): discrete-time

algorithmTls for 16 agents on a convex polygonal environment. The left
figure illustrates the gradient ascent flow and the right figure represents
the final location and Voronoi partition. For each agenti, the intersection
Vi ∩B r

2
(pi) is plotted in light gray. After13.5 seconds, the value of the

multi-center function is approximately−6.803.

As mentioned in Remark 4.4, the execution of the
coordination algorithm in Figure 4 can be regarded as
a limited-range implementation of the gradient ascent of
the multi-center functionH corresponding to the agent
performancef(x) = −x2; this performance function does
not have any range limitation. To compare both executions,
we computed the percentage error in the value ofH at their
final configurations, which is approximately30.7%. We also
observed that the percentage error of the performance of the
limited-range implementation improves with higher values
of the ratior/diam(Q).

VI. CONCLUSIONS AND FUTURE WORK

We have presented novel spatially-distributed discrete-
time algorithms for coordinated motion of groups of agents.
Future research include (1) distributed implementation of
deterministic annealing techniques, (2) visibility-based al-
gorithms for coverage in non-convex environments, and (3)
distributed algorithms for other cooperative behaviors and
sensing tasks, e.g., detection, estimation, and map-building.
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